2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
24 * This file implements UBIFS journal.
26 * The journal consists of 2 parts - the log and bud LEBs. The log has fixed
27 * length and position, while a bud logical eraseblock is any LEB in the main
28 * area. Buds contain file system data - data nodes, inode nodes, etc. The log
29 * contains only references to buds and some other stuff like commit
30 * start node. The idea is that when we commit the journal, we do
31 * not copy the data, the buds just become indexed. Since after the commit the
32 * nodes in bud eraseblocks become leaf nodes of the file system index tree, we
33 * use term "bud". Analogy is obvious, bud eraseblocks contain nodes which will
34 * become leafs in the future.
36 * The journal is multi-headed because we want to write data to the journal as
37 * optimally as possible. It is nice to have nodes belonging to the same inode
38 * in one LEB, so we may write data owned by different inodes to different
39 * journal heads, although at present only one data head is used.
41 * For recovery reasons, the base head contains all inode nodes, all directory
42 * entry nodes and all truncate nodes. This means that the other heads contain
45 * Bud LEBs may be half-indexed. For example, if the bud was not full at the
46 * time of commit, the bud is retained to continue to be used in the journal,
47 * even though the "front" of the LEB is now indexed. In that case, the log
48 * reference contains the offset where the bud starts for the purposes of the
51 * The journal size has to be limited, because the larger is the journal, the
52 * longer it takes to mount UBIFS (scanning the journal) and the more memory it
53 * takes (indexing in the TNC).
55 * All the journal write operations like 'ubifs_jnl_update()' here, which write
56 * multiple UBIFS nodes to the journal at one go, are atomic with respect to
57 * unclean reboots. Should the unclean reboot happen, the recovery code drops
64 * zero_ino_node_unused - zero out unused fields of an on-flash inode node.
65 * @ino: the inode to zero out
67 static inline void zero_ino_node_unused(struct ubifs_ino_node
*ino
)
69 memset(ino
->padding1
, 0, 4);
70 memset(ino
->padding2
, 0, 26);
74 * zero_dent_node_unused - zero out unused fields of an on-flash directory
76 * @dent: the directory entry to zero out
78 static inline void zero_dent_node_unused(struct ubifs_dent_node
*dent
)
84 * zero_trun_node_unused - zero out unused fields of an on-flash truncation
86 * @trun: the truncation node to zero out
88 static inline void zero_trun_node_unused(struct ubifs_trun_node
*trun
)
90 memset(trun
->padding
, 0, 12);
94 * reserve_space - reserve space in the journal.
95 * @c: UBIFS file-system description object
96 * @jhead: journal head number
99 * This function reserves space in journal head @head. If the reservation
100 * succeeded, the journal head stays locked and later has to be unlocked using
101 * 'release_head()'. 'write_node()' and 'write_head()' functions also unlock
102 * it. Returns zero in case of success, %-EAGAIN if commit has to be done, and
103 * other negative error codes in case of other failures.
105 static int reserve_space(struct ubifs_info
*c
, int jhead
, int len
)
107 int err
= 0, err1
, retries
= 0, avail
, lnum
, offs
, squeeze
;
108 struct ubifs_wbuf
*wbuf
= &c
->jheads
[jhead
].wbuf
;
111 * Typically, the base head has smaller nodes written to it, so it is
112 * better to try to allocate space at the ends of eraseblocks. This is
113 * what the squeeze parameter does.
115 ubifs_assert(!c
->ro_media
&& !c
->ro_mount
);
116 squeeze
= (jhead
== BASEHD
);
118 mutex_lock_nested(&wbuf
->io_mutex
, wbuf
->jhead
);
125 avail
= c
->leb_size
- wbuf
->offs
- wbuf
->used
;
126 if (wbuf
->lnum
!= -1 && avail
>= len
)
130 * Write buffer wasn't seek'ed or there is no enough space - look for an
131 * LEB with some empty space.
133 lnum
= ubifs_find_free_space(c
, len
, &offs
, squeeze
);
142 * No free space, we have to run garbage collector to make
143 * some. But the write-buffer mutex has to be unlocked because
146 dbg_jnl("no free space in jhead %s, run GC", dbg_jhead(jhead
));
147 mutex_unlock(&wbuf
->io_mutex
);
149 lnum
= ubifs_garbage_collect(c
, 0);
156 * GC could not make a free LEB. But someone else may
157 * have allocated new bud for this journal head,
158 * because we dropped @wbuf->io_mutex, so try once
161 dbg_jnl("GC couldn't make a free LEB for jhead %s",
164 dbg_jnl("retry (%d)", retries
);
168 dbg_jnl("return -ENOSPC");
172 mutex_lock_nested(&wbuf
->io_mutex
, wbuf
->jhead
);
173 dbg_jnl("got LEB %d for jhead %s", lnum
, dbg_jhead(jhead
));
174 avail
= c
->leb_size
- wbuf
->offs
- wbuf
->used
;
176 if (wbuf
->lnum
!= -1 && avail
>= len
) {
178 * Someone else has switched the journal head and we have
179 * enough space now. This happens when more than one process is
180 * trying to write to the same journal head at the same time.
182 dbg_jnl("return LEB %d back, already have LEB %d:%d",
183 lnum
, wbuf
->lnum
, wbuf
->offs
+ wbuf
->used
);
184 err
= ubifs_return_leb(c
, lnum
);
194 * Make sure we synchronize the write-buffer before we add the new bud
195 * to the log. Otherwise we may have a power cut after the log
196 * reference node for the last bud (@lnum) is written but before the
197 * write-buffer data are written to the next-to-last bud
198 * (@wbuf->lnum). And the effect would be that the recovery would see
199 * that there is corruption in the next-to-last bud.
201 err
= ubifs_wbuf_sync_nolock(wbuf
);
204 err
= ubifs_add_bud_to_log(c
, jhead
, lnum
, offs
);
207 err
= ubifs_wbuf_seek_nolock(wbuf
, lnum
, offs
);
214 mutex_unlock(&wbuf
->io_mutex
);
218 /* An error occurred and the LEB has to be returned to lprops */
219 ubifs_assert(err
< 0);
220 err1
= ubifs_return_leb(c
, lnum
);
221 if (err1
&& err
== -EAGAIN
)
223 * Return original error code only if it is not %-EAGAIN,
224 * which is not really an error. Otherwise, return the error
225 * code of 'ubifs_return_leb()'.
228 mutex_unlock(&wbuf
->io_mutex
);
233 * write_node - write node to a journal head.
234 * @c: UBIFS file-system description object
235 * @jhead: journal head
236 * @node: node to write
238 * @lnum: LEB number written is returned here
239 * @offs: offset written is returned here
241 * This function writes a node to reserved space of journal head @jhead.
242 * Returns zero in case of success and a negative error code in case of
245 static int write_node(struct ubifs_info
*c
, int jhead
, void *node
, int len
,
246 int *lnum
, int *offs
)
248 struct ubifs_wbuf
*wbuf
= &c
->jheads
[jhead
].wbuf
;
250 ubifs_assert(jhead
!= GCHD
);
252 *lnum
= c
->jheads
[jhead
].wbuf
.lnum
;
253 *offs
= c
->jheads
[jhead
].wbuf
.offs
+ c
->jheads
[jhead
].wbuf
.used
;
255 dbg_jnl("jhead %s, LEB %d:%d, len %d",
256 dbg_jhead(jhead
), *lnum
, *offs
, len
);
257 ubifs_prepare_node(c
, node
, len
, 0);
259 return ubifs_wbuf_write_nolock(wbuf
, node
, len
);
263 * write_head - write data to a journal head.
264 * @c: UBIFS file-system description object
265 * @jhead: journal head
266 * @buf: buffer to write
267 * @len: length to write
268 * @lnum: LEB number written is returned here
269 * @offs: offset written is returned here
270 * @sync: non-zero if the write-buffer has to by synchronized
272 * This function is the same as 'write_node()' but it does not assume the
273 * buffer it is writing is a node, so it does not prepare it (which means
274 * initializing common header and calculating CRC).
276 static int write_head(struct ubifs_info
*c
, int jhead
, void *buf
, int len
,
277 int *lnum
, int *offs
, int sync
)
280 struct ubifs_wbuf
*wbuf
= &c
->jheads
[jhead
].wbuf
;
282 ubifs_assert(jhead
!= GCHD
);
284 *lnum
= c
->jheads
[jhead
].wbuf
.lnum
;
285 *offs
= c
->jheads
[jhead
].wbuf
.offs
+ c
->jheads
[jhead
].wbuf
.used
;
286 dbg_jnl("jhead %s, LEB %d:%d, len %d",
287 dbg_jhead(jhead
), *lnum
, *offs
, len
);
289 err
= ubifs_wbuf_write_nolock(wbuf
, buf
, len
);
293 err
= ubifs_wbuf_sync_nolock(wbuf
);
298 * make_reservation - reserve journal space.
299 * @c: UBIFS file-system description object
300 * @jhead: journal head
301 * @len: how many bytes to reserve
303 * This function makes space reservation in journal head @jhead. The function
304 * takes the commit lock and locks the journal head, and the caller has to
305 * unlock the head and finish the reservation with 'finish_reservation()'.
306 * Returns zero in case of success and a negative error code in case of
309 * Note, the journal head may be unlocked as soon as the data is written, while
310 * the commit lock has to be released after the data has been added to the
313 static int make_reservation(struct ubifs_info
*c
, int jhead
, int len
)
315 int err
, cmt_retries
= 0, nospc_retries
= 0;
318 down_read(&c
->commit_sem
);
319 err
= reserve_space(c
, jhead
, len
);
322 up_read(&c
->commit_sem
);
324 if (err
== -ENOSPC
) {
326 * GC could not make any progress. We should try to commit
327 * once because it could make some dirty space and GC would
328 * make progress, so make the error -EAGAIN so that the below
329 * will commit and re-try.
331 if (nospc_retries
++ < 2) {
332 dbg_jnl("no space, retry");
337 * This means that the budgeting is incorrect. We always have
338 * to be able to write to the media, because all operations are
339 * budgeted. Deletions are not budgeted, though, but we reserve
340 * an extra LEB for them.
348 * -EAGAIN means that the journal is full or too large, or the above
349 * code wants to do one commit. Do this and re-try.
351 if (cmt_retries
> 128) {
353 * This should not happen unless the journal size limitations
356 ubifs_err(c
, "stuck in space allocation");
359 } else if (cmt_retries
> 32)
360 ubifs_warn(c
, "too many space allocation re-tries (%d)",
363 dbg_jnl("-EAGAIN, commit and retry (retried %d times)",
367 err
= ubifs_run_commit(c
);
373 ubifs_err(c
, "cannot reserve %d bytes in jhead %d, error %d",
375 if (err
== -ENOSPC
) {
376 /* This are some budgeting problems, print useful information */
377 down_write(&c
->commit_sem
);
379 ubifs_dump_budg(c
, &c
->bi
);
380 ubifs_dump_lprops(c
);
381 cmt_retries
= dbg_check_lprops(c
);
382 up_write(&c
->commit_sem
);
388 * release_head - release a journal head.
389 * @c: UBIFS file-system description object
390 * @jhead: journal head
392 * This function releases journal head @jhead which was locked by
393 * the 'make_reservation()' function. It has to be called after each successful
394 * 'make_reservation()' invocation.
396 static inline void release_head(struct ubifs_info
*c
, int jhead
)
398 mutex_unlock(&c
->jheads
[jhead
].wbuf
.io_mutex
);
402 * finish_reservation - finish a reservation.
403 * @c: UBIFS file-system description object
405 * This function finishes journal space reservation. It must be called after
406 * 'make_reservation()'.
408 static void finish_reservation(struct ubifs_info
*c
)
410 up_read(&c
->commit_sem
);
414 * get_dent_type - translate VFS inode mode to UBIFS directory entry type.
417 static int get_dent_type(int mode
)
419 switch (mode
& S_IFMT
) {
421 return UBIFS_ITYPE_REG
;
423 return UBIFS_ITYPE_DIR
;
425 return UBIFS_ITYPE_LNK
;
427 return UBIFS_ITYPE_BLK
;
429 return UBIFS_ITYPE_CHR
;
431 return UBIFS_ITYPE_FIFO
;
433 return UBIFS_ITYPE_SOCK
;
441 * pack_inode - pack an inode node.
442 * @c: UBIFS file-system description object
443 * @ino: buffer in which to pack inode node
444 * @inode: inode to pack
445 * @last: indicates the last node of the group
447 static void pack_inode(struct ubifs_info
*c
, struct ubifs_ino_node
*ino
,
448 const struct inode
*inode
, int last
)
450 int data_len
= 0, last_reference
= !inode
->i_nlink
;
451 struct ubifs_inode
*ui
= ubifs_inode(inode
);
453 ino
->ch
.node_type
= UBIFS_INO_NODE
;
454 ino_key_init_flash(c
, &ino
->key
, inode
->i_ino
);
455 ino
->creat_sqnum
= cpu_to_le64(ui
->creat_sqnum
);
456 ino
->atime_sec
= cpu_to_le64(inode
->i_atime
.tv_sec
);
457 ino
->atime_nsec
= cpu_to_le32(inode
->i_atime
.tv_nsec
);
458 ino
->ctime_sec
= cpu_to_le64(inode
->i_ctime
.tv_sec
);
459 ino
->ctime_nsec
= cpu_to_le32(inode
->i_ctime
.tv_nsec
);
460 ino
->mtime_sec
= cpu_to_le64(inode
->i_mtime
.tv_sec
);
461 ino
->mtime_nsec
= cpu_to_le32(inode
->i_mtime
.tv_nsec
);
462 ino
->uid
= cpu_to_le32(i_uid_read(inode
));
463 ino
->gid
= cpu_to_le32(i_gid_read(inode
));
464 ino
->mode
= cpu_to_le32(inode
->i_mode
);
465 ino
->flags
= cpu_to_le32(ui
->flags
);
466 ino
->size
= cpu_to_le64(ui
->ui_size
);
467 ino
->nlink
= cpu_to_le32(inode
->i_nlink
);
468 ino
->compr_type
= cpu_to_le16(ui
->compr_type
);
469 ino
->data_len
= cpu_to_le32(ui
->data_len
);
470 ino
->xattr_cnt
= cpu_to_le32(ui
->xattr_cnt
);
471 ino
->xattr_size
= cpu_to_le32(ui
->xattr_size
);
472 ino
->xattr_names
= cpu_to_le32(ui
->xattr_names
);
473 zero_ino_node_unused(ino
);
476 * Drop the attached data if this is a deletion inode, the data is not
479 if (!last_reference
) {
480 memcpy(ino
->data
, ui
->data
, ui
->data_len
);
481 data_len
= ui
->data_len
;
484 ubifs_prep_grp_node(c
, ino
, UBIFS_INO_NODE_SZ
+ data_len
, last
);
488 * mark_inode_clean - mark UBIFS inode as clean.
489 * @c: UBIFS file-system description object
490 * @ui: UBIFS inode to mark as clean
492 * This helper function marks UBIFS inode @ui as clean by cleaning the
493 * @ui->dirty flag and releasing its budget. Note, VFS may still treat the
494 * inode as dirty and try to write it back, but 'ubifs_write_inode()' would
497 static void mark_inode_clean(struct ubifs_info
*c
, struct ubifs_inode
*ui
)
500 ubifs_release_dirty_inode_budget(c
, ui
);
504 static void set_dent_cookie(struct ubifs_info
*c
, struct ubifs_dent_node
*dent
)
507 dent
->cookie
= prandom_u32();
513 * ubifs_jnl_update - update inode.
514 * @c: UBIFS file-system description object
515 * @dir: parent inode or host inode in case of extended attributes
516 * @nm: directory entry name
517 * @inode: inode to update
518 * @deletion: indicates a directory entry deletion i.e unlink or rmdir
519 * @xent: non-zero if the directory entry is an extended attribute entry
521 * This function updates an inode by writing a directory entry (or extended
522 * attribute entry), the inode itself, and the parent directory inode (or the
523 * host inode) to the journal.
525 * The function writes the host inode @dir last, which is important in case of
526 * extended attributes. Indeed, then we guarantee that if the host inode gets
527 * synchronized (with 'fsync()'), and the write-buffer it sits in gets flushed,
528 * the extended attribute inode gets flushed too. And this is exactly what the
529 * user expects - synchronizing the host inode synchronizes its extended
530 * attributes. Similarly, this guarantees that if @dir is synchronized, its
531 * directory entry corresponding to @nm gets synchronized too.
533 * If the inode (@inode) or the parent directory (@dir) are synchronous, this
534 * function synchronizes the write-buffer.
536 * This function marks the @dir and @inode inodes as clean and returns zero on
537 * success. In case of failure, a negative error code is returned.
539 int ubifs_jnl_update(struct ubifs_info
*c
, const struct inode
*dir
,
540 const struct fscrypt_name
*nm
, const struct inode
*inode
,
541 int deletion
, int xent
)
543 int err
, dlen
, ilen
, len
, lnum
, ino_offs
, dent_offs
;
544 int aligned_dlen
, aligned_ilen
, sync
= IS_DIRSYNC(dir
);
545 int last_reference
= !!(deletion
&& inode
->i_nlink
== 0);
546 struct ubifs_inode
*ui
= ubifs_inode(inode
);
547 struct ubifs_inode
*host_ui
= ubifs_inode(dir
);
548 struct ubifs_dent_node
*dent
;
549 struct ubifs_ino_node
*ino
;
550 union ubifs_key dent_key
, ino_key
;
552 ubifs_assert(mutex_is_locked(&host_ui
->ui_mutex
));
554 dlen
= UBIFS_DENT_NODE_SZ
+ fname_len(nm
) + 1;
555 ilen
= UBIFS_INO_NODE_SZ
;
558 * If the last reference to the inode is being deleted, then there is
559 * no need to attach and write inode data, it is being deleted anyway.
560 * And if the inode is being deleted, no need to synchronize
561 * write-buffer even if the inode is synchronous.
563 if (!last_reference
) {
564 ilen
+= ui
->data_len
;
565 sync
|= IS_SYNC(inode
);
568 aligned_dlen
= ALIGN(dlen
, 8);
569 aligned_ilen
= ALIGN(ilen
, 8);
571 len
= aligned_dlen
+ aligned_ilen
+ UBIFS_INO_NODE_SZ
;
572 /* Make sure to also account for extended attributes */
573 len
+= host_ui
->data_len
;
575 dent
= kzalloc(len
, GFP_NOFS
);
579 /* Make reservation before allocating sequence numbers */
580 err
= make_reservation(c
, BASEHD
, len
);
585 dent
->ch
.node_type
= UBIFS_DENT_NODE
;
587 dent_key_init_hash(c
, &dent_key
, dir
->i_ino
, nm
->hash
);
589 dent_key_init(c
, &dent_key
, dir
->i_ino
, nm
);
591 dent
->ch
.node_type
= UBIFS_XENT_NODE
;
592 xent_key_init(c
, &dent_key
, dir
->i_ino
, nm
);
595 key_write(c
, &dent_key
, dent
->key
);
596 dent
->inum
= deletion
? 0 : cpu_to_le64(inode
->i_ino
);
597 dent
->type
= get_dent_type(inode
->i_mode
);
598 dent
->nlen
= cpu_to_le16(fname_len(nm
));
599 memcpy(dent
->name
, fname_name(nm
), fname_len(nm
));
600 dent
->name
[fname_len(nm
)] = '\0';
601 set_dent_cookie(c
, dent
);
603 zero_dent_node_unused(dent
);
604 ubifs_prep_grp_node(c
, dent
, dlen
, 0);
606 ino
= (void *)dent
+ aligned_dlen
;
607 pack_inode(c
, ino
, inode
, 0);
608 ino
= (void *)ino
+ aligned_ilen
;
609 pack_inode(c
, ino
, dir
, 1);
611 if (last_reference
) {
612 err
= ubifs_add_orphan(c
, inode
->i_ino
);
614 release_head(c
, BASEHD
);
617 ui
->del_cmtno
= c
->cmt_no
;
620 err
= write_head(c
, BASEHD
, dent
, len
, &lnum
, &dent_offs
, sync
);
624 struct ubifs_wbuf
*wbuf
= &c
->jheads
[BASEHD
].wbuf
;
626 ubifs_wbuf_add_ino_nolock(wbuf
, inode
->i_ino
);
627 ubifs_wbuf_add_ino_nolock(wbuf
, dir
->i_ino
);
629 release_head(c
, BASEHD
);
634 err
= ubifs_tnc_remove_dh(c
, &dent_key
, nm
->minor_hash
);
636 err
= ubifs_tnc_remove_nm(c
, &dent_key
, nm
);
639 err
= ubifs_add_dirt(c
, lnum
, dlen
);
641 err
= ubifs_tnc_add_nm(c
, &dent_key
, lnum
, dent_offs
, dlen
, nm
);
646 * Note, we do not remove the inode from TNC even if the last reference
647 * to it has just been deleted, because the inode may still be opened.
648 * Instead, the inode has been added to orphan lists and the orphan
649 * subsystem will take further care about it.
651 ino_key_init(c
, &ino_key
, inode
->i_ino
);
652 ino_offs
= dent_offs
+ aligned_dlen
;
653 err
= ubifs_tnc_add(c
, &ino_key
, lnum
, ino_offs
, ilen
);
657 ino_key_init(c
, &ino_key
, dir
->i_ino
);
658 ino_offs
+= aligned_ilen
;
659 err
= ubifs_tnc_add(c
, &ino_key
, lnum
, ino_offs
,
660 UBIFS_INO_NODE_SZ
+ host_ui
->data_len
);
664 finish_reservation(c
);
665 spin_lock(&ui
->ui_lock
);
666 ui
->synced_i_size
= ui
->ui_size
;
667 spin_unlock(&ui
->ui_lock
);
669 spin_lock(&host_ui
->ui_lock
);
670 host_ui
->synced_i_size
= host_ui
->ui_size
;
671 spin_unlock(&host_ui
->ui_lock
);
673 mark_inode_clean(c
, ui
);
674 mark_inode_clean(c
, host_ui
);
678 finish_reservation(c
);
684 release_head(c
, BASEHD
);
687 ubifs_ro_mode(c
, err
);
689 ubifs_delete_orphan(c
, inode
->i_ino
);
690 finish_reservation(c
);
695 * ubifs_jnl_write_data - write a data node to the journal.
696 * @c: UBIFS file-system description object
697 * @inode: inode the data node belongs to
699 * @buf: buffer to write
700 * @len: data length (must not exceed %UBIFS_BLOCK_SIZE)
702 * This function writes a data node to the journal. Returns %0 if the data node
703 * was successfully written, and a negative error code in case of failure.
705 int ubifs_jnl_write_data(struct ubifs_info
*c
, const struct inode
*inode
,
706 const union ubifs_key
*key
, const void *buf
, int len
)
708 struct ubifs_data_node
*data
;
709 int err
, lnum
, offs
, compr_type
, out_len
, compr_len
;
710 int dlen
= COMPRESSED_DATA_NODE_BUF_SZ
, allocated
= 1;
711 struct ubifs_inode
*ui
= ubifs_inode(inode
);
712 bool encrypted
= ubifs_crypt_is_encrypted(inode
);
714 dbg_jnlk(key
, "ino %lu, blk %u, len %d, key ",
715 (unsigned long)key_inum(c
, key
), key_block(c
, key
), len
);
716 ubifs_assert(len
<= UBIFS_BLOCK_SIZE
);
719 dlen
+= UBIFS_CIPHER_BLOCK_SIZE
;
721 data
= kmalloc(dlen
, GFP_NOFS
| __GFP_NOWARN
);
724 * Fall-back to the write reserve buffer. Note, we might be
725 * currently on the memory reclaim path, when the kernel is
726 * trying to free some memory by writing out dirty pages. The
727 * write reserve buffer helps us to guarantee that we are
728 * always able to write the data.
731 mutex_lock(&c
->write_reserve_mutex
);
732 data
= c
->write_reserve_buf
;
735 data
->ch
.node_type
= UBIFS_DATA_NODE
;
736 key_write(c
, key
, &data
->key
);
737 data
->size
= cpu_to_le32(len
);
739 if (!(ui
->flags
& UBIFS_COMPR_FL
))
740 /* Compression is disabled for this inode */
741 compr_type
= UBIFS_COMPR_NONE
;
743 compr_type
= ui
->compr_type
;
745 out_len
= compr_len
= dlen
- UBIFS_DATA_NODE_SZ
;
746 ubifs_compress(c
, buf
, len
, &data
->data
, &compr_len
, &compr_type
);
747 ubifs_assert(compr_len
<= UBIFS_BLOCK_SIZE
);
750 err
= ubifs_encrypt(inode
, data
, compr_len
, &out_len
, key_block(c
, key
));
755 data
->compr_size
= 0;
759 dlen
= UBIFS_DATA_NODE_SZ
+ out_len
;
760 data
->compr_type
= cpu_to_le16(compr_type
);
762 /* Make reservation before allocating sequence numbers */
763 err
= make_reservation(c
, DATAHD
, dlen
);
767 err
= write_node(c
, DATAHD
, data
, dlen
, &lnum
, &offs
);
770 ubifs_wbuf_add_ino_nolock(&c
->jheads
[DATAHD
].wbuf
, key_inum(c
, key
));
771 release_head(c
, DATAHD
);
773 err
= ubifs_tnc_add(c
, key
, lnum
, offs
, dlen
);
777 finish_reservation(c
);
779 mutex_unlock(&c
->write_reserve_mutex
);
785 release_head(c
, DATAHD
);
787 ubifs_ro_mode(c
, err
);
788 finish_reservation(c
);
791 mutex_unlock(&c
->write_reserve_mutex
);
798 * ubifs_jnl_write_inode - flush inode to the journal.
799 * @c: UBIFS file-system description object
800 * @inode: inode to flush
802 * This function writes inode @inode to the journal. If the inode is
803 * synchronous, it also synchronizes the write-buffer. Returns zero in case of
804 * success and a negative error code in case of failure.
806 int ubifs_jnl_write_inode(struct ubifs_info
*c
, const struct inode
*inode
)
809 struct ubifs_ino_node
*ino
;
810 struct ubifs_inode
*ui
= ubifs_inode(inode
);
811 int sync
= 0, len
= UBIFS_INO_NODE_SZ
, last_reference
= !inode
->i_nlink
;
813 dbg_jnl("ino %lu, nlink %u", inode
->i_ino
, inode
->i_nlink
);
816 * If the inode is being deleted, do not write the attached data. No
817 * need to synchronize the write-buffer either.
819 if (!last_reference
) {
821 sync
= IS_SYNC(inode
);
823 ino
= kmalloc(len
, GFP_NOFS
);
827 /* Make reservation before allocating sequence numbers */
828 err
= make_reservation(c
, BASEHD
, len
);
832 pack_inode(c
, ino
, inode
, 1);
833 err
= write_head(c
, BASEHD
, ino
, len
, &lnum
, &offs
, sync
);
837 ubifs_wbuf_add_ino_nolock(&c
->jheads
[BASEHD
].wbuf
,
839 release_head(c
, BASEHD
);
841 if (last_reference
) {
842 err
= ubifs_tnc_remove_ino(c
, inode
->i_ino
);
845 ubifs_delete_orphan(c
, inode
->i_ino
);
846 err
= ubifs_add_dirt(c
, lnum
, len
);
850 ino_key_init(c
, &key
, inode
->i_ino
);
851 err
= ubifs_tnc_add(c
, &key
, lnum
, offs
, len
);
856 finish_reservation(c
);
857 spin_lock(&ui
->ui_lock
);
858 ui
->synced_i_size
= ui
->ui_size
;
859 spin_unlock(&ui
->ui_lock
);
864 release_head(c
, BASEHD
);
866 ubifs_ro_mode(c
, err
);
867 finish_reservation(c
);
874 * ubifs_jnl_delete_inode - delete an inode.
875 * @c: UBIFS file-system description object
876 * @inode: inode to delete
878 * This function deletes inode @inode which includes removing it from orphans,
879 * deleting it from TNC and, in some cases, writing a deletion inode to the
882 * When regular file inodes are unlinked or a directory inode is removed, the
883 * 'ubifs_jnl_update()' function writes a corresponding deletion inode and
884 * direntry to the media, and adds the inode to orphans. After this, when the
885 * last reference to this inode has been dropped, this function is called. In
886 * general, it has to write one more deletion inode to the media, because if
887 * a commit happened between 'ubifs_jnl_update()' and
888 * 'ubifs_jnl_delete_inode()', the deletion inode is not in the journal
889 * anymore, and in fact it might not be on the flash anymore, because it might
890 * have been garbage-collected already. And for optimization reasons UBIFS does
891 * not read the orphan area if it has been unmounted cleanly, so it would have
892 * no indication in the journal that there is a deleted inode which has to be
895 * However, if there was no commit between 'ubifs_jnl_update()' and
896 * 'ubifs_jnl_delete_inode()', then there is no need to write the deletion
897 * inode to the media for the second time. And this is quite a typical case.
899 * This function returns zero in case of success and a negative error code in
902 int ubifs_jnl_delete_inode(struct ubifs_info
*c
, const struct inode
*inode
)
905 struct ubifs_inode
*ui
= ubifs_inode(inode
);
907 ubifs_assert(inode
->i_nlink
== 0);
909 if (ui
->del_cmtno
!= c
->cmt_no
)
910 /* A commit happened for sure */
911 return ubifs_jnl_write_inode(c
, inode
);
913 down_read(&c
->commit_sem
);
915 * Check commit number again, because the first test has been done
916 * without @c->commit_sem, so a commit might have happened.
918 if (ui
->del_cmtno
!= c
->cmt_no
) {
919 up_read(&c
->commit_sem
);
920 return ubifs_jnl_write_inode(c
, inode
);
923 err
= ubifs_tnc_remove_ino(c
, inode
->i_ino
);
925 ubifs_ro_mode(c
, err
);
927 ubifs_delete_orphan(c
, inode
->i_ino
);
928 up_read(&c
->commit_sem
);
933 * ubifs_jnl_xrename - cross rename two directory entries.
934 * @c: UBIFS file-system description object
935 * @fst_dir: parent inode of 1st directory entry to exchange
936 * @fst_inode: 1st inode to exchange
937 * @fst_nm: name of 1st inode to exchange
938 * @snd_dir: parent inode of 2nd directory entry to exchange
939 * @snd_inode: 2nd inode to exchange
940 * @snd_nm: name of 2nd inode to exchange
941 * @sync: non-zero if the write-buffer has to be synchronized
943 * This function implements the cross rename operation which may involve
944 * writing 2 inodes and 2 directory entries. It marks the written inodes as clean
945 * and returns zero on success. In case of failure, a negative error code is
948 int ubifs_jnl_xrename(struct ubifs_info
*c
, const struct inode
*fst_dir
,
949 const struct inode
*fst_inode
,
950 const struct fscrypt_name
*fst_nm
,
951 const struct inode
*snd_dir
,
952 const struct inode
*snd_inode
,
953 const struct fscrypt_name
*snd_nm
, int sync
)
956 struct ubifs_dent_node
*dent1
, *dent2
;
957 int err
, dlen1
, dlen2
, lnum
, offs
, len
, plen
= UBIFS_INO_NODE_SZ
;
958 int aligned_dlen1
, aligned_dlen2
;
959 int twoparents
= (fst_dir
!= snd_dir
);
962 ubifs_assert(ubifs_inode(fst_dir
)->data_len
== 0);
963 ubifs_assert(ubifs_inode(snd_dir
)->data_len
== 0);
964 ubifs_assert(mutex_is_locked(&ubifs_inode(fst_dir
)->ui_mutex
));
965 ubifs_assert(mutex_is_locked(&ubifs_inode(snd_dir
)->ui_mutex
));
967 dlen1
= UBIFS_DENT_NODE_SZ
+ fname_len(snd_nm
) + 1;
968 dlen2
= UBIFS_DENT_NODE_SZ
+ fname_len(fst_nm
) + 1;
969 aligned_dlen1
= ALIGN(dlen1
, 8);
970 aligned_dlen2
= ALIGN(dlen2
, 8);
972 len
= aligned_dlen1
+ aligned_dlen2
+ ALIGN(plen
, 8);
976 dent1
= kzalloc(len
, GFP_NOFS
);
980 /* Make reservation before allocating sequence numbers */
981 err
= make_reservation(c
, BASEHD
, len
);
985 /* Make new dent for 1st entry */
986 dent1
->ch
.node_type
= UBIFS_DENT_NODE
;
987 dent_key_init_flash(c
, &dent1
->key
, snd_dir
->i_ino
, snd_nm
);
988 dent1
->inum
= cpu_to_le64(fst_inode
->i_ino
);
989 dent1
->type
= get_dent_type(fst_inode
->i_mode
);
990 dent1
->nlen
= cpu_to_le16(fname_len(snd_nm
));
991 memcpy(dent1
->name
, fname_name(snd_nm
), fname_len(snd_nm
));
992 dent1
->name
[fname_len(snd_nm
)] = '\0';
993 set_dent_cookie(c
, dent1
);
994 zero_dent_node_unused(dent1
);
995 ubifs_prep_grp_node(c
, dent1
, dlen1
, 0);
997 /* Make new dent for 2nd entry */
998 dent2
= (void *)dent1
+ aligned_dlen1
;
999 dent2
->ch
.node_type
= UBIFS_DENT_NODE
;
1000 dent_key_init_flash(c
, &dent2
->key
, fst_dir
->i_ino
, fst_nm
);
1001 dent2
->inum
= cpu_to_le64(snd_inode
->i_ino
);
1002 dent2
->type
= get_dent_type(snd_inode
->i_mode
);
1003 dent2
->nlen
= cpu_to_le16(fname_len(fst_nm
));
1004 memcpy(dent2
->name
, fname_name(fst_nm
), fname_len(fst_nm
));
1005 dent2
->name
[fname_len(fst_nm
)] = '\0';
1006 set_dent_cookie(c
, dent2
);
1007 zero_dent_node_unused(dent2
);
1008 ubifs_prep_grp_node(c
, dent2
, dlen2
, 0);
1010 p
= (void *)dent2
+ aligned_dlen2
;
1012 pack_inode(c
, p
, fst_dir
, 1);
1014 pack_inode(c
, p
, fst_dir
, 0);
1015 p
+= ALIGN(plen
, 8);
1016 pack_inode(c
, p
, snd_dir
, 1);
1019 err
= write_head(c
, BASEHD
, dent1
, len
, &lnum
, &offs
, sync
);
1023 struct ubifs_wbuf
*wbuf
= &c
->jheads
[BASEHD
].wbuf
;
1025 ubifs_wbuf_add_ino_nolock(wbuf
, fst_dir
->i_ino
);
1026 ubifs_wbuf_add_ino_nolock(wbuf
, snd_dir
->i_ino
);
1028 release_head(c
, BASEHD
);
1030 dent_key_init(c
, &key
, snd_dir
->i_ino
, snd_nm
);
1031 err
= ubifs_tnc_add_nm(c
, &key
, lnum
, offs
, dlen1
, snd_nm
);
1035 offs
+= aligned_dlen1
;
1036 dent_key_init(c
, &key
, fst_dir
->i_ino
, fst_nm
);
1037 err
= ubifs_tnc_add_nm(c
, &key
, lnum
, offs
, dlen2
, fst_nm
);
1041 offs
+= aligned_dlen2
;
1043 ino_key_init(c
, &key
, fst_dir
->i_ino
);
1044 err
= ubifs_tnc_add(c
, &key
, lnum
, offs
, plen
);
1049 offs
+= ALIGN(plen
, 8);
1050 ino_key_init(c
, &key
, snd_dir
->i_ino
);
1051 err
= ubifs_tnc_add(c
, &key
, lnum
, offs
, plen
);
1056 finish_reservation(c
);
1058 mark_inode_clean(c
, ubifs_inode(fst_dir
));
1060 mark_inode_clean(c
, ubifs_inode(snd_dir
));
1065 release_head(c
, BASEHD
);
1067 ubifs_ro_mode(c
, err
);
1068 finish_reservation(c
);
1075 * ubifs_jnl_rename - rename a directory entry.
1076 * @c: UBIFS file-system description object
1077 * @old_dir: parent inode of directory entry to rename
1078 * @old_dentry: directory entry to rename
1079 * @new_dir: parent inode of directory entry to rename
1080 * @new_dentry: new directory entry (or directory entry to replace)
1081 * @sync: non-zero if the write-buffer has to be synchronized
1083 * This function implements the re-name operation which may involve writing up
1084 * to 4 inodes and 2 directory entries. It marks the written inodes as clean
1085 * and returns zero on success. In case of failure, a negative error code is
1088 int ubifs_jnl_rename(struct ubifs_info
*c
, const struct inode
*old_dir
,
1089 const struct inode
*old_inode
,
1090 const struct fscrypt_name
*old_nm
,
1091 const struct inode
*new_dir
,
1092 const struct inode
*new_inode
,
1093 const struct fscrypt_name
*new_nm
,
1094 const struct inode
*whiteout
, int sync
)
1097 union ubifs_key key
;
1098 struct ubifs_dent_node
*dent
, *dent2
;
1099 int err
, dlen1
, dlen2
, ilen
, lnum
, offs
, len
;
1100 int aligned_dlen1
, aligned_dlen2
, plen
= UBIFS_INO_NODE_SZ
;
1101 int last_reference
= !!(new_inode
&& new_inode
->i_nlink
== 0);
1102 int move
= (old_dir
!= new_dir
);
1103 struct ubifs_inode
*uninitialized_var(new_ui
);
1105 ubifs_assert(ubifs_inode(old_dir
)->data_len
== 0);
1106 ubifs_assert(ubifs_inode(new_dir
)->data_len
== 0);
1107 ubifs_assert(mutex_is_locked(&ubifs_inode(old_dir
)->ui_mutex
));
1108 ubifs_assert(mutex_is_locked(&ubifs_inode(new_dir
)->ui_mutex
));
1110 dlen1
= UBIFS_DENT_NODE_SZ
+ fname_len(new_nm
) + 1;
1111 dlen2
= UBIFS_DENT_NODE_SZ
+ fname_len(old_nm
) + 1;
1113 new_ui
= ubifs_inode(new_inode
);
1114 ubifs_assert(mutex_is_locked(&new_ui
->ui_mutex
));
1115 ilen
= UBIFS_INO_NODE_SZ
;
1116 if (!last_reference
)
1117 ilen
+= new_ui
->data_len
;
1121 aligned_dlen1
= ALIGN(dlen1
, 8);
1122 aligned_dlen2
= ALIGN(dlen2
, 8);
1123 len
= aligned_dlen1
+ aligned_dlen2
+ ALIGN(ilen
, 8) + ALIGN(plen
, 8);
1126 dent
= kzalloc(len
, GFP_NOFS
);
1130 /* Make reservation before allocating sequence numbers */
1131 err
= make_reservation(c
, BASEHD
, len
);
1136 dent
->ch
.node_type
= UBIFS_DENT_NODE
;
1137 dent_key_init_flash(c
, &dent
->key
, new_dir
->i_ino
, new_nm
);
1138 dent
->inum
= cpu_to_le64(old_inode
->i_ino
);
1139 dent
->type
= get_dent_type(old_inode
->i_mode
);
1140 dent
->nlen
= cpu_to_le16(fname_len(new_nm
));
1141 memcpy(dent
->name
, fname_name(new_nm
), fname_len(new_nm
));
1142 dent
->name
[fname_len(new_nm
)] = '\0';
1143 set_dent_cookie(c
, dent
);
1144 zero_dent_node_unused(dent
);
1145 ubifs_prep_grp_node(c
, dent
, dlen1
, 0);
1147 dent2
= (void *)dent
+ aligned_dlen1
;
1148 dent2
->ch
.node_type
= UBIFS_DENT_NODE
;
1149 dent_key_init_flash(c
, &dent2
->key
, old_dir
->i_ino
, old_nm
);
1152 dent2
->inum
= cpu_to_le64(whiteout
->i_ino
);
1153 dent2
->type
= get_dent_type(whiteout
->i_mode
);
1155 /* Make deletion dent */
1157 dent2
->type
= DT_UNKNOWN
;
1159 dent2
->nlen
= cpu_to_le16(fname_len(old_nm
));
1160 memcpy(dent2
->name
, fname_name(old_nm
), fname_len(old_nm
));
1161 dent2
->name
[fname_len(old_nm
)] = '\0';
1162 set_dent_cookie(c
, dent2
);
1163 zero_dent_node_unused(dent2
);
1164 ubifs_prep_grp_node(c
, dent2
, dlen2
, 0);
1166 p
= (void *)dent2
+ aligned_dlen2
;
1168 pack_inode(c
, p
, new_inode
, 0);
1169 p
+= ALIGN(ilen
, 8);
1173 pack_inode(c
, p
, old_dir
, 1);
1175 pack_inode(c
, p
, old_dir
, 0);
1176 p
+= ALIGN(plen
, 8);
1177 pack_inode(c
, p
, new_dir
, 1);
1180 if (last_reference
) {
1181 err
= ubifs_add_orphan(c
, new_inode
->i_ino
);
1183 release_head(c
, BASEHD
);
1186 new_ui
->del_cmtno
= c
->cmt_no
;
1189 err
= write_head(c
, BASEHD
, dent
, len
, &lnum
, &offs
, sync
);
1193 struct ubifs_wbuf
*wbuf
= &c
->jheads
[BASEHD
].wbuf
;
1195 ubifs_wbuf_add_ino_nolock(wbuf
, new_dir
->i_ino
);
1196 ubifs_wbuf_add_ino_nolock(wbuf
, old_dir
->i_ino
);
1198 ubifs_wbuf_add_ino_nolock(&c
->jheads
[BASEHD
].wbuf
,
1201 release_head(c
, BASEHD
);
1203 dent_key_init(c
, &key
, new_dir
->i_ino
, new_nm
);
1204 err
= ubifs_tnc_add_nm(c
, &key
, lnum
, offs
, dlen1
, new_nm
);
1208 offs
+= aligned_dlen1
;
1210 dent_key_init(c
, &key
, old_dir
->i_ino
, old_nm
);
1211 err
= ubifs_tnc_add_nm(c
, &key
, lnum
, offs
, dlen2
, old_nm
);
1215 ubifs_delete_orphan(c
, whiteout
->i_ino
);
1217 err
= ubifs_add_dirt(c
, lnum
, dlen2
);
1221 dent_key_init(c
, &key
, old_dir
->i_ino
, old_nm
);
1222 err
= ubifs_tnc_remove_nm(c
, &key
, old_nm
);
1227 offs
+= aligned_dlen2
;
1229 ino_key_init(c
, &key
, new_inode
->i_ino
);
1230 err
= ubifs_tnc_add(c
, &key
, lnum
, offs
, ilen
);
1233 offs
+= ALIGN(ilen
, 8);
1236 ino_key_init(c
, &key
, old_dir
->i_ino
);
1237 err
= ubifs_tnc_add(c
, &key
, lnum
, offs
, plen
);
1242 offs
+= ALIGN(plen
, 8);
1243 ino_key_init(c
, &key
, new_dir
->i_ino
);
1244 err
= ubifs_tnc_add(c
, &key
, lnum
, offs
, plen
);
1249 finish_reservation(c
);
1251 mark_inode_clean(c
, new_ui
);
1252 spin_lock(&new_ui
->ui_lock
);
1253 new_ui
->synced_i_size
= new_ui
->ui_size
;
1254 spin_unlock(&new_ui
->ui_lock
);
1256 mark_inode_clean(c
, ubifs_inode(old_dir
));
1258 mark_inode_clean(c
, ubifs_inode(new_dir
));
1263 release_head(c
, BASEHD
);
1265 ubifs_ro_mode(c
, err
);
1267 ubifs_delete_orphan(c
, new_inode
->i_ino
);
1269 finish_reservation(c
);
1276 * truncate_data_node - re-compress/encrypt a truncated data node.
1277 * @c: UBIFS file-system description object
1278 * @inode: inode which referes to the data node
1279 * @block: data block number
1280 * @dn: data node to re-compress
1281 * @new_len: new length
1283 * This function is used when an inode is truncated and the last data node of
1284 * the inode has to be re-compressed/encrypted and re-written.
1286 static int truncate_data_node(const struct ubifs_info
*c
, const struct inode
*inode
,
1287 unsigned int block
, struct ubifs_data_node
*dn
,
1291 int err
, dlen
, compr_type
, out_len
, old_dlen
;
1293 out_len
= le32_to_cpu(dn
->size
);
1294 buf
= kmalloc(out_len
* WORST_COMPR_FACTOR
, GFP_NOFS
);
1298 dlen
= old_dlen
= le32_to_cpu(dn
->ch
.len
) - UBIFS_DATA_NODE_SZ
;
1299 compr_type
= le16_to_cpu(dn
->compr_type
);
1301 if (ubifs_crypt_is_encrypted(inode
)) {
1302 err
= ubifs_decrypt(inode
, dn
, &dlen
, block
);
1307 if (compr_type
== UBIFS_COMPR_NONE
) {
1310 err
= ubifs_decompress(c
, &dn
->data
, dlen
, buf
, &out_len
, compr_type
);
1314 ubifs_compress(c
, buf
, *new_len
, &dn
->data
, &out_len
, &compr_type
);
1317 if (ubifs_crypt_is_encrypted(inode
)) {
1318 err
= ubifs_encrypt(inode
, dn
, out_len
, &old_dlen
, block
);
1327 ubifs_assert(out_len
<= UBIFS_BLOCK_SIZE
);
1328 dn
->compr_type
= cpu_to_le16(compr_type
);
1329 dn
->size
= cpu_to_le32(*new_len
);
1330 *new_len
= UBIFS_DATA_NODE_SZ
+ out_len
;
1338 * ubifs_jnl_truncate - update the journal for a truncation.
1339 * @c: UBIFS file-system description object
1340 * @inode: inode to truncate
1341 * @old_size: old size
1342 * @new_size: new size
1344 * When the size of a file decreases due to truncation, a truncation node is
1345 * written, the journal tree is updated, and the last data block is re-written
1346 * if it has been affected. The inode is also updated in order to synchronize
1347 * the new inode size.
1349 * This function marks the inode as clean and returns zero on success. In case
1350 * of failure, a negative error code is returned.
1352 int ubifs_jnl_truncate(struct ubifs_info
*c
, const struct inode
*inode
,
1353 loff_t old_size
, loff_t new_size
)
1355 union ubifs_key key
, to_key
;
1356 struct ubifs_ino_node
*ino
;
1357 struct ubifs_trun_node
*trun
;
1358 struct ubifs_data_node
*uninitialized_var(dn
);
1359 int err
, dlen
, len
, lnum
, offs
, bit
, sz
, sync
= IS_SYNC(inode
);
1360 struct ubifs_inode
*ui
= ubifs_inode(inode
);
1361 ino_t inum
= inode
->i_ino
;
1364 dbg_jnl("ino %lu, size %lld -> %lld",
1365 (unsigned long)inum
, old_size
, new_size
);
1366 ubifs_assert(!ui
->data_len
);
1367 ubifs_assert(S_ISREG(inode
->i_mode
));
1368 ubifs_assert(mutex_is_locked(&ui
->ui_mutex
));
1370 sz
= UBIFS_TRUN_NODE_SZ
+ UBIFS_INO_NODE_SZ
+
1371 UBIFS_MAX_DATA_NODE_SZ
* WORST_COMPR_FACTOR
;
1372 ino
= kmalloc(sz
, GFP_NOFS
);
1376 trun
= (void *)ino
+ UBIFS_INO_NODE_SZ
;
1377 trun
->ch
.node_type
= UBIFS_TRUN_NODE
;
1378 trun
->inum
= cpu_to_le32(inum
);
1379 trun
->old_size
= cpu_to_le64(old_size
);
1380 trun
->new_size
= cpu_to_le64(new_size
);
1381 zero_trun_node_unused(trun
);
1383 dlen
= new_size
& (UBIFS_BLOCK_SIZE
- 1);
1385 /* Get last data block so it can be truncated */
1386 dn
= (void *)trun
+ UBIFS_TRUN_NODE_SZ
;
1387 blk
= new_size
>> UBIFS_BLOCK_SHIFT
;
1388 data_key_init(c
, &key
, inum
, blk
);
1389 dbg_jnlk(&key
, "last block key ");
1390 err
= ubifs_tnc_lookup(c
, &key
, dn
);
1392 dlen
= 0; /* Not found (so it is a hole) */
1396 int dn_len
= le32_to_cpu(dn
->size
);
1398 if (dn_len
<= 0 || dn_len
> UBIFS_BLOCK_SIZE
) {
1399 ubifs_err(c
, "bad data node (block %u, inode %lu)",
1401 ubifs_dump_node(c
, dn
);
1406 dlen
= 0; /* Nothing to do */
1408 err
= truncate_data_node(c
, inode
, blk
, dn
, &dlen
);
1415 /* Must make reservation before allocating sequence numbers */
1416 len
= UBIFS_TRUN_NODE_SZ
+ UBIFS_INO_NODE_SZ
;
1419 err
= make_reservation(c
, BASEHD
, len
);
1423 pack_inode(c
, ino
, inode
, 0);
1424 ubifs_prep_grp_node(c
, trun
, UBIFS_TRUN_NODE_SZ
, dlen
? 0 : 1);
1426 ubifs_prep_grp_node(c
, dn
, dlen
, 1);
1428 err
= write_head(c
, BASEHD
, ino
, len
, &lnum
, &offs
, sync
);
1432 ubifs_wbuf_add_ino_nolock(&c
->jheads
[BASEHD
].wbuf
, inum
);
1433 release_head(c
, BASEHD
);
1436 sz
= offs
+ UBIFS_INO_NODE_SZ
+ UBIFS_TRUN_NODE_SZ
;
1437 err
= ubifs_tnc_add(c
, &key
, lnum
, sz
, dlen
);
1442 ino_key_init(c
, &key
, inum
);
1443 err
= ubifs_tnc_add(c
, &key
, lnum
, offs
, UBIFS_INO_NODE_SZ
);
1447 err
= ubifs_add_dirt(c
, lnum
, UBIFS_TRUN_NODE_SZ
);
1451 bit
= new_size
& (UBIFS_BLOCK_SIZE
- 1);
1452 blk
= (new_size
>> UBIFS_BLOCK_SHIFT
) + (bit
? 1 : 0);
1453 data_key_init(c
, &key
, inum
, blk
);
1455 bit
= old_size
& (UBIFS_BLOCK_SIZE
- 1);
1456 blk
= (old_size
>> UBIFS_BLOCK_SHIFT
) - (bit
? 0 : 1);
1457 data_key_init(c
, &to_key
, inum
, blk
);
1459 err
= ubifs_tnc_remove_range(c
, &key
, &to_key
);
1463 finish_reservation(c
);
1464 spin_lock(&ui
->ui_lock
);
1465 ui
->synced_i_size
= ui
->ui_size
;
1466 spin_unlock(&ui
->ui_lock
);
1467 mark_inode_clean(c
, ui
);
1472 release_head(c
, BASEHD
);
1474 ubifs_ro_mode(c
, err
);
1475 finish_reservation(c
);
1483 * ubifs_jnl_delete_xattr - delete an extended attribute.
1484 * @c: UBIFS file-system description object
1486 * @inode: extended attribute inode
1487 * @nm: extended attribute entry name
1489 * This function delete an extended attribute which is very similar to
1490 * un-linking regular files - it writes a deletion xentry, a deletion inode and
1491 * updates the target inode. Returns zero in case of success and a negative
1492 * error code in case of failure.
1494 int ubifs_jnl_delete_xattr(struct ubifs_info
*c
, const struct inode
*host
,
1495 const struct inode
*inode
,
1496 const struct fscrypt_name
*nm
)
1498 int err
, xlen
, hlen
, len
, lnum
, xent_offs
, aligned_xlen
;
1499 struct ubifs_dent_node
*xent
;
1500 struct ubifs_ino_node
*ino
;
1501 union ubifs_key xent_key
, key1
, key2
;
1502 int sync
= IS_DIRSYNC(host
);
1503 struct ubifs_inode
*host_ui
= ubifs_inode(host
);
1505 ubifs_assert(inode
->i_nlink
== 0);
1506 ubifs_assert(mutex_is_locked(&host_ui
->ui_mutex
));
1509 * Since we are deleting the inode, we do not bother to attach any data
1510 * to it and assume its length is %UBIFS_INO_NODE_SZ.
1512 xlen
= UBIFS_DENT_NODE_SZ
+ fname_len(nm
) + 1;
1513 aligned_xlen
= ALIGN(xlen
, 8);
1514 hlen
= host_ui
->data_len
+ UBIFS_INO_NODE_SZ
;
1515 len
= aligned_xlen
+ UBIFS_INO_NODE_SZ
+ ALIGN(hlen
, 8);
1517 xent
= kzalloc(len
, GFP_NOFS
);
1521 /* Make reservation before allocating sequence numbers */
1522 err
= make_reservation(c
, BASEHD
, len
);
1528 xent
->ch
.node_type
= UBIFS_XENT_NODE
;
1529 xent_key_init(c
, &xent_key
, host
->i_ino
, nm
);
1530 key_write(c
, &xent_key
, xent
->key
);
1532 xent
->type
= get_dent_type(inode
->i_mode
);
1533 xent
->nlen
= cpu_to_le16(fname_len(nm
));
1534 memcpy(xent
->name
, fname_name(nm
), fname_len(nm
));
1535 xent
->name
[fname_len(nm
)] = '\0';
1536 zero_dent_node_unused(xent
);
1537 ubifs_prep_grp_node(c
, xent
, xlen
, 0);
1539 ino
= (void *)xent
+ aligned_xlen
;
1540 pack_inode(c
, ino
, inode
, 0);
1541 ino
= (void *)ino
+ UBIFS_INO_NODE_SZ
;
1542 pack_inode(c
, ino
, host
, 1);
1544 err
= write_head(c
, BASEHD
, xent
, len
, &lnum
, &xent_offs
, sync
);
1546 ubifs_wbuf_add_ino_nolock(&c
->jheads
[BASEHD
].wbuf
, host
->i_ino
);
1547 release_head(c
, BASEHD
);
1552 /* Remove the extended attribute entry from TNC */
1553 err
= ubifs_tnc_remove_nm(c
, &xent_key
, nm
);
1556 err
= ubifs_add_dirt(c
, lnum
, xlen
);
1561 * Remove all nodes belonging to the extended attribute inode from TNC.
1562 * Well, there actually must be only one node - the inode itself.
1564 lowest_ino_key(c
, &key1
, inode
->i_ino
);
1565 highest_ino_key(c
, &key2
, inode
->i_ino
);
1566 err
= ubifs_tnc_remove_range(c
, &key1
, &key2
);
1569 err
= ubifs_add_dirt(c
, lnum
, UBIFS_INO_NODE_SZ
);
1573 /* And update TNC with the new host inode position */
1574 ino_key_init(c
, &key1
, host
->i_ino
);
1575 err
= ubifs_tnc_add(c
, &key1
, lnum
, xent_offs
+ len
- hlen
, hlen
);
1579 finish_reservation(c
);
1580 spin_lock(&host_ui
->ui_lock
);
1581 host_ui
->synced_i_size
= host_ui
->ui_size
;
1582 spin_unlock(&host_ui
->ui_lock
);
1583 mark_inode_clean(c
, host_ui
);
1587 ubifs_ro_mode(c
, err
);
1588 finish_reservation(c
);
1593 * ubifs_jnl_change_xattr - change an extended attribute.
1594 * @c: UBIFS file-system description object
1595 * @inode: extended attribute inode
1598 * This function writes the updated version of an extended attribute inode and
1599 * the host inode to the journal (to the base head). The host inode is written
1600 * after the extended attribute inode in order to guarantee that the extended
1601 * attribute will be flushed when the inode is synchronized by 'fsync()' and
1602 * consequently, the write-buffer is synchronized. This function returns zero
1603 * in case of success and a negative error code in case of failure.
1605 int ubifs_jnl_change_xattr(struct ubifs_info
*c
, const struct inode
*inode
,
1606 const struct inode
*host
)
1608 int err
, len1
, len2
, aligned_len
, aligned_len1
, lnum
, offs
;
1609 struct ubifs_inode
*host_ui
= ubifs_inode(host
);
1610 struct ubifs_ino_node
*ino
;
1611 union ubifs_key key
;
1612 int sync
= IS_DIRSYNC(host
);
1614 dbg_jnl("ino %lu, ino %lu", host
->i_ino
, inode
->i_ino
);
1615 ubifs_assert(host
->i_nlink
> 0);
1616 ubifs_assert(inode
->i_nlink
> 0);
1617 ubifs_assert(mutex_is_locked(&host_ui
->ui_mutex
));
1619 len1
= UBIFS_INO_NODE_SZ
+ host_ui
->data_len
;
1620 len2
= UBIFS_INO_NODE_SZ
+ ubifs_inode(inode
)->data_len
;
1621 aligned_len1
= ALIGN(len1
, 8);
1622 aligned_len
= aligned_len1
+ ALIGN(len2
, 8);
1624 ino
= kzalloc(aligned_len
, GFP_NOFS
);
1628 /* Make reservation before allocating sequence numbers */
1629 err
= make_reservation(c
, BASEHD
, aligned_len
);
1633 pack_inode(c
, ino
, host
, 0);
1634 pack_inode(c
, (void *)ino
+ aligned_len1
, inode
, 1);
1636 err
= write_head(c
, BASEHD
, ino
, aligned_len
, &lnum
, &offs
, 0);
1637 if (!sync
&& !err
) {
1638 struct ubifs_wbuf
*wbuf
= &c
->jheads
[BASEHD
].wbuf
;
1640 ubifs_wbuf_add_ino_nolock(wbuf
, host
->i_ino
);
1641 ubifs_wbuf_add_ino_nolock(wbuf
, inode
->i_ino
);
1643 release_head(c
, BASEHD
);
1647 ino_key_init(c
, &key
, host
->i_ino
);
1648 err
= ubifs_tnc_add(c
, &key
, lnum
, offs
, len1
);
1652 ino_key_init(c
, &key
, inode
->i_ino
);
1653 err
= ubifs_tnc_add(c
, &key
, lnum
, offs
+ aligned_len1
, len2
);
1657 finish_reservation(c
);
1658 spin_lock(&host_ui
->ui_lock
);
1659 host_ui
->synced_i_size
= host_ui
->ui_size
;
1660 spin_unlock(&host_ui
->ui_lock
);
1661 mark_inode_clean(c
, host_ui
);
1666 ubifs_ro_mode(c
, err
);
1667 finish_reservation(c
);