mm: fix exec activate_mm vs TLB shootdown and lazy tlb switching race
[linux/fpc-iii.git] / fs / crypto / crypto.c
blobf862ad19c714e77c65bb449aff518c668e702659
1 /*
2 * This contains encryption functions for per-file encryption.
4 * Copyright (C) 2015, Google, Inc.
5 * Copyright (C) 2015, Motorola Mobility
7 * Written by Michael Halcrow, 2014.
9 * Filename encryption additions
10 * Uday Savagaonkar, 2014
11 * Encryption policy handling additions
12 * Ildar Muslukhov, 2014
13 * Add fscrypt_pullback_bio_page()
14 * Jaegeuk Kim, 2015.
16 * This has not yet undergone a rigorous security audit.
18 * The usage of AES-XTS should conform to recommendations in NIST
19 * Special Publication 800-38E and IEEE P1619/D16.
22 #include <linux/pagemap.h>
23 #include <linux/mempool.h>
24 #include <linux/module.h>
25 #include <linux/scatterlist.h>
26 #include <linux/ratelimit.h>
27 #include <linux/dcache.h>
28 #include <linux/namei.h>
29 #include <crypto/aes.h>
30 #include "fscrypt_private.h"
32 static unsigned int num_prealloc_crypto_pages = 32;
33 static unsigned int num_prealloc_crypto_ctxs = 128;
35 module_param(num_prealloc_crypto_pages, uint, 0444);
36 MODULE_PARM_DESC(num_prealloc_crypto_pages,
37 "Number of crypto pages to preallocate");
38 module_param(num_prealloc_crypto_ctxs, uint, 0444);
39 MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
40 "Number of crypto contexts to preallocate");
42 static mempool_t *fscrypt_bounce_page_pool = NULL;
44 static LIST_HEAD(fscrypt_free_ctxs);
45 static DEFINE_SPINLOCK(fscrypt_ctx_lock);
47 struct workqueue_struct *fscrypt_read_workqueue;
48 static DEFINE_MUTEX(fscrypt_init_mutex);
50 static struct kmem_cache *fscrypt_ctx_cachep;
51 struct kmem_cache *fscrypt_info_cachep;
53 /**
54 * fscrypt_release_ctx() - Releases an encryption context
55 * @ctx: The encryption context to release.
57 * If the encryption context was allocated from the pre-allocated pool, returns
58 * it to that pool. Else, frees it.
60 * If there's a bounce page in the context, this frees that.
62 void fscrypt_release_ctx(struct fscrypt_ctx *ctx)
64 unsigned long flags;
66 if (ctx->flags & FS_CTX_HAS_BOUNCE_BUFFER_FL && ctx->w.bounce_page) {
67 mempool_free(ctx->w.bounce_page, fscrypt_bounce_page_pool);
68 ctx->w.bounce_page = NULL;
70 ctx->w.control_page = NULL;
71 if (ctx->flags & FS_CTX_REQUIRES_FREE_ENCRYPT_FL) {
72 kmem_cache_free(fscrypt_ctx_cachep, ctx);
73 } else {
74 spin_lock_irqsave(&fscrypt_ctx_lock, flags);
75 list_add(&ctx->free_list, &fscrypt_free_ctxs);
76 spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
79 EXPORT_SYMBOL(fscrypt_release_ctx);
81 /**
82 * fscrypt_get_ctx() - Gets an encryption context
83 * @inode: The inode for which we are doing the crypto
84 * @gfp_flags: The gfp flag for memory allocation
86 * Allocates and initializes an encryption context.
88 * Return: An allocated and initialized encryption context on success; error
89 * value or NULL otherwise.
91 struct fscrypt_ctx *fscrypt_get_ctx(const struct inode *inode, gfp_t gfp_flags)
93 struct fscrypt_ctx *ctx = NULL;
94 struct fscrypt_info *ci = inode->i_crypt_info;
95 unsigned long flags;
97 if (ci == NULL)
98 return ERR_PTR(-ENOKEY);
101 * We first try getting the ctx from a free list because in
102 * the common case the ctx will have an allocated and
103 * initialized crypto tfm, so it's probably a worthwhile
104 * optimization. For the bounce page, we first try getting it
105 * from the kernel allocator because that's just about as fast
106 * as getting it from a list and because a cache of free pages
107 * should generally be a "last resort" option for a filesystem
108 * to be able to do its job.
110 spin_lock_irqsave(&fscrypt_ctx_lock, flags);
111 ctx = list_first_entry_or_null(&fscrypt_free_ctxs,
112 struct fscrypt_ctx, free_list);
113 if (ctx)
114 list_del(&ctx->free_list);
115 spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
116 if (!ctx) {
117 ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, gfp_flags);
118 if (!ctx)
119 return ERR_PTR(-ENOMEM);
120 ctx->flags |= FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
121 } else {
122 ctx->flags &= ~FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
124 ctx->flags &= ~FS_CTX_HAS_BOUNCE_BUFFER_FL;
125 return ctx;
127 EXPORT_SYMBOL(fscrypt_get_ctx);
130 * page_crypt_complete() - completion callback for page crypto
131 * @req: The asynchronous cipher request context
132 * @res: The result of the cipher operation
134 static void page_crypt_complete(struct crypto_async_request *req, int res)
136 struct fscrypt_completion_result *ecr = req->data;
138 if (res == -EINPROGRESS)
139 return;
140 ecr->res = res;
141 complete(&ecr->completion);
144 int fscrypt_do_page_crypto(const struct inode *inode, fscrypt_direction_t rw,
145 u64 lblk_num, struct page *src_page,
146 struct page *dest_page, unsigned int len,
147 unsigned int offs, gfp_t gfp_flags)
149 struct {
150 __le64 index;
151 u8 padding[FS_IV_SIZE - sizeof(__le64)];
152 } iv;
153 struct skcipher_request *req = NULL;
154 DECLARE_FS_COMPLETION_RESULT(ecr);
155 struct scatterlist dst, src;
156 struct fscrypt_info *ci = inode->i_crypt_info;
157 struct crypto_skcipher *tfm = ci->ci_ctfm;
158 int res = 0;
160 if (WARN_ON_ONCE(len <= 0))
161 return -EINVAL;
162 if (WARN_ON_ONCE(len % FS_CRYPTO_BLOCK_SIZE != 0))
163 return -EINVAL;
165 BUILD_BUG_ON(sizeof(iv) != FS_IV_SIZE);
166 BUILD_BUG_ON(AES_BLOCK_SIZE != FS_IV_SIZE);
167 iv.index = cpu_to_le64(lblk_num);
168 memset(iv.padding, 0, sizeof(iv.padding));
170 if (ci->ci_essiv_tfm != NULL) {
171 crypto_cipher_encrypt_one(ci->ci_essiv_tfm, (u8 *)&iv,
172 (u8 *)&iv);
175 req = skcipher_request_alloc(tfm, gfp_flags);
176 if (!req) {
177 printk_ratelimited(KERN_ERR
178 "%s: crypto_request_alloc() failed\n",
179 __func__);
180 return -ENOMEM;
183 skcipher_request_set_callback(
184 req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
185 page_crypt_complete, &ecr);
187 sg_init_table(&dst, 1);
188 sg_set_page(&dst, dest_page, len, offs);
189 sg_init_table(&src, 1);
190 sg_set_page(&src, src_page, len, offs);
191 skcipher_request_set_crypt(req, &src, &dst, len, &iv);
192 if (rw == FS_DECRYPT)
193 res = crypto_skcipher_decrypt(req);
194 else
195 res = crypto_skcipher_encrypt(req);
196 if (res == -EINPROGRESS || res == -EBUSY) {
197 BUG_ON(req->base.data != &ecr);
198 wait_for_completion(&ecr.completion);
199 res = ecr.res;
201 skcipher_request_free(req);
202 if (res) {
203 printk_ratelimited(KERN_ERR
204 "%s: crypto_skcipher_encrypt() returned %d\n",
205 __func__, res);
206 return res;
208 return 0;
211 struct page *fscrypt_alloc_bounce_page(struct fscrypt_ctx *ctx,
212 gfp_t gfp_flags)
214 ctx->w.bounce_page = mempool_alloc(fscrypt_bounce_page_pool, gfp_flags);
215 if (ctx->w.bounce_page == NULL)
216 return ERR_PTR(-ENOMEM);
217 ctx->flags |= FS_CTX_HAS_BOUNCE_BUFFER_FL;
218 return ctx->w.bounce_page;
222 * fscypt_encrypt_page() - Encrypts a page
223 * @inode: The inode for which the encryption should take place
224 * @page: The page to encrypt. Must be locked for bounce-page
225 * encryption.
226 * @len: Length of data to encrypt in @page and encrypted
227 * data in returned page.
228 * @offs: Offset of data within @page and returned
229 * page holding encrypted data.
230 * @lblk_num: Logical block number. This must be unique for multiple
231 * calls with same inode, except when overwriting
232 * previously written data.
233 * @gfp_flags: The gfp flag for memory allocation
235 * Encrypts @page using the ctx encryption context. Performs encryption
236 * either in-place or into a newly allocated bounce page.
237 * Called on the page write path.
239 * Bounce page allocation is the default.
240 * In this case, the contents of @page are encrypted and stored in an
241 * allocated bounce page. @page has to be locked and the caller must call
242 * fscrypt_restore_control_page() on the returned ciphertext page to
243 * release the bounce buffer and the encryption context.
245 * In-place encryption is used by setting the FS_CFLG_OWN_PAGES flag in
246 * fscrypt_operations. Here, the input-page is returned with its content
247 * encrypted.
249 * Return: A page with the encrypted content on success. Else, an
250 * error value or NULL.
252 struct page *fscrypt_encrypt_page(const struct inode *inode,
253 struct page *page,
254 unsigned int len,
255 unsigned int offs,
256 u64 lblk_num, gfp_t gfp_flags)
259 struct fscrypt_ctx *ctx;
260 struct page *ciphertext_page = page;
261 int err;
263 if (inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES) {
264 /* with inplace-encryption we just encrypt the page */
265 err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num, page,
266 ciphertext_page, len, offs,
267 gfp_flags);
268 if (err)
269 return ERR_PTR(err);
271 return ciphertext_page;
274 if (WARN_ON_ONCE(!PageLocked(page)))
275 return ERR_PTR(-EINVAL);
277 ctx = fscrypt_get_ctx(inode, gfp_flags);
278 if (IS_ERR(ctx))
279 return (struct page *)ctx;
281 /* The encryption operation will require a bounce page. */
282 ciphertext_page = fscrypt_alloc_bounce_page(ctx, gfp_flags);
283 if (IS_ERR(ciphertext_page))
284 goto errout;
286 ctx->w.control_page = page;
287 err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num,
288 page, ciphertext_page, len, offs,
289 gfp_flags);
290 if (err) {
291 ciphertext_page = ERR_PTR(err);
292 goto errout;
294 SetPagePrivate(ciphertext_page);
295 set_page_private(ciphertext_page, (unsigned long)ctx);
296 lock_page(ciphertext_page);
297 return ciphertext_page;
299 errout:
300 fscrypt_release_ctx(ctx);
301 return ciphertext_page;
303 EXPORT_SYMBOL(fscrypt_encrypt_page);
306 * fscrypt_decrypt_page() - Decrypts a page in-place
307 * @inode: The corresponding inode for the page to decrypt.
308 * @page: The page to decrypt. Must be locked in case
309 * it is a writeback page (FS_CFLG_OWN_PAGES unset).
310 * @len: Number of bytes in @page to be decrypted.
311 * @offs: Start of data in @page.
312 * @lblk_num: Logical block number.
314 * Decrypts page in-place using the ctx encryption context.
316 * Called from the read completion callback.
318 * Return: Zero on success, non-zero otherwise.
320 int fscrypt_decrypt_page(const struct inode *inode, struct page *page,
321 unsigned int len, unsigned int offs, u64 lblk_num)
323 if (WARN_ON_ONCE(!PageLocked(page) &&
324 !(inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES)))
325 return -EINVAL;
327 return fscrypt_do_page_crypto(inode, FS_DECRYPT, lblk_num, page, page,
328 len, offs, GFP_NOFS);
330 EXPORT_SYMBOL(fscrypt_decrypt_page);
333 * Validate dentries for encrypted directories to make sure we aren't
334 * potentially caching stale data after a key has been added or
335 * removed.
337 static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
339 struct dentry *dir;
340 int dir_has_key, cached_with_key;
342 if (flags & LOOKUP_RCU)
343 return -ECHILD;
345 dir = dget_parent(dentry);
346 if (!d_inode(dir)->i_sb->s_cop->is_encrypted(d_inode(dir))) {
347 dput(dir);
348 return 0;
351 /* this should eventually be an flag in d_flags */
352 spin_lock(&dentry->d_lock);
353 cached_with_key = dentry->d_flags & DCACHE_ENCRYPTED_WITH_KEY;
354 spin_unlock(&dentry->d_lock);
355 dir_has_key = (d_inode(dir)->i_crypt_info != NULL);
356 dput(dir);
359 * If the dentry was cached without the key, and it is a
360 * negative dentry, it might be a valid name. We can't check
361 * if the key has since been made available due to locking
362 * reasons, so we fail the validation so ext4_lookup() can do
363 * this check.
365 * We also fail the validation if the dentry was created with
366 * the key present, but we no longer have the key, or vice versa.
368 if ((!cached_with_key && d_is_negative(dentry)) ||
369 (!cached_with_key && dir_has_key) ||
370 (cached_with_key && !dir_has_key))
371 return 0;
372 return 1;
375 const struct dentry_operations fscrypt_d_ops = {
376 .d_revalidate = fscrypt_d_revalidate,
378 EXPORT_SYMBOL(fscrypt_d_ops);
380 void fscrypt_restore_control_page(struct page *page)
382 struct fscrypt_ctx *ctx;
384 ctx = (struct fscrypt_ctx *)page_private(page);
385 set_page_private(page, (unsigned long)NULL);
386 ClearPagePrivate(page);
387 unlock_page(page);
388 fscrypt_release_ctx(ctx);
390 EXPORT_SYMBOL(fscrypt_restore_control_page);
392 static void fscrypt_destroy(void)
394 struct fscrypt_ctx *pos, *n;
396 list_for_each_entry_safe(pos, n, &fscrypt_free_ctxs, free_list)
397 kmem_cache_free(fscrypt_ctx_cachep, pos);
398 INIT_LIST_HEAD(&fscrypt_free_ctxs);
399 mempool_destroy(fscrypt_bounce_page_pool);
400 fscrypt_bounce_page_pool = NULL;
404 * fscrypt_initialize() - allocate major buffers for fs encryption.
405 * @cop_flags: fscrypt operations flags
407 * We only call this when we start accessing encrypted files, since it
408 * results in memory getting allocated that wouldn't otherwise be used.
410 * Return: Zero on success, non-zero otherwise.
412 int fscrypt_initialize(unsigned int cop_flags)
414 int i, res = -ENOMEM;
416 /* No need to allocate a bounce page pool if this FS won't use it. */
417 if (cop_flags & FS_CFLG_OWN_PAGES)
418 return 0;
420 mutex_lock(&fscrypt_init_mutex);
421 if (fscrypt_bounce_page_pool)
422 goto already_initialized;
424 for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
425 struct fscrypt_ctx *ctx;
427 ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, GFP_NOFS);
428 if (!ctx)
429 goto fail;
430 list_add(&ctx->free_list, &fscrypt_free_ctxs);
433 fscrypt_bounce_page_pool =
434 mempool_create_page_pool(num_prealloc_crypto_pages, 0);
435 if (!fscrypt_bounce_page_pool)
436 goto fail;
438 already_initialized:
439 mutex_unlock(&fscrypt_init_mutex);
440 return 0;
441 fail:
442 fscrypt_destroy();
443 mutex_unlock(&fscrypt_init_mutex);
444 return res;
448 * fscrypt_init() - Set up for fs encryption.
450 static int __init fscrypt_init(void)
453 * Use an unbound workqueue to allow bios to be decrypted in parallel
454 * even when they happen to complete on the same CPU. This sacrifices
455 * locality, but it's worthwhile since decryption is CPU-intensive.
457 * Also use a high-priority workqueue to prioritize decryption work,
458 * which blocks reads from completing, over regular application tasks.
460 fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue",
461 WQ_UNBOUND | WQ_HIGHPRI,
462 num_online_cpus());
463 if (!fscrypt_read_workqueue)
464 goto fail;
466 fscrypt_ctx_cachep = KMEM_CACHE(fscrypt_ctx, SLAB_RECLAIM_ACCOUNT);
467 if (!fscrypt_ctx_cachep)
468 goto fail_free_queue;
470 fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT);
471 if (!fscrypt_info_cachep)
472 goto fail_free_ctx;
474 return 0;
476 fail_free_ctx:
477 kmem_cache_destroy(fscrypt_ctx_cachep);
478 fail_free_queue:
479 destroy_workqueue(fscrypt_read_workqueue);
480 fail:
481 return -ENOMEM;
483 module_init(fscrypt_init)
486 * fscrypt_exit() - Shutdown the fs encryption system
488 static void __exit fscrypt_exit(void)
490 fscrypt_destroy();
492 if (fscrypt_read_workqueue)
493 destroy_workqueue(fscrypt_read_workqueue);
494 kmem_cache_destroy(fscrypt_ctx_cachep);
495 kmem_cache_destroy(fscrypt_info_cachep);
497 fscrypt_essiv_cleanup();
499 module_exit(fscrypt_exit);
501 MODULE_LICENSE("GPL");