1 // SPDX-License-Identifier: GPL-2.0
3 * linux/fs/ext4/ialloc.c
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
10 * BSD ufs-inspired inode and directory allocation by
11 * Stephen Tweedie (sct@redhat.com), 1993
12 * Big-endian to little-endian byte-swapping/bitmaps by
13 * David S. Miller (davem@caip.rutgers.edu), 1995
16 #include <linux/time.h>
18 #include <linux/stat.h>
19 #include <linux/string.h>
20 #include <linux/quotaops.h>
21 #include <linux/buffer_head.h>
22 #include <linux/random.h>
23 #include <linux/bitops.h>
24 #include <linux/blkdev.h>
25 #include <linux/cred.h>
27 #include <asm/byteorder.h>
30 #include "ext4_jbd2.h"
34 #include <trace/events/ext4.h>
37 * ialloc.c contains the inodes allocation and deallocation routines
41 * The free inodes are managed by bitmaps. A file system contains several
42 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap
43 * block for inodes, N blocks for the inode table and data blocks.
45 * The file system contains group descriptors which are located after the
46 * super block. Each descriptor contains the number of the bitmap block and
47 * the free blocks count in the block.
51 * To avoid calling the atomic setbit hundreds or thousands of times, we only
52 * need to use it within a single byte (to ensure we get endianness right).
53 * We can use memset for the rest of the bitmap as there are no other users.
55 void ext4_mark_bitmap_end(int start_bit
, int end_bit
, char *bitmap
)
59 if (start_bit
>= end_bit
)
62 ext4_debug("mark end bits +%d through +%d used\n", start_bit
, end_bit
);
63 for (i
= start_bit
; i
< ((start_bit
+ 7) & ~7UL); i
++)
64 ext4_set_bit(i
, bitmap
);
66 memset(bitmap
+ (i
>> 3), 0xff, (end_bit
- i
) >> 3);
69 void ext4_end_bitmap_read(struct buffer_head
*bh
, int uptodate
)
72 set_buffer_uptodate(bh
);
73 set_bitmap_uptodate(bh
);
79 static int ext4_validate_inode_bitmap(struct super_block
*sb
,
80 struct ext4_group_desc
*desc
,
81 ext4_group_t block_group
,
82 struct buffer_head
*bh
)
85 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, block_group
);
86 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
88 if (buffer_verified(bh
))
90 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp
))
93 ext4_lock_group(sb
, block_group
);
94 if (buffer_verified(bh
))
96 blk
= ext4_inode_bitmap(sb
, desc
);
97 if (!ext4_inode_bitmap_csum_verify(sb
, block_group
, desc
, bh
,
98 EXT4_INODES_PER_GROUP(sb
) / 8)) {
99 ext4_unlock_group(sb
, block_group
);
100 ext4_error(sb
, "Corrupt inode bitmap - block_group = %u, "
101 "inode_bitmap = %llu", block_group
, blk
);
102 grp
= ext4_get_group_info(sb
, block_group
);
103 if (!EXT4_MB_GRP_IBITMAP_CORRUPT(grp
)) {
105 count
= ext4_free_inodes_count(sb
, desc
);
106 percpu_counter_sub(&sbi
->s_freeinodes_counter
,
109 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT
, &grp
->bb_state
);
112 set_buffer_verified(bh
);
114 ext4_unlock_group(sb
, block_group
);
119 * Read the inode allocation bitmap for a given block_group, reading
120 * into the specified slot in the superblock's bitmap cache.
122 * Return buffer_head of bitmap on success or NULL.
124 static struct buffer_head
*
125 ext4_read_inode_bitmap(struct super_block
*sb
, ext4_group_t block_group
)
127 struct ext4_group_desc
*desc
;
128 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
129 struct buffer_head
*bh
= NULL
;
130 ext4_fsblk_t bitmap_blk
;
133 desc
= ext4_get_group_desc(sb
, block_group
, NULL
);
135 return ERR_PTR(-EFSCORRUPTED
);
137 bitmap_blk
= ext4_inode_bitmap(sb
, desc
);
138 if ((bitmap_blk
<= le32_to_cpu(sbi
->s_es
->s_first_data_block
)) ||
139 (bitmap_blk
>= ext4_blocks_count(sbi
->s_es
))) {
140 ext4_error(sb
, "Invalid inode bitmap blk %llu in "
141 "block_group %u", bitmap_blk
, block_group
);
142 return ERR_PTR(-EFSCORRUPTED
);
144 bh
= sb_getblk(sb
, bitmap_blk
);
146 ext4_error(sb
, "Cannot read inode bitmap - "
147 "block_group = %u, inode_bitmap = %llu",
148 block_group
, bitmap_blk
);
149 return ERR_PTR(-EIO
);
151 if (bitmap_uptodate(bh
))
155 if (bitmap_uptodate(bh
)) {
160 ext4_lock_group(sb
, block_group
);
161 if (ext4_has_group_desc_csum(sb
) &&
162 (desc
->bg_flags
& cpu_to_le16(EXT4_BG_INODE_UNINIT
))) {
163 if (block_group
== 0) {
164 ext4_unlock_group(sb
, block_group
);
166 ext4_error(sb
, "Inode bitmap for bg 0 marked "
171 memset(bh
->b_data
, 0, (EXT4_INODES_PER_GROUP(sb
) + 7) / 8);
172 ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb
),
173 sb
->s_blocksize
* 8, bh
->b_data
);
174 set_bitmap_uptodate(bh
);
175 set_buffer_uptodate(bh
);
176 set_buffer_verified(bh
);
177 ext4_unlock_group(sb
, block_group
);
181 ext4_unlock_group(sb
, block_group
);
183 if (buffer_uptodate(bh
)) {
185 * if not uninit if bh is uptodate,
186 * bitmap is also uptodate
188 set_bitmap_uptodate(bh
);
193 * submit the buffer_head for reading
195 trace_ext4_load_inode_bitmap(sb
, block_group
);
196 bh
->b_end_io
= ext4_end_bitmap_read
;
198 submit_bh(REQ_OP_READ
, REQ_META
| REQ_PRIO
, bh
);
200 if (!buffer_uptodate(bh
)) {
202 ext4_error(sb
, "Cannot read inode bitmap - "
203 "block_group = %u, inode_bitmap = %llu",
204 block_group
, bitmap_blk
);
205 return ERR_PTR(-EIO
);
209 err
= ext4_validate_inode_bitmap(sb
, desc
, block_group
, bh
);
219 * NOTE! When we get the inode, we're the only people
220 * that have access to it, and as such there are no
221 * race conditions we have to worry about. The inode
222 * is not on the hash-lists, and it cannot be reached
223 * through the filesystem because the directory entry
224 * has been deleted earlier.
226 * HOWEVER: we must make sure that we get no aliases,
227 * which means that we have to call "clear_inode()"
228 * _before_ we mark the inode not in use in the inode
229 * bitmaps. Otherwise a newly created file might use
230 * the same inode number (not actually the same pointer
231 * though), and then we'd have two inodes sharing the
232 * same inode number and space on the harddisk.
234 void ext4_free_inode(handle_t
*handle
, struct inode
*inode
)
236 struct super_block
*sb
= inode
->i_sb
;
239 struct buffer_head
*bitmap_bh
= NULL
;
240 struct buffer_head
*bh2
;
241 ext4_group_t block_group
;
243 struct ext4_group_desc
*gdp
;
244 struct ext4_super_block
*es
;
245 struct ext4_sb_info
*sbi
;
246 int fatal
= 0, err
, count
, cleared
;
247 struct ext4_group_info
*grp
;
250 printk(KERN_ERR
"EXT4-fs: %s:%d: inode on "
251 "nonexistent device\n", __func__
, __LINE__
);
254 if (atomic_read(&inode
->i_count
) > 1) {
255 ext4_msg(sb
, KERN_ERR
, "%s:%d: inode #%lu: count=%d",
256 __func__
, __LINE__
, inode
->i_ino
,
257 atomic_read(&inode
->i_count
));
260 if (inode
->i_nlink
) {
261 ext4_msg(sb
, KERN_ERR
, "%s:%d: inode #%lu: nlink=%d\n",
262 __func__
, __LINE__
, inode
->i_ino
, inode
->i_nlink
);
268 ext4_debug("freeing inode %lu\n", ino
);
269 trace_ext4_free_inode(inode
);
272 * Note: we must free any quota before locking the superblock,
273 * as writing the quota to disk may need the lock as well.
275 dquot_initialize(inode
);
276 dquot_free_inode(inode
);
279 is_directory
= S_ISDIR(inode
->i_mode
);
281 /* Do this BEFORE marking the inode not in use or returning an error */
282 ext4_clear_inode(inode
);
284 es
= EXT4_SB(sb
)->s_es
;
285 if (ino
< EXT4_FIRST_INO(sb
) || ino
> le32_to_cpu(es
->s_inodes_count
)) {
286 ext4_error(sb
, "reserved or nonexistent inode %lu", ino
);
289 block_group
= (ino
- 1) / EXT4_INODES_PER_GROUP(sb
);
290 bit
= (ino
- 1) % EXT4_INODES_PER_GROUP(sb
);
291 bitmap_bh
= ext4_read_inode_bitmap(sb
, block_group
);
292 /* Don't bother if the inode bitmap is corrupt. */
293 grp
= ext4_get_group_info(sb
, block_group
);
294 if (IS_ERR(bitmap_bh
)) {
295 fatal
= PTR_ERR(bitmap_bh
);
299 if (unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp
))) {
300 fatal
= -EFSCORRUPTED
;
304 BUFFER_TRACE(bitmap_bh
, "get_write_access");
305 fatal
= ext4_journal_get_write_access(handle
, bitmap_bh
);
310 gdp
= ext4_get_group_desc(sb
, block_group
, &bh2
);
312 BUFFER_TRACE(bh2
, "get_write_access");
313 fatal
= ext4_journal_get_write_access(handle
, bh2
);
315 ext4_lock_group(sb
, block_group
);
316 cleared
= ext4_test_and_clear_bit(bit
, bitmap_bh
->b_data
);
317 if (fatal
|| !cleared
) {
318 ext4_unlock_group(sb
, block_group
);
322 count
= ext4_free_inodes_count(sb
, gdp
) + 1;
323 ext4_free_inodes_set(sb
, gdp
, count
);
325 count
= ext4_used_dirs_count(sb
, gdp
) - 1;
326 ext4_used_dirs_set(sb
, gdp
, count
);
327 percpu_counter_dec(&sbi
->s_dirs_counter
);
329 ext4_inode_bitmap_csum_set(sb
, block_group
, gdp
, bitmap_bh
,
330 EXT4_INODES_PER_GROUP(sb
) / 8);
331 ext4_group_desc_csum_set(sb
, block_group
, gdp
);
332 ext4_unlock_group(sb
, block_group
);
334 percpu_counter_inc(&sbi
->s_freeinodes_counter
);
335 if (sbi
->s_log_groups_per_flex
) {
336 struct flex_groups
*fg
;
338 fg
= sbi_array_rcu_deref(sbi
, s_flex_groups
,
339 ext4_flex_group(sbi
, block_group
));
340 atomic_inc(&fg
->free_inodes
);
342 atomic_dec(&fg
->used_dirs
);
344 BUFFER_TRACE(bh2
, "call ext4_handle_dirty_metadata");
345 fatal
= ext4_handle_dirty_metadata(handle
, NULL
, bh2
);
348 BUFFER_TRACE(bitmap_bh
, "call ext4_handle_dirty_metadata");
349 err
= ext4_handle_dirty_metadata(handle
, NULL
, bitmap_bh
);
353 ext4_error(sb
, "bit already cleared for inode %lu", ino
);
354 if (gdp
&& !EXT4_MB_GRP_IBITMAP_CORRUPT(grp
)) {
356 count
= ext4_free_inodes_count(sb
, gdp
);
357 percpu_counter_sub(&sbi
->s_freeinodes_counter
,
360 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT
, &grp
->bb_state
);
365 ext4_std_error(sb
, fatal
);
375 * Helper function for Orlov's allocator; returns critical information
376 * for a particular block group or flex_bg. If flex_size is 1, then g
377 * is a block group number; otherwise it is flex_bg number.
379 static void get_orlov_stats(struct super_block
*sb
, ext4_group_t g
,
380 int flex_size
, struct orlov_stats
*stats
)
382 struct ext4_group_desc
*desc
;
385 struct flex_groups
*fg
= sbi_array_rcu_deref(EXT4_SB(sb
),
387 stats
->free_inodes
= atomic_read(&fg
->free_inodes
);
388 stats
->free_clusters
= atomic64_read(&fg
->free_clusters
);
389 stats
->used_dirs
= atomic_read(&fg
->used_dirs
);
393 desc
= ext4_get_group_desc(sb
, g
, NULL
);
395 stats
->free_inodes
= ext4_free_inodes_count(sb
, desc
);
396 stats
->free_clusters
= ext4_free_group_clusters(sb
, desc
);
397 stats
->used_dirs
= ext4_used_dirs_count(sb
, desc
);
399 stats
->free_inodes
= 0;
400 stats
->free_clusters
= 0;
401 stats
->used_dirs
= 0;
406 * Orlov's allocator for directories.
408 * We always try to spread first-level directories.
410 * If there are blockgroups with both free inodes and free blocks counts
411 * not worse than average we return one with smallest directory count.
412 * Otherwise we simply return a random group.
414 * For the rest rules look so:
416 * It's OK to put directory into a group unless
417 * it has too many directories already (max_dirs) or
418 * it has too few free inodes left (min_inodes) or
419 * it has too few free blocks left (min_blocks) or
420 * Parent's group is preferred, if it doesn't satisfy these
421 * conditions we search cyclically through the rest. If none
422 * of the groups look good we just look for a group with more
423 * free inodes than average (starting at parent's group).
426 static int find_group_orlov(struct super_block
*sb
, struct inode
*parent
,
427 ext4_group_t
*group
, umode_t mode
,
428 const struct qstr
*qstr
)
430 ext4_group_t parent_group
= EXT4_I(parent
)->i_block_group
;
431 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
432 ext4_group_t real_ngroups
= ext4_get_groups_count(sb
);
433 int inodes_per_group
= EXT4_INODES_PER_GROUP(sb
);
434 unsigned int freei
, avefreei
, grp_free
;
435 ext4_fsblk_t freeb
, avefreec
;
437 int max_dirs
, min_inodes
;
438 ext4_grpblk_t min_clusters
;
439 ext4_group_t i
, grp
, g
, ngroups
;
440 struct ext4_group_desc
*desc
;
441 struct orlov_stats stats
;
442 int flex_size
= ext4_flex_bg_size(sbi
);
443 struct dx_hash_info hinfo
;
445 ngroups
= real_ngroups
;
447 ngroups
= (real_ngroups
+ flex_size
- 1) >>
448 sbi
->s_log_groups_per_flex
;
449 parent_group
>>= sbi
->s_log_groups_per_flex
;
452 freei
= percpu_counter_read_positive(&sbi
->s_freeinodes_counter
);
453 avefreei
= freei
/ ngroups
;
454 freeb
= EXT4_C2B(sbi
,
455 percpu_counter_read_positive(&sbi
->s_freeclusters_counter
));
457 do_div(avefreec
, ngroups
);
458 ndirs
= percpu_counter_read_positive(&sbi
->s_dirs_counter
);
461 ((parent
== d_inode(sb
->s_root
)) ||
462 (ext4_test_inode_flag(parent
, EXT4_INODE_TOPDIR
)))) {
463 int best_ndir
= inodes_per_group
;
467 hinfo
.hash_version
= DX_HASH_HALF_MD4
;
468 hinfo
.seed
= sbi
->s_hash_seed
;
469 ext4fs_dirhash(qstr
->name
, qstr
->len
, &hinfo
);
473 parent_group
= (unsigned)grp
% ngroups
;
474 for (i
= 0; i
< ngroups
; i
++) {
475 g
= (parent_group
+ i
) % ngroups
;
476 get_orlov_stats(sb
, g
, flex_size
, &stats
);
477 if (!stats
.free_inodes
)
479 if (stats
.used_dirs
>= best_ndir
)
481 if (stats
.free_inodes
< avefreei
)
483 if (stats
.free_clusters
< avefreec
)
487 best_ndir
= stats
.used_dirs
;
492 if (flex_size
== 1) {
498 * We pack inodes at the beginning of the flexgroup's
499 * inode tables. Block allocation decisions will do
500 * something similar, although regular files will
501 * start at 2nd block group of the flexgroup. See
502 * ext4_ext_find_goal() and ext4_find_near().
505 for (i
= 0; i
< flex_size
; i
++) {
506 if (grp
+i
>= real_ngroups
)
508 desc
= ext4_get_group_desc(sb
, grp
+i
, NULL
);
509 if (desc
&& ext4_free_inodes_count(sb
, desc
)) {
517 max_dirs
= ndirs
/ ngroups
+ inodes_per_group
/ 16;
518 min_inodes
= avefreei
- inodes_per_group
*flex_size
/ 4;
521 min_clusters
= avefreec
- EXT4_CLUSTERS_PER_GROUP(sb
)*flex_size
/ 4;
524 * Start looking in the flex group where we last allocated an
525 * inode for this parent directory
527 if (EXT4_I(parent
)->i_last_alloc_group
!= ~0) {
528 parent_group
= EXT4_I(parent
)->i_last_alloc_group
;
530 parent_group
>>= sbi
->s_log_groups_per_flex
;
533 for (i
= 0; i
< ngroups
; i
++) {
534 grp
= (parent_group
+ i
) % ngroups
;
535 get_orlov_stats(sb
, grp
, flex_size
, &stats
);
536 if (stats
.used_dirs
>= max_dirs
)
538 if (stats
.free_inodes
< min_inodes
)
540 if (stats
.free_clusters
< min_clusters
)
546 ngroups
= real_ngroups
;
547 avefreei
= freei
/ ngroups
;
549 parent_group
= EXT4_I(parent
)->i_block_group
;
550 for (i
= 0; i
< ngroups
; i
++) {
551 grp
= (parent_group
+ i
) % ngroups
;
552 desc
= ext4_get_group_desc(sb
, grp
, NULL
);
554 grp_free
= ext4_free_inodes_count(sb
, desc
);
555 if (grp_free
&& grp_free
>= avefreei
) {
564 * The free-inodes counter is approximate, and for really small
565 * filesystems the above test can fail to find any blockgroups
574 static int find_group_other(struct super_block
*sb
, struct inode
*parent
,
575 ext4_group_t
*group
, umode_t mode
)
577 ext4_group_t parent_group
= EXT4_I(parent
)->i_block_group
;
578 ext4_group_t i
, last
, ngroups
= ext4_get_groups_count(sb
);
579 struct ext4_group_desc
*desc
;
580 int flex_size
= ext4_flex_bg_size(EXT4_SB(sb
));
583 * Try to place the inode is the same flex group as its
584 * parent. If we can't find space, use the Orlov algorithm to
585 * find another flex group, and store that information in the
586 * parent directory's inode information so that use that flex
587 * group for future allocations.
593 parent_group
&= ~(flex_size
-1);
594 last
= parent_group
+ flex_size
;
597 for (i
= parent_group
; i
< last
; i
++) {
598 desc
= ext4_get_group_desc(sb
, i
, NULL
);
599 if (desc
&& ext4_free_inodes_count(sb
, desc
)) {
604 if (!retry
&& EXT4_I(parent
)->i_last_alloc_group
!= ~0) {
606 parent_group
= EXT4_I(parent
)->i_last_alloc_group
;
610 * If this didn't work, use the Orlov search algorithm
611 * to find a new flex group; we pass in the mode to
612 * avoid the topdir algorithms.
614 *group
= parent_group
+ flex_size
;
615 if (*group
> ngroups
)
617 return find_group_orlov(sb
, parent
, group
, mode
, NULL
);
621 * Try to place the inode in its parent directory
623 *group
= parent_group
;
624 desc
= ext4_get_group_desc(sb
, *group
, NULL
);
625 if (desc
&& ext4_free_inodes_count(sb
, desc
) &&
626 ext4_free_group_clusters(sb
, desc
))
630 * We're going to place this inode in a different blockgroup from its
631 * parent. We want to cause files in a common directory to all land in
632 * the same blockgroup. But we want files which are in a different
633 * directory which shares a blockgroup with our parent to land in a
634 * different blockgroup.
636 * So add our directory's i_ino into the starting point for the hash.
638 *group
= (*group
+ parent
->i_ino
) % ngroups
;
641 * Use a quadratic hash to find a group with a free inode and some free
644 for (i
= 1; i
< ngroups
; i
<<= 1) {
646 if (*group
>= ngroups
)
648 desc
= ext4_get_group_desc(sb
, *group
, NULL
);
649 if (desc
&& ext4_free_inodes_count(sb
, desc
) &&
650 ext4_free_group_clusters(sb
, desc
))
655 * That failed: try linear search for a free inode, even if that group
656 * has no free blocks.
658 *group
= parent_group
;
659 for (i
= 0; i
< ngroups
; i
++) {
660 if (++*group
>= ngroups
)
662 desc
= ext4_get_group_desc(sb
, *group
, NULL
);
663 if (desc
&& ext4_free_inodes_count(sb
, desc
))
671 * In no journal mode, if an inode has recently been deleted, we want
672 * to avoid reusing it until we're reasonably sure the inode table
673 * block has been written back to disk. (Yes, these values are
674 * somewhat arbitrary...)
676 #define RECENTCY_MIN 60
677 #define RECENTCY_DIRTY 300
679 static int recently_deleted(struct super_block
*sb
, ext4_group_t group
, int ino
)
681 struct ext4_group_desc
*gdp
;
682 struct ext4_inode
*raw_inode
;
683 struct buffer_head
*bh
;
684 int inodes_per_block
= EXT4_SB(sb
)->s_inodes_per_block
;
686 int recentcy
= RECENTCY_MIN
;
689 gdp
= ext4_get_group_desc(sb
, group
, NULL
);
693 bh
= sb_find_get_block(sb
, ext4_inode_table(sb
, gdp
) +
694 (ino
/ inodes_per_block
));
695 if (!bh
|| !buffer_uptodate(bh
))
697 * If the block is not in the buffer cache, then it
698 * must have been written out.
702 offset
= (ino
% inodes_per_block
) * EXT4_INODE_SIZE(sb
);
703 raw_inode
= (struct ext4_inode
*) (bh
->b_data
+ offset
);
705 /* i_dtime is only 32 bits on disk, but we only care about relative
706 * times in the range of a few minutes (i.e. long enough to sync a
707 * recently-deleted inode to disk), so using the low 32 bits of the
708 * clock (a 68 year range) is enough, see time_before32() */
709 dtime
= le32_to_cpu(raw_inode
->i_dtime
);
710 now
= ktime_get_real_seconds();
711 if (buffer_dirty(bh
))
712 recentcy
+= RECENTCY_DIRTY
;
714 if (dtime
&& time_before32(dtime
, now
) &&
715 time_before32(now
, dtime
+ recentcy
))
722 static int find_inode_bit(struct super_block
*sb
, ext4_group_t group
,
723 struct buffer_head
*bitmap
, unsigned long *ino
)
726 *ino
= ext4_find_next_zero_bit((unsigned long *)
728 EXT4_INODES_PER_GROUP(sb
), *ino
);
729 if (*ino
>= EXT4_INODES_PER_GROUP(sb
))
732 if ((EXT4_SB(sb
)->s_journal
== NULL
) &&
733 recently_deleted(sb
, group
, *ino
)) {
735 if (*ino
< EXT4_INODES_PER_GROUP(sb
))
744 * There are two policies for allocating an inode. If the new inode is
745 * a directory, then a forward search is made for a block group with both
746 * free space and a low directory-to-inode ratio; if that fails, then of
747 * the groups with above-average free space, that group with the fewest
748 * directories already is chosen.
750 * For other inodes, search forward from the parent directory's block
751 * group to find a free inode.
753 struct inode
*__ext4_new_inode(handle_t
*handle
, struct inode
*dir
,
754 umode_t mode
, const struct qstr
*qstr
,
755 __u32 goal
, uid_t
*owner
, __u32 i_flags
,
756 int handle_type
, unsigned int line_no
,
759 struct super_block
*sb
;
760 struct buffer_head
*inode_bitmap_bh
= NULL
;
761 struct buffer_head
*group_desc_bh
;
762 ext4_group_t ngroups
, group
= 0;
763 unsigned long ino
= 0;
765 struct ext4_group_desc
*gdp
= NULL
;
766 struct ext4_inode_info
*ei
;
767 struct ext4_sb_info
*sbi
;
771 ext4_group_t flex_group
;
772 struct ext4_group_info
*grp
;
775 /* Cannot create files in a deleted directory */
776 if (!dir
|| !dir
->i_nlink
)
777 return ERR_PTR(-EPERM
);
782 if (unlikely(ext4_forced_shutdown(sbi
)))
783 return ERR_PTR(-EIO
);
785 if ((ext4_encrypted_inode(dir
) || DUMMY_ENCRYPTION_ENABLED(sbi
)) &&
786 (S_ISREG(mode
) || S_ISDIR(mode
) || S_ISLNK(mode
)) &&
787 !(i_flags
& EXT4_EA_INODE_FL
)) {
788 err
= fscrypt_get_encryption_info(dir
);
791 if (!fscrypt_has_encryption_key(dir
))
792 return ERR_PTR(-ENOKEY
);
796 if (!handle
&& sbi
->s_journal
&& !(i_flags
& EXT4_EA_INODE_FL
)) {
797 #ifdef CONFIG_EXT4_FS_POSIX_ACL
798 struct posix_acl
*p
= get_acl(dir
, ACL_TYPE_DEFAULT
);
803 int acl_size
= p
->a_count
* sizeof(ext4_acl_entry
);
805 nblocks
+= (S_ISDIR(mode
) ? 2 : 1) *
806 __ext4_xattr_set_credits(sb
, NULL
/* inode */,
807 NULL
/* block_bh */, acl_size
,
808 true /* is_create */);
809 posix_acl_release(p
);
813 #ifdef CONFIG_SECURITY
815 int num_security_xattrs
= 1;
817 #ifdef CONFIG_INTEGRITY
818 num_security_xattrs
++;
821 * We assume that security xattrs are never
822 * more than 1k. In practice they are under
825 nblocks
+= num_security_xattrs
*
826 __ext4_xattr_set_credits(sb
, NULL
/* inode */,
827 NULL
/* block_bh */, 1024,
828 true /* is_create */);
832 nblocks
+= __ext4_xattr_set_credits(sb
,
833 NULL
/* inode */, NULL
/* block_bh */,
834 FSCRYPT_SET_CONTEXT_MAX_SIZE
,
835 true /* is_create */);
838 ngroups
= ext4_get_groups_count(sb
);
839 trace_ext4_request_inode(dir
, mode
);
840 inode
= new_inode(sb
);
842 return ERR_PTR(-ENOMEM
);
846 * Initialize owners and quota early so that we don't have to account
847 * for quota initialization worst case in standard inode creating
851 inode
->i_mode
= mode
;
852 i_uid_write(inode
, owner
[0]);
853 i_gid_write(inode
, owner
[1]);
854 } else if (test_opt(sb
, GRPID
)) {
855 inode
->i_mode
= mode
;
856 inode
->i_uid
= current_fsuid();
857 inode
->i_gid
= dir
->i_gid
;
859 inode_init_owner(inode
, dir
, mode
);
861 if (ext4_has_feature_project(sb
) &&
862 ext4_test_inode_flag(dir
, EXT4_INODE_PROJINHERIT
))
863 ei
->i_projid
= EXT4_I(dir
)->i_projid
;
865 ei
->i_projid
= make_kprojid(&init_user_ns
, EXT4_DEF_PROJID
);
867 err
= dquot_initialize(inode
);
872 goal
= sbi
->s_inode_goal
;
874 if (goal
&& goal
<= le32_to_cpu(sbi
->s_es
->s_inodes_count
)) {
875 group
= (goal
- 1) / EXT4_INODES_PER_GROUP(sb
);
876 ino
= (goal
- 1) % EXT4_INODES_PER_GROUP(sb
);
882 ret2
= find_group_orlov(sb
, dir
, &group
, mode
, qstr
);
884 ret2
= find_group_other(sb
, dir
, &group
, mode
);
887 EXT4_I(dir
)->i_last_alloc_group
= group
;
893 * Normally we will only go through one pass of this loop,
894 * unless we get unlucky and it turns out the group we selected
895 * had its last inode grabbed by someone else.
897 for (i
= 0; i
< ngroups
; i
++, ino
= 0) {
900 gdp
= ext4_get_group_desc(sb
, group
, &group_desc_bh
);
905 * Check free inodes count before loading bitmap.
907 if (ext4_free_inodes_count(sb
, gdp
) == 0)
910 grp
= ext4_get_group_info(sb
, group
);
911 /* Skip groups with already-known suspicious inode tables */
912 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp
))
915 brelse(inode_bitmap_bh
);
916 inode_bitmap_bh
= ext4_read_inode_bitmap(sb
, group
);
917 /* Skip groups with suspicious inode tables */
918 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp
) ||
919 IS_ERR(inode_bitmap_bh
)) {
920 inode_bitmap_bh
= NULL
;
924 repeat_in_this_group
:
925 ret2
= find_inode_bit(sb
, group
, inode_bitmap_bh
, &ino
);
929 if (group
== 0 && (ino
+ 1) < EXT4_FIRST_INO(sb
)) {
930 ext4_error(sb
, "reserved inode found cleared - "
931 "inode=%lu", ino
+ 1);
936 BUG_ON(nblocks
<= 0);
937 handle
= __ext4_journal_start_sb(dir
->i_sb
, line_no
,
938 handle_type
, nblocks
,
940 if (IS_ERR(handle
)) {
941 err
= PTR_ERR(handle
);
942 ext4_std_error(sb
, err
);
946 BUFFER_TRACE(inode_bitmap_bh
, "get_write_access");
947 err
= ext4_journal_get_write_access(handle
, inode_bitmap_bh
);
949 ext4_std_error(sb
, err
);
952 ext4_lock_group(sb
, group
);
953 ret2
= ext4_test_and_set_bit(ino
, inode_bitmap_bh
->b_data
);
955 /* Someone already took the bit. Repeat the search
958 ret2
= find_inode_bit(sb
, group
, inode_bitmap_bh
, &ino
);
960 ext4_set_bit(ino
, inode_bitmap_bh
->b_data
);
963 ret2
= 1; /* we didn't grab the inode */
966 ext4_unlock_group(sb
, group
);
967 ino
++; /* the inode bitmap is zero-based */
969 goto got
; /* we grabbed the inode! */
971 if (ino
< EXT4_INODES_PER_GROUP(sb
))
972 goto repeat_in_this_group
;
974 if (++group
== ngroups
)
981 BUFFER_TRACE(inode_bitmap_bh
, "call ext4_handle_dirty_metadata");
982 err
= ext4_handle_dirty_metadata(handle
, NULL
, inode_bitmap_bh
);
984 ext4_std_error(sb
, err
);
988 BUFFER_TRACE(group_desc_bh
, "get_write_access");
989 err
= ext4_journal_get_write_access(handle
, group_desc_bh
);
991 ext4_std_error(sb
, err
);
995 /* We may have to initialize the block bitmap if it isn't already */
996 if (ext4_has_group_desc_csum(sb
) &&
997 gdp
->bg_flags
& cpu_to_le16(EXT4_BG_BLOCK_UNINIT
)) {
998 struct buffer_head
*block_bitmap_bh
;
1000 block_bitmap_bh
= ext4_read_block_bitmap(sb
, group
);
1001 if (IS_ERR(block_bitmap_bh
)) {
1002 err
= PTR_ERR(block_bitmap_bh
);
1005 BUFFER_TRACE(block_bitmap_bh
, "get block bitmap access");
1006 err
= ext4_journal_get_write_access(handle
, block_bitmap_bh
);
1008 brelse(block_bitmap_bh
);
1009 ext4_std_error(sb
, err
);
1013 BUFFER_TRACE(block_bitmap_bh
, "dirty block bitmap");
1014 err
= ext4_handle_dirty_metadata(handle
, NULL
, block_bitmap_bh
);
1016 /* recheck and clear flag under lock if we still need to */
1017 ext4_lock_group(sb
, group
);
1018 if (ext4_has_group_desc_csum(sb
) &&
1019 (gdp
->bg_flags
& cpu_to_le16(EXT4_BG_BLOCK_UNINIT
))) {
1020 gdp
->bg_flags
&= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT
);
1021 ext4_free_group_clusters_set(sb
, gdp
,
1022 ext4_free_clusters_after_init(sb
, group
, gdp
));
1023 ext4_block_bitmap_csum_set(sb
, group
, gdp
,
1025 ext4_group_desc_csum_set(sb
, group
, gdp
);
1027 ext4_unlock_group(sb
, group
);
1028 brelse(block_bitmap_bh
);
1031 ext4_std_error(sb
, err
);
1036 /* Update the relevant bg descriptor fields */
1037 if (ext4_has_group_desc_csum(sb
)) {
1039 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, group
);
1041 down_read(&grp
->alloc_sem
); /* protect vs itable lazyinit */
1042 ext4_lock_group(sb
, group
); /* while we modify the bg desc */
1043 free
= EXT4_INODES_PER_GROUP(sb
) -
1044 ext4_itable_unused_count(sb
, gdp
);
1045 if (gdp
->bg_flags
& cpu_to_le16(EXT4_BG_INODE_UNINIT
)) {
1046 gdp
->bg_flags
&= cpu_to_le16(~EXT4_BG_INODE_UNINIT
);
1050 * Check the relative inode number against the last used
1051 * relative inode number in this group. if it is greater
1052 * we need to update the bg_itable_unused count
1055 ext4_itable_unused_set(sb
, gdp
,
1056 (EXT4_INODES_PER_GROUP(sb
) - ino
));
1057 up_read(&grp
->alloc_sem
);
1059 ext4_lock_group(sb
, group
);
1062 ext4_free_inodes_set(sb
, gdp
, ext4_free_inodes_count(sb
, gdp
) - 1);
1063 if (S_ISDIR(mode
)) {
1064 ext4_used_dirs_set(sb
, gdp
, ext4_used_dirs_count(sb
, gdp
) + 1);
1065 if (sbi
->s_log_groups_per_flex
) {
1066 ext4_group_t f
= ext4_flex_group(sbi
, group
);
1068 atomic_inc(&sbi_array_rcu_deref(sbi
, s_flex_groups
,
1072 if (ext4_has_group_desc_csum(sb
)) {
1073 ext4_inode_bitmap_csum_set(sb
, group
, gdp
, inode_bitmap_bh
,
1074 EXT4_INODES_PER_GROUP(sb
) / 8);
1075 ext4_group_desc_csum_set(sb
, group
, gdp
);
1077 ext4_unlock_group(sb
, group
);
1079 BUFFER_TRACE(group_desc_bh
, "call ext4_handle_dirty_metadata");
1080 err
= ext4_handle_dirty_metadata(handle
, NULL
, group_desc_bh
);
1082 ext4_std_error(sb
, err
);
1086 percpu_counter_dec(&sbi
->s_freeinodes_counter
);
1088 percpu_counter_inc(&sbi
->s_dirs_counter
);
1090 if (sbi
->s_log_groups_per_flex
) {
1091 flex_group
= ext4_flex_group(sbi
, group
);
1092 atomic_dec(&sbi_array_rcu_deref(sbi
, s_flex_groups
,
1093 flex_group
)->free_inodes
);
1096 inode
->i_ino
= ino
+ group
* EXT4_INODES_PER_GROUP(sb
);
1097 /* This is the optimal IO size (for stat), not the fs block size */
1098 inode
->i_blocks
= 0;
1099 inode
->i_mtime
= inode
->i_atime
= inode
->i_ctime
= ei
->i_crtime
=
1100 current_time(inode
);
1102 memset(ei
->i_data
, 0, sizeof(ei
->i_data
));
1103 ei
->i_dir_start_lookup
= 0;
1106 /* Don't inherit extent flag from directory, amongst others. */
1108 ext4_mask_flags(mode
, EXT4_I(dir
)->i_flags
& EXT4_FL_INHERITED
);
1109 ei
->i_flags
|= i_flags
;
1112 ei
->i_block_group
= group
;
1113 ei
->i_last_alloc_group
= ~0;
1115 ext4_set_inode_flags(inode
);
1116 if (IS_DIRSYNC(inode
))
1117 ext4_handle_sync(handle
);
1118 if (insert_inode_locked(inode
) < 0) {
1120 * Likely a bitmap corruption causing inode to be allocated
1124 ext4_error(sb
, "failed to insert inode %lu: doubly allocated?",
1128 spin_lock(&sbi
->s_next_gen_lock
);
1129 inode
->i_generation
= sbi
->s_next_generation
++;
1130 spin_unlock(&sbi
->s_next_gen_lock
);
1132 /* Precompute checksum seed for inode metadata */
1133 if (ext4_has_metadata_csum(sb
)) {
1135 __le32 inum
= cpu_to_le32(inode
->i_ino
);
1136 __le32 gen
= cpu_to_le32(inode
->i_generation
);
1137 csum
= ext4_chksum(sbi
, sbi
->s_csum_seed
, (__u8
*)&inum
,
1139 ei
->i_csum_seed
= ext4_chksum(sbi
, csum
, (__u8
*)&gen
,
1143 ext4_clear_state_flags(ei
); /* Only relevant on 32-bit archs */
1144 ext4_set_inode_state(inode
, EXT4_STATE_NEW
);
1146 ei
->i_extra_isize
= EXT4_SB(sb
)->s_want_extra_isize
;
1147 ei
->i_inline_off
= 0;
1148 if (ext4_has_feature_inline_data(sb
))
1149 ext4_set_inode_state(inode
, EXT4_STATE_MAY_INLINE_DATA
);
1151 err
= dquot_alloc_inode(inode
);
1156 * Since the encryption xattr will always be unique, create it first so
1157 * that it's less likely to end up in an external xattr block and
1158 * prevent its deduplication.
1161 err
= fscrypt_inherit_context(dir
, inode
, handle
, true);
1163 goto fail_free_drop
;
1166 if (!(ei
->i_flags
& EXT4_EA_INODE_FL
)) {
1167 err
= ext4_init_acl(handle
, inode
, dir
);
1169 goto fail_free_drop
;
1171 err
= ext4_init_security(handle
, inode
, dir
, qstr
);
1173 goto fail_free_drop
;
1176 if (ext4_has_feature_extents(sb
)) {
1177 /* set extent flag only for directory, file and normal symlink*/
1178 if (S_ISDIR(mode
) || S_ISREG(mode
) || S_ISLNK(mode
)) {
1179 ext4_set_inode_flag(inode
, EXT4_INODE_EXTENTS
);
1180 ext4_ext_tree_init(handle
, inode
);
1184 if (ext4_handle_valid(handle
)) {
1185 ei
->i_sync_tid
= handle
->h_transaction
->t_tid
;
1186 ei
->i_datasync_tid
= handle
->h_transaction
->t_tid
;
1189 err
= ext4_mark_inode_dirty(handle
, inode
);
1191 ext4_std_error(sb
, err
);
1192 goto fail_free_drop
;
1195 ext4_debug("allocating inode %lu\n", inode
->i_ino
);
1196 trace_ext4_allocate_inode(inode
, dir
, mode
);
1197 brelse(inode_bitmap_bh
);
1201 dquot_free_inode(inode
);
1204 unlock_new_inode(inode
);
1207 inode
->i_flags
|= S_NOQUOTA
;
1209 brelse(inode_bitmap_bh
);
1210 return ERR_PTR(err
);
1213 /* Verify that we are loading a valid orphan from disk */
1214 struct inode
*ext4_orphan_get(struct super_block
*sb
, unsigned long ino
)
1216 unsigned long max_ino
= le32_to_cpu(EXT4_SB(sb
)->s_es
->s_inodes_count
);
1217 ext4_group_t block_group
;
1219 struct buffer_head
*bitmap_bh
= NULL
;
1220 struct inode
*inode
= NULL
;
1221 int err
= -EFSCORRUPTED
;
1223 if (ino
< EXT4_FIRST_INO(sb
) || ino
> max_ino
)
1226 block_group
= (ino
- 1) / EXT4_INODES_PER_GROUP(sb
);
1227 bit
= (ino
- 1) % EXT4_INODES_PER_GROUP(sb
);
1228 bitmap_bh
= ext4_read_inode_bitmap(sb
, block_group
);
1229 if (IS_ERR(bitmap_bh
)) {
1230 ext4_error(sb
, "inode bitmap error %ld for orphan %lu",
1231 ino
, PTR_ERR(bitmap_bh
));
1232 return (struct inode
*) bitmap_bh
;
1235 /* Having the inode bit set should be a 100% indicator that this
1236 * is a valid orphan (no e2fsck run on fs). Orphans also include
1237 * inodes that were being truncated, so we can't check i_nlink==0.
1239 if (!ext4_test_bit(bit
, bitmap_bh
->b_data
))
1242 inode
= ext4_iget(sb
, ino
, EXT4_IGET_NORMAL
);
1243 if (IS_ERR(inode
)) {
1244 err
= PTR_ERR(inode
);
1245 ext4_error(sb
, "couldn't read orphan inode %lu (err %d)",
1251 * If the orphans has i_nlinks > 0 then it should be able to
1252 * be truncated, otherwise it won't be removed from the orphan
1253 * list during processing and an infinite loop will result.
1254 * Similarly, it must not be a bad inode.
1256 if ((inode
->i_nlink
&& !ext4_can_truncate(inode
)) ||
1257 is_bad_inode(inode
))
1260 if (NEXT_ORPHAN(inode
) > max_ino
)
1266 ext4_error(sb
, "bad orphan inode %lu", ino
);
1268 printk(KERN_ERR
"ext4_test_bit(bit=%d, block=%llu) = %d\n",
1269 bit
, (unsigned long long)bitmap_bh
->b_blocknr
,
1270 ext4_test_bit(bit
, bitmap_bh
->b_data
));
1272 printk(KERN_ERR
"is_bad_inode(inode)=%d\n",
1273 is_bad_inode(inode
));
1274 printk(KERN_ERR
"NEXT_ORPHAN(inode)=%u\n",
1275 NEXT_ORPHAN(inode
));
1276 printk(KERN_ERR
"max_ino=%lu\n", max_ino
);
1277 printk(KERN_ERR
"i_nlink=%u\n", inode
->i_nlink
);
1278 /* Avoid freeing blocks if we got a bad deleted inode */
1279 if (inode
->i_nlink
== 0)
1280 inode
->i_blocks
= 0;
1284 return ERR_PTR(err
);
1287 unsigned long ext4_count_free_inodes(struct super_block
*sb
)
1289 unsigned long desc_count
;
1290 struct ext4_group_desc
*gdp
;
1291 ext4_group_t i
, ngroups
= ext4_get_groups_count(sb
);
1293 struct ext4_super_block
*es
;
1294 unsigned long bitmap_count
, x
;
1295 struct buffer_head
*bitmap_bh
= NULL
;
1297 es
= EXT4_SB(sb
)->s_es
;
1301 for (i
= 0; i
< ngroups
; i
++) {
1302 gdp
= ext4_get_group_desc(sb
, i
, NULL
);
1305 desc_count
+= ext4_free_inodes_count(sb
, gdp
);
1307 bitmap_bh
= ext4_read_inode_bitmap(sb
, i
);
1308 if (IS_ERR(bitmap_bh
)) {
1313 x
= ext4_count_free(bitmap_bh
->b_data
,
1314 EXT4_INODES_PER_GROUP(sb
) / 8);
1315 printk(KERN_DEBUG
"group %lu: stored = %d, counted = %lu\n",
1316 (unsigned long) i
, ext4_free_inodes_count(sb
, gdp
), x
);
1320 printk(KERN_DEBUG
"ext4_count_free_inodes: "
1321 "stored = %u, computed = %lu, %lu\n",
1322 le32_to_cpu(es
->s_free_inodes_count
), desc_count
, bitmap_count
);
1326 for (i
= 0; i
< ngroups
; i
++) {
1327 gdp
= ext4_get_group_desc(sb
, i
, NULL
);
1330 desc_count
+= ext4_free_inodes_count(sb
, gdp
);
1337 /* Called at mount-time, super-block is locked */
1338 unsigned long ext4_count_dirs(struct super_block
* sb
)
1340 unsigned long count
= 0;
1341 ext4_group_t i
, ngroups
= ext4_get_groups_count(sb
);
1343 for (i
= 0; i
< ngroups
; i
++) {
1344 struct ext4_group_desc
*gdp
= ext4_get_group_desc(sb
, i
, NULL
);
1347 count
+= ext4_used_dirs_count(sb
, gdp
);
1353 * Zeroes not yet zeroed inode table - just write zeroes through the whole
1354 * inode table. Must be called without any spinlock held. The only place
1355 * where it is called from on active part of filesystem is ext4lazyinit
1356 * thread, so we do not need any special locks, however we have to prevent
1357 * inode allocation from the current group, so we take alloc_sem lock, to
1358 * block ext4_new_inode() until we are finished.
1360 int ext4_init_inode_table(struct super_block
*sb
, ext4_group_t group
,
1363 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, group
);
1364 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
1365 struct ext4_group_desc
*gdp
= NULL
;
1366 struct buffer_head
*group_desc_bh
;
1369 int num
, ret
= 0, used_blks
= 0;
1371 /* This should not happen, but just to be sure check this */
1372 if (sb_rdonly(sb
)) {
1377 gdp
= ext4_get_group_desc(sb
, group
, &group_desc_bh
);
1382 * We do not need to lock this, because we are the only one
1383 * handling this flag.
1385 if (gdp
->bg_flags
& cpu_to_le16(EXT4_BG_INODE_ZEROED
))
1388 handle
= ext4_journal_start_sb(sb
, EXT4_HT_MISC
, 1);
1389 if (IS_ERR(handle
)) {
1390 ret
= PTR_ERR(handle
);
1394 down_write(&grp
->alloc_sem
);
1396 * If inode bitmap was already initialized there may be some
1397 * used inodes so we need to skip blocks with used inodes in
1400 if (!(gdp
->bg_flags
& cpu_to_le16(EXT4_BG_INODE_UNINIT
)))
1401 used_blks
= DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb
) -
1402 ext4_itable_unused_count(sb
, gdp
)),
1403 sbi
->s_inodes_per_block
);
1405 if ((used_blks
< 0) || (used_blks
> sbi
->s_itb_per_group
) ||
1406 ((group
== 0) && ((EXT4_INODES_PER_GROUP(sb
) -
1407 ext4_itable_unused_count(sb
, gdp
)) <
1408 EXT4_FIRST_INO(sb
)))) {
1409 ext4_error(sb
, "Something is wrong with group %u: "
1410 "used itable blocks: %d; "
1411 "itable unused count: %u",
1413 ext4_itable_unused_count(sb
, gdp
));
1418 blk
= ext4_inode_table(sb
, gdp
) + used_blks
;
1419 num
= sbi
->s_itb_per_group
- used_blks
;
1421 BUFFER_TRACE(group_desc_bh
, "get_write_access");
1422 ret
= ext4_journal_get_write_access(handle
,
1428 * Skip zeroout if the inode table is full. But we set the ZEROED
1429 * flag anyway, because obviously, when it is full it does not need
1432 if (unlikely(num
== 0))
1435 ext4_debug("going to zero out inode table in group %d\n",
1437 ret
= sb_issue_zeroout(sb
, blk
, num
, GFP_NOFS
);
1441 blkdev_issue_flush(sb
->s_bdev
, GFP_NOFS
, NULL
);
1444 ext4_lock_group(sb
, group
);
1445 gdp
->bg_flags
|= cpu_to_le16(EXT4_BG_INODE_ZEROED
);
1446 ext4_group_desc_csum_set(sb
, group
, gdp
);
1447 ext4_unlock_group(sb
, group
);
1449 BUFFER_TRACE(group_desc_bh
,
1450 "call ext4_handle_dirty_metadata");
1451 ret
= ext4_handle_dirty_metadata(handle
, NULL
,
1455 up_write(&grp
->alloc_sem
);
1456 ext4_journal_stop(handle
);