mm: fix exec activate_mm vs TLB shootdown and lazy tlb switching race
[linux/fpc-iii.git] / fs / ubifs / replay.c
blobd998fbf7de3081ce2d91e2bb4a0d631787bdb9b1
1 /*
2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Adrian Hunter
20 * Artem Bityutskiy (Битюцкий Артём)
24 * This file contains journal replay code. It runs when the file-system is being
25 * mounted and requires no locking.
27 * The larger is the journal, the longer it takes to scan it, so the longer it
28 * takes to mount UBIFS. This is why the journal has limited size which may be
29 * changed depending on the system requirements. But a larger journal gives
30 * faster I/O speed because it writes the index less frequently. So this is a
31 * trade-off. Also, the journal is indexed by the in-memory index (TNC), so the
32 * larger is the journal, the more memory its index may consume.
35 #include "ubifs.h"
36 #include <linux/list_sort.h>
38 /**
39 * struct replay_entry - replay list entry.
40 * @lnum: logical eraseblock number of the node
41 * @offs: node offset
42 * @len: node length
43 * @deletion: non-zero if this entry corresponds to a node deletion
44 * @sqnum: node sequence number
45 * @list: links the replay list
46 * @key: node key
47 * @nm: directory entry name
48 * @old_size: truncation old size
49 * @new_size: truncation new size
51 * The replay process first scans all buds and builds the replay list, then
52 * sorts the replay list in nodes sequence number order, and then inserts all
53 * the replay entries to the TNC.
55 struct replay_entry {
56 int lnum;
57 int offs;
58 int len;
59 unsigned int deletion:1;
60 unsigned long long sqnum;
61 struct list_head list;
62 union ubifs_key key;
63 union {
64 struct fscrypt_name nm;
65 struct {
66 loff_t old_size;
67 loff_t new_size;
72 /**
73 * struct bud_entry - entry in the list of buds to replay.
74 * @list: next bud in the list
75 * @bud: bud description object
76 * @sqnum: reference node sequence number
77 * @free: free bytes in the bud
78 * @dirty: dirty bytes in the bud
80 struct bud_entry {
81 struct list_head list;
82 struct ubifs_bud *bud;
83 unsigned long long sqnum;
84 int free;
85 int dirty;
88 /**
89 * set_bud_lprops - set free and dirty space used by a bud.
90 * @c: UBIFS file-system description object
91 * @b: bud entry which describes the bud
93 * This function makes sure the LEB properties of bud @b are set correctly
94 * after the replay. Returns zero in case of success and a negative error code
95 * in case of failure.
97 static int set_bud_lprops(struct ubifs_info *c, struct bud_entry *b)
99 const struct ubifs_lprops *lp;
100 int err = 0, dirty;
102 ubifs_get_lprops(c);
104 lp = ubifs_lpt_lookup_dirty(c, b->bud->lnum);
105 if (IS_ERR(lp)) {
106 err = PTR_ERR(lp);
107 goto out;
110 dirty = lp->dirty;
111 if (b->bud->start == 0 && (lp->free != c->leb_size || lp->dirty != 0)) {
113 * The LEB was added to the journal with a starting offset of
114 * zero which means the LEB must have been empty. The LEB
115 * property values should be @lp->free == @c->leb_size and
116 * @lp->dirty == 0, but that is not the case. The reason is that
117 * the LEB had been garbage collected before it became the bud,
118 * and there was not commit inbetween. The garbage collector
119 * resets the free and dirty space without recording it
120 * anywhere except lprops, so if there was no commit then
121 * lprops does not have that information.
123 * We do not need to adjust free space because the scan has told
124 * us the exact value which is recorded in the replay entry as
125 * @b->free.
127 * However we do need to subtract from the dirty space the
128 * amount of space that the garbage collector reclaimed, which
129 * is the whole LEB minus the amount of space that was free.
131 dbg_mnt("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
132 lp->free, lp->dirty);
133 dbg_gc("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
134 lp->free, lp->dirty);
135 dirty -= c->leb_size - lp->free;
137 * If the replay order was perfect the dirty space would now be
138 * zero. The order is not perfect because the journal heads
139 * race with each other. This is not a problem but is does mean
140 * that the dirty space may temporarily exceed c->leb_size
141 * during the replay.
143 if (dirty != 0)
144 dbg_mnt("LEB %d lp: %d free %d dirty replay: %d free %d dirty",
145 b->bud->lnum, lp->free, lp->dirty, b->free,
146 b->dirty);
148 lp = ubifs_change_lp(c, lp, b->free, dirty + b->dirty,
149 lp->flags | LPROPS_TAKEN, 0);
150 if (IS_ERR(lp)) {
151 err = PTR_ERR(lp);
152 goto out;
155 /* Make sure the journal head points to the latest bud */
156 err = ubifs_wbuf_seek_nolock(&c->jheads[b->bud->jhead].wbuf,
157 b->bud->lnum, c->leb_size - b->free);
159 out:
160 ubifs_release_lprops(c);
161 return err;
165 * set_buds_lprops - set free and dirty space for all replayed buds.
166 * @c: UBIFS file-system description object
168 * This function sets LEB properties for all replayed buds. Returns zero in
169 * case of success and a negative error code in case of failure.
171 static int set_buds_lprops(struct ubifs_info *c)
173 struct bud_entry *b;
174 int err;
176 list_for_each_entry(b, &c->replay_buds, list) {
177 err = set_bud_lprops(c, b);
178 if (err)
179 return err;
182 return 0;
186 * trun_remove_range - apply a replay entry for a truncation to the TNC.
187 * @c: UBIFS file-system description object
188 * @r: replay entry of truncation
190 static int trun_remove_range(struct ubifs_info *c, struct replay_entry *r)
192 unsigned min_blk, max_blk;
193 union ubifs_key min_key, max_key;
194 ino_t ino;
196 min_blk = r->new_size / UBIFS_BLOCK_SIZE;
197 if (r->new_size & (UBIFS_BLOCK_SIZE - 1))
198 min_blk += 1;
200 max_blk = r->old_size / UBIFS_BLOCK_SIZE;
201 if ((r->old_size & (UBIFS_BLOCK_SIZE - 1)) == 0)
202 max_blk -= 1;
204 ino = key_inum(c, &r->key);
206 data_key_init(c, &min_key, ino, min_blk);
207 data_key_init(c, &max_key, ino, max_blk);
209 return ubifs_tnc_remove_range(c, &min_key, &max_key);
213 * inode_still_linked - check whether inode in question will be re-linked.
214 * @c: UBIFS file-system description object
215 * @rino: replay entry to test
217 * O_TMPFILE files can be re-linked, this means link count goes from 0 to 1.
218 * This case needs special care, otherwise all references to the inode will
219 * be removed upon the first replay entry of an inode with link count 0
220 * is found.
222 static bool inode_still_linked(struct ubifs_info *c, struct replay_entry *rino)
224 struct replay_entry *r;
226 ubifs_assert(rino->deletion);
227 ubifs_assert(key_type(c, &rino->key) == UBIFS_INO_KEY);
230 * Find the most recent entry for the inode behind @rino and check
231 * whether it is a deletion.
233 list_for_each_entry_reverse(r, &c->replay_list, list) {
234 ubifs_assert(r->sqnum >= rino->sqnum);
235 if (key_inum(c, &r->key) == key_inum(c, &rino->key))
236 return r->deletion == 0;
240 ubifs_assert(0);
241 return false;
245 * apply_replay_entry - apply a replay entry to the TNC.
246 * @c: UBIFS file-system description object
247 * @r: replay entry to apply
249 * Apply a replay entry to the TNC.
251 static int apply_replay_entry(struct ubifs_info *c, struct replay_entry *r)
253 int err;
255 dbg_mntk(&r->key, "LEB %d:%d len %d deletion %d sqnum %llu key ",
256 r->lnum, r->offs, r->len, r->deletion, r->sqnum);
258 /* Set c->replay_sqnum to help deal with dangling branches. */
259 c->replay_sqnum = r->sqnum;
261 if (is_hash_key(c, &r->key)) {
262 if (r->deletion)
263 err = ubifs_tnc_remove_nm(c, &r->key, &r->nm);
264 else
265 err = ubifs_tnc_add_nm(c, &r->key, r->lnum, r->offs,
266 r->len, &r->nm);
267 } else {
268 if (r->deletion)
269 switch (key_type(c, &r->key)) {
270 case UBIFS_INO_KEY:
272 ino_t inum = key_inum(c, &r->key);
274 if (inode_still_linked(c, r)) {
275 err = 0;
276 break;
279 err = ubifs_tnc_remove_ino(c, inum);
280 break;
282 case UBIFS_TRUN_KEY:
283 err = trun_remove_range(c, r);
284 break;
285 default:
286 err = ubifs_tnc_remove(c, &r->key);
287 break;
289 else
290 err = ubifs_tnc_add(c, &r->key, r->lnum, r->offs,
291 r->len);
292 if (err)
293 return err;
295 if (c->need_recovery)
296 err = ubifs_recover_size_accum(c, &r->key, r->deletion,
297 r->new_size);
300 return err;
304 * replay_entries_cmp - compare 2 replay entries.
305 * @priv: UBIFS file-system description object
306 * @a: first replay entry
307 * @b: second replay entry
309 * This is a comparios function for 'list_sort()' which compares 2 replay
310 * entries @a and @b by comparing their sequence numer. Returns %1 if @a has
311 * greater sequence number and %-1 otherwise.
313 static int replay_entries_cmp(void *priv, struct list_head *a,
314 struct list_head *b)
316 struct replay_entry *ra, *rb;
318 cond_resched();
319 if (a == b)
320 return 0;
322 ra = list_entry(a, struct replay_entry, list);
323 rb = list_entry(b, struct replay_entry, list);
324 ubifs_assert(ra->sqnum != rb->sqnum);
325 if (ra->sqnum > rb->sqnum)
326 return 1;
327 return -1;
331 * apply_replay_list - apply the replay list to the TNC.
332 * @c: UBIFS file-system description object
334 * Apply all entries in the replay list to the TNC. Returns zero in case of
335 * success and a negative error code in case of failure.
337 static int apply_replay_list(struct ubifs_info *c)
339 struct replay_entry *r;
340 int err;
342 list_sort(c, &c->replay_list, &replay_entries_cmp);
344 list_for_each_entry(r, &c->replay_list, list) {
345 cond_resched();
347 err = apply_replay_entry(c, r);
348 if (err)
349 return err;
352 return 0;
356 * destroy_replay_list - destroy the replay.
357 * @c: UBIFS file-system description object
359 * Destroy the replay list.
361 static void destroy_replay_list(struct ubifs_info *c)
363 struct replay_entry *r, *tmp;
365 list_for_each_entry_safe(r, tmp, &c->replay_list, list) {
366 if (is_hash_key(c, &r->key))
367 kfree(fname_name(&r->nm));
368 list_del(&r->list);
369 kfree(r);
374 * insert_node - insert a node to the replay list
375 * @c: UBIFS file-system description object
376 * @lnum: node logical eraseblock number
377 * @offs: node offset
378 * @len: node length
379 * @key: node key
380 * @sqnum: sequence number
381 * @deletion: non-zero if this is a deletion
382 * @used: number of bytes in use in a LEB
383 * @old_size: truncation old size
384 * @new_size: truncation new size
386 * This function inserts a scanned non-direntry node to the replay list. The
387 * replay list contains @struct replay_entry elements, and we sort this list in
388 * sequence number order before applying it. The replay list is applied at the
389 * very end of the replay process. Since the list is sorted in sequence number
390 * order, the older modifications are applied first. This function returns zero
391 * in case of success and a negative error code in case of failure.
393 static int insert_node(struct ubifs_info *c, int lnum, int offs, int len,
394 union ubifs_key *key, unsigned long long sqnum,
395 int deletion, int *used, loff_t old_size,
396 loff_t new_size)
398 struct replay_entry *r;
400 dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs);
402 if (key_inum(c, key) >= c->highest_inum)
403 c->highest_inum = key_inum(c, key);
405 r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
406 if (!r)
407 return -ENOMEM;
409 if (!deletion)
410 *used += ALIGN(len, 8);
411 r->lnum = lnum;
412 r->offs = offs;
413 r->len = len;
414 r->deletion = !!deletion;
415 r->sqnum = sqnum;
416 key_copy(c, key, &r->key);
417 r->old_size = old_size;
418 r->new_size = new_size;
420 list_add_tail(&r->list, &c->replay_list);
421 return 0;
425 * insert_dent - insert a directory entry node into the replay list.
426 * @c: UBIFS file-system description object
427 * @lnum: node logical eraseblock number
428 * @offs: node offset
429 * @len: node length
430 * @key: node key
431 * @name: directory entry name
432 * @nlen: directory entry name length
433 * @sqnum: sequence number
434 * @deletion: non-zero if this is a deletion
435 * @used: number of bytes in use in a LEB
437 * This function inserts a scanned directory entry node or an extended
438 * attribute entry to the replay list. Returns zero in case of success and a
439 * negative error code in case of failure.
441 static int insert_dent(struct ubifs_info *c, int lnum, int offs, int len,
442 union ubifs_key *key, const char *name, int nlen,
443 unsigned long long sqnum, int deletion, int *used)
445 struct replay_entry *r;
446 char *nbuf;
448 dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs);
449 if (key_inum(c, key) >= c->highest_inum)
450 c->highest_inum = key_inum(c, key);
452 r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
453 if (!r)
454 return -ENOMEM;
456 nbuf = kmalloc(nlen + 1, GFP_KERNEL);
457 if (!nbuf) {
458 kfree(r);
459 return -ENOMEM;
462 if (!deletion)
463 *used += ALIGN(len, 8);
464 r->lnum = lnum;
465 r->offs = offs;
466 r->len = len;
467 r->deletion = !!deletion;
468 r->sqnum = sqnum;
469 key_copy(c, key, &r->key);
470 fname_len(&r->nm) = nlen;
471 memcpy(nbuf, name, nlen);
472 nbuf[nlen] = '\0';
473 fname_name(&r->nm) = nbuf;
475 list_add_tail(&r->list, &c->replay_list);
476 return 0;
480 * ubifs_validate_entry - validate directory or extended attribute entry node.
481 * @c: UBIFS file-system description object
482 * @dent: the node to validate
484 * This function validates directory or extended attribute entry node @dent.
485 * Returns zero if the node is all right and a %-EINVAL if not.
487 int ubifs_validate_entry(struct ubifs_info *c,
488 const struct ubifs_dent_node *dent)
490 int key_type = key_type_flash(c, dent->key);
491 int nlen = le16_to_cpu(dent->nlen);
493 if (le32_to_cpu(dent->ch.len) != nlen + UBIFS_DENT_NODE_SZ + 1 ||
494 dent->type >= UBIFS_ITYPES_CNT ||
495 nlen > UBIFS_MAX_NLEN || dent->name[nlen] != 0 ||
496 (key_type == UBIFS_XENT_KEY && strnlen(dent->name, nlen) != nlen) ||
497 le64_to_cpu(dent->inum) > MAX_INUM) {
498 ubifs_err(c, "bad %s node", key_type == UBIFS_DENT_KEY ?
499 "directory entry" : "extended attribute entry");
500 return -EINVAL;
503 if (key_type != UBIFS_DENT_KEY && key_type != UBIFS_XENT_KEY) {
504 ubifs_err(c, "bad key type %d", key_type);
505 return -EINVAL;
508 return 0;
512 * is_last_bud - check if the bud is the last in the journal head.
513 * @c: UBIFS file-system description object
514 * @bud: bud description object
516 * This function checks if bud @bud is the last bud in its journal head. This
517 * information is then used by 'replay_bud()' to decide whether the bud can
518 * have corruptions or not. Indeed, only last buds can be corrupted by power
519 * cuts. Returns %1 if this is the last bud, and %0 if not.
521 static int is_last_bud(struct ubifs_info *c, struct ubifs_bud *bud)
523 struct ubifs_jhead *jh = &c->jheads[bud->jhead];
524 struct ubifs_bud *next;
525 uint32_t data;
526 int err;
528 if (list_is_last(&bud->list, &jh->buds_list))
529 return 1;
532 * The following is a quirk to make sure we work correctly with UBIFS
533 * images used with older UBIFS.
535 * Normally, the last bud will be the last in the journal head's list
536 * of bud. However, there is one exception if the UBIFS image belongs
537 * to older UBIFS. This is fairly unlikely: one would need to use old
538 * UBIFS, then have a power cut exactly at the right point, and then
539 * try to mount this image with new UBIFS.
541 * The exception is: it is possible to have 2 buds A and B, A goes
542 * before B, and B is the last, bud B is contains no data, and bud A is
543 * corrupted at the end. The reason is that in older versions when the
544 * journal code switched the next bud (from A to B), it first added a
545 * log reference node for the new bud (B), and only after this it
546 * synchronized the write-buffer of current bud (A). But later this was
547 * changed and UBIFS started to always synchronize the write-buffer of
548 * the bud (A) before writing the log reference for the new bud (B).
550 * But because older UBIFS always synchronized A's write-buffer before
551 * writing to B, we can recognize this exceptional situation but
552 * checking the contents of bud B - if it is empty, then A can be
553 * treated as the last and we can recover it.
555 * TODO: remove this piece of code in a couple of years (today it is
556 * 16.05.2011).
558 next = list_entry(bud->list.next, struct ubifs_bud, list);
559 if (!list_is_last(&next->list, &jh->buds_list))
560 return 0;
562 err = ubifs_leb_read(c, next->lnum, (char *)&data, next->start, 4, 1);
563 if (err)
564 return 0;
566 return data == 0xFFFFFFFF;
570 * replay_bud - replay a bud logical eraseblock.
571 * @c: UBIFS file-system description object
572 * @b: bud entry which describes the bud
574 * This function replays bud @bud, recovers it if needed, and adds all nodes
575 * from this bud to the replay list. Returns zero in case of success and a
576 * negative error code in case of failure.
578 static int replay_bud(struct ubifs_info *c, struct bud_entry *b)
580 int is_last = is_last_bud(c, b->bud);
581 int err = 0, used = 0, lnum = b->bud->lnum, offs = b->bud->start;
582 struct ubifs_scan_leb *sleb;
583 struct ubifs_scan_node *snod;
585 dbg_mnt("replay bud LEB %d, head %d, offs %d, is_last %d",
586 lnum, b->bud->jhead, offs, is_last);
588 if (c->need_recovery && is_last)
590 * Recover only last LEBs in the journal heads, because power
591 * cuts may cause corruptions only in these LEBs, because only
592 * these LEBs could possibly be written to at the power cut
593 * time.
595 sleb = ubifs_recover_leb(c, lnum, offs, c->sbuf, b->bud->jhead);
596 else
597 sleb = ubifs_scan(c, lnum, offs, c->sbuf, 0);
598 if (IS_ERR(sleb))
599 return PTR_ERR(sleb);
602 * The bud does not have to start from offset zero - the beginning of
603 * the 'lnum' LEB may contain previously committed data. One of the
604 * things we have to do in replay is to correctly update lprops with
605 * newer information about this LEB.
607 * At this point lprops thinks that this LEB has 'c->leb_size - offs'
608 * bytes of free space because it only contain information about
609 * committed data.
611 * But we know that real amount of free space is 'c->leb_size -
612 * sleb->endpt', and the space in the 'lnum' LEB between 'offs' and
613 * 'sleb->endpt' is used by bud data. We have to correctly calculate
614 * how much of these data are dirty and update lprops with this
615 * information.
617 * The dirt in that LEB region is comprised of padding nodes, deletion
618 * nodes, truncation nodes and nodes which are obsoleted by subsequent
619 * nodes in this LEB. So instead of calculating clean space, we
620 * calculate used space ('used' variable).
623 list_for_each_entry(snod, &sleb->nodes, list) {
624 int deletion = 0;
626 cond_resched();
628 if (snod->sqnum >= SQNUM_WATERMARK) {
629 ubifs_err(c, "file system's life ended");
630 goto out_dump;
633 if (snod->sqnum > c->max_sqnum)
634 c->max_sqnum = snod->sqnum;
636 switch (snod->type) {
637 case UBIFS_INO_NODE:
639 struct ubifs_ino_node *ino = snod->node;
640 loff_t new_size = le64_to_cpu(ino->size);
642 if (le32_to_cpu(ino->nlink) == 0)
643 deletion = 1;
644 err = insert_node(c, lnum, snod->offs, snod->len,
645 &snod->key, snod->sqnum, deletion,
646 &used, 0, new_size);
647 break;
649 case UBIFS_DATA_NODE:
651 struct ubifs_data_node *dn = snod->node;
652 loff_t new_size = le32_to_cpu(dn->size) +
653 key_block(c, &snod->key) *
654 UBIFS_BLOCK_SIZE;
656 err = insert_node(c, lnum, snod->offs, snod->len,
657 &snod->key, snod->sqnum, deletion,
658 &used, 0, new_size);
659 break;
661 case UBIFS_DENT_NODE:
662 case UBIFS_XENT_NODE:
664 struct ubifs_dent_node *dent = snod->node;
666 err = ubifs_validate_entry(c, dent);
667 if (err)
668 goto out_dump;
670 err = insert_dent(c, lnum, snod->offs, snod->len,
671 &snod->key, dent->name,
672 le16_to_cpu(dent->nlen), snod->sqnum,
673 !le64_to_cpu(dent->inum), &used);
674 break;
676 case UBIFS_TRUN_NODE:
678 struct ubifs_trun_node *trun = snod->node;
679 loff_t old_size = le64_to_cpu(trun->old_size);
680 loff_t new_size = le64_to_cpu(trun->new_size);
681 union ubifs_key key;
683 /* Validate truncation node */
684 if (old_size < 0 || old_size > c->max_inode_sz ||
685 new_size < 0 || new_size > c->max_inode_sz ||
686 old_size <= new_size) {
687 ubifs_err(c, "bad truncation node");
688 goto out_dump;
692 * Create a fake truncation key just to use the same
693 * functions which expect nodes to have keys.
695 trun_key_init(c, &key, le32_to_cpu(trun->inum));
696 err = insert_node(c, lnum, snod->offs, snod->len,
697 &key, snod->sqnum, 1, &used,
698 old_size, new_size);
699 break;
701 default:
702 ubifs_err(c, "unexpected node type %d in bud LEB %d:%d",
703 snod->type, lnum, snod->offs);
704 err = -EINVAL;
705 goto out_dump;
707 if (err)
708 goto out;
711 ubifs_assert(ubifs_search_bud(c, lnum));
712 ubifs_assert(sleb->endpt - offs >= used);
713 ubifs_assert(sleb->endpt % c->min_io_size == 0);
715 b->dirty = sleb->endpt - offs - used;
716 b->free = c->leb_size - sleb->endpt;
717 dbg_mnt("bud LEB %d replied: dirty %d, free %d",
718 lnum, b->dirty, b->free);
720 out:
721 ubifs_scan_destroy(sleb);
722 return err;
724 out_dump:
725 ubifs_err(c, "bad node is at LEB %d:%d", lnum, snod->offs);
726 ubifs_dump_node(c, snod->node);
727 ubifs_scan_destroy(sleb);
728 return -EINVAL;
732 * replay_buds - replay all buds.
733 * @c: UBIFS file-system description object
735 * This function returns zero in case of success and a negative error code in
736 * case of failure.
738 static int replay_buds(struct ubifs_info *c)
740 struct bud_entry *b;
741 int err;
742 unsigned long long prev_sqnum = 0;
744 list_for_each_entry(b, &c->replay_buds, list) {
745 err = replay_bud(c, b);
746 if (err)
747 return err;
749 ubifs_assert(b->sqnum > prev_sqnum);
750 prev_sqnum = b->sqnum;
753 return 0;
757 * destroy_bud_list - destroy the list of buds to replay.
758 * @c: UBIFS file-system description object
760 static void destroy_bud_list(struct ubifs_info *c)
762 struct bud_entry *b;
764 while (!list_empty(&c->replay_buds)) {
765 b = list_entry(c->replay_buds.next, struct bud_entry, list);
766 list_del(&b->list);
767 kfree(b);
772 * add_replay_bud - add a bud to the list of buds to replay.
773 * @c: UBIFS file-system description object
774 * @lnum: bud logical eraseblock number to replay
775 * @offs: bud start offset
776 * @jhead: journal head to which this bud belongs
777 * @sqnum: reference node sequence number
779 * This function returns zero in case of success and a negative error code in
780 * case of failure.
782 static int add_replay_bud(struct ubifs_info *c, int lnum, int offs, int jhead,
783 unsigned long long sqnum)
785 struct ubifs_bud *bud;
786 struct bud_entry *b;
788 dbg_mnt("add replay bud LEB %d:%d, head %d", lnum, offs, jhead);
790 bud = kmalloc(sizeof(struct ubifs_bud), GFP_KERNEL);
791 if (!bud)
792 return -ENOMEM;
794 b = kmalloc(sizeof(struct bud_entry), GFP_KERNEL);
795 if (!b) {
796 kfree(bud);
797 return -ENOMEM;
800 bud->lnum = lnum;
801 bud->start = offs;
802 bud->jhead = jhead;
803 ubifs_add_bud(c, bud);
805 b->bud = bud;
806 b->sqnum = sqnum;
807 list_add_tail(&b->list, &c->replay_buds);
809 return 0;
813 * validate_ref - validate a reference node.
814 * @c: UBIFS file-system description object
815 * @ref: the reference node to validate
816 * @ref_lnum: LEB number of the reference node
817 * @ref_offs: reference node offset
819 * This function returns %1 if a bud reference already exists for the LEB. %0 is
820 * returned if the reference node is new, otherwise %-EINVAL is returned if
821 * validation failed.
823 static int validate_ref(struct ubifs_info *c, const struct ubifs_ref_node *ref)
825 struct ubifs_bud *bud;
826 int lnum = le32_to_cpu(ref->lnum);
827 unsigned int offs = le32_to_cpu(ref->offs);
828 unsigned int jhead = le32_to_cpu(ref->jhead);
831 * ref->offs may point to the end of LEB when the journal head points
832 * to the end of LEB and we write reference node for it during commit.
833 * So this is why we require 'offs > c->leb_size'.
835 if (jhead >= c->jhead_cnt || lnum >= c->leb_cnt ||
836 lnum < c->main_first || offs > c->leb_size ||
837 offs & (c->min_io_size - 1))
838 return -EINVAL;
840 /* Make sure we have not already looked at this bud */
841 bud = ubifs_search_bud(c, lnum);
842 if (bud) {
843 if (bud->jhead == jhead && bud->start <= offs)
844 return 1;
845 ubifs_err(c, "bud at LEB %d:%d was already referred", lnum, offs);
846 return -EINVAL;
849 return 0;
853 * replay_log_leb - replay a log logical eraseblock.
854 * @c: UBIFS file-system description object
855 * @lnum: log logical eraseblock to replay
856 * @offs: offset to start replaying from
857 * @sbuf: scan buffer
859 * This function replays a log LEB and returns zero in case of success, %1 if
860 * this is the last LEB in the log, and a negative error code in case of
861 * failure.
863 static int replay_log_leb(struct ubifs_info *c, int lnum, int offs, void *sbuf)
865 int err;
866 struct ubifs_scan_leb *sleb;
867 struct ubifs_scan_node *snod;
868 const struct ubifs_cs_node *node;
870 dbg_mnt("replay log LEB %d:%d", lnum, offs);
871 sleb = ubifs_scan(c, lnum, offs, sbuf, c->need_recovery);
872 if (IS_ERR(sleb)) {
873 if (PTR_ERR(sleb) != -EUCLEAN || !c->need_recovery)
874 return PTR_ERR(sleb);
876 * Note, the below function will recover this log LEB only if
877 * it is the last, because unclean reboots can possibly corrupt
878 * only the tail of the log.
880 sleb = ubifs_recover_log_leb(c, lnum, offs, sbuf);
881 if (IS_ERR(sleb))
882 return PTR_ERR(sleb);
885 if (sleb->nodes_cnt == 0) {
886 err = 1;
887 goto out;
890 node = sleb->buf;
891 snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list);
892 if (c->cs_sqnum == 0) {
894 * This is the first log LEB we are looking at, make sure that
895 * the first node is a commit start node. Also record its
896 * sequence number so that UBIFS can determine where the log
897 * ends, because all nodes which were have higher sequence
898 * numbers.
900 if (snod->type != UBIFS_CS_NODE) {
901 ubifs_err(c, "first log node at LEB %d:%d is not CS node",
902 lnum, offs);
903 goto out_dump;
905 if (le64_to_cpu(node->cmt_no) != c->cmt_no) {
906 ubifs_err(c, "first CS node at LEB %d:%d has wrong commit number %llu expected %llu",
907 lnum, offs,
908 (unsigned long long)le64_to_cpu(node->cmt_no),
909 c->cmt_no);
910 goto out_dump;
913 c->cs_sqnum = le64_to_cpu(node->ch.sqnum);
914 dbg_mnt("commit start sqnum %llu", c->cs_sqnum);
917 if (snod->sqnum < c->cs_sqnum) {
919 * This means that we reached end of log and now
920 * look to the older log data, which was already
921 * committed but the eraseblock was not erased (UBIFS
922 * only un-maps it). So this basically means we have to
923 * exit with "end of log" code.
925 err = 1;
926 goto out;
929 /* Make sure the first node sits at offset zero of the LEB */
930 if (snod->offs != 0) {
931 ubifs_err(c, "first node is not at zero offset");
932 goto out_dump;
935 list_for_each_entry(snod, &sleb->nodes, list) {
936 cond_resched();
938 if (snod->sqnum >= SQNUM_WATERMARK) {
939 ubifs_err(c, "file system's life ended");
940 goto out_dump;
943 if (snod->sqnum < c->cs_sqnum) {
944 ubifs_err(c, "bad sqnum %llu, commit sqnum %llu",
945 snod->sqnum, c->cs_sqnum);
946 goto out_dump;
949 if (snod->sqnum > c->max_sqnum)
950 c->max_sqnum = snod->sqnum;
952 switch (snod->type) {
953 case UBIFS_REF_NODE: {
954 const struct ubifs_ref_node *ref = snod->node;
956 err = validate_ref(c, ref);
957 if (err == 1)
958 break; /* Already have this bud */
959 if (err)
960 goto out_dump;
962 err = add_replay_bud(c, le32_to_cpu(ref->lnum),
963 le32_to_cpu(ref->offs),
964 le32_to_cpu(ref->jhead),
965 snod->sqnum);
966 if (err)
967 goto out;
969 break;
971 case UBIFS_CS_NODE:
972 /* Make sure it sits at the beginning of LEB */
973 if (snod->offs != 0) {
974 ubifs_err(c, "unexpected node in log");
975 goto out_dump;
977 break;
978 default:
979 ubifs_err(c, "unexpected node in log");
980 goto out_dump;
984 if (sleb->endpt || c->lhead_offs >= c->leb_size) {
985 c->lhead_lnum = lnum;
986 c->lhead_offs = sleb->endpt;
989 err = !sleb->endpt;
990 out:
991 ubifs_scan_destroy(sleb);
992 return err;
994 out_dump:
995 ubifs_err(c, "log error detected while replaying the log at LEB %d:%d",
996 lnum, offs + snod->offs);
997 ubifs_dump_node(c, snod->node);
998 ubifs_scan_destroy(sleb);
999 return -EINVAL;
1003 * take_ihead - update the status of the index head in lprops to 'taken'.
1004 * @c: UBIFS file-system description object
1006 * This function returns the amount of free space in the index head LEB or a
1007 * negative error code.
1009 static int take_ihead(struct ubifs_info *c)
1011 const struct ubifs_lprops *lp;
1012 int err, free;
1014 ubifs_get_lprops(c);
1016 lp = ubifs_lpt_lookup_dirty(c, c->ihead_lnum);
1017 if (IS_ERR(lp)) {
1018 err = PTR_ERR(lp);
1019 goto out;
1022 free = lp->free;
1024 lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC,
1025 lp->flags | LPROPS_TAKEN, 0);
1026 if (IS_ERR(lp)) {
1027 err = PTR_ERR(lp);
1028 goto out;
1031 err = free;
1032 out:
1033 ubifs_release_lprops(c);
1034 return err;
1038 * ubifs_replay_journal - replay journal.
1039 * @c: UBIFS file-system description object
1041 * This function scans the journal, replays and cleans it up. It makes sure all
1042 * memory data structures related to uncommitted journal are built (dirty TNC
1043 * tree, tree of buds, modified lprops, etc).
1045 int ubifs_replay_journal(struct ubifs_info *c)
1047 int err, lnum, free;
1049 BUILD_BUG_ON(UBIFS_TRUN_KEY > 5);
1051 /* Update the status of the index head in lprops to 'taken' */
1052 free = take_ihead(c);
1053 if (free < 0)
1054 return free; /* Error code */
1056 if (c->ihead_offs != c->leb_size - free) {
1057 ubifs_err(c, "bad index head LEB %d:%d", c->ihead_lnum,
1058 c->ihead_offs);
1059 return -EINVAL;
1062 dbg_mnt("start replaying the journal");
1063 c->replaying = 1;
1064 lnum = c->ltail_lnum = c->lhead_lnum;
1066 do {
1067 err = replay_log_leb(c, lnum, 0, c->sbuf);
1068 if (err == 1) {
1069 if (lnum != c->lhead_lnum)
1070 /* We hit the end of the log */
1071 break;
1074 * The head of the log must always start with the
1075 * "commit start" node on a properly formatted UBIFS.
1076 * But we found no nodes at all, which means that
1077 * someting went wrong and we cannot proceed mounting
1078 * the file-system.
1080 ubifs_err(c, "no UBIFS nodes found at the log head LEB %d:%d, possibly corrupted",
1081 lnum, 0);
1082 err = -EINVAL;
1084 if (err)
1085 goto out;
1086 lnum = ubifs_next_log_lnum(c, lnum);
1087 } while (lnum != c->ltail_lnum);
1089 err = replay_buds(c);
1090 if (err)
1091 goto out;
1093 err = apply_replay_list(c);
1094 if (err)
1095 goto out;
1097 err = set_buds_lprops(c);
1098 if (err)
1099 goto out;
1102 * UBIFS budgeting calculations use @c->bi.uncommitted_idx variable
1103 * to roughly estimate index growth. Things like @c->bi.min_idx_lebs
1104 * depend on it. This means we have to initialize it to make sure
1105 * budgeting works properly.
1107 c->bi.uncommitted_idx = atomic_long_read(&c->dirty_zn_cnt);
1108 c->bi.uncommitted_idx *= c->max_idx_node_sz;
1110 ubifs_assert(c->bud_bytes <= c->max_bud_bytes || c->need_recovery);
1111 dbg_mnt("finished, log head LEB %d:%d, max_sqnum %llu, highest_inum %lu",
1112 c->lhead_lnum, c->lhead_offs, c->max_sqnum,
1113 (unsigned long)c->highest_inum);
1114 out:
1115 destroy_replay_list(c);
1116 destroy_bud_list(c);
1117 c->replaying = 0;
1118 return err;