mm: fix exec activate_mm vs TLB shootdown and lazy tlb switching race
[linux/fpc-iii.git] / fs / udf / inode.c
blobdd57bd446340c3905ab26c543f18aec7ab72f778
1 /*
2 * inode.c
4 * PURPOSE
5 * Inode handling routines for the OSTA-UDF(tm) filesystem.
7 * COPYRIGHT
8 * This file is distributed under the terms of the GNU General Public
9 * License (GPL). Copies of the GPL can be obtained from:
10 * ftp://prep.ai.mit.edu/pub/gnu/GPL
11 * Each contributing author retains all rights to their own work.
13 * (C) 1998 Dave Boynton
14 * (C) 1998-2004 Ben Fennema
15 * (C) 1999-2000 Stelias Computing Inc
17 * HISTORY
19 * 10/04/98 dgb Added rudimentary directory functions
20 * 10/07/98 Fully working udf_block_map! It works!
21 * 11/25/98 bmap altered to better support extents
22 * 12/06/98 blf partition support in udf_iget, udf_block_map
23 * and udf_read_inode
24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across
25 * block boundaries (which is not actually allowed)
26 * 12/20/98 added support for strategy 4096
27 * 03/07/99 rewrote udf_block_map (again)
28 * New funcs, inode_bmap, udf_next_aext
29 * 04/19/99 Support for writing device EA's for major/minor #
32 #include "udfdecl.h"
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/pagemap.h>
36 #include <linux/writeback.h>
37 #include <linux/slab.h>
38 #include <linux/crc-itu-t.h>
39 #include <linux/mpage.h>
40 #include <linux/uio.h>
41 #include <linux/bio.h>
43 #include "udf_i.h"
44 #include "udf_sb.h"
46 #define EXTENT_MERGE_SIZE 5
48 static umode_t udf_convert_permissions(struct fileEntry *);
49 static int udf_update_inode(struct inode *, int);
50 static int udf_sync_inode(struct inode *inode);
51 static int udf_alloc_i_data(struct inode *inode, size_t size);
52 static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
53 static int8_t udf_insert_aext(struct inode *, struct extent_position,
54 struct kernel_lb_addr, uint32_t);
55 static void udf_split_extents(struct inode *, int *, int, int,
56 struct kernel_long_ad *, int *);
57 static void udf_prealloc_extents(struct inode *, int, int,
58 struct kernel_long_ad *, int *);
59 static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
60 static void udf_update_extents(struct inode *, struct kernel_long_ad *, int,
61 int, struct extent_position *);
62 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
64 static void __udf_clear_extent_cache(struct inode *inode)
66 struct udf_inode_info *iinfo = UDF_I(inode);
68 if (iinfo->cached_extent.lstart != -1) {
69 brelse(iinfo->cached_extent.epos.bh);
70 iinfo->cached_extent.lstart = -1;
74 /* Invalidate extent cache */
75 static void udf_clear_extent_cache(struct inode *inode)
77 struct udf_inode_info *iinfo = UDF_I(inode);
79 spin_lock(&iinfo->i_extent_cache_lock);
80 __udf_clear_extent_cache(inode);
81 spin_unlock(&iinfo->i_extent_cache_lock);
84 /* Return contents of extent cache */
85 static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
86 loff_t *lbcount, struct extent_position *pos)
88 struct udf_inode_info *iinfo = UDF_I(inode);
89 int ret = 0;
91 spin_lock(&iinfo->i_extent_cache_lock);
92 if ((iinfo->cached_extent.lstart <= bcount) &&
93 (iinfo->cached_extent.lstart != -1)) {
94 /* Cache hit */
95 *lbcount = iinfo->cached_extent.lstart;
96 memcpy(pos, &iinfo->cached_extent.epos,
97 sizeof(struct extent_position));
98 if (pos->bh)
99 get_bh(pos->bh);
100 ret = 1;
102 spin_unlock(&iinfo->i_extent_cache_lock);
103 return ret;
106 /* Add extent to extent cache */
107 static void udf_update_extent_cache(struct inode *inode, loff_t estart,
108 struct extent_position *pos)
110 struct udf_inode_info *iinfo = UDF_I(inode);
112 spin_lock(&iinfo->i_extent_cache_lock);
113 /* Invalidate previously cached extent */
114 __udf_clear_extent_cache(inode);
115 if (pos->bh)
116 get_bh(pos->bh);
117 memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
118 iinfo->cached_extent.lstart = estart;
119 switch (iinfo->i_alloc_type) {
120 case ICBTAG_FLAG_AD_SHORT:
121 iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
122 break;
123 case ICBTAG_FLAG_AD_LONG:
124 iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
125 break;
127 spin_unlock(&iinfo->i_extent_cache_lock);
130 void udf_evict_inode(struct inode *inode)
132 struct udf_inode_info *iinfo = UDF_I(inode);
133 int want_delete = 0;
135 if (!is_bad_inode(inode)) {
136 if (!inode->i_nlink) {
137 want_delete = 1;
138 udf_setsize(inode, 0);
139 udf_update_inode(inode, IS_SYNC(inode));
141 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
142 inode->i_size != iinfo->i_lenExtents) {
143 udf_warn(inode->i_sb,
144 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
145 inode->i_ino, inode->i_mode,
146 (unsigned long long)inode->i_size,
147 (unsigned long long)iinfo->i_lenExtents);
150 truncate_inode_pages_final(&inode->i_data);
151 invalidate_inode_buffers(inode);
152 clear_inode(inode);
153 kfree(iinfo->i_ext.i_data);
154 iinfo->i_ext.i_data = NULL;
155 udf_clear_extent_cache(inode);
156 if (want_delete) {
157 udf_free_inode(inode);
161 static void udf_write_failed(struct address_space *mapping, loff_t to)
163 struct inode *inode = mapping->host;
164 struct udf_inode_info *iinfo = UDF_I(inode);
165 loff_t isize = inode->i_size;
167 if (to > isize) {
168 truncate_pagecache(inode, isize);
169 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
170 down_write(&iinfo->i_data_sem);
171 udf_clear_extent_cache(inode);
172 udf_truncate_extents(inode);
173 up_write(&iinfo->i_data_sem);
178 static int udf_writepage(struct page *page, struct writeback_control *wbc)
180 return block_write_full_page(page, udf_get_block, wbc);
183 static int udf_writepages(struct address_space *mapping,
184 struct writeback_control *wbc)
186 return mpage_writepages(mapping, wbc, udf_get_block);
189 static int udf_readpage(struct file *file, struct page *page)
191 return mpage_readpage(page, udf_get_block);
194 static int udf_readpages(struct file *file, struct address_space *mapping,
195 struct list_head *pages, unsigned nr_pages)
197 return mpage_readpages(mapping, pages, nr_pages, udf_get_block);
200 static int udf_write_begin(struct file *file, struct address_space *mapping,
201 loff_t pos, unsigned len, unsigned flags,
202 struct page **pagep, void **fsdata)
204 int ret;
206 ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
207 if (unlikely(ret))
208 udf_write_failed(mapping, pos + len);
209 return ret;
212 static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
214 struct file *file = iocb->ki_filp;
215 struct address_space *mapping = file->f_mapping;
216 struct inode *inode = mapping->host;
217 size_t count = iov_iter_count(iter);
218 ssize_t ret;
220 ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
221 if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
222 udf_write_failed(mapping, iocb->ki_pos + count);
223 return ret;
226 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
228 return generic_block_bmap(mapping, block, udf_get_block);
231 const struct address_space_operations udf_aops = {
232 .readpage = udf_readpage,
233 .readpages = udf_readpages,
234 .writepage = udf_writepage,
235 .writepages = udf_writepages,
236 .write_begin = udf_write_begin,
237 .write_end = generic_write_end,
238 .direct_IO = udf_direct_IO,
239 .bmap = udf_bmap,
243 * Expand file stored in ICB to a normal one-block-file
245 * This function requires i_data_sem for writing and releases it.
246 * This function requires i_mutex held
248 int udf_expand_file_adinicb(struct inode *inode)
250 struct page *page;
251 char *kaddr;
252 struct udf_inode_info *iinfo = UDF_I(inode);
253 int err;
254 struct writeback_control udf_wbc = {
255 .sync_mode = WB_SYNC_NONE,
256 .nr_to_write = 1,
259 WARN_ON_ONCE(!inode_is_locked(inode));
260 if (!iinfo->i_lenAlloc) {
261 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
262 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
263 else
264 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
265 /* from now on we have normal address_space methods */
266 inode->i_data.a_ops = &udf_aops;
267 up_write(&iinfo->i_data_sem);
268 mark_inode_dirty(inode);
269 return 0;
272 * Release i_data_sem so that we can lock a page - page lock ranks
273 * above i_data_sem. i_mutex still protects us against file changes.
275 up_write(&iinfo->i_data_sem);
277 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
278 if (!page)
279 return -ENOMEM;
281 if (!PageUptodate(page)) {
282 kaddr = kmap_atomic(page);
283 memset(kaddr + iinfo->i_lenAlloc, 0x00,
284 PAGE_SIZE - iinfo->i_lenAlloc);
285 memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
286 iinfo->i_lenAlloc);
287 flush_dcache_page(page);
288 SetPageUptodate(page);
289 kunmap_atomic(kaddr);
291 down_write(&iinfo->i_data_sem);
292 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
293 iinfo->i_lenAlloc);
294 iinfo->i_lenAlloc = 0;
295 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
296 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
297 else
298 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
299 /* from now on we have normal address_space methods */
300 inode->i_data.a_ops = &udf_aops;
301 up_write(&iinfo->i_data_sem);
302 err = inode->i_data.a_ops->writepage(page, &udf_wbc);
303 if (err) {
304 /* Restore everything back so that we don't lose data... */
305 lock_page(page);
306 down_write(&iinfo->i_data_sem);
307 kaddr = kmap_atomic(page);
308 memcpy(iinfo->i_ext.i_data + iinfo->i_lenEAttr, kaddr,
309 inode->i_size);
310 kunmap_atomic(kaddr);
311 unlock_page(page);
312 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
313 inode->i_data.a_ops = &udf_adinicb_aops;
314 up_write(&iinfo->i_data_sem);
316 put_page(page);
317 mark_inode_dirty(inode);
319 return err;
322 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block,
323 int *err)
325 int newblock;
326 struct buffer_head *dbh = NULL;
327 struct kernel_lb_addr eloc;
328 uint8_t alloctype;
329 struct extent_position epos;
331 struct udf_fileident_bh sfibh, dfibh;
332 loff_t f_pos = udf_ext0_offset(inode);
333 int size = udf_ext0_offset(inode) + inode->i_size;
334 struct fileIdentDesc cfi, *sfi, *dfi;
335 struct udf_inode_info *iinfo = UDF_I(inode);
337 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
338 alloctype = ICBTAG_FLAG_AD_SHORT;
339 else
340 alloctype = ICBTAG_FLAG_AD_LONG;
342 if (!inode->i_size) {
343 iinfo->i_alloc_type = alloctype;
344 mark_inode_dirty(inode);
345 return NULL;
348 /* alloc block, and copy data to it */
349 *block = udf_new_block(inode->i_sb, inode,
350 iinfo->i_location.partitionReferenceNum,
351 iinfo->i_location.logicalBlockNum, err);
352 if (!(*block))
353 return NULL;
354 newblock = udf_get_pblock(inode->i_sb, *block,
355 iinfo->i_location.partitionReferenceNum,
357 if (!newblock)
358 return NULL;
359 dbh = udf_tgetblk(inode->i_sb, newblock);
360 if (!dbh)
361 return NULL;
362 lock_buffer(dbh);
363 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
364 set_buffer_uptodate(dbh);
365 unlock_buffer(dbh);
366 mark_buffer_dirty_inode(dbh, inode);
368 sfibh.soffset = sfibh.eoffset =
369 f_pos & (inode->i_sb->s_blocksize - 1);
370 sfibh.sbh = sfibh.ebh = NULL;
371 dfibh.soffset = dfibh.eoffset = 0;
372 dfibh.sbh = dfibh.ebh = dbh;
373 while (f_pos < size) {
374 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
375 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
376 NULL, NULL, NULL);
377 if (!sfi) {
378 brelse(dbh);
379 return NULL;
381 iinfo->i_alloc_type = alloctype;
382 sfi->descTag.tagLocation = cpu_to_le32(*block);
383 dfibh.soffset = dfibh.eoffset;
384 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
385 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
386 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
387 sfi->fileIdent +
388 le16_to_cpu(sfi->lengthOfImpUse))) {
389 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
390 brelse(dbh);
391 return NULL;
394 mark_buffer_dirty_inode(dbh, inode);
396 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
397 iinfo->i_lenAlloc);
398 iinfo->i_lenAlloc = 0;
399 eloc.logicalBlockNum = *block;
400 eloc.partitionReferenceNum =
401 iinfo->i_location.partitionReferenceNum;
402 iinfo->i_lenExtents = inode->i_size;
403 epos.bh = NULL;
404 epos.block = iinfo->i_location;
405 epos.offset = udf_file_entry_alloc_offset(inode);
406 udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
407 /* UniqueID stuff */
409 brelse(epos.bh);
410 mark_inode_dirty(inode);
411 return dbh;
414 static int udf_get_block(struct inode *inode, sector_t block,
415 struct buffer_head *bh_result, int create)
417 int err, new;
418 sector_t phys = 0;
419 struct udf_inode_info *iinfo;
421 if (!create) {
422 phys = udf_block_map(inode, block);
423 if (phys)
424 map_bh(bh_result, inode->i_sb, phys);
425 return 0;
428 err = -EIO;
429 new = 0;
430 iinfo = UDF_I(inode);
432 down_write(&iinfo->i_data_sem);
433 if (block == iinfo->i_next_alloc_block + 1) {
434 iinfo->i_next_alloc_block++;
435 iinfo->i_next_alloc_goal++;
438 udf_clear_extent_cache(inode);
439 phys = inode_getblk(inode, block, &err, &new);
440 if (!phys)
441 goto abort;
443 if (new)
444 set_buffer_new(bh_result);
445 map_bh(bh_result, inode->i_sb, phys);
447 abort:
448 up_write(&iinfo->i_data_sem);
449 return err;
452 static struct buffer_head *udf_getblk(struct inode *inode, long block,
453 int create, int *err)
455 struct buffer_head *bh;
456 struct buffer_head dummy;
458 dummy.b_state = 0;
459 dummy.b_blocknr = -1000;
460 *err = udf_get_block(inode, block, &dummy, create);
461 if (!*err && buffer_mapped(&dummy)) {
462 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
463 if (buffer_new(&dummy)) {
464 lock_buffer(bh);
465 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
466 set_buffer_uptodate(bh);
467 unlock_buffer(bh);
468 mark_buffer_dirty_inode(bh, inode);
470 return bh;
473 return NULL;
476 /* Extend the file with new blocks totaling 'new_block_bytes',
477 * return the number of extents added
479 static int udf_do_extend_file(struct inode *inode,
480 struct extent_position *last_pos,
481 struct kernel_long_ad *last_ext,
482 loff_t new_block_bytes)
484 uint32_t add;
485 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
486 struct super_block *sb = inode->i_sb;
487 struct kernel_lb_addr prealloc_loc = {};
488 int prealloc_len = 0;
489 struct udf_inode_info *iinfo;
490 int err;
492 /* The previous extent is fake and we should not extend by anything
493 * - there's nothing to do... */
494 if (!new_block_bytes && fake)
495 return 0;
497 iinfo = UDF_I(inode);
498 /* Round the last extent up to a multiple of block size */
499 if (last_ext->extLength & (sb->s_blocksize - 1)) {
500 last_ext->extLength =
501 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
502 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
503 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
504 iinfo->i_lenExtents =
505 (iinfo->i_lenExtents + sb->s_blocksize - 1) &
506 ~(sb->s_blocksize - 1);
509 /* Last extent are just preallocated blocks? */
510 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
511 EXT_NOT_RECORDED_ALLOCATED) {
512 /* Save the extent so that we can reattach it to the end */
513 prealloc_loc = last_ext->extLocation;
514 prealloc_len = last_ext->extLength;
515 /* Mark the extent as a hole */
516 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
517 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
518 last_ext->extLocation.logicalBlockNum = 0;
519 last_ext->extLocation.partitionReferenceNum = 0;
522 /* Can we merge with the previous extent? */
523 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
524 EXT_NOT_RECORDED_NOT_ALLOCATED) {
525 add = (1 << 30) - sb->s_blocksize -
526 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
527 if (add > new_block_bytes)
528 add = new_block_bytes;
529 new_block_bytes -= add;
530 last_ext->extLength += add;
533 if (fake) {
534 udf_add_aext(inode, last_pos, &last_ext->extLocation,
535 last_ext->extLength, 1);
536 count++;
537 } else {
538 struct kernel_lb_addr tmploc;
539 uint32_t tmplen;
541 udf_write_aext(inode, last_pos, &last_ext->extLocation,
542 last_ext->extLength, 1);
544 * We've rewritten the last extent but there may be empty
545 * indirect extent after it - enter it.
547 udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
550 /* Managed to do everything necessary? */
551 if (!new_block_bytes)
552 goto out;
554 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
555 last_ext->extLocation.logicalBlockNum = 0;
556 last_ext->extLocation.partitionReferenceNum = 0;
557 add = (1 << 30) - sb->s_blocksize;
558 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add;
560 /* Create enough extents to cover the whole hole */
561 while (new_block_bytes > add) {
562 new_block_bytes -= add;
563 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
564 last_ext->extLength, 1);
565 if (err)
566 return err;
567 count++;
569 if (new_block_bytes) {
570 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
571 new_block_bytes;
572 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
573 last_ext->extLength, 1);
574 if (err)
575 return err;
576 count++;
579 out:
580 /* Do we have some preallocated blocks saved? */
581 if (prealloc_len) {
582 err = udf_add_aext(inode, last_pos, &prealloc_loc,
583 prealloc_len, 1);
584 if (err)
585 return err;
586 last_ext->extLocation = prealloc_loc;
587 last_ext->extLength = prealloc_len;
588 count++;
591 /* last_pos should point to the last written extent... */
592 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
593 last_pos->offset -= sizeof(struct short_ad);
594 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
595 last_pos->offset -= sizeof(struct long_ad);
596 else
597 return -EIO;
599 return count;
602 /* Extend the final block of the file to final_block_len bytes */
603 static void udf_do_extend_final_block(struct inode *inode,
604 struct extent_position *last_pos,
605 struct kernel_long_ad *last_ext,
606 uint32_t final_block_len)
608 struct super_block *sb = inode->i_sb;
609 uint32_t added_bytes;
611 added_bytes = final_block_len -
612 (last_ext->extLength & (sb->s_blocksize - 1));
613 last_ext->extLength += added_bytes;
614 UDF_I(inode)->i_lenExtents += added_bytes;
616 udf_write_aext(inode, last_pos, &last_ext->extLocation,
617 last_ext->extLength, 1);
620 static int udf_extend_file(struct inode *inode, loff_t newsize)
623 struct extent_position epos;
624 struct kernel_lb_addr eloc;
625 uint32_t elen;
626 int8_t etype;
627 struct super_block *sb = inode->i_sb;
628 sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
629 unsigned long partial_final_block;
630 int adsize;
631 struct udf_inode_info *iinfo = UDF_I(inode);
632 struct kernel_long_ad extent;
633 int err = 0;
634 int within_final_block;
636 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
637 adsize = sizeof(struct short_ad);
638 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
639 adsize = sizeof(struct long_ad);
640 else
641 BUG();
643 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
644 within_final_block = (etype != -1);
646 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
647 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
648 /* File has no extents at all or has empty last
649 * indirect extent! Create a fake extent... */
650 extent.extLocation.logicalBlockNum = 0;
651 extent.extLocation.partitionReferenceNum = 0;
652 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
653 } else {
654 epos.offset -= adsize;
655 etype = udf_next_aext(inode, &epos, &extent.extLocation,
656 &extent.extLength, 0);
657 extent.extLength |= etype << 30;
660 partial_final_block = newsize & (sb->s_blocksize - 1);
662 /* File has extent covering the new size (could happen when extending
663 * inside a block)?
665 if (within_final_block) {
666 /* Extending file within the last file block */
667 udf_do_extend_final_block(inode, &epos, &extent,
668 partial_final_block);
669 } else {
670 loff_t add = ((loff_t)offset << sb->s_blocksize_bits) |
671 partial_final_block;
672 err = udf_do_extend_file(inode, &epos, &extent, add);
675 if (err < 0)
676 goto out;
677 err = 0;
678 iinfo->i_lenExtents = newsize;
679 out:
680 brelse(epos.bh);
681 return err;
684 static sector_t inode_getblk(struct inode *inode, sector_t block,
685 int *err, int *new)
687 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
688 struct extent_position prev_epos, cur_epos, next_epos;
689 int count = 0, startnum = 0, endnum = 0;
690 uint32_t elen = 0, tmpelen;
691 struct kernel_lb_addr eloc, tmpeloc;
692 int c = 1;
693 loff_t lbcount = 0, b_off = 0;
694 uint32_t newblocknum, newblock;
695 sector_t offset = 0;
696 int8_t etype;
697 struct udf_inode_info *iinfo = UDF_I(inode);
698 int goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
699 int lastblock = 0;
700 bool isBeyondEOF;
702 *err = 0;
703 *new = 0;
704 prev_epos.offset = udf_file_entry_alloc_offset(inode);
705 prev_epos.block = iinfo->i_location;
706 prev_epos.bh = NULL;
707 cur_epos = next_epos = prev_epos;
708 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
710 /* find the extent which contains the block we are looking for.
711 alternate between laarr[0] and laarr[1] for locations of the
712 current extent, and the previous extent */
713 do {
714 if (prev_epos.bh != cur_epos.bh) {
715 brelse(prev_epos.bh);
716 get_bh(cur_epos.bh);
717 prev_epos.bh = cur_epos.bh;
719 if (cur_epos.bh != next_epos.bh) {
720 brelse(cur_epos.bh);
721 get_bh(next_epos.bh);
722 cur_epos.bh = next_epos.bh;
725 lbcount += elen;
727 prev_epos.block = cur_epos.block;
728 cur_epos.block = next_epos.block;
730 prev_epos.offset = cur_epos.offset;
731 cur_epos.offset = next_epos.offset;
733 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
734 if (etype == -1)
735 break;
737 c = !c;
739 laarr[c].extLength = (etype << 30) | elen;
740 laarr[c].extLocation = eloc;
742 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
743 pgoal = eloc.logicalBlockNum +
744 ((elen + inode->i_sb->s_blocksize - 1) >>
745 inode->i_sb->s_blocksize_bits);
747 count++;
748 } while (lbcount + elen <= b_off);
750 b_off -= lbcount;
751 offset = b_off >> inode->i_sb->s_blocksize_bits;
753 * Move prev_epos and cur_epos into indirect extent if we are at
754 * the pointer to it
756 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
757 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
759 /* if the extent is allocated and recorded, return the block
760 if the extent is not a multiple of the blocksize, round up */
762 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
763 if (elen & (inode->i_sb->s_blocksize - 1)) {
764 elen = EXT_RECORDED_ALLOCATED |
765 ((elen + inode->i_sb->s_blocksize - 1) &
766 ~(inode->i_sb->s_blocksize - 1));
767 udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
769 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
770 goto out_free;
773 /* Are we beyond EOF? */
774 if (etype == -1) {
775 int ret;
776 loff_t hole_len;
777 isBeyondEOF = true;
778 if (count) {
779 if (c)
780 laarr[0] = laarr[1];
781 startnum = 1;
782 } else {
783 /* Create a fake extent when there's not one */
784 memset(&laarr[0].extLocation, 0x00,
785 sizeof(struct kernel_lb_addr));
786 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
787 /* Will udf_do_extend_file() create real extent from
788 a fake one? */
789 startnum = (offset > 0);
791 /* Create extents for the hole between EOF and offset */
792 hole_len = (loff_t)offset << inode->i_blkbits;
793 ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len);
794 if (ret < 0) {
795 *err = ret;
796 newblock = 0;
797 goto out_free;
799 c = 0;
800 offset = 0;
801 count += ret;
802 /* We are not covered by a preallocated extent? */
803 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
804 EXT_NOT_RECORDED_ALLOCATED) {
805 /* Is there any real extent? - otherwise we overwrite
806 * the fake one... */
807 if (count)
808 c = !c;
809 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
810 inode->i_sb->s_blocksize;
811 memset(&laarr[c].extLocation, 0x00,
812 sizeof(struct kernel_lb_addr));
813 count++;
815 endnum = c + 1;
816 lastblock = 1;
817 } else {
818 isBeyondEOF = false;
819 endnum = startnum = ((count > 2) ? 2 : count);
821 /* if the current extent is in position 0,
822 swap it with the previous */
823 if (!c && count != 1) {
824 laarr[2] = laarr[0];
825 laarr[0] = laarr[1];
826 laarr[1] = laarr[2];
827 c = 1;
830 /* if the current block is located in an extent,
831 read the next extent */
832 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
833 if (etype != -1) {
834 laarr[c + 1].extLength = (etype << 30) | elen;
835 laarr[c + 1].extLocation = eloc;
836 count++;
837 startnum++;
838 endnum++;
839 } else
840 lastblock = 1;
843 /* if the current extent is not recorded but allocated, get the
844 * block in the extent corresponding to the requested block */
845 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
846 newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
847 else { /* otherwise, allocate a new block */
848 if (iinfo->i_next_alloc_block == block)
849 goal = iinfo->i_next_alloc_goal;
851 if (!goal) {
852 if (!(goal = pgoal)) /* XXX: what was intended here? */
853 goal = iinfo->i_location.logicalBlockNum + 1;
856 newblocknum = udf_new_block(inode->i_sb, inode,
857 iinfo->i_location.partitionReferenceNum,
858 goal, err);
859 if (!newblocknum) {
860 *err = -ENOSPC;
861 newblock = 0;
862 goto out_free;
864 if (isBeyondEOF)
865 iinfo->i_lenExtents += inode->i_sb->s_blocksize;
868 /* if the extent the requsted block is located in contains multiple
869 * blocks, split the extent into at most three extents. blocks prior
870 * to requested block, requested block, and blocks after requested
871 * block */
872 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
874 /* We preallocate blocks only for regular files. It also makes sense
875 * for directories but there's a problem when to drop the
876 * preallocation. We might use some delayed work for that but I feel
877 * it's overengineering for a filesystem like UDF. */
878 if (S_ISREG(inode->i_mode))
879 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
881 /* merge any continuous blocks in laarr */
882 udf_merge_extents(inode, laarr, &endnum);
884 /* write back the new extents, inserting new extents if the new number
885 * of extents is greater than the old number, and deleting extents if
886 * the new number of extents is less than the old number */
887 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
889 newblock = udf_get_pblock(inode->i_sb, newblocknum,
890 iinfo->i_location.partitionReferenceNum, 0);
891 if (!newblock) {
892 *err = -EIO;
893 goto out_free;
895 *new = 1;
896 iinfo->i_next_alloc_block = block;
897 iinfo->i_next_alloc_goal = newblocknum;
898 inode->i_ctime = current_time(inode);
900 if (IS_SYNC(inode))
901 udf_sync_inode(inode);
902 else
903 mark_inode_dirty(inode);
904 out_free:
905 brelse(prev_epos.bh);
906 brelse(cur_epos.bh);
907 brelse(next_epos.bh);
908 return newblock;
911 static void udf_split_extents(struct inode *inode, int *c, int offset,
912 int newblocknum, struct kernel_long_ad *laarr,
913 int *endnum)
915 unsigned long blocksize = inode->i_sb->s_blocksize;
916 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
918 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
919 (laarr[*c].extLength >> 30) ==
920 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
921 int curr = *c;
922 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
923 blocksize - 1) >> blocksize_bits;
924 int8_t etype = (laarr[curr].extLength >> 30);
926 if (blen == 1)
928 else if (!offset || blen == offset + 1) {
929 laarr[curr + 2] = laarr[curr + 1];
930 laarr[curr + 1] = laarr[curr];
931 } else {
932 laarr[curr + 3] = laarr[curr + 1];
933 laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
936 if (offset) {
937 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
938 udf_free_blocks(inode->i_sb, inode,
939 &laarr[curr].extLocation,
940 0, offset);
941 laarr[curr].extLength =
942 EXT_NOT_RECORDED_NOT_ALLOCATED |
943 (offset << blocksize_bits);
944 laarr[curr].extLocation.logicalBlockNum = 0;
945 laarr[curr].extLocation.
946 partitionReferenceNum = 0;
947 } else
948 laarr[curr].extLength = (etype << 30) |
949 (offset << blocksize_bits);
950 curr++;
951 (*c)++;
952 (*endnum)++;
955 laarr[curr].extLocation.logicalBlockNum = newblocknum;
956 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
957 laarr[curr].extLocation.partitionReferenceNum =
958 UDF_I(inode)->i_location.partitionReferenceNum;
959 laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
960 blocksize;
961 curr++;
963 if (blen != offset + 1) {
964 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
965 laarr[curr].extLocation.logicalBlockNum +=
966 offset + 1;
967 laarr[curr].extLength = (etype << 30) |
968 ((blen - (offset + 1)) << blocksize_bits);
969 curr++;
970 (*endnum)++;
975 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
976 struct kernel_long_ad *laarr,
977 int *endnum)
979 int start, length = 0, currlength = 0, i;
981 if (*endnum >= (c + 1)) {
982 if (!lastblock)
983 return;
984 else
985 start = c;
986 } else {
987 if ((laarr[c + 1].extLength >> 30) ==
988 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
989 start = c + 1;
990 length = currlength =
991 (((laarr[c + 1].extLength &
992 UDF_EXTENT_LENGTH_MASK) +
993 inode->i_sb->s_blocksize - 1) >>
994 inode->i_sb->s_blocksize_bits);
995 } else
996 start = c;
999 for (i = start + 1; i <= *endnum; i++) {
1000 if (i == *endnum) {
1001 if (lastblock)
1002 length += UDF_DEFAULT_PREALLOC_BLOCKS;
1003 } else if ((laarr[i].extLength >> 30) ==
1004 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
1005 length += (((laarr[i].extLength &
1006 UDF_EXTENT_LENGTH_MASK) +
1007 inode->i_sb->s_blocksize - 1) >>
1008 inode->i_sb->s_blocksize_bits);
1009 } else
1010 break;
1013 if (length) {
1014 int next = laarr[start].extLocation.logicalBlockNum +
1015 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1016 inode->i_sb->s_blocksize - 1) >>
1017 inode->i_sb->s_blocksize_bits);
1018 int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1019 laarr[start].extLocation.partitionReferenceNum,
1020 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1021 length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1022 currlength);
1023 if (numalloc) {
1024 if (start == (c + 1))
1025 laarr[start].extLength +=
1026 (numalloc <<
1027 inode->i_sb->s_blocksize_bits);
1028 else {
1029 memmove(&laarr[c + 2], &laarr[c + 1],
1030 sizeof(struct long_ad) * (*endnum - (c + 1)));
1031 (*endnum)++;
1032 laarr[c + 1].extLocation.logicalBlockNum = next;
1033 laarr[c + 1].extLocation.partitionReferenceNum =
1034 laarr[c].extLocation.
1035 partitionReferenceNum;
1036 laarr[c + 1].extLength =
1037 EXT_NOT_RECORDED_ALLOCATED |
1038 (numalloc <<
1039 inode->i_sb->s_blocksize_bits);
1040 start = c + 1;
1043 for (i = start + 1; numalloc && i < *endnum; i++) {
1044 int elen = ((laarr[i].extLength &
1045 UDF_EXTENT_LENGTH_MASK) +
1046 inode->i_sb->s_blocksize - 1) >>
1047 inode->i_sb->s_blocksize_bits;
1049 if (elen > numalloc) {
1050 laarr[i].extLength -=
1051 (numalloc <<
1052 inode->i_sb->s_blocksize_bits);
1053 numalloc = 0;
1054 } else {
1055 numalloc -= elen;
1056 if (*endnum > (i + 1))
1057 memmove(&laarr[i],
1058 &laarr[i + 1],
1059 sizeof(struct long_ad) *
1060 (*endnum - (i + 1)));
1061 i--;
1062 (*endnum)--;
1065 UDF_I(inode)->i_lenExtents +=
1066 numalloc << inode->i_sb->s_blocksize_bits;
1071 static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1072 int *endnum)
1074 int i;
1075 unsigned long blocksize = inode->i_sb->s_blocksize;
1076 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1078 for (i = 0; i < (*endnum - 1); i++) {
1079 struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1080 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1082 if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1083 (((li->extLength >> 30) ==
1084 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1085 ((lip1->extLocation.logicalBlockNum -
1086 li->extLocation.logicalBlockNum) ==
1087 (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1088 blocksize - 1) >> blocksize_bits)))) {
1090 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1091 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1092 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1093 lip1->extLength = (lip1->extLength -
1094 (li->extLength &
1095 UDF_EXTENT_LENGTH_MASK) +
1096 UDF_EXTENT_LENGTH_MASK) &
1097 ~(blocksize - 1);
1098 li->extLength = (li->extLength &
1099 UDF_EXTENT_FLAG_MASK) +
1100 (UDF_EXTENT_LENGTH_MASK + 1) -
1101 blocksize;
1102 lip1->extLocation.logicalBlockNum =
1103 li->extLocation.logicalBlockNum +
1104 ((li->extLength &
1105 UDF_EXTENT_LENGTH_MASK) >>
1106 blocksize_bits);
1107 } else {
1108 li->extLength = lip1->extLength +
1109 (((li->extLength &
1110 UDF_EXTENT_LENGTH_MASK) +
1111 blocksize - 1) & ~(blocksize - 1));
1112 if (*endnum > (i + 2))
1113 memmove(&laarr[i + 1], &laarr[i + 2],
1114 sizeof(struct long_ad) *
1115 (*endnum - (i + 2)));
1116 i--;
1117 (*endnum)--;
1119 } else if (((li->extLength >> 30) ==
1120 (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1121 ((lip1->extLength >> 30) ==
1122 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1123 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1124 ((li->extLength &
1125 UDF_EXTENT_LENGTH_MASK) +
1126 blocksize - 1) >> blocksize_bits);
1127 li->extLocation.logicalBlockNum = 0;
1128 li->extLocation.partitionReferenceNum = 0;
1130 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1131 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1132 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1133 lip1->extLength = (lip1->extLength -
1134 (li->extLength &
1135 UDF_EXTENT_LENGTH_MASK) +
1136 UDF_EXTENT_LENGTH_MASK) &
1137 ~(blocksize - 1);
1138 li->extLength = (li->extLength &
1139 UDF_EXTENT_FLAG_MASK) +
1140 (UDF_EXTENT_LENGTH_MASK + 1) -
1141 blocksize;
1142 } else {
1143 li->extLength = lip1->extLength +
1144 (((li->extLength &
1145 UDF_EXTENT_LENGTH_MASK) +
1146 blocksize - 1) & ~(blocksize - 1));
1147 if (*endnum > (i + 2))
1148 memmove(&laarr[i + 1], &laarr[i + 2],
1149 sizeof(struct long_ad) *
1150 (*endnum - (i + 2)));
1151 i--;
1152 (*endnum)--;
1154 } else if ((li->extLength >> 30) ==
1155 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1156 udf_free_blocks(inode->i_sb, inode,
1157 &li->extLocation, 0,
1158 ((li->extLength &
1159 UDF_EXTENT_LENGTH_MASK) +
1160 blocksize - 1) >> blocksize_bits);
1161 li->extLocation.logicalBlockNum = 0;
1162 li->extLocation.partitionReferenceNum = 0;
1163 li->extLength = (li->extLength &
1164 UDF_EXTENT_LENGTH_MASK) |
1165 EXT_NOT_RECORDED_NOT_ALLOCATED;
1170 static void udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1171 int startnum, int endnum,
1172 struct extent_position *epos)
1174 int start = 0, i;
1175 struct kernel_lb_addr tmploc;
1176 uint32_t tmplen;
1178 if (startnum > endnum) {
1179 for (i = 0; i < (startnum - endnum); i++)
1180 udf_delete_aext(inode, *epos, laarr[i].extLocation,
1181 laarr[i].extLength);
1182 } else if (startnum < endnum) {
1183 for (i = 0; i < (endnum - startnum); i++) {
1184 udf_insert_aext(inode, *epos, laarr[i].extLocation,
1185 laarr[i].extLength);
1186 udf_next_aext(inode, epos, &laarr[i].extLocation,
1187 &laarr[i].extLength, 1);
1188 start++;
1192 for (i = start; i < endnum; i++) {
1193 udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1194 udf_write_aext(inode, epos, &laarr[i].extLocation,
1195 laarr[i].extLength, 1);
1199 struct buffer_head *udf_bread(struct inode *inode, int block,
1200 int create, int *err)
1202 struct buffer_head *bh = NULL;
1204 bh = udf_getblk(inode, block, create, err);
1205 if (!bh)
1206 return NULL;
1208 if (buffer_uptodate(bh))
1209 return bh;
1211 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1213 wait_on_buffer(bh);
1214 if (buffer_uptodate(bh))
1215 return bh;
1217 brelse(bh);
1218 *err = -EIO;
1219 return NULL;
1222 int udf_setsize(struct inode *inode, loff_t newsize)
1224 int err;
1225 struct udf_inode_info *iinfo;
1226 int bsize = i_blocksize(inode);
1228 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1229 S_ISLNK(inode->i_mode)))
1230 return -EINVAL;
1231 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1232 return -EPERM;
1234 iinfo = UDF_I(inode);
1235 if (newsize > inode->i_size) {
1236 down_write(&iinfo->i_data_sem);
1237 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1238 if (bsize <
1239 (udf_file_entry_alloc_offset(inode) + newsize)) {
1240 err = udf_expand_file_adinicb(inode);
1241 if (err)
1242 return err;
1243 down_write(&iinfo->i_data_sem);
1244 } else {
1245 iinfo->i_lenAlloc = newsize;
1246 goto set_size;
1249 err = udf_extend_file(inode, newsize);
1250 if (err) {
1251 up_write(&iinfo->i_data_sem);
1252 return err;
1254 set_size:
1255 up_write(&iinfo->i_data_sem);
1256 truncate_setsize(inode, newsize);
1257 } else {
1258 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1259 down_write(&iinfo->i_data_sem);
1260 udf_clear_extent_cache(inode);
1261 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + newsize,
1262 0x00, bsize - newsize -
1263 udf_file_entry_alloc_offset(inode));
1264 iinfo->i_lenAlloc = newsize;
1265 truncate_setsize(inode, newsize);
1266 up_write(&iinfo->i_data_sem);
1267 goto update_time;
1269 err = block_truncate_page(inode->i_mapping, newsize,
1270 udf_get_block);
1271 if (err)
1272 return err;
1273 truncate_setsize(inode, newsize);
1274 down_write(&iinfo->i_data_sem);
1275 udf_clear_extent_cache(inode);
1276 udf_truncate_extents(inode);
1277 up_write(&iinfo->i_data_sem);
1279 update_time:
1280 inode->i_mtime = inode->i_ctime = current_time(inode);
1281 if (IS_SYNC(inode))
1282 udf_sync_inode(inode);
1283 else
1284 mark_inode_dirty(inode);
1285 return 0;
1289 * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1290 * arbitrary - just that we hopefully don't limit any real use of rewritten
1291 * inode on write-once media but avoid looping for too long on corrupted media.
1293 #define UDF_MAX_ICB_NESTING 1024
1295 static int udf_read_inode(struct inode *inode, bool hidden_inode)
1297 struct buffer_head *bh = NULL;
1298 struct fileEntry *fe;
1299 struct extendedFileEntry *efe;
1300 uint16_t ident;
1301 struct udf_inode_info *iinfo = UDF_I(inode);
1302 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1303 struct kernel_lb_addr *iloc = &iinfo->i_location;
1304 unsigned int link_count;
1305 unsigned int indirections = 0;
1306 int bs = inode->i_sb->s_blocksize;
1307 int ret = -EIO;
1309 reread:
1310 if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1311 udf_debug("partition reference: %d > logical volume partitions: %d\n",
1312 iloc->partitionReferenceNum, sbi->s_partitions);
1313 return -EIO;
1316 if (iloc->logicalBlockNum >=
1317 sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1318 udf_debug("block=%d, partition=%d out of range\n",
1319 iloc->logicalBlockNum, iloc->partitionReferenceNum);
1320 return -EIO;
1324 * Set defaults, but the inode is still incomplete!
1325 * Note: get_new_inode() sets the following on a new inode:
1326 * i_sb = sb
1327 * i_no = ino
1328 * i_flags = sb->s_flags
1329 * i_state = 0
1330 * clean_inode(): zero fills and sets
1331 * i_count = 1
1332 * i_nlink = 1
1333 * i_op = NULL;
1335 bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1336 if (!bh) {
1337 udf_err(inode->i_sb, "(ino %ld) failed !bh\n", inode->i_ino);
1338 return -EIO;
1341 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1342 ident != TAG_IDENT_USE) {
1343 udf_err(inode->i_sb, "(ino %ld) failed ident=%d\n",
1344 inode->i_ino, ident);
1345 goto out;
1348 fe = (struct fileEntry *)bh->b_data;
1349 efe = (struct extendedFileEntry *)bh->b_data;
1351 if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1352 struct buffer_head *ibh;
1354 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1355 if (ident == TAG_IDENT_IE && ibh) {
1356 struct kernel_lb_addr loc;
1357 struct indirectEntry *ie;
1359 ie = (struct indirectEntry *)ibh->b_data;
1360 loc = lelb_to_cpu(ie->indirectICB.extLocation);
1362 if (ie->indirectICB.extLength) {
1363 brelse(ibh);
1364 memcpy(&iinfo->i_location, &loc,
1365 sizeof(struct kernel_lb_addr));
1366 if (++indirections > UDF_MAX_ICB_NESTING) {
1367 udf_err(inode->i_sb,
1368 "too many ICBs in ICB hierarchy"
1369 " (max %d supported)\n",
1370 UDF_MAX_ICB_NESTING);
1371 goto out;
1373 brelse(bh);
1374 goto reread;
1377 brelse(ibh);
1378 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1379 udf_err(inode->i_sb, "unsupported strategy type: %d\n",
1380 le16_to_cpu(fe->icbTag.strategyType));
1381 goto out;
1383 if (fe->icbTag.strategyType == cpu_to_le16(4))
1384 iinfo->i_strat4096 = 0;
1385 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1386 iinfo->i_strat4096 = 1;
1388 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1389 ICBTAG_FLAG_AD_MASK;
1390 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1391 iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1392 iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1393 ret = -EIO;
1394 goto out;
1396 iinfo->i_unique = 0;
1397 iinfo->i_lenEAttr = 0;
1398 iinfo->i_lenExtents = 0;
1399 iinfo->i_lenAlloc = 0;
1400 iinfo->i_next_alloc_block = 0;
1401 iinfo->i_next_alloc_goal = 0;
1402 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1403 iinfo->i_efe = 1;
1404 iinfo->i_use = 0;
1405 ret = udf_alloc_i_data(inode, bs -
1406 sizeof(struct extendedFileEntry));
1407 if (ret)
1408 goto out;
1409 memcpy(iinfo->i_ext.i_data,
1410 bh->b_data + sizeof(struct extendedFileEntry),
1411 bs - sizeof(struct extendedFileEntry));
1412 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1413 iinfo->i_efe = 0;
1414 iinfo->i_use = 0;
1415 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1416 if (ret)
1417 goto out;
1418 memcpy(iinfo->i_ext.i_data,
1419 bh->b_data + sizeof(struct fileEntry),
1420 bs - sizeof(struct fileEntry));
1421 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1422 iinfo->i_efe = 0;
1423 iinfo->i_use = 1;
1424 iinfo->i_lenAlloc = le32_to_cpu(
1425 ((struct unallocSpaceEntry *)bh->b_data)->
1426 lengthAllocDescs);
1427 ret = udf_alloc_i_data(inode, bs -
1428 sizeof(struct unallocSpaceEntry));
1429 if (ret)
1430 goto out;
1431 memcpy(iinfo->i_ext.i_data,
1432 bh->b_data + sizeof(struct unallocSpaceEntry),
1433 bs - sizeof(struct unallocSpaceEntry));
1434 return 0;
1437 ret = -EIO;
1438 read_lock(&sbi->s_cred_lock);
1439 i_uid_write(inode, le32_to_cpu(fe->uid));
1440 if (!uid_valid(inode->i_uid) ||
1441 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) ||
1442 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1443 inode->i_uid = UDF_SB(inode->i_sb)->s_uid;
1445 i_gid_write(inode, le32_to_cpu(fe->gid));
1446 if (!gid_valid(inode->i_gid) ||
1447 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) ||
1448 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1449 inode->i_gid = UDF_SB(inode->i_sb)->s_gid;
1451 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1452 sbi->s_fmode != UDF_INVALID_MODE)
1453 inode->i_mode = sbi->s_fmode;
1454 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1455 sbi->s_dmode != UDF_INVALID_MODE)
1456 inode->i_mode = sbi->s_dmode;
1457 else
1458 inode->i_mode = udf_convert_permissions(fe);
1459 inode->i_mode &= ~sbi->s_umask;
1460 read_unlock(&sbi->s_cred_lock);
1462 link_count = le16_to_cpu(fe->fileLinkCount);
1463 if (!link_count) {
1464 if (!hidden_inode) {
1465 ret = -ESTALE;
1466 goto out;
1468 link_count = 1;
1470 set_nlink(inode, link_count);
1472 inode->i_size = le64_to_cpu(fe->informationLength);
1473 iinfo->i_lenExtents = inode->i_size;
1475 if (iinfo->i_efe == 0) {
1476 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1477 (inode->i_sb->s_blocksize_bits - 9);
1479 if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime))
1480 inode->i_atime = sbi->s_record_time;
1482 if (!udf_disk_stamp_to_time(&inode->i_mtime,
1483 fe->modificationTime))
1484 inode->i_mtime = sbi->s_record_time;
1486 if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime))
1487 inode->i_ctime = sbi->s_record_time;
1489 iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1490 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1491 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1492 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1493 } else {
1494 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1495 (inode->i_sb->s_blocksize_bits - 9);
1497 if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime))
1498 inode->i_atime = sbi->s_record_time;
1500 if (!udf_disk_stamp_to_time(&inode->i_mtime,
1501 efe->modificationTime))
1502 inode->i_mtime = sbi->s_record_time;
1504 if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime))
1505 iinfo->i_crtime = sbi->s_record_time;
1507 if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime))
1508 inode->i_ctime = sbi->s_record_time;
1510 iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1511 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1512 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1513 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1515 inode->i_generation = iinfo->i_unique;
1518 * Sanity check length of allocation descriptors and extended attrs to
1519 * avoid integer overflows
1521 if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1522 goto out;
1523 /* Now do exact checks */
1524 if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1525 goto out;
1526 /* Sanity checks for files in ICB so that we don't get confused later */
1527 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1529 * For file in ICB data is stored in allocation descriptor
1530 * so sizes should match
1532 if (iinfo->i_lenAlloc != inode->i_size)
1533 goto out;
1534 /* File in ICB has to fit in there... */
1535 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1536 goto out;
1539 switch (fe->icbTag.fileType) {
1540 case ICBTAG_FILE_TYPE_DIRECTORY:
1541 inode->i_op = &udf_dir_inode_operations;
1542 inode->i_fop = &udf_dir_operations;
1543 inode->i_mode |= S_IFDIR;
1544 inc_nlink(inode);
1545 break;
1546 case ICBTAG_FILE_TYPE_REALTIME:
1547 case ICBTAG_FILE_TYPE_REGULAR:
1548 case ICBTAG_FILE_TYPE_UNDEF:
1549 case ICBTAG_FILE_TYPE_VAT20:
1550 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1551 inode->i_data.a_ops = &udf_adinicb_aops;
1552 else
1553 inode->i_data.a_ops = &udf_aops;
1554 inode->i_op = &udf_file_inode_operations;
1555 inode->i_fop = &udf_file_operations;
1556 inode->i_mode |= S_IFREG;
1557 break;
1558 case ICBTAG_FILE_TYPE_BLOCK:
1559 inode->i_mode |= S_IFBLK;
1560 break;
1561 case ICBTAG_FILE_TYPE_CHAR:
1562 inode->i_mode |= S_IFCHR;
1563 break;
1564 case ICBTAG_FILE_TYPE_FIFO:
1565 init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1566 break;
1567 case ICBTAG_FILE_TYPE_SOCKET:
1568 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1569 break;
1570 case ICBTAG_FILE_TYPE_SYMLINK:
1571 inode->i_data.a_ops = &udf_symlink_aops;
1572 inode->i_op = &udf_symlink_inode_operations;
1573 inode_nohighmem(inode);
1574 inode->i_mode = S_IFLNK | 0777;
1575 break;
1576 case ICBTAG_FILE_TYPE_MAIN:
1577 udf_debug("METADATA FILE-----\n");
1578 break;
1579 case ICBTAG_FILE_TYPE_MIRROR:
1580 udf_debug("METADATA MIRROR FILE-----\n");
1581 break;
1582 case ICBTAG_FILE_TYPE_BITMAP:
1583 udf_debug("METADATA BITMAP FILE-----\n");
1584 break;
1585 default:
1586 udf_err(inode->i_sb, "(ino %ld) failed unknown file type=%d\n",
1587 inode->i_ino, fe->icbTag.fileType);
1588 goto out;
1590 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1591 struct deviceSpec *dsea =
1592 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1593 if (dsea) {
1594 init_special_inode(inode, inode->i_mode,
1595 MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1596 le32_to_cpu(dsea->minorDeviceIdent)));
1597 /* Developer ID ??? */
1598 } else
1599 goto out;
1601 ret = 0;
1602 out:
1603 brelse(bh);
1604 return ret;
1607 static int udf_alloc_i_data(struct inode *inode, size_t size)
1609 struct udf_inode_info *iinfo = UDF_I(inode);
1610 iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);
1611 if (!iinfo->i_ext.i_data)
1612 return -ENOMEM;
1613 return 0;
1616 static umode_t udf_convert_permissions(struct fileEntry *fe)
1618 umode_t mode;
1619 uint32_t permissions;
1620 uint32_t flags;
1622 permissions = le32_to_cpu(fe->permissions);
1623 flags = le16_to_cpu(fe->icbTag.flags);
1625 mode = ((permissions) & 0007) |
1626 ((permissions >> 2) & 0070) |
1627 ((permissions >> 4) & 0700) |
1628 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1629 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1630 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1632 return mode;
1635 int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1637 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1640 static int udf_sync_inode(struct inode *inode)
1642 return udf_update_inode(inode, 1);
1645 static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec time)
1647 if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1648 (iinfo->i_crtime.tv_sec == time.tv_sec &&
1649 iinfo->i_crtime.tv_nsec > time.tv_nsec))
1650 iinfo->i_crtime = time;
1653 static int udf_update_inode(struct inode *inode, int do_sync)
1655 struct buffer_head *bh = NULL;
1656 struct fileEntry *fe;
1657 struct extendedFileEntry *efe;
1658 uint64_t lb_recorded;
1659 uint32_t udfperms;
1660 uint16_t icbflags;
1661 uint16_t crclen;
1662 int err = 0;
1663 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1664 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1665 struct udf_inode_info *iinfo = UDF_I(inode);
1667 bh = udf_tgetblk(inode->i_sb,
1668 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1669 if (!bh) {
1670 udf_debug("getblk failure\n");
1671 return -EIO;
1674 lock_buffer(bh);
1675 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1676 fe = (struct fileEntry *)bh->b_data;
1677 efe = (struct extendedFileEntry *)bh->b_data;
1679 if (iinfo->i_use) {
1680 struct unallocSpaceEntry *use =
1681 (struct unallocSpaceEntry *)bh->b_data;
1683 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1684 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1685 iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
1686 sizeof(struct unallocSpaceEntry));
1687 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1688 crclen = sizeof(struct unallocSpaceEntry);
1690 goto finish;
1693 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1694 fe->uid = cpu_to_le32(-1);
1695 else
1696 fe->uid = cpu_to_le32(i_uid_read(inode));
1698 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1699 fe->gid = cpu_to_le32(-1);
1700 else
1701 fe->gid = cpu_to_le32(i_gid_read(inode));
1703 udfperms = ((inode->i_mode & 0007)) |
1704 ((inode->i_mode & 0070) << 2) |
1705 ((inode->i_mode & 0700) << 4);
1707 udfperms |= (le32_to_cpu(fe->permissions) &
1708 (FE_PERM_O_DELETE | FE_PERM_O_CHATTR |
1709 FE_PERM_G_DELETE | FE_PERM_G_CHATTR |
1710 FE_PERM_U_DELETE | FE_PERM_U_CHATTR));
1711 fe->permissions = cpu_to_le32(udfperms);
1713 if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1714 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1715 else
1716 fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1718 fe->informationLength = cpu_to_le64(inode->i_size);
1720 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1721 struct regid *eid;
1722 struct deviceSpec *dsea =
1723 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1724 if (!dsea) {
1725 dsea = (struct deviceSpec *)
1726 udf_add_extendedattr(inode,
1727 sizeof(struct deviceSpec) +
1728 sizeof(struct regid), 12, 0x3);
1729 dsea->attrType = cpu_to_le32(12);
1730 dsea->attrSubtype = 1;
1731 dsea->attrLength = cpu_to_le32(
1732 sizeof(struct deviceSpec) +
1733 sizeof(struct regid));
1734 dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1736 eid = (struct regid *)dsea->impUse;
1737 memset(eid, 0, sizeof(*eid));
1738 strcpy(eid->ident, UDF_ID_DEVELOPER);
1739 eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1740 eid->identSuffix[1] = UDF_OS_ID_LINUX;
1741 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1742 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1745 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1746 lb_recorded = 0; /* No extents => no blocks! */
1747 else
1748 lb_recorded =
1749 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1750 (blocksize_bits - 9);
1752 if (iinfo->i_efe == 0) {
1753 memcpy(bh->b_data + sizeof(struct fileEntry),
1754 iinfo->i_ext.i_data,
1755 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1756 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1758 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1759 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1760 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1761 memset(&(fe->impIdent), 0, sizeof(struct regid));
1762 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1763 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1764 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1765 fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1766 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1767 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1768 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1769 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1770 crclen = sizeof(struct fileEntry);
1771 } else {
1772 memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1773 iinfo->i_ext.i_data,
1774 inode->i_sb->s_blocksize -
1775 sizeof(struct extendedFileEntry));
1776 efe->objectSize = cpu_to_le64(inode->i_size);
1777 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1779 udf_adjust_time(iinfo, inode->i_atime);
1780 udf_adjust_time(iinfo, inode->i_mtime);
1781 udf_adjust_time(iinfo, inode->i_ctime);
1783 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1784 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1785 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1786 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1788 memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1789 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1790 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1791 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1792 efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1793 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1794 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1795 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1796 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1797 crclen = sizeof(struct extendedFileEntry);
1800 finish:
1801 if (iinfo->i_strat4096) {
1802 fe->icbTag.strategyType = cpu_to_le16(4096);
1803 fe->icbTag.strategyParameter = cpu_to_le16(1);
1804 fe->icbTag.numEntries = cpu_to_le16(2);
1805 } else {
1806 fe->icbTag.strategyType = cpu_to_le16(4);
1807 fe->icbTag.numEntries = cpu_to_le16(1);
1810 if (iinfo->i_use)
1811 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1812 else if (S_ISDIR(inode->i_mode))
1813 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1814 else if (S_ISREG(inode->i_mode))
1815 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1816 else if (S_ISLNK(inode->i_mode))
1817 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1818 else if (S_ISBLK(inode->i_mode))
1819 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1820 else if (S_ISCHR(inode->i_mode))
1821 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1822 else if (S_ISFIFO(inode->i_mode))
1823 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1824 else if (S_ISSOCK(inode->i_mode))
1825 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1827 icbflags = iinfo->i_alloc_type |
1828 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1829 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1830 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1831 (le16_to_cpu(fe->icbTag.flags) &
1832 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1833 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1835 fe->icbTag.flags = cpu_to_le16(icbflags);
1836 if (sbi->s_udfrev >= 0x0200)
1837 fe->descTag.descVersion = cpu_to_le16(3);
1838 else
1839 fe->descTag.descVersion = cpu_to_le16(2);
1840 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1841 fe->descTag.tagLocation = cpu_to_le32(
1842 iinfo->i_location.logicalBlockNum);
1843 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1844 fe->descTag.descCRCLength = cpu_to_le16(crclen);
1845 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1846 crclen));
1847 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1849 set_buffer_uptodate(bh);
1850 unlock_buffer(bh);
1852 /* write the data blocks */
1853 mark_buffer_dirty(bh);
1854 if (do_sync) {
1855 sync_dirty_buffer(bh);
1856 if (buffer_write_io_error(bh)) {
1857 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1858 inode->i_ino);
1859 err = -EIO;
1862 brelse(bh);
1864 return err;
1867 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1868 bool hidden_inode)
1870 unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1871 struct inode *inode = iget_locked(sb, block);
1872 int err;
1874 if (!inode)
1875 return ERR_PTR(-ENOMEM);
1877 if (!(inode->i_state & I_NEW))
1878 return inode;
1880 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1881 err = udf_read_inode(inode, hidden_inode);
1882 if (err < 0) {
1883 iget_failed(inode);
1884 return ERR_PTR(err);
1886 unlock_new_inode(inode);
1888 return inode;
1891 int udf_setup_indirect_aext(struct inode *inode, int block,
1892 struct extent_position *epos)
1894 struct super_block *sb = inode->i_sb;
1895 struct buffer_head *bh;
1896 struct allocExtDesc *aed;
1897 struct extent_position nepos;
1898 struct kernel_lb_addr neloc;
1899 int ver, adsize;
1901 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1902 adsize = sizeof(struct short_ad);
1903 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1904 adsize = sizeof(struct long_ad);
1905 else
1906 return -EIO;
1908 neloc.logicalBlockNum = block;
1909 neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1911 bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1912 if (!bh)
1913 return -EIO;
1914 lock_buffer(bh);
1915 memset(bh->b_data, 0x00, sb->s_blocksize);
1916 set_buffer_uptodate(bh);
1917 unlock_buffer(bh);
1918 mark_buffer_dirty_inode(bh, inode);
1920 aed = (struct allocExtDesc *)(bh->b_data);
1921 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1922 aed->previousAllocExtLocation =
1923 cpu_to_le32(epos->block.logicalBlockNum);
1925 aed->lengthAllocDescs = cpu_to_le32(0);
1926 if (UDF_SB(sb)->s_udfrev >= 0x0200)
1927 ver = 3;
1928 else
1929 ver = 2;
1930 udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1931 sizeof(struct tag));
1933 nepos.block = neloc;
1934 nepos.offset = sizeof(struct allocExtDesc);
1935 nepos.bh = bh;
1938 * Do we have to copy current last extent to make space for indirect
1939 * one?
1941 if (epos->offset + adsize > sb->s_blocksize) {
1942 struct kernel_lb_addr cp_loc;
1943 uint32_t cp_len;
1944 int cp_type;
1946 epos->offset -= adsize;
1947 cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
1948 cp_len |= ((uint32_t)cp_type) << 30;
1950 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
1951 udf_write_aext(inode, epos, &nepos.block,
1952 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDECS, 0);
1953 } else {
1954 __udf_add_aext(inode, epos, &nepos.block,
1955 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDECS, 0);
1958 brelse(epos->bh);
1959 *epos = nepos;
1961 return 0;
1965 * Append extent at the given position - should be the first free one in inode
1966 * / indirect extent. This function assumes there is enough space in the inode
1967 * or indirect extent. Use udf_add_aext() if you didn't check for this before.
1969 int __udf_add_aext(struct inode *inode, struct extent_position *epos,
1970 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1972 struct udf_inode_info *iinfo = UDF_I(inode);
1973 struct allocExtDesc *aed;
1974 int adsize;
1976 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1977 adsize = sizeof(struct short_ad);
1978 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1979 adsize = sizeof(struct long_ad);
1980 else
1981 return -EIO;
1983 if (!epos->bh) {
1984 WARN_ON(iinfo->i_lenAlloc !=
1985 epos->offset - udf_file_entry_alloc_offset(inode));
1986 } else {
1987 aed = (struct allocExtDesc *)epos->bh->b_data;
1988 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
1989 epos->offset - sizeof(struct allocExtDesc));
1990 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
1993 udf_write_aext(inode, epos, eloc, elen, inc);
1995 if (!epos->bh) {
1996 iinfo->i_lenAlloc += adsize;
1997 mark_inode_dirty(inode);
1998 } else {
1999 aed = (struct allocExtDesc *)epos->bh->b_data;
2000 le32_add_cpu(&aed->lengthAllocDescs, adsize);
2001 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2002 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2003 udf_update_tag(epos->bh->b_data,
2004 epos->offset + (inc ? 0 : adsize));
2005 else
2006 udf_update_tag(epos->bh->b_data,
2007 sizeof(struct allocExtDesc));
2008 mark_buffer_dirty_inode(epos->bh, inode);
2011 return 0;
2015 * Append extent at given position - should be the first free one in inode
2016 * / indirect extent. Takes care of allocating and linking indirect blocks.
2018 int udf_add_aext(struct inode *inode, struct extent_position *epos,
2019 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2021 int adsize;
2022 struct super_block *sb = inode->i_sb;
2024 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2025 adsize = sizeof(struct short_ad);
2026 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2027 adsize = sizeof(struct long_ad);
2028 else
2029 return -EIO;
2031 if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2032 int err;
2033 int new_block;
2035 new_block = udf_new_block(sb, NULL,
2036 epos->block.partitionReferenceNum,
2037 epos->block.logicalBlockNum, &err);
2038 if (!new_block)
2039 return -ENOSPC;
2041 err = udf_setup_indirect_aext(inode, new_block, epos);
2042 if (err)
2043 return err;
2046 return __udf_add_aext(inode, epos, eloc, elen, inc);
2049 void udf_write_aext(struct inode *inode, struct extent_position *epos,
2050 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2052 int adsize;
2053 uint8_t *ptr;
2054 struct short_ad *sad;
2055 struct long_ad *lad;
2056 struct udf_inode_info *iinfo = UDF_I(inode);
2058 if (!epos->bh)
2059 ptr = iinfo->i_ext.i_data + epos->offset -
2060 udf_file_entry_alloc_offset(inode) +
2061 iinfo->i_lenEAttr;
2062 else
2063 ptr = epos->bh->b_data + epos->offset;
2065 switch (iinfo->i_alloc_type) {
2066 case ICBTAG_FLAG_AD_SHORT:
2067 sad = (struct short_ad *)ptr;
2068 sad->extLength = cpu_to_le32(elen);
2069 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2070 adsize = sizeof(struct short_ad);
2071 break;
2072 case ICBTAG_FLAG_AD_LONG:
2073 lad = (struct long_ad *)ptr;
2074 lad->extLength = cpu_to_le32(elen);
2075 lad->extLocation = cpu_to_lelb(*eloc);
2076 memset(lad->impUse, 0x00, sizeof(lad->impUse));
2077 adsize = sizeof(struct long_ad);
2078 break;
2079 default:
2080 return;
2083 if (epos->bh) {
2084 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2085 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2086 struct allocExtDesc *aed =
2087 (struct allocExtDesc *)epos->bh->b_data;
2088 udf_update_tag(epos->bh->b_data,
2089 le32_to_cpu(aed->lengthAllocDescs) +
2090 sizeof(struct allocExtDesc));
2092 mark_buffer_dirty_inode(epos->bh, inode);
2093 } else {
2094 mark_inode_dirty(inode);
2097 if (inc)
2098 epos->offset += adsize;
2102 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2103 * someone does some weird stuff.
2105 #define UDF_MAX_INDIR_EXTS 16
2107 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2108 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2110 int8_t etype;
2111 unsigned int indirections = 0;
2113 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2114 (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
2115 int block;
2117 if (++indirections > UDF_MAX_INDIR_EXTS) {
2118 udf_err(inode->i_sb,
2119 "too many indirect extents in inode %lu\n",
2120 inode->i_ino);
2121 return -1;
2124 epos->block = *eloc;
2125 epos->offset = sizeof(struct allocExtDesc);
2126 brelse(epos->bh);
2127 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2128 epos->bh = udf_tread(inode->i_sb, block);
2129 if (!epos->bh) {
2130 udf_debug("reading block %d failed!\n", block);
2131 return -1;
2135 return etype;
2138 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2139 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2141 int alen;
2142 int8_t etype;
2143 uint8_t *ptr;
2144 struct short_ad *sad;
2145 struct long_ad *lad;
2146 struct udf_inode_info *iinfo = UDF_I(inode);
2148 if (!epos->bh) {
2149 if (!epos->offset)
2150 epos->offset = udf_file_entry_alloc_offset(inode);
2151 ptr = iinfo->i_ext.i_data + epos->offset -
2152 udf_file_entry_alloc_offset(inode) +
2153 iinfo->i_lenEAttr;
2154 alen = udf_file_entry_alloc_offset(inode) +
2155 iinfo->i_lenAlloc;
2156 } else {
2157 if (!epos->offset)
2158 epos->offset = sizeof(struct allocExtDesc);
2159 ptr = epos->bh->b_data + epos->offset;
2160 alen = sizeof(struct allocExtDesc) +
2161 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2162 lengthAllocDescs);
2165 switch (iinfo->i_alloc_type) {
2166 case ICBTAG_FLAG_AD_SHORT:
2167 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2168 if (!sad)
2169 return -1;
2170 etype = le32_to_cpu(sad->extLength) >> 30;
2171 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2172 eloc->partitionReferenceNum =
2173 iinfo->i_location.partitionReferenceNum;
2174 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2175 break;
2176 case ICBTAG_FLAG_AD_LONG:
2177 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2178 if (!lad)
2179 return -1;
2180 etype = le32_to_cpu(lad->extLength) >> 30;
2181 *eloc = lelb_to_cpu(lad->extLocation);
2182 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2183 break;
2184 default:
2185 udf_debug("alloc_type = %d unsupported\n", iinfo->i_alloc_type);
2186 return -1;
2189 return etype;
2192 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2193 struct kernel_lb_addr neloc, uint32_t nelen)
2195 struct kernel_lb_addr oeloc;
2196 uint32_t oelen;
2197 int8_t etype;
2199 if (epos.bh)
2200 get_bh(epos.bh);
2202 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2203 udf_write_aext(inode, &epos, &neloc, nelen, 1);
2204 neloc = oeloc;
2205 nelen = (etype << 30) | oelen;
2207 udf_add_aext(inode, &epos, &neloc, nelen, 1);
2208 brelse(epos.bh);
2210 return (nelen >> 30);
2213 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos,
2214 struct kernel_lb_addr eloc, uint32_t elen)
2216 struct extent_position oepos;
2217 int adsize;
2218 int8_t etype;
2219 struct allocExtDesc *aed;
2220 struct udf_inode_info *iinfo;
2222 if (epos.bh) {
2223 get_bh(epos.bh);
2224 get_bh(epos.bh);
2227 iinfo = UDF_I(inode);
2228 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2229 adsize = sizeof(struct short_ad);
2230 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2231 adsize = sizeof(struct long_ad);
2232 else
2233 adsize = 0;
2235 oepos = epos;
2236 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2237 return -1;
2239 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2240 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2241 if (oepos.bh != epos.bh) {
2242 oepos.block = epos.block;
2243 brelse(oepos.bh);
2244 get_bh(epos.bh);
2245 oepos.bh = epos.bh;
2246 oepos.offset = epos.offset - adsize;
2249 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2250 elen = 0;
2252 if (epos.bh != oepos.bh) {
2253 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2254 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2255 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2256 if (!oepos.bh) {
2257 iinfo->i_lenAlloc -= (adsize * 2);
2258 mark_inode_dirty(inode);
2259 } else {
2260 aed = (struct allocExtDesc *)oepos.bh->b_data;
2261 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2262 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2263 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2264 udf_update_tag(oepos.bh->b_data,
2265 oepos.offset - (2 * adsize));
2266 else
2267 udf_update_tag(oepos.bh->b_data,
2268 sizeof(struct allocExtDesc));
2269 mark_buffer_dirty_inode(oepos.bh, inode);
2271 } else {
2272 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2273 if (!oepos.bh) {
2274 iinfo->i_lenAlloc -= adsize;
2275 mark_inode_dirty(inode);
2276 } else {
2277 aed = (struct allocExtDesc *)oepos.bh->b_data;
2278 le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2279 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2280 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2281 udf_update_tag(oepos.bh->b_data,
2282 epos.offset - adsize);
2283 else
2284 udf_update_tag(oepos.bh->b_data,
2285 sizeof(struct allocExtDesc));
2286 mark_buffer_dirty_inode(oepos.bh, inode);
2290 brelse(epos.bh);
2291 brelse(oepos.bh);
2293 return (elen >> 30);
2296 int8_t inode_bmap(struct inode *inode, sector_t block,
2297 struct extent_position *pos, struct kernel_lb_addr *eloc,
2298 uint32_t *elen, sector_t *offset)
2300 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2301 loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2302 int8_t etype;
2303 struct udf_inode_info *iinfo;
2305 iinfo = UDF_I(inode);
2306 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2307 pos->offset = 0;
2308 pos->block = iinfo->i_location;
2309 pos->bh = NULL;
2311 *elen = 0;
2312 do {
2313 etype = udf_next_aext(inode, pos, eloc, elen, 1);
2314 if (etype == -1) {
2315 *offset = (bcount - lbcount) >> blocksize_bits;
2316 iinfo->i_lenExtents = lbcount;
2317 return -1;
2319 lbcount += *elen;
2320 } while (lbcount <= bcount);
2321 /* update extent cache */
2322 udf_update_extent_cache(inode, lbcount - *elen, pos);
2323 *offset = (bcount + *elen - lbcount) >> blocksize_bits;
2325 return etype;
2328 long udf_block_map(struct inode *inode, sector_t block)
2330 struct kernel_lb_addr eloc;
2331 uint32_t elen;
2332 sector_t offset;
2333 struct extent_position epos = {};
2334 int ret;
2336 down_read(&UDF_I(inode)->i_data_sem);
2338 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2339 (EXT_RECORDED_ALLOCATED >> 30))
2340 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2341 else
2342 ret = 0;
2344 up_read(&UDF_I(inode)->i_data_sem);
2345 brelse(epos.bh);
2347 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2348 return udf_fixed_to_variable(ret);
2349 else
2350 return ret;