2 * (C) 1997 Linus Torvalds
3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5 #include <linux/export.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include <linux/list_lru.h>
21 #include <trace/events/writeback.h>
25 * Inode locking rules:
27 * inode->i_lock protects:
28 * inode->i_state, inode->i_hash, __iget()
29 * Inode LRU list locks protect:
30 * inode->i_sb->s_inode_lru, inode->i_lru
31 * inode->i_sb->s_inode_list_lock protects:
32 * inode->i_sb->s_inodes, inode->i_sb_list
33 * bdi->wb.list_lock protects:
34 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
35 * inode_hash_lock protects:
36 * inode_hashtable, inode->i_hash
40 * inode->i_sb->s_inode_list_lock
42 * Inode LRU list locks
48 * inode->i_sb->s_inode_list_lock
55 static unsigned int i_hash_mask __read_mostly
;
56 static unsigned int i_hash_shift __read_mostly
;
57 static struct hlist_head
*inode_hashtable __read_mostly
;
58 static __cacheline_aligned_in_smp
DEFINE_SPINLOCK(inode_hash_lock
);
61 * Empty aops. Can be used for the cases where the user does not
62 * define any of the address_space operations.
64 const struct address_space_operations empty_aops
= {
66 EXPORT_SYMBOL(empty_aops
);
69 * Statistics gathering..
71 struct inodes_stat_t inodes_stat
;
73 static DEFINE_PER_CPU(unsigned long, nr_inodes
);
74 static DEFINE_PER_CPU(unsigned long, nr_unused
);
76 static struct kmem_cache
*inode_cachep __read_mostly
;
78 static long get_nr_inodes(void)
82 for_each_possible_cpu(i
)
83 sum
+= per_cpu(nr_inodes
, i
);
84 return sum
< 0 ? 0 : sum
;
87 static inline long get_nr_inodes_unused(void)
91 for_each_possible_cpu(i
)
92 sum
+= per_cpu(nr_unused
, i
);
93 return sum
< 0 ? 0 : sum
;
96 long get_nr_dirty_inodes(void)
98 /* not actually dirty inodes, but a wild approximation */
99 long nr_dirty
= get_nr_inodes() - get_nr_inodes_unused();
100 return nr_dirty
> 0 ? nr_dirty
: 0;
104 * Handle nr_inode sysctl
107 int proc_nr_inodes(struct ctl_table
*table
, int write
,
108 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
110 inodes_stat
.nr_inodes
= get_nr_inodes();
111 inodes_stat
.nr_unused
= get_nr_inodes_unused();
112 return proc_doulongvec_minmax(table
, write
, buffer
, lenp
, ppos
);
116 static int no_open(struct inode
*inode
, struct file
*file
)
122 * inode_init_always - perform inode structure initialisation
123 * @sb: superblock inode belongs to
124 * @inode: inode to initialise
126 * These are initializations that need to be done on every inode
127 * allocation as the fields are not initialised by slab allocation.
129 int inode_init_always(struct super_block
*sb
, struct inode
*inode
)
131 static const struct inode_operations empty_iops
;
132 static const struct file_operations no_open_fops
= {.open
= no_open
};
133 struct address_space
*const mapping
= &inode
->i_data
;
136 inode
->i_blkbits
= sb
->s_blocksize_bits
;
138 atomic64_set(&inode
->i_sequence
, 0);
139 atomic_set(&inode
->i_count
, 1);
140 inode
->i_op
= &empty_iops
;
141 inode
->i_fop
= &no_open_fops
;
142 inode
->__i_nlink
= 1;
143 inode
->i_opflags
= 0;
145 inode
->i_opflags
|= IOP_XATTR
;
146 i_uid_write(inode
, 0);
147 i_gid_write(inode
, 0);
148 atomic_set(&inode
->i_writecount
, 0);
150 inode
->i_write_hint
= WRITE_LIFE_NOT_SET
;
153 inode
->i_generation
= 0;
154 inode
->i_pipe
= NULL
;
155 inode
->i_bdev
= NULL
;
156 inode
->i_cdev
= NULL
;
157 inode
->i_link
= NULL
;
158 inode
->i_dir_seq
= 0;
160 inode
->dirtied_when
= 0;
162 #ifdef CONFIG_CGROUP_WRITEBACK
163 inode
->i_wb_frn_winner
= 0;
164 inode
->i_wb_frn_avg_time
= 0;
165 inode
->i_wb_frn_history
= 0;
168 if (security_inode_alloc(inode
))
170 spin_lock_init(&inode
->i_lock
);
171 lockdep_set_class(&inode
->i_lock
, &sb
->s_type
->i_lock_key
);
173 init_rwsem(&inode
->i_rwsem
);
174 lockdep_set_class(&inode
->i_rwsem
, &sb
->s_type
->i_mutex_key
);
176 atomic_set(&inode
->i_dio_count
, 0);
178 mapping
->a_ops
= &empty_aops
;
179 mapping
->host
= inode
;
182 atomic_set(&mapping
->i_mmap_writable
, 0);
183 mapping_set_gfp_mask(mapping
, GFP_HIGHUSER_MOVABLE
);
184 mapping
->private_data
= NULL
;
185 mapping
->writeback_index
= 0;
186 inode
->i_private
= NULL
;
187 inode
->i_mapping
= mapping
;
188 INIT_HLIST_HEAD(&inode
->i_dentry
); /* buggered by rcu freeing */
189 #ifdef CONFIG_FS_POSIX_ACL
190 inode
->i_acl
= inode
->i_default_acl
= ACL_NOT_CACHED
;
193 #ifdef CONFIG_FSNOTIFY
194 inode
->i_fsnotify_mask
= 0;
196 inode
->i_flctx
= NULL
;
197 this_cpu_inc(nr_inodes
);
203 EXPORT_SYMBOL(inode_init_always
);
205 static struct inode
*alloc_inode(struct super_block
*sb
)
209 if (sb
->s_op
->alloc_inode
)
210 inode
= sb
->s_op
->alloc_inode(sb
);
212 inode
= kmem_cache_alloc(inode_cachep
, GFP_KERNEL
);
217 if (unlikely(inode_init_always(sb
, inode
))) {
218 if (inode
->i_sb
->s_op
->destroy_inode
)
219 inode
->i_sb
->s_op
->destroy_inode(inode
);
221 kmem_cache_free(inode_cachep
, inode
);
228 void free_inode_nonrcu(struct inode
*inode
)
230 kmem_cache_free(inode_cachep
, inode
);
232 EXPORT_SYMBOL(free_inode_nonrcu
);
234 void __destroy_inode(struct inode
*inode
)
236 BUG_ON(inode_has_buffers(inode
));
237 inode_detach_wb(inode
);
238 security_inode_free(inode
);
239 fsnotify_inode_delete(inode
);
240 locks_free_lock_context(inode
);
241 if (!inode
->i_nlink
) {
242 WARN_ON(atomic_long_read(&inode
->i_sb
->s_remove_count
) == 0);
243 atomic_long_dec(&inode
->i_sb
->s_remove_count
);
246 #ifdef CONFIG_FS_POSIX_ACL
247 if (inode
->i_acl
&& !is_uncached_acl(inode
->i_acl
))
248 posix_acl_release(inode
->i_acl
);
249 if (inode
->i_default_acl
&& !is_uncached_acl(inode
->i_default_acl
))
250 posix_acl_release(inode
->i_default_acl
);
252 this_cpu_dec(nr_inodes
);
254 EXPORT_SYMBOL(__destroy_inode
);
256 static void i_callback(struct rcu_head
*head
)
258 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
259 kmem_cache_free(inode_cachep
, inode
);
262 static void destroy_inode(struct inode
*inode
)
264 BUG_ON(!list_empty(&inode
->i_lru
));
265 __destroy_inode(inode
);
266 if (inode
->i_sb
->s_op
->destroy_inode
)
267 inode
->i_sb
->s_op
->destroy_inode(inode
);
269 call_rcu(&inode
->i_rcu
, i_callback
);
273 * drop_nlink - directly drop an inode's link count
276 * This is a low-level filesystem helper to replace any
277 * direct filesystem manipulation of i_nlink. In cases
278 * where we are attempting to track writes to the
279 * filesystem, a decrement to zero means an imminent
280 * write when the file is truncated and actually unlinked
283 void drop_nlink(struct inode
*inode
)
285 WARN_ON(inode
->i_nlink
== 0);
288 atomic_long_inc(&inode
->i_sb
->s_remove_count
);
290 EXPORT_SYMBOL(drop_nlink
);
293 * clear_nlink - directly zero an inode's link count
296 * This is a low-level filesystem helper to replace any
297 * direct filesystem manipulation of i_nlink. See
298 * drop_nlink() for why we care about i_nlink hitting zero.
300 void clear_nlink(struct inode
*inode
)
302 if (inode
->i_nlink
) {
303 inode
->__i_nlink
= 0;
304 atomic_long_inc(&inode
->i_sb
->s_remove_count
);
307 EXPORT_SYMBOL(clear_nlink
);
310 * set_nlink - directly set an inode's link count
312 * @nlink: new nlink (should be non-zero)
314 * This is a low-level filesystem helper to replace any
315 * direct filesystem manipulation of i_nlink.
317 void set_nlink(struct inode
*inode
, unsigned int nlink
)
322 /* Yes, some filesystems do change nlink from zero to one */
323 if (inode
->i_nlink
== 0)
324 atomic_long_dec(&inode
->i_sb
->s_remove_count
);
326 inode
->__i_nlink
= nlink
;
329 EXPORT_SYMBOL(set_nlink
);
332 * inc_nlink - directly increment an inode's link count
335 * This is a low-level filesystem helper to replace any
336 * direct filesystem manipulation of i_nlink. Currently,
337 * it is only here for parity with dec_nlink().
339 void inc_nlink(struct inode
*inode
)
341 if (unlikely(inode
->i_nlink
== 0)) {
342 WARN_ON(!(inode
->i_state
& I_LINKABLE
));
343 atomic_long_dec(&inode
->i_sb
->s_remove_count
);
348 EXPORT_SYMBOL(inc_nlink
);
350 void address_space_init_once(struct address_space
*mapping
)
352 memset(mapping
, 0, sizeof(*mapping
));
353 INIT_RADIX_TREE(&mapping
->page_tree
, GFP_ATOMIC
| __GFP_ACCOUNT
);
354 spin_lock_init(&mapping
->tree_lock
);
355 init_rwsem(&mapping
->i_mmap_rwsem
);
356 INIT_LIST_HEAD(&mapping
->private_list
);
357 spin_lock_init(&mapping
->private_lock
);
358 mapping
->i_mmap
= RB_ROOT_CACHED
;
360 EXPORT_SYMBOL(address_space_init_once
);
363 * These are initializations that only need to be done
364 * once, because the fields are idempotent across use
365 * of the inode, so let the slab aware of that.
367 void inode_init_once(struct inode
*inode
)
369 memset(inode
, 0, sizeof(*inode
));
370 INIT_HLIST_NODE(&inode
->i_hash
);
371 INIT_LIST_HEAD(&inode
->i_devices
);
372 INIT_LIST_HEAD(&inode
->i_io_list
);
373 INIT_LIST_HEAD(&inode
->i_wb_list
);
374 INIT_LIST_HEAD(&inode
->i_lru
);
375 address_space_init_once(&inode
->i_data
);
376 i_size_ordered_init(inode
);
378 EXPORT_SYMBOL(inode_init_once
);
380 static void init_once(void *foo
)
382 struct inode
*inode
= (struct inode
*) foo
;
384 inode_init_once(inode
);
388 * inode->i_lock must be held
390 void __iget(struct inode
*inode
)
392 atomic_inc(&inode
->i_count
);
396 * get additional reference to inode; caller must already hold one.
398 void ihold(struct inode
*inode
)
400 WARN_ON(atomic_inc_return(&inode
->i_count
) < 2);
402 EXPORT_SYMBOL(ihold
);
404 static void inode_lru_list_add(struct inode
*inode
)
406 if (list_lru_add(&inode
->i_sb
->s_inode_lru
, &inode
->i_lru
))
407 this_cpu_inc(nr_unused
);
409 inode
->i_state
|= I_REFERENCED
;
413 * Add inode to LRU if needed (inode is unused and clean).
415 * Needs inode->i_lock held.
417 void inode_add_lru(struct inode
*inode
)
419 if (!(inode
->i_state
& (I_DIRTY_ALL
| I_SYNC
|
420 I_FREEING
| I_WILL_FREE
)) &&
421 !atomic_read(&inode
->i_count
) && inode
->i_sb
->s_flags
& MS_ACTIVE
)
422 inode_lru_list_add(inode
);
426 static void inode_lru_list_del(struct inode
*inode
)
429 if (list_lru_del(&inode
->i_sb
->s_inode_lru
, &inode
->i_lru
))
430 this_cpu_dec(nr_unused
);
434 * inode_sb_list_add - add inode to the superblock list of inodes
435 * @inode: inode to add
437 void inode_sb_list_add(struct inode
*inode
)
439 spin_lock(&inode
->i_sb
->s_inode_list_lock
);
440 list_add(&inode
->i_sb_list
, &inode
->i_sb
->s_inodes
);
441 spin_unlock(&inode
->i_sb
->s_inode_list_lock
);
443 EXPORT_SYMBOL_GPL(inode_sb_list_add
);
445 static inline void inode_sb_list_del(struct inode
*inode
)
447 if (!list_empty(&inode
->i_sb_list
)) {
448 spin_lock(&inode
->i_sb
->s_inode_list_lock
);
449 list_del_init(&inode
->i_sb_list
);
450 spin_unlock(&inode
->i_sb
->s_inode_list_lock
);
454 static unsigned long hash(struct super_block
*sb
, unsigned long hashval
)
458 tmp
= (hashval
* (unsigned long)sb
) ^ (GOLDEN_RATIO_PRIME
+ hashval
) /
460 tmp
= tmp
^ ((tmp
^ GOLDEN_RATIO_PRIME
) >> i_hash_shift
);
461 return tmp
& i_hash_mask
;
465 * __insert_inode_hash - hash an inode
466 * @inode: unhashed inode
467 * @hashval: unsigned long value used to locate this object in the
470 * Add an inode to the inode hash for this superblock.
472 void __insert_inode_hash(struct inode
*inode
, unsigned long hashval
)
474 struct hlist_head
*b
= inode_hashtable
+ hash(inode
->i_sb
, hashval
);
476 spin_lock(&inode_hash_lock
);
477 spin_lock(&inode
->i_lock
);
478 hlist_add_head(&inode
->i_hash
, b
);
479 spin_unlock(&inode
->i_lock
);
480 spin_unlock(&inode_hash_lock
);
482 EXPORT_SYMBOL(__insert_inode_hash
);
485 * __remove_inode_hash - remove an inode from the hash
486 * @inode: inode to unhash
488 * Remove an inode from the superblock.
490 void __remove_inode_hash(struct inode
*inode
)
492 spin_lock(&inode_hash_lock
);
493 spin_lock(&inode
->i_lock
);
494 hlist_del_init(&inode
->i_hash
);
495 spin_unlock(&inode
->i_lock
);
496 spin_unlock(&inode_hash_lock
);
498 EXPORT_SYMBOL(__remove_inode_hash
);
500 void clear_inode(struct inode
*inode
)
504 * We have to cycle tree_lock here because reclaim can be still in the
505 * process of removing the last page (in __delete_from_page_cache())
506 * and we must not free mapping under it.
508 spin_lock_irq(&inode
->i_data
.tree_lock
);
509 BUG_ON(inode
->i_data
.nrpages
);
510 BUG_ON(inode
->i_data
.nrexceptional
);
511 spin_unlock_irq(&inode
->i_data
.tree_lock
);
512 BUG_ON(!list_empty(&inode
->i_data
.private_list
));
513 BUG_ON(!(inode
->i_state
& I_FREEING
));
514 BUG_ON(inode
->i_state
& I_CLEAR
);
515 BUG_ON(!list_empty(&inode
->i_wb_list
));
516 /* don't need i_lock here, no concurrent mods to i_state */
517 inode
->i_state
= I_FREEING
| I_CLEAR
;
519 EXPORT_SYMBOL(clear_inode
);
522 * Free the inode passed in, removing it from the lists it is still connected
523 * to. We remove any pages still attached to the inode and wait for any IO that
524 * is still in progress before finally destroying the inode.
526 * An inode must already be marked I_FREEING so that we avoid the inode being
527 * moved back onto lists if we race with other code that manipulates the lists
528 * (e.g. writeback_single_inode). The caller is responsible for setting this.
530 * An inode must already be removed from the LRU list before being evicted from
531 * the cache. This should occur atomically with setting the I_FREEING state
532 * flag, so no inodes here should ever be on the LRU when being evicted.
534 static void evict(struct inode
*inode
)
536 const struct super_operations
*op
= inode
->i_sb
->s_op
;
538 BUG_ON(!(inode
->i_state
& I_FREEING
));
539 BUG_ON(!list_empty(&inode
->i_lru
));
541 if (!list_empty(&inode
->i_io_list
))
542 inode_io_list_del(inode
);
544 inode_sb_list_del(inode
);
547 * Wait for flusher thread to be done with the inode so that filesystem
548 * does not start destroying it while writeback is still running. Since
549 * the inode has I_FREEING set, flusher thread won't start new work on
550 * the inode. We just have to wait for running writeback to finish.
552 inode_wait_for_writeback(inode
);
554 if (op
->evict_inode
) {
555 op
->evict_inode(inode
);
557 truncate_inode_pages_final(&inode
->i_data
);
560 if (S_ISBLK(inode
->i_mode
) && inode
->i_bdev
)
562 if (S_ISCHR(inode
->i_mode
) && inode
->i_cdev
)
565 remove_inode_hash(inode
);
567 spin_lock(&inode
->i_lock
);
568 wake_up_bit(&inode
->i_state
, __I_NEW
);
569 BUG_ON(inode
->i_state
!= (I_FREEING
| I_CLEAR
));
570 spin_unlock(&inode
->i_lock
);
572 destroy_inode(inode
);
576 * dispose_list - dispose of the contents of a local list
577 * @head: the head of the list to free
579 * Dispose-list gets a local list with local inodes in it, so it doesn't
580 * need to worry about list corruption and SMP locks.
582 static void dispose_list(struct list_head
*head
)
584 while (!list_empty(head
)) {
587 inode
= list_first_entry(head
, struct inode
, i_lru
);
588 list_del_init(&inode
->i_lru
);
596 * evict_inodes - evict all evictable inodes for a superblock
597 * @sb: superblock to operate on
599 * Make sure that no inodes with zero refcount are retained. This is
600 * called by superblock shutdown after having MS_ACTIVE flag removed,
601 * so any inode reaching zero refcount during or after that call will
602 * be immediately evicted.
604 void evict_inodes(struct super_block
*sb
)
606 struct inode
*inode
, *next
;
610 spin_lock(&sb
->s_inode_list_lock
);
611 list_for_each_entry_safe(inode
, next
, &sb
->s_inodes
, i_sb_list
) {
612 if (atomic_read(&inode
->i_count
))
615 spin_lock(&inode
->i_lock
);
616 if (inode
->i_state
& (I_NEW
| I_FREEING
| I_WILL_FREE
)) {
617 spin_unlock(&inode
->i_lock
);
621 inode
->i_state
|= I_FREEING
;
622 inode_lru_list_del(inode
);
623 spin_unlock(&inode
->i_lock
);
624 list_add(&inode
->i_lru
, &dispose
);
627 * We can have a ton of inodes to evict at unmount time given
628 * enough memory, check to see if we need to go to sleep for a
629 * bit so we don't livelock.
631 if (need_resched()) {
632 spin_unlock(&sb
->s_inode_list_lock
);
634 dispose_list(&dispose
);
638 spin_unlock(&sb
->s_inode_list_lock
);
640 dispose_list(&dispose
);
642 EXPORT_SYMBOL_GPL(evict_inodes
);
645 * invalidate_inodes - attempt to free all inodes on a superblock
646 * @sb: superblock to operate on
647 * @kill_dirty: flag to guide handling of dirty inodes
649 * Attempts to free all inodes for a given superblock. If there were any
650 * busy inodes return a non-zero value, else zero.
651 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
654 int invalidate_inodes(struct super_block
*sb
, bool kill_dirty
)
657 struct inode
*inode
, *next
;
661 spin_lock(&sb
->s_inode_list_lock
);
662 list_for_each_entry_safe(inode
, next
, &sb
->s_inodes
, i_sb_list
) {
663 spin_lock(&inode
->i_lock
);
664 if (inode
->i_state
& (I_NEW
| I_FREEING
| I_WILL_FREE
)) {
665 spin_unlock(&inode
->i_lock
);
668 if (inode
->i_state
& I_DIRTY_ALL
&& !kill_dirty
) {
669 spin_unlock(&inode
->i_lock
);
673 if (atomic_read(&inode
->i_count
)) {
674 spin_unlock(&inode
->i_lock
);
679 inode
->i_state
|= I_FREEING
;
680 inode_lru_list_del(inode
);
681 spin_unlock(&inode
->i_lock
);
682 list_add(&inode
->i_lru
, &dispose
);
683 if (need_resched()) {
684 spin_unlock(&sb
->s_inode_list_lock
);
686 dispose_list(&dispose
);
690 spin_unlock(&sb
->s_inode_list_lock
);
692 dispose_list(&dispose
);
698 * Isolate the inode from the LRU in preparation for freeing it.
700 * Any inodes which are pinned purely because of attached pagecache have their
701 * pagecache removed. If the inode has metadata buffers attached to
702 * mapping->private_list then try to remove them.
704 * If the inode has the I_REFERENCED flag set, then it means that it has been
705 * used recently - the flag is set in iput_final(). When we encounter such an
706 * inode, clear the flag and move it to the back of the LRU so it gets another
707 * pass through the LRU before it gets reclaimed. This is necessary because of
708 * the fact we are doing lazy LRU updates to minimise lock contention so the
709 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
710 * with this flag set because they are the inodes that are out of order.
712 static enum lru_status
inode_lru_isolate(struct list_head
*item
,
713 struct list_lru_one
*lru
, spinlock_t
*lru_lock
, void *arg
)
715 struct list_head
*freeable
= arg
;
716 struct inode
*inode
= container_of(item
, struct inode
, i_lru
);
719 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
720 * If we fail to get the lock, just skip it.
722 if (!spin_trylock(&inode
->i_lock
))
726 * Referenced or dirty inodes are still in use. Give them another pass
727 * through the LRU as we canot reclaim them now.
729 if (atomic_read(&inode
->i_count
) ||
730 (inode
->i_state
& ~I_REFERENCED
)) {
731 list_lru_isolate(lru
, &inode
->i_lru
);
732 spin_unlock(&inode
->i_lock
);
733 this_cpu_dec(nr_unused
);
737 /* recently referenced inodes get one more pass */
738 if (inode
->i_state
& I_REFERENCED
) {
739 inode
->i_state
&= ~I_REFERENCED
;
740 spin_unlock(&inode
->i_lock
);
744 if (inode_has_buffers(inode
) || inode
->i_data
.nrpages
) {
746 spin_unlock(&inode
->i_lock
);
747 spin_unlock(lru_lock
);
748 if (remove_inode_buffers(inode
)) {
750 reap
= invalidate_mapping_pages(&inode
->i_data
, 0, -1);
751 if (current_is_kswapd())
752 __count_vm_events(KSWAPD_INODESTEAL
, reap
);
754 __count_vm_events(PGINODESTEAL
, reap
);
755 if (current
->reclaim_state
)
756 current
->reclaim_state
->reclaimed_slab
+= reap
;
763 WARN_ON(inode
->i_state
& I_NEW
);
764 inode
->i_state
|= I_FREEING
;
765 list_lru_isolate_move(lru
, &inode
->i_lru
, freeable
);
766 spin_unlock(&inode
->i_lock
);
768 this_cpu_dec(nr_unused
);
773 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
774 * This is called from the superblock shrinker function with a number of inodes
775 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
776 * then are freed outside inode_lock by dispose_list().
778 long prune_icache_sb(struct super_block
*sb
, struct shrink_control
*sc
)
783 freed
= list_lru_shrink_walk(&sb
->s_inode_lru
, sc
,
784 inode_lru_isolate
, &freeable
);
785 dispose_list(&freeable
);
789 static void __wait_on_freeing_inode(struct inode
*inode
);
791 * Called with the inode lock held.
793 static struct inode
*find_inode(struct super_block
*sb
,
794 struct hlist_head
*head
,
795 int (*test
)(struct inode
*, void *),
798 struct inode
*inode
= NULL
;
801 hlist_for_each_entry(inode
, head
, i_hash
) {
802 if (inode
->i_sb
!= sb
)
804 if (!test(inode
, data
))
806 spin_lock(&inode
->i_lock
);
807 if (inode
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
808 __wait_on_freeing_inode(inode
);
812 spin_unlock(&inode
->i_lock
);
819 * find_inode_fast is the fast path version of find_inode, see the comment at
820 * iget_locked for details.
822 static struct inode
*find_inode_fast(struct super_block
*sb
,
823 struct hlist_head
*head
, unsigned long ino
)
825 struct inode
*inode
= NULL
;
828 hlist_for_each_entry(inode
, head
, i_hash
) {
829 if (inode
->i_ino
!= ino
)
831 if (inode
->i_sb
!= sb
)
833 spin_lock(&inode
->i_lock
);
834 if (inode
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
835 __wait_on_freeing_inode(inode
);
839 spin_unlock(&inode
->i_lock
);
846 * Each cpu owns a range of LAST_INO_BATCH numbers.
847 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
848 * to renew the exhausted range.
850 * This does not significantly increase overflow rate because every CPU can
851 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
852 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
853 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
854 * overflow rate by 2x, which does not seem too significant.
856 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
857 * error if st_ino won't fit in target struct field. Use 32bit counter
858 * here to attempt to avoid that.
860 #define LAST_INO_BATCH 1024
861 static DEFINE_PER_CPU(unsigned int, last_ino
);
863 unsigned int get_next_ino(void)
865 unsigned int *p
= &get_cpu_var(last_ino
);
866 unsigned int res
= *p
;
869 if (unlikely((res
& (LAST_INO_BATCH
-1)) == 0)) {
870 static atomic_t shared_last_ino
;
871 int next
= atomic_add_return(LAST_INO_BATCH
, &shared_last_ino
);
873 res
= next
- LAST_INO_BATCH
;
878 /* get_next_ino should not provide a 0 inode number */
882 put_cpu_var(last_ino
);
885 EXPORT_SYMBOL(get_next_ino
);
888 * new_inode_pseudo - obtain an inode
891 * Allocates a new inode for given superblock.
892 * Inode wont be chained in superblock s_inodes list
894 * - fs can't be unmount
895 * - quotas, fsnotify, writeback can't work
897 struct inode
*new_inode_pseudo(struct super_block
*sb
)
899 struct inode
*inode
= alloc_inode(sb
);
902 spin_lock(&inode
->i_lock
);
904 spin_unlock(&inode
->i_lock
);
905 INIT_LIST_HEAD(&inode
->i_sb_list
);
911 * new_inode - obtain an inode
914 * Allocates a new inode for given superblock. The default gfp_mask
915 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
916 * If HIGHMEM pages are unsuitable or it is known that pages allocated
917 * for the page cache are not reclaimable or migratable,
918 * mapping_set_gfp_mask() must be called with suitable flags on the
919 * newly created inode's mapping
922 struct inode
*new_inode(struct super_block
*sb
)
926 spin_lock_prefetch(&sb
->s_inode_list_lock
);
928 inode
= new_inode_pseudo(sb
);
930 inode_sb_list_add(inode
);
933 EXPORT_SYMBOL(new_inode
);
935 #ifdef CONFIG_DEBUG_LOCK_ALLOC
936 void lockdep_annotate_inode_mutex_key(struct inode
*inode
)
938 if (S_ISDIR(inode
->i_mode
)) {
939 struct file_system_type
*type
= inode
->i_sb
->s_type
;
941 /* Set new key only if filesystem hasn't already changed it */
942 if (lockdep_match_class(&inode
->i_rwsem
, &type
->i_mutex_key
)) {
944 * ensure nobody is actually holding i_mutex
946 // mutex_destroy(&inode->i_mutex);
947 init_rwsem(&inode
->i_rwsem
);
948 lockdep_set_class(&inode
->i_rwsem
,
949 &type
->i_mutex_dir_key
);
953 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key
);
957 * unlock_new_inode - clear the I_NEW state and wake up any waiters
958 * @inode: new inode to unlock
960 * Called when the inode is fully initialised to clear the new state of the
961 * inode and wake up anyone waiting for the inode to finish initialisation.
963 void unlock_new_inode(struct inode
*inode
)
965 lockdep_annotate_inode_mutex_key(inode
);
966 spin_lock(&inode
->i_lock
);
967 WARN_ON(!(inode
->i_state
& I_NEW
));
968 inode
->i_state
&= ~I_NEW
;
970 wake_up_bit(&inode
->i_state
, __I_NEW
);
971 spin_unlock(&inode
->i_lock
);
973 EXPORT_SYMBOL(unlock_new_inode
);
976 * lock_two_nondirectories - take two i_mutexes on non-directory objects
978 * Lock any non-NULL argument that is not a directory.
979 * Zero, one or two objects may be locked by this function.
981 * @inode1: first inode to lock
982 * @inode2: second inode to lock
984 void lock_two_nondirectories(struct inode
*inode1
, struct inode
*inode2
)
987 swap(inode1
, inode2
);
989 if (inode1
&& !S_ISDIR(inode1
->i_mode
))
991 if (inode2
&& !S_ISDIR(inode2
->i_mode
) && inode2
!= inode1
)
992 inode_lock_nested(inode2
, I_MUTEX_NONDIR2
);
994 EXPORT_SYMBOL(lock_two_nondirectories
);
997 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
998 * @inode1: first inode to unlock
999 * @inode2: second inode to unlock
1001 void unlock_two_nondirectories(struct inode
*inode1
, struct inode
*inode2
)
1003 if (inode1
&& !S_ISDIR(inode1
->i_mode
))
1004 inode_unlock(inode1
);
1005 if (inode2
&& !S_ISDIR(inode2
->i_mode
) && inode2
!= inode1
)
1006 inode_unlock(inode2
);
1008 EXPORT_SYMBOL(unlock_two_nondirectories
);
1011 * iget5_locked - obtain an inode from a mounted file system
1012 * @sb: super block of file system
1013 * @hashval: hash value (usually inode number) to get
1014 * @test: callback used for comparisons between inodes
1015 * @set: callback used to initialize a new struct inode
1016 * @data: opaque data pointer to pass to @test and @set
1018 * Search for the inode specified by @hashval and @data in the inode cache,
1019 * and if present it is return it with an increased reference count. This is
1020 * a generalized version of iget_locked() for file systems where the inode
1021 * number is not sufficient for unique identification of an inode.
1023 * If the inode is not in cache, allocate a new inode and return it locked,
1024 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1025 * before unlocking it via unlock_new_inode().
1027 * Note both @test and @set are called with the inode_hash_lock held, so can't
1030 struct inode
*iget5_locked(struct super_block
*sb
, unsigned long hashval
,
1031 int (*test
)(struct inode
*, void *),
1032 int (*set
)(struct inode
*, void *), void *data
)
1034 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1035 struct inode
*inode
;
1037 spin_lock(&inode_hash_lock
);
1038 inode
= find_inode(sb
, head
, test
, data
);
1039 spin_unlock(&inode_hash_lock
);
1042 wait_on_inode(inode
);
1043 if (unlikely(inode_unhashed(inode
))) {
1050 inode
= alloc_inode(sb
);
1054 spin_lock(&inode_hash_lock
);
1055 /* We released the lock, so.. */
1056 old
= find_inode(sb
, head
, test
, data
);
1058 if (set(inode
, data
))
1061 spin_lock(&inode
->i_lock
);
1062 inode
->i_state
= I_NEW
;
1063 hlist_add_head(&inode
->i_hash
, head
);
1064 spin_unlock(&inode
->i_lock
);
1065 inode_sb_list_add(inode
);
1066 spin_unlock(&inode_hash_lock
);
1068 /* Return the locked inode with I_NEW set, the
1069 * caller is responsible for filling in the contents
1075 * Uhhuh, somebody else created the same inode under
1076 * us. Use the old inode instead of the one we just
1079 spin_unlock(&inode_hash_lock
);
1080 destroy_inode(inode
);
1082 wait_on_inode(inode
);
1083 if (unlikely(inode_unhashed(inode
))) {
1091 spin_unlock(&inode_hash_lock
);
1092 destroy_inode(inode
);
1095 EXPORT_SYMBOL(iget5_locked
);
1098 * iget_locked - obtain an inode from a mounted file system
1099 * @sb: super block of file system
1100 * @ino: inode number to get
1102 * Search for the inode specified by @ino in the inode cache and if present
1103 * return it with an increased reference count. This is for file systems
1104 * where the inode number is sufficient for unique identification of an inode.
1106 * If the inode is not in cache, allocate a new inode and return it locked,
1107 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1108 * before unlocking it via unlock_new_inode().
1110 struct inode
*iget_locked(struct super_block
*sb
, unsigned long ino
)
1112 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1113 struct inode
*inode
;
1115 spin_lock(&inode_hash_lock
);
1116 inode
= find_inode_fast(sb
, head
, ino
);
1117 spin_unlock(&inode_hash_lock
);
1119 wait_on_inode(inode
);
1120 if (unlikely(inode_unhashed(inode
))) {
1127 inode
= alloc_inode(sb
);
1131 spin_lock(&inode_hash_lock
);
1132 /* We released the lock, so.. */
1133 old
= find_inode_fast(sb
, head
, ino
);
1136 spin_lock(&inode
->i_lock
);
1137 inode
->i_state
= I_NEW
;
1138 hlist_add_head(&inode
->i_hash
, head
);
1139 spin_unlock(&inode
->i_lock
);
1140 inode_sb_list_add(inode
);
1141 spin_unlock(&inode_hash_lock
);
1143 /* Return the locked inode with I_NEW set, the
1144 * caller is responsible for filling in the contents
1150 * Uhhuh, somebody else created the same inode under
1151 * us. Use the old inode instead of the one we just
1154 spin_unlock(&inode_hash_lock
);
1155 destroy_inode(inode
);
1157 wait_on_inode(inode
);
1158 if (unlikely(inode_unhashed(inode
))) {
1165 EXPORT_SYMBOL(iget_locked
);
1168 * search the inode cache for a matching inode number.
1169 * If we find one, then the inode number we are trying to
1170 * allocate is not unique and so we should not use it.
1172 * Returns 1 if the inode number is unique, 0 if it is not.
1174 static int test_inode_iunique(struct super_block
*sb
, unsigned long ino
)
1176 struct hlist_head
*b
= inode_hashtable
+ hash(sb
, ino
);
1177 struct inode
*inode
;
1179 spin_lock(&inode_hash_lock
);
1180 hlist_for_each_entry(inode
, b
, i_hash
) {
1181 if (inode
->i_ino
== ino
&& inode
->i_sb
== sb
) {
1182 spin_unlock(&inode_hash_lock
);
1186 spin_unlock(&inode_hash_lock
);
1192 * iunique - get a unique inode number
1194 * @max_reserved: highest reserved inode number
1196 * Obtain an inode number that is unique on the system for a given
1197 * superblock. This is used by file systems that have no natural
1198 * permanent inode numbering system. An inode number is returned that
1199 * is higher than the reserved limit but unique.
1202 * With a large number of inodes live on the file system this function
1203 * currently becomes quite slow.
1205 ino_t
iunique(struct super_block
*sb
, ino_t max_reserved
)
1208 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1209 * error if st_ino won't fit in target struct field. Use 32bit counter
1210 * here to attempt to avoid that.
1212 static DEFINE_SPINLOCK(iunique_lock
);
1213 static unsigned int counter
;
1216 spin_lock(&iunique_lock
);
1218 if (counter
<= max_reserved
)
1219 counter
= max_reserved
+ 1;
1221 } while (!test_inode_iunique(sb
, res
));
1222 spin_unlock(&iunique_lock
);
1226 EXPORT_SYMBOL(iunique
);
1228 struct inode
*igrab(struct inode
*inode
)
1230 spin_lock(&inode
->i_lock
);
1231 if (!(inode
->i_state
& (I_FREEING
|I_WILL_FREE
))) {
1233 spin_unlock(&inode
->i_lock
);
1235 spin_unlock(&inode
->i_lock
);
1237 * Handle the case where s_op->clear_inode is not been
1238 * called yet, and somebody is calling igrab
1239 * while the inode is getting freed.
1245 EXPORT_SYMBOL(igrab
);
1248 * ilookup5_nowait - search for an inode in the inode cache
1249 * @sb: super block of file system to search
1250 * @hashval: hash value (usually inode number) to search for
1251 * @test: callback used for comparisons between inodes
1252 * @data: opaque data pointer to pass to @test
1254 * Search for the inode specified by @hashval and @data in the inode cache.
1255 * If the inode is in the cache, the inode is returned with an incremented
1258 * Note: I_NEW is not waited upon so you have to be very careful what you do
1259 * with the returned inode. You probably should be using ilookup5() instead.
1261 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1263 struct inode
*ilookup5_nowait(struct super_block
*sb
, unsigned long hashval
,
1264 int (*test
)(struct inode
*, void *), void *data
)
1266 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1267 struct inode
*inode
;
1269 spin_lock(&inode_hash_lock
);
1270 inode
= find_inode(sb
, head
, test
, data
);
1271 spin_unlock(&inode_hash_lock
);
1275 EXPORT_SYMBOL(ilookup5_nowait
);
1278 * ilookup5 - search for an inode in the inode cache
1279 * @sb: super block of file system to search
1280 * @hashval: hash value (usually inode number) to search for
1281 * @test: callback used for comparisons between inodes
1282 * @data: opaque data pointer to pass to @test
1284 * Search for the inode specified by @hashval and @data in the inode cache,
1285 * and if the inode is in the cache, return the inode with an incremented
1286 * reference count. Waits on I_NEW before returning the inode.
1287 * returned with an incremented reference count.
1289 * This is a generalized version of ilookup() for file systems where the
1290 * inode number is not sufficient for unique identification of an inode.
1292 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1294 struct inode
*ilookup5(struct super_block
*sb
, unsigned long hashval
,
1295 int (*test
)(struct inode
*, void *), void *data
)
1297 struct inode
*inode
;
1299 inode
= ilookup5_nowait(sb
, hashval
, test
, data
);
1301 wait_on_inode(inode
);
1302 if (unlikely(inode_unhashed(inode
))) {
1309 EXPORT_SYMBOL(ilookup5
);
1312 * ilookup - search for an inode in the inode cache
1313 * @sb: super block of file system to search
1314 * @ino: inode number to search for
1316 * Search for the inode @ino in the inode cache, and if the inode is in the
1317 * cache, the inode is returned with an incremented reference count.
1319 struct inode
*ilookup(struct super_block
*sb
, unsigned long ino
)
1321 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1322 struct inode
*inode
;
1324 spin_lock(&inode_hash_lock
);
1325 inode
= find_inode_fast(sb
, head
, ino
);
1326 spin_unlock(&inode_hash_lock
);
1329 wait_on_inode(inode
);
1330 if (unlikely(inode_unhashed(inode
))) {
1337 EXPORT_SYMBOL(ilookup
);
1340 * find_inode_nowait - find an inode in the inode cache
1341 * @sb: super block of file system to search
1342 * @hashval: hash value (usually inode number) to search for
1343 * @match: callback used for comparisons between inodes
1344 * @data: opaque data pointer to pass to @match
1346 * Search for the inode specified by @hashval and @data in the inode
1347 * cache, where the helper function @match will return 0 if the inode
1348 * does not match, 1 if the inode does match, and -1 if the search
1349 * should be stopped. The @match function must be responsible for
1350 * taking the i_lock spin_lock and checking i_state for an inode being
1351 * freed or being initialized, and incrementing the reference count
1352 * before returning 1. It also must not sleep, since it is called with
1353 * the inode_hash_lock spinlock held.
1355 * This is a even more generalized version of ilookup5() when the
1356 * function must never block --- find_inode() can block in
1357 * __wait_on_freeing_inode() --- or when the caller can not increment
1358 * the reference count because the resulting iput() might cause an
1359 * inode eviction. The tradeoff is that the @match funtion must be
1360 * very carefully implemented.
1362 struct inode
*find_inode_nowait(struct super_block
*sb
,
1363 unsigned long hashval
,
1364 int (*match
)(struct inode
*, unsigned long,
1368 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1369 struct inode
*inode
, *ret_inode
= NULL
;
1372 spin_lock(&inode_hash_lock
);
1373 hlist_for_each_entry(inode
, head
, i_hash
) {
1374 if (inode
->i_sb
!= sb
)
1376 mval
= match(inode
, hashval
, data
);
1384 spin_unlock(&inode_hash_lock
);
1387 EXPORT_SYMBOL(find_inode_nowait
);
1389 int insert_inode_locked(struct inode
*inode
)
1391 struct super_block
*sb
= inode
->i_sb
;
1392 ino_t ino
= inode
->i_ino
;
1393 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1396 struct inode
*old
= NULL
;
1397 spin_lock(&inode_hash_lock
);
1398 hlist_for_each_entry(old
, head
, i_hash
) {
1399 if (old
->i_ino
!= ino
)
1401 if (old
->i_sb
!= sb
)
1403 spin_lock(&old
->i_lock
);
1404 if (old
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
1405 spin_unlock(&old
->i_lock
);
1411 spin_lock(&inode
->i_lock
);
1412 inode
->i_state
|= I_NEW
;
1413 hlist_add_head(&inode
->i_hash
, head
);
1414 spin_unlock(&inode
->i_lock
);
1415 spin_unlock(&inode_hash_lock
);
1419 spin_unlock(&old
->i_lock
);
1420 spin_unlock(&inode_hash_lock
);
1422 if (unlikely(!inode_unhashed(old
))) {
1429 EXPORT_SYMBOL(insert_inode_locked
);
1431 int insert_inode_locked4(struct inode
*inode
, unsigned long hashval
,
1432 int (*test
)(struct inode
*, void *), void *data
)
1434 struct super_block
*sb
= inode
->i_sb
;
1435 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1438 struct inode
*old
= NULL
;
1440 spin_lock(&inode_hash_lock
);
1441 hlist_for_each_entry(old
, head
, i_hash
) {
1442 if (old
->i_sb
!= sb
)
1444 if (!test(old
, data
))
1446 spin_lock(&old
->i_lock
);
1447 if (old
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
1448 spin_unlock(&old
->i_lock
);
1454 spin_lock(&inode
->i_lock
);
1455 inode
->i_state
|= I_NEW
;
1456 hlist_add_head(&inode
->i_hash
, head
);
1457 spin_unlock(&inode
->i_lock
);
1458 spin_unlock(&inode_hash_lock
);
1462 spin_unlock(&old
->i_lock
);
1463 spin_unlock(&inode_hash_lock
);
1465 if (unlikely(!inode_unhashed(old
))) {
1472 EXPORT_SYMBOL(insert_inode_locked4
);
1475 int generic_delete_inode(struct inode
*inode
)
1479 EXPORT_SYMBOL(generic_delete_inode
);
1482 * Called when we're dropping the last reference
1485 * Call the FS "drop_inode()" function, defaulting to
1486 * the legacy UNIX filesystem behaviour. If it tells
1487 * us to evict inode, do so. Otherwise, retain inode
1488 * in cache if fs is alive, sync and evict if fs is
1491 static void iput_final(struct inode
*inode
)
1493 struct super_block
*sb
= inode
->i_sb
;
1494 const struct super_operations
*op
= inode
->i_sb
->s_op
;
1497 WARN_ON(inode
->i_state
& I_NEW
);
1500 drop
= op
->drop_inode(inode
);
1502 drop
= generic_drop_inode(inode
);
1504 if (!drop
&& (sb
->s_flags
& MS_ACTIVE
)) {
1505 inode_add_lru(inode
);
1506 spin_unlock(&inode
->i_lock
);
1511 inode
->i_state
|= I_WILL_FREE
;
1512 spin_unlock(&inode
->i_lock
);
1513 write_inode_now(inode
, 1);
1514 spin_lock(&inode
->i_lock
);
1515 WARN_ON(inode
->i_state
& I_NEW
);
1516 inode
->i_state
&= ~I_WILL_FREE
;
1519 inode
->i_state
|= I_FREEING
;
1520 if (!list_empty(&inode
->i_lru
))
1521 inode_lru_list_del(inode
);
1522 spin_unlock(&inode
->i_lock
);
1528 * iput - put an inode
1529 * @inode: inode to put
1531 * Puts an inode, dropping its usage count. If the inode use count hits
1532 * zero, the inode is then freed and may also be destroyed.
1534 * Consequently, iput() can sleep.
1536 void iput(struct inode
*inode
)
1540 BUG_ON(inode
->i_state
& I_CLEAR
);
1542 if (atomic_dec_and_lock(&inode
->i_count
, &inode
->i_lock
)) {
1543 if (inode
->i_nlink
&& (inode
->i_state
& I_DIRTY_TIME
)) {
1544 atomic_inc(&inode
->i_count
);
1545 inode
->i_state
&= ~I_DIRTY_TIME
;
1546 spin_unlock(&inode
->i_lock
);
1547 trace_writeback_lazytime_iput(inode
);
1548 mark_inode_dirty_sync(inode
);
1554 EXPORT_SYMBOL(iput
);
1557 * bmap - find a block number in a file
1558 * @inode: inode of file
1559 * @block: block to find
1561 * Returns the block number on the device holding the inode that
1562 * is the disk block number for the block of the file requested.
1563 * That is, asked for block 4 of inode 1 the function will return the
1564 * disk block relative to the disk start that holds that block of the
1567 sector_t
bmap(struct inode
*inode
, sector_t block
)
1570 if (inode
->i_mapping
->a_ops
->bmap
)
1571 res
= inode
->i_mapping
->a_ops
->bmap(inode
->i_mapping
, block
);
1574 EXPORT_SYMBOL(bmap
);
1577 * Update times in overlayed inode from underlying real inode
1579 static void update_ovl_inode_times(struct dentry
*dentry
, struct inode
*inode
,
1582 struct dentry
*upperdentry
;
1585 * Nothing to do if in rcu or if non-overlayfs
1587 if (rcu
|| likely(!(dentry
->d_flags
& DCACHE_OP_REAL
)))
1590 upperdentry
= d_real(dentry
, NULL
, 0, D_REAL_UPPER
);
1593 * If file is on lower then we can't update atime, so no worries about
1594 * stale mtime/ctime.
1597 struct inode
*realinode
= d_inode(upperdentry
);
1599 if ((!timespec_equal(&inode
->i_mtime
, &realinode
->i_mtime
) ||
1600 !timespec_equal(&inode
->i_ctime
, &realinode
->i_ctime
))) {
1601 inode
->i_mtime
= realinode
->i_mtime
;
1602 inode
->i_ctime
= realinode
->i_ctime
;
1608 * With relative atime, only update atime if the previous atime is
1609 * earlier than either the ctime or mtime or if at least a day has
1610 * passed since the last atime update.
1612 static int relatime_need_update(const struct path
*path
, struct inode
*inode
,
1613 struct timespec now
, bool rcu
)
1616 if (!(path
->mnt
->mnt_flags
& MNT_RELATIME
))
1619 update_ovl_inode_times(path
->dentry
, inode
, rcu
);
1621 * Is mtime younger than atime? If yes, update atime:
1623 if (timespec_compare(&inode
->i_mtime
, &inode
->i_atime
) >= 0)
1626 * Is ctime younger than atime? If yes, update atime:
1628 if (timespec_compare(&inode
->i_ctime
, &inode
->i_atime
) >= 0)
1632 * Is the previous atime value older than a day? If yes,
1635 if ((long)(now
.tv_sec
- inode
->i_atime
.tv_sec
) >= 24*60*60)
1638 * Good, we can skip the atime update:
1643 int generic_update_time(struct inode
*inode
, struct timespec
*time
, int flags
)
1645 int iflags
= I_DIRTY_TIME
;
1647 if (flags
& S_ATIME
)
1648 inode
->i_atime
= *time
;
1649 if (flags
& S_VERSION
)
1650 inode_inc_iversion(inode
);
1651 if (flags
& S_CTIME
)
1652 inode
->i_ctime
= *time
;
1653 if (flags
& S_MTIME
)
1654 inode
->i_mtime
= *time
;
1656 if (!(inode
->i_sb
->s_flags
& MS_LAZYTIME
) || (flags
& S_VERSION
))
1657 iflags
|= I_DIRTY_SYNC
;
1658 __mark_inode_dirty(inode
, iflags
);
1661 EXPORT_SYMBOL(generic_update_time
);
1664 * This does the actual work of updating an inodes time or version. Must have
1665 * had called mnt_want_write() before calling this.
1667 static int update_time(struct inode
*inode
, struct timespec
*time
, int flags
)
1669 int (*update_time
)(struct inode
*, struct timespec
*, int);
1671 update_time
= inode
->i_op
->update_time
? inode
->i_op
->update_time
:
1672 generic_update_time
;
1674 return update_time(inode
, time
, flags
);
1678 * touch_atime - update the access time
1679 * @path: the &struct path to update
1680 * @inode: inode to update
1682 * Update the accessed time on an inode and mark it for writeback.
1683 * This function automatically handles read only file systems and media,
1684 * as well as the "noatime" flag and inode specific "noatime" markers.
1686 bool __atime_needs_update(const struct path
*path
, struct inode
*inode
,
1689 struct vfsmount
*mnt
= path
->mnt
;
1690 struct timespec now
;
1692 if (inode
->i_flags
& S_NOATIME
)
1695 /* Atime updates will likely cause i_uid and i_gid to be written
1696 * back improprely if their true value is unknown to the vfs.
1698 if (HAS_UNMAPPED_ID(inode
))
1701 if (IS_NOATIME(inode
))
1703 if ((inode
->i_sb
->s_flags
& MS_NODIRATIME
) && S_ISDIR(inode
->i_mode
))
1706 if (mnt
->mnt_flags
& MNT_NOATIME
)
1708 if ((mnt
->mnt_flags
& MNT_NODIRATIME
) && S_ISDIR(inode
->i_mode
))
1711 now
= current_time(inode
);
1713 if (!relatime_need_update(path
, inode
, now
, rcu
))
1716 if (timespec_equal(&inode
->i_atime
, &now
))
1722 void touch_atime(const struct path
*path
)
1724 struct vfsmount
*mnt
= path
->mnt
;
1725 struct inode
*inode
= d_inode(path
->dentry
);
1726 struct timespec now
;
1728 if (!__atime_needs_update(path
, inode
, false))
1731 if (!sb_start_write_trylock(inode
->i_sb
))
1734 if (__mnt_want_write(mnt
) != 0)
1737 * File systems can error out when updating inodes if they need to
1738 * allocate new space to modify an inode (such is the case for
1739 * Btrfs), but since we touch atime while walking down the path we
1740 * really don't care if we failed to update the atime of the file,
1741 * so just ignore the return value.
1742 * We may also fail on filesystems that have the ability to make parts
1743 * of the fs read only, e.g. subvolumes in Btrfs.
1745 now
= current_time(inode
);
1746 update_time(inode
, &now
, S_ATIME
);
1747 __mnt_drop_write(mnt
);
1749 sb_end_write(inode
->i_sb
);
1751 EXPORT_SYMBOL(touch_atime
);
1754 * The logic we want is
1756 * if suid or (sgid and xgrp)
1759 int should_remove_suid(struct dentry
*dentry
)
1761 umode_t mode
= d_inode(dentry
)->i_mode
;
1764 /* suid always must be killed */
1765 if (unlikely(mode
& S_ISUID
))
1766 kill
= ATTR_KILL_SUID
;
1769 * sgid without any exec bits is just a mandatory locking mark; leave
1770 * it alone. If some exec bits are set, it's a real sgid; kill it.
1772 if (unlikely((mode
& S_ISGID
) && (mode
& S_IXGRP
)))
1773 kill
|= ATTR_KILL_SGID
;
1775 if (unlikely(kill
&& !capable(CAP_FSETID
) && S_ISREG(mode
)))
1780 EXPORT_SYMBOL(should_remove_suid
);
1783 * Return mask of changes for notify_change() that need to be done as a
1784 * response to write or truncate. Return 0 if nothing has to be changed.
1785 * Negative value on error (change should be denied).
1787 int dentry_needs_remove_privs(struct dentry
*dentry
)
1789 struct inode
*inode
= d_inode(dentry
);
1793 if (IS_NOSEC(inode
))
1796 mask
= should_remove_suid(dentry
);
1797 ret
= security_inode_need_killpriv(dentry
);
1801 mask
|= ATTR_KILL_PRIV
;
1805 static int __remove_privs(struct dentry
*dentry
, int kill
)
1807 struct iattr newattrs
;
1809 newattrs
.ia_valid
= ATTR_FORCE
| kill
;
1811 * Note we call this on write, so notify_change will not
1812 * encounter any conflicting delegations:
1814 return notify_change(dentry
, &newattrs
, NULL
);
1818 * Remove special file priviledges (suid, capabilities) when file is written
1821 int file_remove_privs(struct file
*file
)
1823 struct dentry
*dentry
= file_dentry(file
);
1824 struct inode
*inode
= file_inode(file
);
1829 * Fast path for nothing security related.
1830 * As well for non-regular files, e.g. blkdev inodes.
1831 * For example, blkdev_write_iter() might get here
1832 * trying to remove privs which it is not allowed to.
1834 if (IS_NOSEC(inode
) || !S_ISREG(inode
->i_mode
))
1837 kill
= dentry_needs_remove_privs(dentry
);
1841 error
= __remove_privs(dentry
, kill
);
1843 inode_has_no_xattr(inode
);
1847 EXPORT_SYMBOL(file_remove_privs
);
1850 * file_update_time - update mtime and ctime time
1851 * @file: file accessed
1853 * Update the mtime and ctime members of an inode and mark the inode
1854 * for writeback. Note that this function is meant exclusively for
1855 * usage in the file write path of filesystems, and filesystems may
1856 * choose to explicitly ignore update via this function with the
1857 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1858 * timestamps are handled by the server. This can return an error for
1859 * file systems who need to allocate space in order to update an inode.
1862 int file_update_time(struct file
*file
)
1864 struct inode
*inode
= file_inode(file
);
1865 struct timespec now
;
1869 /* First try to exhaust all avenues to not sync */
1870 if (IS_NOCMTIME(inode
))
1873 now
= current_time(inode
);
1874 if (!timespec_equal(&inode
->i_mtime
, &now
))
1877 if (!timespec_equal(&inode
->i_ctime
, &now
))
1880 if (IS_I_VERSION(inode
))
1881 sync_it
|= S_VERSION
;
1886 /* Finally allowed to write? Takes lock. */
1887 if (__mnt_want_write_file(file
))
1890 ret
= update_time(inode
, &now
, sync_it
);
1891 __mnt_drop_write_file(file
);
1895 EXPORT_SYMBOL(file_update_time
);
1897 int inode_needs_sync(struct inode
*inode
)
1901 if (S_ISDIR(inode
->i_mode
) && IS_DIRSYNC(inode
))
1905 EXPORT_SYMBOL(inode_needs_sync
);
1908 * If we try to find an inode in the inode hash while it is being
1909 * deleted, we have to wait until the filesystem completes its
1910 * deletion before reporting that it isn't found. This function waits
1911 * until the deletion _might_ have completed. Callers are responsible
1912 * to recheck inode state.
1914 * It doesn't matter if I_NEW is not set initially, a call to
1915 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1918 static void __wait_on_freeing_inode(struct inode
*inode
)
1920 wait_queue_head_t
*wq
;
1921 DEFINE_WAIT_BIT(wait
, &inode
->i_state
, __I_NEW
);
1922 wq
= bit_waitqueue(&inode
->i_state
, __I_NEW
);
1923 prepare_to_wait(wq
, &wait
.wq_entry
, TASK_UNINTERRUPTIBLE
);
1924 spin_unlock(&inode
->i_lock
);
1925 spin_unlock(&inode_hash_lock
);
1927 finish_wait(wq
, &wait
.wq_entry
);
1928 spin_lock(&inode_hash_lock
);
1931 static __initdata
unsigned long ihash_entries
;
1932 static int __init
set_ihash_entries(char *str
)
1936 ihash_entries
= simple_strtoul(str
, &str
, 0);
1939 __setup("ihash_entries=", set_ihash_entries
);
1942 * Initialize the waitqueues and inode hash table.
1944 void __init
inode_init_early(void)
1946 /* If hashes are distributed across NUMA nodes, defer
1947 * hash allocation until vmalloc space is available.
1953 alloc_large_system_hash("Inode-cache",
1954 sizeof(struct hlist_head
),
1957 HASH_EARLY
| HASH_ZERO
,
1964 void __init
inode_init(void)
1966 /* inode slab cache */
1967 inode_cachep
= kmem_cache_create("inode_cache",
1968 sizeof(struct inode
),
1970 (SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|
1971 SLAB_MEM_SPREAD
|SLAB_ACCOUNT
),
1974 /* Hash may have been set up in inode_init_early */
1979 alloc_large_system_hash("Inode-cache",
1980 sizeof(struct hlist_head
),
1990 void init_special_inode(struct inode
*inode
, umode_t mode
, dev_t rdev
)
1992 inode
->i_mode
= mode
;
1993 if (S_ISCHR(mode
)) {
1994 inode
->i_fop
= &def_chr_fops
;
1995 inode
->i_rdev
= rdev
;
1996 } else if (S_ISBLK(mode
)) {
1997 inode
->i_fop
= &def_blk_fops
;
1998 inode
->i_rdev
= rdev
;
1999 } else if (S_ISFIFO(mode
))
2000 inode
->i_fop
= &pipefifo_fops
;
2001 else if (S_ISSOCK(mode
))
2002 ; /* leave it no_open_fops */
2004 printk(KERN_DEBUG
"init_special_inode: bogus i_mode (%o) for"
2005 " inode %s:%lu\n", mode
, inode
->i_sb
->s_id
,
2008 EXPORT_SYMBOL(init_special_inode
);
2011 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2013 * @dir: Directory inode
2014 * @mode: mode of the new inode
2016 void inode_init_owner(struct inode
*inode
, const struct inode
*dir
,
2019 inode
->i_uid
= current_fsuid();
2020 if (dir
&& dir
->i_mode
& S_ISGID
) {
2021 inode
->i_gid
= dir
->i_gid
;
2023 /* Directories are special, and always inherit S_ISGID */
2026 else if ((mode
& (S_ISGID
| S_IXGRP
)) == (S_ISGID
| S_IXGRP
) &&
2027 !in_group_p(inode
->i_gid
) &&
2028 !capable_wrt_inode_uidgid(dir
, CAP_FSETID
))
2031 inode
->i_gid
= current_fsgid();
2032 inode
->i_mode
= mode
;
2034 EXPORT_SYMBOL(inode_init_owner
);
2037 * inode_owner_or_capable - check current task permissions to inode
2038 * @inode: inode being checked
2040 * Return true if current either has CAP_FOWNER in a namespace with the
2041 * inode owner uid mapped, or owns the file.
2043 bool inode_owner_or_capable(const struct inode
*inode
)
2045 struct user_namespace
*ns
;
2047 if (uid_eq(current_fsuid(), inode
->i_uid
))
2050 ns
= current_user_ns();
2051 if (kuid_has_mapping(ns
, inode
->i_uid
) && ns_capable(ns
, CAP_FOWNER
))
2055 EXPORT_SYMBOL(inode_owner_or_capable
);
2058 * Direct i/o helper functions
2060 static void __inode_dio_wait(struct inode
*inode
)
2062 wait_queue_head_t
*wq
= bit_waitqueue(&inode
->i_state
, __I_DIO_WAKEUP
);
2063 DEFINE_WAIT_BIT(q
, &inode
->i_state
, __I_DIO_WAKEUP
);
2066 prepare_to_wait(wq
, &q
.wq_entry
, TASK_UNINTERRUPTIBLE
);
2067 if (atomic_read(&inode
->i_dio_count
))
2069 } while (atomic_read(&inode
->i_dio_count
));
2070 finish_wait(wq
, &q
.wq_entry
);
2074 * inode_dio_wait - wait for outstanding DIO requests to finish
2075 * @inode: inode to wait for
2077 * Waits for all pending direct I/O requests to finish so that we can
2078 * proceed with a truncate or equivalent operation.
2080 * Must be called under a lock that serializes taking new references
2081 * to i_dio_count, usually by inode->i_mutex.
2083 void inode_dio_wait(struct inode
*inode
)
2085 if (atomic_read(&inode
->i_dio_count
))
2086 __inode_dio_wait(inode
);
2088 EXPORT_SYMBOL(inode_dio_wait
);
2091 * inode_set_flags - atomically set some inode flags
2093 * Note: the caller should be holding i_mutex, or else be sure that
2094 * they have exclusive access to the inode structure (i.e., while the
2095 * inode is being instantiated). The reason for the cmpxchg() loop
2096 * --- which wouldn't be necessary if all code paths which modify
2097 * i_flags actually followed this rule, is that there is at least one
2098 * code path which doesn't today so we use cmpxchg() out of an abundance
2101 * In the long run, i_mutex is overkill, and we should probably look
2102 * at using the i_lock spinlock to protect i_flags, and then make sure
2103 * it is so documented in include/linux/fs.h and that all code follows
2104 * the locking convention!!
2106 void inode_set_flags(struct inode
*inode
, unsigned int flags
,
2109 unsigned int old_flags
, new_flags
;
2111 WARN_ON_ONCE(flags
& ~mask
);
2113 old_flags
= ACCESS_ONCE(inode
->i_flags
);
2114 new_flags
= (old_flags
& ~mask
) | flags
;
2115 } while (unlikely(cmpxchg(&inode
->i_flags
, old_flags
,
2116 new_flags
) != old_flags
));
2118 EXPORT_SYMBOL(inode_set_flags
);
2120 void inode_nohighmem(struct inode
*inode
)
2122 mapping_set_gfp_mask(inode
->i_mapping
, GFP_USER
);
2124 EXPORT_SYMBOL(inode_nohighmem
);
2127 * current_time - Return FS time
2130 * Return the current time truncated to the time granularity supported by
2133 * Note that inode and inode->sb cannot be NULL.
2134 * Otherwise, the function warns and returns time without truncation.
2136 struct timespec
current_time(struct inode
*inode
)
2138 struct timespec now
= current_kernel_time();
2140 if (unlikely(!inode
->i_sb
)) {
2141 WARN(1, "current_time() called with uninitialized super_block in the inode");
2145 return timespec_trunc(now
, inode
->i_sb
->s_time_gran
);
2147 EXPORT_SYMBOL(current_time
);