mm: fix exec activate_mm vs TLB shootdown and lazy tlb switching race
[linux/fpc-iii.git] / fs / hugetlbfs / inode.c
blobba54a0e12bbd03764b3ff75189074a79faac2b4f
1 /*
2 * hugetlbpage-backed filesystem. Based on ramfs.
4 * Nadia Yvette Chambers, 2002
6 * Copyright (C) 2002 Linus Torvalds.
7 * License: GPL
8 */
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/sched/signal.h> /* remove ASAP */
15 #include <linux/falloc.h>
16 #include <linux/fs.h>
17 #include <linux/mount.h>
18 #include <linux/file.h>
19 #include <linux/kernel.h>
20 #include <linux/writeback.h>
21 #include <linux/pagemap.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/capability.h>
26 #include <linux/ctype.h>
27 #include <linux/backing-dev.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagevec.h>
30 #include <linux/parser.h>
31 #include <linux/mman.h>
32 #include <linux/slab.h>
33 #include <linux/dnotify.h>
34 #include <linux/statfs.h>
35 #include <linux/security.h>
36 #include <linux/magic.h>
37 #include <linux/migrate.h>
38 #include <linux/uio.h>
40 #include <linux/uaccess.h>
42 static const struct super_operations hugetlbfs_ops;
43 static const struct address_space_operations hugetlbfs_aops;
44 const struct file_operations hugetlbfs_file_operations;
45 static const struct inode_operations hugetlbfs_dir_inode_operations;
46 static const struct inode_operations hugetlbfs_inode_operations;
48 struct hugetlbfs_config {
49 struct hstate *hstate;
50 long max_hpages;
51 long nr_inodes;
52 long min_hpages;
53 kuid_t uid;
54 kgid_t gid;
55 umode_t mode;
58 struct hugetlbfs_inode_info {
59 struct shared_policy policy;
60 struct inode vfs_inode;
63 static inline struct hugetlbfs_inode_info *HUGETLBFS_I(struct inode *inode)
65 return container_of(inode, struct hugetlbfs_inode_info, vfs_inode);
68 int sysctl_hugetlb_shm_group;
70 enum {
71 Opt_size, Opt_nr_inodes,
72 Opt_mode, Opt_uid, Opt_gid,
73 Opt_pagesize, Opt_min_size,
74 Opt_err,
77 static const match_table_t tokens = {
78 {Opt_size, "size=%s"},
79 {Opt_nr_inodes, "nr_inodes=%s"},
80 {Opt_mode, "mode=%o"},
81 {Opt_uid, "uid=%u"},
82 {Opt_gid, "gid=%u"},
83 {Opt_pagesize, "pagesize=%s"},
84 {Opt_min_size, "min_size=%s"},
85 {Opt_err, NULL},
88 #ifdef CONFIG_NUMA
89 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
90 struct inode *inode, pgoff_t index)
92 vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
93 index);
96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
98 mpol_cond_put(vma->vm_policy);
100 #else
101 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
102 struct inode *inode, pgoff_t index)
106 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
109 #endif
111 static void huge_pagevec_release(struct pagevec *pvec)
113 int i;
115 for (i = 0; i < pagevec_count(pvec); ++i)
116 put_page(pvec->pages[i]);
118 pagevec_reinit(pvec);
122 * Mask used when checking the page offset value passed in via system
123 * calls. This value will be converted to a loff_t which is signed.
124 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
125 * value. The extra bit (- 1 in the shift value) is to take the sign
126 * bit into account.
128 #define PGOFF_LOFFT_MAX \
129 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1)))
131 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
133 struct inode *inode = file_inode(file);
134 loff_t len, vma_len;
135 int ret;
136 struct hstate *h = hstate_file(file);
139 * vma address alignment (but not the pgoff alignment) has
140 * already been checked by prepare_hugepage_range. If you add
141 * any error returns here, do so after setting VM_HUGETLB, so
142 * is_vm_hugetlb_page tests below unmap_region go the right
143 * way when do_mmap_pgoff unwinds (may be important on powerpc
144 * and ia64).
146 vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
147 vma->vm_ops = &hugetlb_vm_ops;
150 * page based offset in vm_pgoff could be sufficiently large to
151 * overflow a loff_t when converted to byte offset. This can
152 * only happen on architectures where sizeof(loff_t) ==
153 * sizeof(unsigned long). So, only check in those instances.
155 if (sizeof(unsigned long) == sizeof(loff_t)) {
156 if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
157 return -EINVAL;
160 /* must be huge page aligned */
161 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
162 return -EINVAL;
164 vma_len = (loff_t)(vma->vm_end - vma->vm_start);
165 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
166 /* check for overflow */
167 if (len < vma_len)
168 return -EINVAL;
170 inode_lock(inode);
171 file_accessed(file);
173 ret = -ENOMEM;
174 if (hugetlb_reserve_pages(inode,
175 vma->vm_pgoff >> huge_page_order(h),
176 len >> huge_page_shift(h), vma,
177 vma->vm_flags))
178 goto out;
180 ret = 0;
181 if (vma->vm_flags & VM_WRITE && inode->i_size < len)
182 i_size_write(inode, len);
183 out:
184 inode_unlock(inode);
186 return ret;
190 * Called under down_write(mmap_sem).
193 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
194 static unsigned long
195 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
196 unsigned long len, unsigned long pgoff, unsigned long flags)
198 struct mm_struct *mm = current->mm;
199 struct vm_area_struct *vma;
200 struct hstate *h = hstate_file(file);
201 struct vm_unmapped_area_info info;
203 if (len & ~huge_page_mask(h))
204 return -EINVAL;
205 if (len > TASK_SIZE)
206 return -ENOMEM;
208 if (flags & MAP_FIXED) {
209 if (prepare_hugepage_range(file, addr, len))
210 return -EINVAL;
211 return addr;
214 if (addr) {
215 addr = ALIGN(addr, huge_page_size(h));
216 vma = find_vma(mm, addr);
217 if (TASK_SIZE - len >= addr &&
218 (!vma || addr + len <= vm_start_gap(vma)))
219 return addr;
222 info.flags = 0;
223 info.length = len;
224 info.low_limit = TASK_UNMAPPED_BASE;
225 info.high_limit = TASK_SIZE;
226 info.align_mask = PAGE_MASK & ~huge_page_mask(h);
227 info.align_offset = 0;
228 return vm_unmapped_area(&info);
230 #endif
232 static size_t
233 hugetlbfs_read_actor(struct page *page, unsigned long offset,
234 struct iov_iter *to, unsigned long size)
236 size_t copied = 0;
237 int i, chunksize;
239 /* Find which 4k chunk and offset with in that chunk */
240 i = offset >> PAGE_SHIFT;
241 offset = offset & ~PAGE_MASK;
243 while (size) {
244 size_t n;
245 chunksize = PAGE_SIZE;
246 if (offset)
247 chunksize -= offset;
248 if (chunksize > size)
249 chunksize = size;
250 n = copy_page_to_iter(&page[i], offset, chunksize, to);
251 copied += n;
252 if (n != chunksize)
253 return copied;
254 offset = 0;
255 size -= chunksize;
256 i++;
258 return copied;
262 * Support for read() - Find the page attached to f_mapping and copy out the
263 * data. Its *very* similar to do_generic_mapping_read(), we can't use that
264 * since it has PAGE_SIZE assumptions.
266 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
268 struct file *file = iocb->ki_filp;
269 struct hstate *h = hstate_file(file);
270 struct address_space *mapping = file->f_mapping;
271 struct inode *inode = mapping->host;
272 unsigned long index = iocb->ki_pos >> huge_page_shift(h);
273 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
274 unsigned long end_index;
275 loff_t isize;
276 ssize_t retval = 0;
278 while (iov_iter_count(to)) {
279 struct page *page;
280 size_t nr, copied;
282 /* nr is the maximum number of bytes to copy from this page */
283 nr = huge_page_size(h);
284 isize = i_size_read(inode);
285 if (!isize)
286 break;
287 end_index = (isize - 1) >> huge_page_shift(h);
288 if (index > end_index)
289 break;
290 if (index == end_index) {
291 nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
292 if (nr <= offset)
293 break;
295 nr = nr - offset;
297 /* Find the page */
298 page = find_lock_page(mapping, index);
299 if (unlikely(page == NULL)) {
301 * We have a HOLE, zero out the user-buffer for the
302 * length of the hole or request.
304 copied = iov_iter_zero(nr, to);
305 } else {
306 unlock_page(page);
309 * We have the page, copy it to user space buffer.
311 copied = hugetlbfs_read_actor(page, offset, to, nr);
312 put_page(page);
314 offset += copied;
315 retval += copied;
316 if (copied != nr && iov_iter_count(to)) {
317 if (!retval)
318 retval = -EFAULT;
319 break;
321 index += offset >> huge_page_shift(h);
322 offset &= ~huge_page_mask(h);
324 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
325 return retval;
328 static int hugetlbfs_write_begin(struct file *file,
329 struct address_space *mapping,
330 loff_t pos, unsigned len, unsigned flags,
331 struct page **pagep, void **fsdata)
333 return -EINVAL;
336 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
337 loff_t pos, unsigned len, unsigned copied,
338 struct page *page, void *fsdata)
340 BUG();
341 return -EINVAL;
344 static void remove_huge_page(struct page *page)
346 ClearPageDirty(page);
347 ClearPageUptodate(page);
348 delete_from_page_cache(page);
351 static void
352 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end)
354 struct vm_area_struct *vma;
357 * end == 0 indicates that the entire range after
358 * start should be unmapped.
360 vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) {
361 unsigned long v_offset;
362 unsigned long v_end;
365 * Can the expression below overflow on 32-bit arches?
366 * No, because the interval tree returns us only those vmas
367 * which overlap the truncated area starting at pgoff,
368 * and no vma on a 32-bit arch can span beyond the 4GB.
370 if (vma->vm_pgoff < start)
371 v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
372 else
373 v_offset = 0;
375 if (!end)
376 v_end = vma->vm_end;
377 else {
378 v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT)
379 + vma->vm_start;
380 if (v_end > vma->vm_end)
381 v_end = vma->vm_end;
384 unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end,
385 NULL);
390 * remove_inode_hugepages handles two distinct cases: truncation and hole
391 * punch. There are subtle differences in operation for each case.
393 * truncation is indicated by end of range being LLONG_MAX
394 * In this case, we first scan the range and release found pages.
395 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserv
396 * maps and global counts. Page faults can not race with truncation
397 * in this routine. hugetlb_no_page() prevents page faults in the
398 * truncated range. It checks i_size before allocation, and again after
399 * with the page table lock for the page held. The same lock must be
400 * acquired to unmap a page.
401 * hole punch is indicated if end is not LLONG_MAX
402 * In the hole punch case we scan the range and release found pages.
403 * Only when releasing a page is the associated region/reserv map
404 * deleted. The region/reserv map for ranges without associated
405 * pages are not modified. Page faults can race with hole punch.
406 * This is indicated if we find a mapped page.
407 * Note: If the passed end of range value is beyond the end of file, but
408 * not LLONG_MAX this routine still performs a hole punch operation.
410 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
411 loff_t lend)
413 struct hstate *h = hstate_inode(inode);
414 struct address_space *mapping = &inode->i_data;
415 const pgoff_t start = lstart >> huge_page_shift(h);
416 const pgoff_t end = lend >> huge_page_shift(h);
417 struct vm_area_struct pseudo_vma;
418 struct pagevec pvec;
419 pgoff_t next, index;
420 int i, freed = 0;
421 bool truncate_op = (lend == LLONG_MAX);
423 memset(&pseudo_vma, 0, sizeof(struct vm_area_struct));
424 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
425 pagevec_init(&pvec, 0);
426 next = start;
427 while (next < end) {
429 * When no more pages are found, we are done.
431 if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1))
432 break;
434 for (i = 0; i < pagevec_count(&pvec); ++i) {
435 struct page *page = pvec.pages[i];
436 u32 hash;
438 index = page->index;
439 hash = hugetlb_fault_mutex_hash(h, mapping, index, 0);
440 mutex_lock(&hugetlb_fault_mutex_table[hash]);
443 * If page is mapped, it was faulted in after being
444 * unmapped in caller. Unmap (again) now after taking
445 * the fault mutex. The mutex will prevent faults
446 * until we finish removing the page.
448 * This race can only happen in the hole punch case.
449 * Getting here in a truncate operation is a bug.
451 if (unlikely(page_mapped(page))) {
452 BUG_ON(truncate_op);
454 i_mmap_lock_write(mapping);
455 hugetlb_vmdelete_list(&mapping->i_mmap,
456 index * pages_per_huge_page(h),
457 (index + 1) * pages_per_huge_page(h));
458 i_mmap_unlock_write(mapping);
461 lock_page(page);
463 * We must free the huge page and remove from page
464 * cache (remove_huge_page) BEFORE removing the
465 * region/reserve map (hugetlb_unreserve_pages). In
466 * rare out of memory conditions, removal of the
467 * region/reserve map could fail. Correspondingly,
468 * the subpool and global reserve usage count can need
469 * to be adjusted.
471 VM_BUG_ON(PagePrivate(page));
472 remove_huge_page(page);
473 freed++;
474 if (!truncate_op) {
475 if (unlikely(hugetlb_unreserve_pages(inode,
476 index, index + 1, 1)))
477 hugetlb_fix_reserve_counts(inode);
480 unlock_page(page);
481 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
483 huge_pagevec_release(&pvec);
484 cond_resched();
487 if (truncate_op)
488 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
491 static void hugetlbfs_evict_inode(struct inode *inode)
493 struct resv_map *resv_map;
495 remove_inode_hugepages(inode, 0, LLONG_MAX);
496 resv_map = (struct resv_map *)inode->i_mapping->private_data;
497 /* root inode doesn't have the resv_map, so we should check it */
498 if (resv_map)
499 resv_map_release(&resv_map->refs);
500 clear_inode(inode);
503 static int hugetlb_vmtruncate(struct inode *inode, loff_t offset)
505 pgoff_t pgoff;
506 struct address_space *mapping = inode->i_mapping;
507 struct hstate *h = hstate_inode(inode);
509 BUG_ON(offset & ~huge_page_mask(h));
510 pgoff = offset >> PAGE_SHIFT;
512 i_size_write(inode, offset);
513 i_mmap_lock_write(mapping);
514 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
515 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0);
516 i_mmap_unlock_write(mapping);
517 remove_inode_hugepages(inode, offset, LLONG_MAX);
518 return 0;
521 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
523 struct hstate *h = hstate_inode(inode);
524 loff_t hpage_size = huge_page_size(h);
525 loff_t hole_start, hole_end;
528 * For hole punch round up the beginning offset of the hole and
529 * round down the end.
531 hole_start = round_up(offset, hpage_size);
532 hole_end = round_down(offset + len, hpage_size);
534 if (hole_end > hole_start) {
535 struct address_space *mapping = inode->i_mapping;
537 inode_lock(inode);
538 i_mmap_lock_write(mapping);
539 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
540 hugetlb_vmdelete_list(&mapping->i_mmap,
541 hole_start >> PAGE_SHIFT,
542 hole_end >> PAGE_SHIFT);
543 i_mmap_unlock_write(mapping);
544 remove_inode_hugepages(inode, hole_start, hole_end);
545 inode_unlock(inode);
548 return 0;
551 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
552 loff_t len)
554 struct inode *inode = file_inode(file);
555 struct address_space *mapping = inode->i_mapping;
556 struct hstate *h = hstate_inode(inode);
557 struct vm_area_struct pseudo_vma;
558 loff_t hpage_size = huge_page_size(h);
559 unsigned long hpage_shift = huge_page_shift(h);
560 pgoff_t start, index, end;
561 int error;
562 u32 hash;
564 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
565 return -EOPNOTSUPP;
567 if (mode & FALLOC_FL_PUNCH_HOLE)
568 return hugetlbfs_punch_hole(inode, offset, len);
571 * Default preallocate case.
572 * For this range, start is rounded down and end is rounded up
573 * as well as being converted to page offsets.
575 start = offset >> hpage_shift;
576 end = (offset + len + hpage_size - 1) >> hpage_shift;
578 inode_lock(inode);
580 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
581 error = inode_newsize_ok(inode, offset + len);
582 if (error)
583 goto out;
586 * Initialize a pseudo vma as this is required by the huge page
587 * allocation routines. If NUMA is configured, use page index
588 * as input to create an allocation policy.
590 memset(&pseudo_vma, 0, sizeof(struct vm_area_struct));
591 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
592 pseudo_vma.vm_file = file;
594 for (index = start; index < end; index++) {
596 * This is supposed to be the vaddr where the page is being
597 * faulted in, but we have no vaddr here.
599 struct page *page;
600 unsigned long addr;
601 int avoid_reserve = 0;
603 cond_resched();
606 * fallocate(2) manpage permits EINTR; we may have been
607 * interrupted because we are using up too much memory.
609 if (signal_pending(current)) {
610 error = -EINTR;
611 break;
614 /* Set numa allocation policy based on index */
615 hugetlb_set_vma_policy(&pseudo_vma, inode, index);
617 /* addr is the offset within the file (zero based) */
618 addr = index * hpage_size;
620 /* mutex taken here, fault path and hole punch */
621 hash = hugetlb_fault_mutex_hash(h, mapping, index, addr);
622 mutex_lock(&hugetlb_fault_mutex_table[hash]);
624 /* See if already present in mapping to avoid alloc/free */
625 page = find_get_page(mapping, index);
626 if (page) {
627 put_page(page);
628 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
629 hugetlb_drop_vma_policy(&pseudo_vma);
630 continue;
633 /* Allocate page and add to page cache */
634 page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve);
635 hugetlb_drop_vma_policy(&pseudo_vma);
636 if (IS_ERR(page)) {
637 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
638 error = PTR_ERR(page);
639 goto out;
641 clear_huge_page(page, addr, pages_per_huge_page(h));
642 __SetPageUptodate(page);
643 error = huge_add_to_page_cache(page, mapping, index);
644 if (unlikely(error)) {
645 put_page(page);
646 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
647 goto out;
650 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
653 * page_put due to reference from alloc_huge_page()
654 * unlock_page because locked by add_to_page_cache()
656 put_page(page);
657 unlock_page(page);
660 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
661 i_size_write(inode, offset + len);
662 inode->i_ctime = current_time(inode);
663 out:
664 inode_unlock(inode);
665 return error;
668 static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr)
670 struct inode *inode = d_inode(dentry);
671 struct hstate *h = hstate_inode(inode);
672 int error;
673 unsigned int ia_valid = attr->ia_valid;
675 BUG_ON(!inode);
677 error = setattr_prepare(dentry, attr);
678 if (error)
679 return error;
681 if (ia_valid & ATTR_SIZE) {
682 error = -EINVAL;
683 if (attr->ia_size & ~huge_page_mask(h))
684 return -EINVAL;
685 error = hugetlb_vmtruncate(inode, attr->ia_size);
686 if (error)
687 return error;
690 setattr_copy(inode, attr);
691 mark_inode_dirty(inode);
692 return 0;
695 static struct inode *hugetlbfs_get_root(struct super_block *sb,
696 struct hugetlbfs_config *config)
698 struct inode *inode;
700 inode = new_inode(sb);
701 if (inode) {
702 inode->i_ino = get_next_ino();
703 inode->i_mode = S_IFDIR | config->mode;
704 inode->i_uid = config->uid;
705 inode->i_gid = config->gid;
706 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
707 inode->i_op = &hugetlbfs_dir_inode_operations;
708 inode->i_fop = &simple_dir_operations;
709 /* directory inodes start off with i_nlink == 2 (for "." entry) */
710 inc_nlink(inode);
711 lockdep_annotate_inode_mutex_key(inode);
713 return inode;
717 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
718 * be taken from reclaim -- unlike regular filesystems. This needs an
719 * annotation because huge_pmd_share() does an allocation under hugetlb's
720 * i_mmap_rwsem.
722 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
724 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
725 struct inode *dir,
726 umode_t mode, dev_t dev)
728 struct inode *inode;
729 struct resv_map *resv_map = NULL;
732 * Reserve maps are only needed for inodes that can have associated
733 * page allocations.
735 if (S_ISREG(mode) || S_ISLNK(mode)) {
736 resv_map = resv_map_alloc();
737 if (!resv_map)
738 return NULL;
741 inode = new_inode(sb);
742 if (inode) {
743 inode->i_ino = get_next_ino();
744 inode_init_owner(inode, dir, mode);
745 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
746 &hugetlbfs_i_mmap_rwsem_key);
747 inode->i_mapping->a_ops = &hugetlbfs_aops;
748 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
749 inode->i_mapping->private_data = resv_map;
750 switch (mode & S_IFMT) {
751 default:
752 init_special_inode(inode, mode, dev);
753 break;
754 case S_IFREG:
755 inode->i_op = &hugetlbfs_inode_operations;
756 inode->i_fop = &hugetlbfs_file_operations;
757 break;
758 case S_IFDIR:
759 inode->i_op = &hugetlbfs_dir_inode_operations;
760 inode->i_fop = &simple_dir_operations;
762 /* directory inodes start off with i_nlink == 2 (for "." entry) */
763 inc_nlink(inode);
764 break;
765 case S_IFLNK:
766 inode->i_op = &page_symlink_inode_operations;
767 inode_nohighmem(inode);
768 break;
770 lockdep_annotate_inode_mutex_key(inode);
771 } else {
772 if (resv_map)
773 kref_put(&resv_map->refs, resv_map_release);
776 return inode;
780 * File creation. Allocate an inode, and we're done..
782 static int hugetlbfs_mknod(struct inode *dir,
783 struct dentry *dentry, umode_t mode, dev_t dev)
785 struct inode *inode;
786 int error = -ENOSPC;
788 inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
789 if (inode) {
790 dir->i_ctime = dir->i_mtime = current_time(dir);
791 d_instantiate(dentry, inode);
792 dget(dentry); /* Extra count - pin the dentry in core */
793 error = 0;
795 return error;
798 static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
800 int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0);
801 if (!retval)
802 inc_nlink(dir);
803 return retval;
806 static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl)
808 return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0);
811 static int hugetlbfs_symlink(struct inode *dir,
812 struct dentry *dentry, const char *symname)
814 struct inode *inode;
815 int error = -ENOSPC;
817 inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
818 if (inode) {
819 int l = strlen(symname)+1;
820 error = page_symlink(inode, symname, l);
821 if (!error) {
822 d_instantiate(dentry, inode);
823 dget(dentry);
824 } else
825 iput(inode);
827 dir->i_ctime = dir->i_mtime = current_time(dir);
829 return error;
833 * mark the head page dirty
835 static int hugetlbfs_set_page_dirty(struct page *page)
837 struct page *head = compound_head(page);
839 SetPageDirty(head);
840 return 0;
843 static int hugetlbfs_migrate_page(struct address_space *mapping,
844 struct page *newpage, struct page *page,
845 enum migrate_mode mode)
847 int rc;
849 rc = migrate_huge_page_move_mapping(mapping, newpage, page);
850 if (rc != MIGRATEPAGE_SUCCESS)
851 return rc;
854 * page_private is subpool pointer in hugetlb pages. Transfer to
855 * new page. PagePrivate is not associated with page_private for
856 * hugetlb pages and can not be set here as only page_huge_active
857 * pages can be migrated.
859 if (page_private(page)) {
860 set_page_private(newpage, page_private(page));
861 set_page_private(page, 0);
864 if (mode != MIGRATE_SYNC_NO_COPY)
865 migrate_page_copy(newpage, page);
866 else
867 migrate_page_states(newpage, page);
869 return MIGRATEPAGE_SUCCESS;
872 static int hugetlbfs_error_remove_page(struct address_space *mapping,
873 struct page *page)
875 struct inode *inode = mapping->host;
876 pgoff_t index = page->index;
878 remove_huge_page(page);
879 if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1)))
880 hugetlb_fix_reserve_counts(inode);
882 return 0;
886 * Display the mount options in /proc/mounts.
888 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
890 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
891 struct hugepage_subpool *spool = sbinfo->spool;
892 unsigned long hpage_size = huge_page_size(sbinfo->hstate);
893 unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
894 char mod;
896 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
897 seq_printf(m, ",uid=%u",
898 from_kuid_munged(&init_user_ns, sbinfo->uid));
899 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
900 seq_printf(m, ",gid=%u",
901 from_kgid_munged(&init_user_ns, sbinfo->gid));
902 if (sbinfo->mode != 0755)
903 seq_printf(m, ",mode=%o", sbinfo->mode);
904 if (sbinfo->max_inodes != -1)
905 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
907 hpage_size /= 1024;
908 mod = 'K';
909 if (hpage_size >= 1024) {
910 hpage_size /= 1024;
911 mod = 'M';
913 seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
914 if (spool) {
915 if (spool->max_hpages != -1)
916 seq_printf(m, ",size=%llu",
917 (unsigned long long)spool->max_hpages << hpage_shift);
918 if (spool->min_hpages != -1)
919 seq_printf(m, ",min_size=%llu",
920 (unsigned long long)spool->min_hpages << hpage_shift);
922 return 0;
925 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
927 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
928 struct hstate *h = hstate_inode(d_inode(dentry));
930 buf->f_type = HUGETLBFS_MAGIC;
931 buf->f_bsize = huge_page_size(h);
932 if (sbinfo) {
933 spin_lock(&sbinfo->stat_lock);
934 /* If no limits set, just report 0 for max/free/used
935 * blocks, like simple_statfs() */
936 if (sbinfo->spool) {
937 long free_pages;
939 spin_lock(&sbinfo->spool->lock);
940 buf->f_blocks = sbinfo->spool->max_hpages;
941 free_pages = sbinfo->spool->max_hpages
942 - sbinfo->spool->used_hpages;
943 buf->f_bavail = buf->f_bfree = free_pages;
944 spin_unlock(&sbinfo->spool->lock);
945 buf->f_files = sbinfo->max_inodes;
946 buf->f_ffree = sbinfo->free_inodes;
948 spin_unlock(&sbinfo->stat_lock);
950 buf->f_namelen = NAME_MAX;
951 return 0;
954 static void hugetlbfs_put_super(struct super_block *sb)
956 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
958 if (sbi) {
959 sb->s_fs_info = NULL;
961 if (sbi->spool)
962 hugepage_put_subpool(sbi->spool);
964 kfree(sbi);
968 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
970 if (sbinfo->free_inodes >= 0) {
971 spin_lock(&sbinfo->stat_lock);
972 if (unlikely(!sbinfo->free_inodes)) {
973 spin_unlock(&sbinfo->stat_lock);
974 return 0;
976 sbinfo->free_inodes--;
977 spin_unlock(&sbinfo->stat_lock);
980 return 1;
983 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
985 if (sbinfo->free_inodes >= 0) {
986 spin_lock(&sbinfo->stat_lock);
987 sbinfo->free_inodes++;
988 spin_unlock(&sbinfo->stat_lock);
993 static struct kmem_cache *hugetlbfs_inode_cachep;
995 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
997 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
998 struct hugetlbfs_inode_info *p;
1000 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1001 return NULL;
1002 p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
1003 if (unlikely(!p)) {
1004 hugetlbfs_inc_free_inodes(sbinfo);
1005 return NULL;
1009 * Any time after allocation, hugetlbfs_destroy_inode can be called
1010 * for the inode. mpol_free_shared_policy is unconditionally called
1011 * as part of hugetlbfs_destroy_inode. So, initialize policy here
1012 * in case of a quick call to destroy.
1014 * Note that the policy is initialized even if we are creating a
1015 * private inode. This simplifies hugetlbfs_destroy_inode.
1017 mpol_shared_policy_init(&p->policy, NULL);
1019 return &p->vfs_inode;
1022 static void hugetlbfs_i_callback(struct rcu_head *head)
1024 struct inode *inode = container_of(head, struct inode, i_rcu);
1025 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1028 static void hugetlbfs_destroy_inode(struct inode *inode)
1030 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1031 mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
1032 call_rcu(&inode->i_rcu, hugetlbfs_i_callback);
1035 static const struct address_space_operations hugetlbfs_aops = {
1036 .write_begin = hugetlbfs_write_begin,
1037 .write_end = hugetlbfs_write_end,
1038 .set_page_dirty = hugetlbfs_set_page_dirty,
1039 .migratepage = hugetlbfs_migrate_page,
1040 .error_remove_page = hugetlbfs_error_remove_page,
1044 static void init_once(void *foo)
1046 struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
1048 inode_init_once(&ei->vfs_inode);
1051 const struct file_operations hugetlbfs_file_operations = {
1052 .read_iter = hugetlbfs_read_iter,
1053 .mmap = hugetlbfs_file_mmap,
1054 .fsync = noop_fsync,
1055 .get_unmapped_area = hugetlb_get_unmapped_area,
1056 .llseek = default_llseek,
1057 .fallocate = hugetlbfs_fallocate,
1060 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1061 .create = hugetlbfs_create,
1062 .lookup = simple_lookup,
1063 .link = simple_link,
1064 .unlink = simple_unlink,
1065 .symlink = hugetlbfs_symlink,
1066 .mkdir = hugetlbfs_mkdir,
1067 .rmdir = simple_rmdir,
1068 .mknod = hugetlbfs_mknod,
1069 .rename = simple_rename,
1070 .setattr = hugetlbfs_setattr,
1073 static const struct inode_operations hugetlbfs_inode_operations = {
1074 .setattr = hugetlbfs_setattr,
1077 static const struct super_operations hugetlbfs_ops = {
1078 .alloc_inode = hugetlbfs_alloc_inode,
1079 .destroy_inode = hugetlbfs_destroy_inode,
1080 .evict_inode = hugetlbfs_evict_inode,
1081 .statfs = hugetlbfs_statfs,
1082 .put_super = hugetlbfs_put_super,
1083 .show_options = hugetlbfs_show_options,
1086 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
1089 * Convert size option passed from command line to number of huge pages
1090 * in the pool specified by hstate. Size option could be in bytes
1091 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1093 static long
1094 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1095 enum hugetlbfs_size_type val_type)
1097 if (val_type == NO_SIZE)
1098 return -1;
1100 if (val_type == SIZE_PERCENT) {
1101 size_opt <<= huge_page_shift(h);
1102 size_opt *= h->max_huge_pages;
1103 do_div(size_opt, 100);
1106 size_opt >>= huge_page_shift(h);
1107 return size_opt;
1110 static int
1111 hugetlbfs_parse_options(char *options, struct hugetlbfs_config *pconfig)
1113 char *p, *rest;
1114 substring_t args[MAX_OPT_ARGS];
1115 int option;
1116 unsigned long long max_size_opt = 0, min_size_opt = 0;
1117 enum hugetlbfs_size_type max_val_type = NO_SIZE, min_val_type = NO_SIZE;
1119 if (!options)
1120 return 0;
1122 while ((p = strsep(&options, ",")) != NULL) {
1123 int token;
1124 if (!*p)
1125 continue;
1127 token = match_token(p, tokens, args);
1128 switch (token) {
1129 case Opt_uid:
1130 if (match_int(&args[0], &option))
1131 goto bad_val;
1132 pconfig->uid = make_kuid(current_user_ns(), option);
1133 if (!uid_valid(pconfig->uid))
1134 goto bad_val;
1135 break;
1137 case Opt_gid:
1138 if (match_int(&args[0], &option))
1139 goto bad_val;
1140 pconfig->gid = make_kgid(current_user_ns(), option);
1141 if (!gid_valid(pconfig->gid))
1142 goto bad_val;
1143 break;
1145 case Opt_mode:
1146 if (match_octal(&args[0], &option))
1147 goto bad_val;
1148 pconfig->mode = option & 01777U;
1149 break;
1151 case Opt_size: {
1152 /* memparse() will accept a K/M/G without a digit */
1153 if (!isdigit(*args[0].from))
1154 goto bad_val;
1155 max_size_opt = memparse(args[0].from, &rest);
1156 max_val_type = SIZE_STD;
1157 if (*rest == '%')
1158 max_val_type = SIZE_PERCENT;
1159 break;
1162 case Opt_nr_inodes:
1163 /* memparse() will accept a K/M/G without a digit */
1164 if (!isdigit(*args[0].from))
1165 goto bad_val;
1166 pconfig->nr_inodes = memparse(args[0].from, &rest);
1167 break;
1169 case Opt_pagesize: {
1170 unsigned long ps;
1171 ps = memparse(args[0].from, &rest);
1172 pconfig->hstate = size_to_hstate(ps);
1173 if (!pconfig->hstate) {
1174 pr_err("Unsupported page size %lu MB\n",
1175 ps >> 20);
1176 return -EINVAL;
1178 break;
1181 case Opt_min_size: {
1182 /* memparse() will accept a K/M/G without a digit */
1183 if (!isdigit(*args[0].from))
1184 goto bad_val;
1185 min_size_opt = memparse(args[0].from, &rest);
1186 min_val_type = SIZE_STD;
1187 if (*rest == '%')
1188 min_val_type = SIZE_PERCENT;
1189 break;
1192 default:
1193 pr_err("Bad mount option: \"%s\"\n", p);
1194 return -EINVAL;
1195 break;
1200 * Use huge page pool size (in hstate) to convert the size
1201 * options to number of huge pages. If NO_SIZE, -1 is returned.
1203 pconfig->max_hpages = hugetlbfs_size_to_hpages(pconfig->hstate,
1204 max_size_opt, max_val_type);
1205 pconfig->min_hpages = hugetlbfs_size_to_hpages(pconfig->hstate,
1206 min_size_opt, min_val_type);
1209 * If max_size was specified, then min_size must be smaller
1211 if (max_val_type > NO_SIZE &&
1212 pconfig->min_hpages > pconfig->max_hpages) {
1213 pr_err("minimum size can not be greater than maximum size\n");
1214 return -EINVAL;
1217 return 0;
1219 bad_val:
1220 pr_err("Bad value '%s' for mount option '%s'\n", args[0].from, p);
1221 return -EINVAL;
1224 static int
1225 hugetlbfs_fill_super(struct super_block *sb, void *data, int silent)
1227 int ret;
1228 struct hugetlbfs_config config;
1229 struct hugetlbfs_sb_info *sbinfo;
1231 config.max_hpages = -1; /* No limit on size by default */
1232 config.nr_inodes = -1; /* No limit on number of inodes by default */
1233 config.uid = current_fsuid();
1234 config.gid = current_fsgid();
1235 config.mode = 0755;
1236 config.hstate = &default_hstate;
1237 config.min_hpages = -1; /* No default minimum size */
1238 ret = hugetlbfs_parse_options(data, &config);
1239 if (ret)
1240 return ret;
1242 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1243 if (!sbinfo)
1244 return -ENOMEM;
1245 sb->s_fs_info = sbinfo;
1246 sbinfo->hstate = config.hstate;
1247 spin_lock_init(&sbinfo->stat_lock);
1248 sbinfo->max_inodes = config.nr_inodes;
1249 sbinfo->free_inodes = config.nr_inodes;
1250 sbinfo->spool = NULL;
1251 sbinfo->uid = config.uid;
1252 sbinfo->gid = config.gid;
1253 sbinfo->mode = config.mode;
1256 * Allocate and initialize subpool if maximum or minimum size is
1257 * specified. Any needed reservations (for minimim size) are taken
1258 * taken when the subpool is created.
1260 if (config.max_hpages != -1 || config.min_hpages != -1) {
1261 sbinfo->spool = hugepage_new_subpool(config.hstate,
1262 config.max_hpages,
1263 config.min_hpages);
1264 if (!sbinfo->spool)
1265 goto out_free;
1267 sb->s_maxbytes = MAX_LFS_FILESIZE;
1268 sb->s_blocksize = huge_page_size(config.hstate);
1269 sb->s_blocksize_bits = huge_page_shift(config.hstate);
1270 sb->s_magic = HUGETLBFS_MAGIC;
1271 sb->s_op = &hugetlbfs_ops;
1272 sb->s_time_gran = 1;
1273 sb->s_root = d_make_root(hugetlbfs_get_root(sb, &config));
1274 if (!sb->s_root)
1275 goto out_free;
1276 return 0;
1277 out_free:
1278 kfree(sbinfo->spool);
1279 kfree(sbinfo);
1280 return -ENOMEM;
1283 static struct dentry *hugetlbfs_mount(struct file_system_type *fs_type,
1284 int flags, const char *dev_name, void *data)
1286 return mount_nodev(fs_type, flags, data, hugetlbfs_fill_super);
1289 static struct file_system_type hugetlbfs_fs_type = {
1290 .name = "hugetlbfs",
1291 .mount = hugetlbfs_mount,
1292 .kill_sb = kill_litter_super,
1295 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1297 static int can_do_hugetlb_shm(void)
1299 kgid_t shm_group;
1300 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1301 return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1304 static int get_hstate_idx(int page_size_log)
1306 struct hstate *h = hstate_sizelog(page_size_log);
1308 if (!h)
1309 return -1;
1310 return h - hstates;
1313 static const struct dentry_operations anon_ops = {
1314 .d_dname = simple_dname
1318 * Note that size should be aligned to proper hugepage size in caller side,
1319 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1321 struct file *hugetlb_file_setup(const char *name, size_t size,
1322 vm_flags_t acctflag, struct user_struct **user,
1323 int creat_flags, int page_size_log)
1325 struct file *file = ERR_PTR(-ENOMEM);
1326 struct inode *inode;
1327 struct path path;
1328 struct super_block *sb;
1329 struct qstr quick_string;
1330 int hstate_idx;
1332 hstate_idx = get_hstate_idx(page_size_log);
1333 if (hstate_idx < 0)
1334 return ERR_PTR(-ENODEV);
1336 *user = NULL;
1337 if (!hugetlbfs_vfsmount[hstate_idx])
1338 return ERR_PTR(-ENOENT);
1340 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1341 *user = current_user();
1342 if (user_shm_lock(size, *user)) {
1343 task_lock(current);
1344 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n",
1345 current->comm, current->pid);
1346 task_unlock(current);
1347 } else {
1348 *user = NULL;
1349 return ERR_PTR(-EPERM);
1353 sb = hugetlbfs_vfsmount[hstate_idx]->mnt_sb;
1354 quick_string.name = name;
1355 quick_string.len = strlen(quick_string.name);
1356 quick_string.hash = 0;
1357 path.dentry = d_alloc_pseudo(sb, &quick_string);
1358 if (!path.dentry)
1359 goto out_shm_unlock;
1361 d_set_d_op(path.dentry, &anon_ops);
1362 path.mnt = mntget(hugetlbfs_vfsmount[hstate_idx]);
1363 file = ERR_PTR(-ENOSPC);
1364 inode = hugetlbfs_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0);
1365 if (!inode)
1366 goto out_dentry;
1367 if (creat_flags == HUGETLB_SHMFS_INODE)
1368 inode->i_flags |= S_PRIVATE;
1370 file = ERR_PTR(-ENOMEM);
1371 if (hugetlb_reserve_pages(inode, 0,
1372 size >> huge_page_shift(hstate_inode(inode)), NULL,
1373 acctflag))
1374 goto out_inode;
1376 d_instantiate(path.dentry, inode);
1377 inode->i_size = size;
1378 clear_nlink(inode);
1380 file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
1381 &hugetlbfs_file_operations);
1382 if (IS_ERR(file))
1383 goto out_dentry; /* inode is already attached */
1385 return file;
1387 out_inode:
1388 iput(inode);
1389 out_dentry:
1390 path_put(&path);
1391 out_shm_unlock:
1392 if (*user) {
1393 user_shm_unlock(size, *user);
1394 *user = NULL;
1396 return file;
1399 static int __init init_hugetlbfs_fs(void)
1401 struct hstate *h;
1402 int error;
1403 int i;
1405 if (!hugepages_supported()) {
1406 pr_info("disabling because there are no supported hugepage sizes\n");
1407 return -ENOTSUPP;
1410 error = -ENOMEM;
1411 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1412 sizeof(struct hugetlbfs_inode_info),
1413 0, SLAB_ACCOUNT, init_once);
1414 if (hugetlbfs_inode_cachep == NULL)
1415 goto out2;
1417 error = register_filesystem(&hugetlbfs_fs_type);
1418 if (error)
1419 goto out;
1421 i = 0;
1422 for_each_hstate(h) {
1423 char buf[50];
1424 unsigned ps_kb = 1U << (h->order + PAGE_SHIFT - 10);
1426 snprintf(buf, sizeof(buf), "pagesize=%uK", ps_kb);
1427 hugetlbfs_vfsmount[i] = kern_mount_data(&hugetlbfs_fs_type,
1428 buf);
1430 if (IS_ERR(hugetlbfs_vfsmount[i])) {
1431 pr_err("Cannot mount internal hugetlbfs for "
1432 "page size %uK", ps_kb);
1433 error = PTR_ERR(hugetlbfs_vfsmount[i]);
1434 hugetlbfs_vfsmount[i] = NULL;
1436 i++;
1438 /* Non default hstates are optional */
1439 if (!IS_ERR_OR_NULL(hugetlbfs_vfsmount[default_hstate_idx]))
1440 return 0;
1442 out:
1443 kmem_cache_destroy(hugetlbfs_inode_cachep);
1444 out2:
1445 return error;
1447 fs_initcall(init_hugetlbfs_fs)