mm: fix exec activate_mm vs TLB shootdown and lazy tlb switching race
[linux/fpc-iii.git] / fs / ext4 / file.c
blobacec134da57df5c5b1a1bba9a18e5fe251cb86a7
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/file.c
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
10 * from
12 * linux/fs/minix/file.c
14 * Copyright (C) 1991, 1992 Linus Torvalds
16 * ext4 fs regular file handling primitives
18 * 64-bit file support on 64-bit platforms by Jakub Jelinek
19 * (jj@sunsite.ms.mff.cuni.cz)
22 #include <linux/time.h>
23 #include <linux/fs.h>
24 #include <linux/mount.h>
25 #include <linux/path.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/pagevec.h>
29 #include <linux/uio.h>
30 #include "ext4.h"
31 #include "ext4_jbd2.h"
32 #include "xattr.h"
33 #include "acl.h"
35 #ifdef CONFIG_FS_DAX
36 static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to)
38 struct inode *inode = file_inode(iocb->ki_filp);
39 ssize_t ret;
41 if (iocb->ki_flags & IOCB_NOWAIT) {
42 if (!inode_trylock_shared(inode))
43 return -EAGAIN;
44 } else {
45 inode_lock_shared(inode);
48 * Recheck under inode lock - at this point we are sure it cannot
49 * change anymore
51 if (!IS_DAX(inode)) {
52 inode_unlock_shared(inode);
53 /* Fallback to buffered IO in case we cannot support DAX */
54 return generic_file_read_iter(iocb, to);
56 ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops);
57 inode_unlock_shared(inode);
59 file_accessed(iocb->ki_filp);
60 return ret;
62 #endif
64 static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
66 if (unlikely(ext4_forced_shutdown(EXT4_SB(file_inode(iocb->ki_filp)->i_sb))))
67 return -EIO;
69 if (!iov_iter_count(to))
70 return 0; /* skip atime */
72 #ifdef CONFIG_FS_DAX
73 if (IS_DAX(file_inode(iocb->ki_filp)))
74 return ext4_dax_read_iter(iocb, to);
75 #endif
76 return generic_file_read_iter(iocb, to);
80 * Called when an inode is released. Note that this is different
81 * from ext4_file_open: open gets called at every open, but release
82 * gets called only when /all/ the files are closed.
84 static int ext4_release_file(struct inode *inode, struct file *filp)
86 if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
87 ext4_alloc_da_blocks(inode);
88 ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
90 /* if we are the last writer on the inode, drop the block reservation */
91 if ((filp->f_mode & FMODE_WRITE) &&
92 (atomic_read(&inode->i_writecount) == 1) &&
93 !EXT4_I(inode)->i_reserved_data_blocks)
95 down_write(&EXT4_I(inode)->i_data_sem);
96 ext4_discard_preallocations(inode);
97 up_write(&EXT4_I(inode)->i_data_sem);
99 if (is_dx(inode) && filp->private_data)
100 ext4_htree_free_dir_info(filp->private_data);
102 return 0;
105 static void ext4_unwritten_wait(struct inode *inode)
107 wait_queue_head_t *wq = ext4_ioend_wq(inode);
109 wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_unwritten) == 0));
113 * This tests whether the IO in question is block-aligned or not.
114 * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
115 * are converted to written only after the IO is complete. Until they are
116 * mapped, these blocks appear as holes, so dio_zero_block() will assume that
117 * it needs to zero out portions of the start and/or end block. If 2 AIO
118 * threads are at work on the same unwritten block, they must be synchronized
119 * or one thread will zero the other's data, causing corruption.
121 static int
122 ext4_unaligned_aio(struct inode *inode, struct iov_iter *from, loff_t pos)
124 struct super_block *sb = inode->i_sb;
125 int blockmask = sb->s_blocksize - 1;
127 if (pos >= ALIGN(i_size_read(inode), sb->s_blocksize))
128 return 0;
130 if ((pos | iov_iter_alignment(from)) & blockmask)
131 return 1;
133 return 0;
136 /* Is IO overwriting allocated and initialized blocks? */
137 static bool ext4_overwrite_io(struct inode *inode, loff_t pos, loff_t len)
139 struct ext4_map_blocks map;
140 unsigned int blkbits = inode->i_blkbits;
141 int err, blklen;
143 if (pos + len > i_size_read(inode))
144 return false;
146 map.m_lblk = pos >> blkbits;
147 map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits);
148 blklen = map.m_len;
150 err = ext4_map_blocks(NULL, inode, &map, 0);
152 * 'err==len' means that all of the blocks have been preallocated,
153 * regardless of whether they have been initialized or not. To exclude
154 * unwritten extents, we need to check m_flags.
156 return err == blklen && (map.m_flags & EXT4_MAP_MAPPED);
159 static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from)
161 struct inode *inode = file_inode(iocb->ki_filp);
162 ssize_t ret;
164 ret = generic_write_checks(iocb, from);
165 if (ret <= 0)
166 return ret;
168 if (unlikely(IS_IMMUTABLE(inode)))
169 return -EPERM;
172 * If we have encountered a bitmap-format file, the size limit
173 * is smaller than s_maxbytes, which is for extent-mapped files.
175 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
176 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
178 if (iocb->ki_pos >= sbi->s_bitmap_maxbytes)
179 return -EFBIG;
180 iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
182 return iov_iter_count(from);
185 #ifdef CONFIG_FS_DAX
186 static ssize_t
187 ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from)
189 struct inode *inode = file_inode(iocb->ki_filp);
190 ssize_t ret;
192 if (iocb->ki_flags & IOCB_NOWAIT) {
193 if (!inode_trylock(inode))
194 return -EAGAIN;
195 } else {
196 inode_lock(inode);
198 ret = ext4_write_checks(iocb, from);
199 if (ret <= 0)
200 goto out;
201 ret = file_remove_privs(iocb->ki_filp);
202 if (ret)
203 goto out;
204 ret = file_update_time(iocb->ki_filp);
205 if (ret)
206 goto out;
208 ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops);
209 out:
210 inode_unlock(inode);
211 if (ret > 0)
212 ret = generic_write_sync(iocb, ret);
213 return ret;
215 #endif
217 static ssize_t
218 ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
220 struct inode *inode = file_inode(iocb->ki_filp);
221 int o_direct = iocb->ki_flags & IOCB_DIRECT;
222 int unaligned_aio = 0;
223 int overwrite = 0;
224 ssize_t ret;
226 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
227 return -EIO;
229 #ifdef CONFIG_FS_DAX
230 if (IS_DAX(inode))
231 return ext4_dax_write_iter(iocb, from);
232 #endif
233 if (!o_direct && (iocb->ki_flags & IOCB_NOWAIT))
234 return -EOPNOTSUPP;
236 if (!inode_trylock(inode)) {
237 if (iocb->ki_flags & IOCB_NOWAIT)
238 return -EAGAIN;
239 inode_lock(inode);
242 ret = ext4_write_checks(iocb, from);
243 if (ret <= 0)
244 goto out;
247 * Unaligned direct AIO must be serialized among each other as zeroing
248 * of partial blocks of two competing unaligned AIOs can result in data
249 * corruption.
251 if (o_direct && ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) &&
252 !is_sync_kiocb(iocb) &&
253 ext4_unaligned_aio(inode, from, iocb->ki_pos)) {
254 unaligned_aio = 1;
255 ext4_unwritten_wait(inode);
258 iocb->private = &overwrite;
259 /* Check whether we do a DIO overwrite or not */
260 if (o_direct && !unaligned_aio) {
261 if (ext4_overwrite_io(inode, iocb->ki_pos, iov_iter_count(from))) {
262 if (ext4_should_dioread_nolock(inode))
263 overwrite = 1;
264 } else if (iocb->ki_flags & IOCB_NOWAIT) {
265 ret = -EAGAIN;
266 goto out;
270 ret = __generic_file_write_iter(iocb, from);
272 * Unaligned direct AIO must be the only IO in flight. Otherwise
273 * overlapping aligned IO after unaligned might result in data
274 * corruption.
276 if (ret == -EIOCBQUEUED && unaligned_aio)
277 ext4_unwritten_wait(inode);
278 inode_unlock(inode);
280 if (ret > 0)
281 ret = generic_write_sync(iocb, ret);
283 return ret;
285 out:
286 inode_unlock(inode);
287 return ret;
290 #ifdef CONFIG_FS_DAX
291 static int ext4_dax_huge_fault(struct vm_fault *vmf,
292 enum page_entry_size pe_size)
294 int result;
295 handle_t *handle = NULL;
296 struct inode *inode = file_inode(vmf->vma->vm_file);
297 struct super_block *sb = inode->i_sb;
300 * We have to distinguish real writes from writes which will result in a
301 * COW page; COW writes should *not* poke the journal (the file will not
302 * be changed). Doing so would cause unintended failures when mounted
303 * read-only.
305 * We check for VM_SHARED rather than vmf->cow_page since the latter is
306 * unset for pe_size != PE_SIZE_PTE (i.e. only in do_cow_fault); for
307 * other sizes, dax_iomap_fault will handle splitting / fallback so that
308 * we eventually come back with a COW page.
310 bool write = (vmf->flags & FAULT_FLAG_WRITE) &&
311 (vmf->vma->vm_flags & VM_SHARED);
313 if (write) {
314 sb_start_pagefault(sb);
315 file_update_time(vmf->vma->vm_file);
316 down_read(&EXT4_I(inode)->i_mmap_sem);
317 handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
318 EXT4_DATA_TRANS_BLOCKS(sb));
319 } else {
320 down_read(&EXT4_I(inode)->i_mmap_sem);
322 if (!IS_ERR(handle))
323 result = dax_iomap_fault(vmf, pe_size, &ext4_iomap_ops);
324 else
325 result = VM_FAULT_SIGBUS;
326 if (write) {
327 if (!IS_ERR(handle))
328 ext4_journal_stop(handle);
329 up_read(&EXT4_I(inode)->i_mmap_sem);
330 sb_end_pagefault(sb);
331 } else {
332 up_read(&EXT4_I(inode)->i_mmap_sem);
335 return result;
338 static int ext4_dax_fault(struct vm_fault *vmf)
340 return ext4_dax_huge_fault(vmf, PE_SIZE_PTE);
343 static const struct vm_operations_struct ext4_dax_vm_ops = {
344 .fault = ext4_dax_fault,
345 .huge_fault = ext4_dax_huge_fault,
346 .page_mkwrite = ext4_dax_fault,
347 .pfn_mkwrite = ext4_dax_fault,
349 #else
350 #define ext4_dax_vm_ops ext4_file_vm_ops
351 #endif
353 static const struct vm_operations_struct ext4_file_vm_ops = {
354 .fault = ext4_filemap_fault,
355 .map_pages = filemap_map_pages,
356 .page_mkwrite = ext4_page_mkwrite,
359 static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
361 struct inode *inode = file->f_mapping->host;
363 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
364 return -EIO;
366 file_accessed(file);
367 if (IS_DAX(file_inode(file))) {
368 vma->vm_ops = &ext4_dax_vm_ops;
369 vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
370 } else {
371 vma->vm_ops = &ext4_file_vm_ops;
373 return 0;
376 static int ext4_file_open(struct inode * inode, struct file * filp)
378 struct super_block *sb = inode->i_sb;
379 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
380 struct vfsmount *mnt = filp->f_path.mnt;
381 struct dentry *dir;
382 struct path path;
383 char buf[64], *cp;
384 int ret;
386 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
387 return -EIO;
389 if (unlikely(!(sbi->s_mount_flags & EXT4_MF_MNTDIR_SAMPLED) &&
390 !sb_rdonly(sb))) {
391 sbi->s_mount_flags |= EXT4_MF_MNTDIR_SAMPLED;
393 * Sample where the filesystem has been mounted and
394 * store it in the superblock for sysadmin convenience
395 * when trying to sort through large numbers of block
396 * devices or filesystem images.
398 memset(buf, 0, sizeof(buf));
399 path.mnt = mnt;
400 path.dentry = mnt->mnt_root;
401 cp = d_path(&path, buf, sizeof(buf));
402 if (!IS_ERR(cp)) {
403 handle_t *handle;
404 int err;
406 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
407 if (IS_ERR(handle))
408 return PTR_ERR(handle);
409 BUFFER_TRACE(sbi->s_sbh, "get_write_access");
410 err = ext4_journal_get_write_access(handle, sbi->s_sbh);
411 if (err) {
412 ext4_journal_stop(handle);
413 return err;
415 strlcpy(sbi->s_es->s_last_mounted, cp,
416 sizeof(sbi->s_es->s_last_mounted));
417 ext4_handle_dirty_super(handle, sb);
418 ext4_journal_stop(handle);
421 if (ext4_encrypted_inode(inode)) {
422 ret = fscrypt_get_encryption_info(inode);
423 if (ret)
424 return -EACCES;
425 if (!fscrypt_has_encryption_key(inode))
426 return -ENOKEY;
429 dir = dget_parent(file_dentry(filp));
430 if (ext4_encrypted_inode(d_inode(dir)) &&
431 !fscrypt_has_permitted_context(d_inode(dir), inode)) {
432 ext4_warning(inode->i_sb,
433 "Inconsistent encryption contexts: %lu/%lu",
434 (unsigned long) d_inode(dir)->i_ino,
435 (unsigned long) inode->i_ino);
436 dput(dir);
437 return -EPERM;
439 dput(dir);
441 * Set up the jbd2_inode if we are opening the inode for
442 * writing and the journal is present
444 if (filp->f_mode & FMODE_WRITE) {
445 ret = ext4_inode_attach_jinode(inode);
446 if (ret < 0)
447 return ret;
450 filp->f_mode |= FMODE_NOWAIT;
451 return dquot_file_open(inode, filp);
455 * Here we use ext4_map_blocks() to get a block mapping for a extent-based
456 * file rather than ext4_ext_walk_space() because we can introduce
457 * SEEK_DATA/SEEK_HOLE for block-mapped and extent-mapped file at the same
458 * function. When extent status tree has been fully implemented, it will
459 * track all extent status for a file and we can directly use it to
460 * retrieve the offset for SEEK_DATA/SEEK_HOLE.
464 * When we retrieve the offset for SEEK_DATA/SEEK_HOLE, we would need to
465 * lookup page cache to check whether or not there has some data between
466 * [startoff, endoff] because, if this range contains an unwritten extent,
467 * we determine this extent as a data or a hole according to whether the
468 * page cache has data or not.
470 static int ext4_find_unwritten_pgoff(struct inode *inode,
471 int whence,
472 ext4_lblk_t end_blk,
473 loff_t *offset)
475 struct pagevec pvec;
476 unsigned int blkbits;
477 pgoff_t index;
478 pgoff_t end;
479 loff_t endoff;
480 loff_t startoff;
481 loff_t lastoff;
482 int found = 0;
484 blkbits = inode->i_sb->s_blocksize_bits;
485 startoff = *offset;
486 lastoff = startoff;
487 endoff = (loff_t)end_blk << blkbits;
489 index = startoff >> PAGE_SHIFT;
490 end = (endoff - 1) >> PAGE_SHIFT;
492 pagevec_init(&pvec, 0);
493 do {
494 int i;
495 unsigned long nr_pages;
497 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
498 &index, end);
499 if (nr_pages == 0)
500 break;
502 for (i = 0; i < nr_pages; i++) {
503 struct page *page = pvec.pages[i];
504 struct buffer_head *bh, *head;
507 * If current offset is smaller than the page offset,
508 * there is a hole at this offset.
510 if (whence == SEEK_HOLE && lastoff < endoff &&
511 lastoff < page_offset(pvec.pages[i])) {
512 found = 1;
513 *offset = lastoff;
514 goto out;
517 lock_page(page);
519 if (unlikely(page->mapping != inode->i_mapping)) {
520 unlock_page(page);
521 continue;
524 if (!page_has_buffers(page)) {
525 unlock_page(page);
526 continue;
529 if (page_has_buffers(page)) {
530 lastoff = page_offset(page);
531 bh = head = page_buffers(page);
532 do {
533 if (lastoff + bh->b_size <= startoff)
534 goto next;
535 if (buffer_uptodate(bh) ||
536 buffer_unwritten(bh)) {
537 if (whence == SEEK_DATA)
538 found = 1;
539 } else {
540 if (whence == SEEK_HOLE)
541 found = 1;
543 if (found) {
544 *offset = max_t(loff_t,
545 startoff, lastoff);
546 unlock_page(page);
547 goto out;
549 next:
550 lastoff += bh->b_size;
551 bh = bh->b_this_page;
552 } while (bh != head);
555 lastoff = page_offset(page) + PAGE_SIZE;
556 unlock_page(page);
559 pagevec_release(&pvec);
560 } while (index <= end);
562 /* There are no pages upto endoff - that would be a hole in there. */
563 if (whence == SEEK_HOLE && lastoff < endoff) {
564 found = 1;
565 *offset = lastoff;
567 out:
568 pagevec_release(&pvec);
569 return found;
573 * ext4_seek_data() retrieves the offset for SEEK_DATA.
575 static loff_t ext4_seek_data(struct file *file, loff_t offset, loff_t maxsize)
577 struct inode *inode = file->f_mapping->host;
578 struct extent_status es;
579 ext4_lblk_t start, last, end;
580 loff_t dataoff, isize;
581 int blkbits;
582 int ret;
584 inode_lock(inode);
586 isize = i_size_read(inode);
587 if (offset < 0 || offset >= isize) {
588 inode_unlock(inode);
589 return -ENXIO;
592 blkbits = inode->i_sb->s_blocksize_bits;
593 start = offset >> blkbits;
594 last = start;
595 end = isize >> blkbits;
596 dataoff = offset;
598 do {
599 ret = ext4_get_next_extent(inode, last, end - last + 1, &es);
600 if (ret <= 0) {
601 /* No extent found -> no data */
602 if (ret == 0)
603 ret = -ENXIO;
604 inode_unlock(inode);
605 return ret;
608 last = es.es_lblk;
609 if (last != start)
610 dataoff = (loff_t)last << blkbits;
611 if (!ext4_es_is_unwritten(&es))
612 break;
615 * If there is a unwritten extent at this offset,
616 * it will be as a data or a hole according to page
617 * cache that has data or not.
619 if (ext4_find_unwritten_pgoff(inode, SEEK_DATA,
620 es.es_lblk + es.es_len, &dataoff))
621 break;
622 last += es.es_len;
623 dataoff = (loff_t)last << blkbits;
624 cond_resched();
625 } while (last <= end);
627 inode_unlock(inode);
629 if (dataoff > isize)
630 return -ENXIO;
632 return vfs_setpos(file, dataoff, maxsize);
636 * ext4_seek_hole() retrieves the offset for SEEK_HOLE.
638 static loff_t ext4_seek_hole(struct file *file, loff_t offset, loff_t maxsize)
640 struct inode *inode = file->f_mapping->host;
641 struct extent_status es;
642 ext4_lblk_t start, last, end;
643 loff_t holeoff, isize;
644 int blkbits;
645 int ret;
647 inode_lock(inode);
649 isize = i_size_read(inode);
650 if (offset < 0 || offset >= isize) {
651 inode_unlock(inode);
652 return -ENXIO;
655 blkbits = inode->i_sb->s_blocksize_bits;
656 start = offset >> blkbits;
657 last = start;
658 end = isize >> blkbits;
659 holeoff = offset;
661 do {
662 ret = ext4_get_next_extent(inode, last, end - last + 1, &es);
663 if (ret < 0) {
664 inode_unlock(inode);
665 return ret;
667 /* Found a hole? */
668 if (ret == 0 || es.es_lblk > last) {
669 if (last != start)
670 holeoff = (loff_t)last << blkbits;
671 break;
674 * If there is a unwritten extent at this offset,
675 * it will be as a data or a hole according to page
676 * cache that has data or not.
678 if (ext4_es_is_unwritten(&es) &&
679 ext4_find_unwritten_pgoff(inode, SEEK_HOLE,
680 last + es.es_len, &holeoff))
681 break;
683 last += es.es_len;
684 holeoff = (loff_t)last << blkbits;
685 cond_resched();
686 } while (last <= end);
688 inode_unlock(inode);
690 if (holeoff > isize)
691 holeoff = isize;
693 return vfs_setpos(file, holeoff, maxsize);
697 * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
698 * by calling generic_file_llseek_size() with the appropriate maxbytes
699 * value for each.
701 loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
703 struct inode *inode = file->f_mapping->host;
704 loff_t maxbytes;
706 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
707 maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
708 else
709 maxbytes = inode->i_sb->s_maxbytes;
711 switch (whence) {
712 case SEEK_SET:
713 case SEEK_CUR:
714 case SEEK_END:
715 return generic_file_llseek_size(file, offset, whence,
716 maxbytes, i_size_read(inode));
717 case SEEK_DATA:
718 return ext4_seek_data(file, offset, maxbytes);
719 case SEEK_HOLE:
720 return ext4_seek_hole(file, offset, maxbytes);
723 return -EINVAL;
726 const struct file_operations ext4_file_operations = {
727 .llseek = ext4_llseek,
728 .read_iter = ext4_file_read_iter,
729 .write_iter = ext4_file_write_iter,
730 .unlocked_ioctl = ext4_ioctl,
731 #ifdef CONFIG_COMPAT
732 .compat_ioctl = ext4_compat_ioctl,
733 #endif
734 .mmap = ext4_file_mmap,
735 .open = ext4_file_open,
736 .release = ext4_release_file,
737 .fsync = ext4_sync_file,
738 .get_unmapped_area = thp_get_unmapped_area,
739 .splice_read = generic_file_splice_read,
740 .splice_write = iter_file_splice_write,
741 .fallocate = ext4_fallocate,
744 const struct inode_operations ext4_file_inode_operations = {
745 .setattr = ext4_setattr,
746 .getattr = ext4_file_getattr,
747 .listxattr = ext4_listxattr,
748 .get_acl = ext4_get_acl,
749 .set_acl = ext4_set_acl,
750 .fiemap = ext4_fiemap,