2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
26 #include "xfs_mount.h"
27 #include "xfs_defer.h"
28 #include "xfs_inode.h"
29 #include "xfs_btree.h"
30 #include "xfs_ialloc.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_alloc.h"
33 #include "xfs_rtalloc.h"
34 #include "xfs_error.h"
36 #include "xfs_cksum.h"
37 #include "xfs_trans.h"
38 #include "xfs_buf_item.h"
39 #include "xfs_icreate_item.h"
40 #include "xfs_icache.h"
41 #include "xfs_trace.h"
47 * Allocation group level functions.
50 xfs_ialloc_cluster_alignment(
53 if (xfs_sb_version_hasalign(&mp
->m_sb
) &&
54 mp
->m_sb
.sb_inoalignmt
>= xfs_icluster_size_fsb(mp
))
55 return mp
->m_sb
.sb_inoalignmt
;
60 * Lookup a record by ino in the btree given by cur.
64 struct xfs_btree_cur
*cur
, /* btree cursor */
65 xfs_agino_t ino
, /* starting inode of chunk */
66 xfs_lookup_t dir
, /* <=, >=, == */
67 int *stat
) /* success/failure */
69 cur
->bc_rec
.i
.ir_startino
= ino
;
70 cur
->bc_rec
.i
.ir_holemask
= 0;
71 cur
->bc_rec
.i
.ir_count
= 0;
72 cur
->bc_rec
.i
.ir_freecount
= 0;
73 cur
->bc_rec
.i
.ir_free
= 0;
74 return xfs_btree_lookup(cur
, dir
, stat
);
78 * Update the record referred to by cur to the value given.
79 * This either works (return 0) or gets an EFSCORRUPTED error.
81 STATIC
int /* error */
83 struct xfs_btree_cur
*cur
, /* btree cursor */
84 xfs_inobt_rec_incore_t
*irec
) /* btree record */
86 union xfs_btree_rec rec
;
88 rec
.inobt
.ir_startino
= cpu_to_be32(irec
->ir_startino
);
89 if (xfs_sb_version_hassparseinodes(&cur
->bc_mp
->m_sb
)) {
90 rec
.inobt
.ir_u
.sp
.ir_holemask
= cpu_to_be16(irec
->ir_holemask
);
91 rec
.inobt
.ir_u
.sp
.ir_count
= irec
->ir_count
;
92 rec
.inobt
.ir_u
.sp
.ir_freecount
= irec
->ir_freecount
;
94 /* ir_holemask/ir_count not supported on-disk */
95 rec
.inobt
.ir_u
.f
.ir_freecount
= cpu_to_be32(irec
->ir_freecount
);
97 rec
.inobt
.ir_free
= cpu_to_be64(irec
->ir_free
);
98 return xfs_btree_update(cur
, &rec
);
101 /* Convert on-disk btree record to incore inobt record. */
103 xfs_inobt_btrec_to_irec(
104 struct xfs_mount
*mp
,
105 union xfs_btree_rec
*rec
,
106 struct xfs_inobt_rec_incore
*irec
)
108 irec
->ir_startino
= be32_to_cpu(rec
->inobt
.ir_startino
);
109 if (xfs_sb_version_hassparseinodes(&mp
->m_sb
)) {
110 irec
->ir_holemask
= be16_to_cpu(rec
->inobt
.ir_u
.sp
.ir_holemask
);
111 irec
->ir_count
= rec
->inobt
.ir_u
.sp
.ir_count
;
112 irec
->ir_freecount
= rec
->inobt
.ir_u
.sp
.ir_freecount
;
115 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
116 * values for full inode chunks.
118 irec
->ir_holemask
= XFS_INOBT_HOLEMASK_FULL
;
119 irec
->ir_count
= XFS_INODES_PER_CHUNK
;
121 be32_to_cpu(rec
->inobt
.ir_u
.f
.ir_freecount
);
123 irec
->ir_free
= be64_to_cpu(rec
->inobt
.ir_free
);
127 * Get the data from the pointed-to record.
131 struct xfs_btree_cur
*cur
,
132 struct xfs_inobt_rec_incore
*irec
,
135 union xfs_btree_rec
*rec
;
138 error
= xfs_btree_get_rec(cur
, &rec
, stat
);
139 if (error
|| *stat
== 0)
142 xfs_inobt_btrec_to_irec(cur
->bc_mp
, rec
, irec
);
148 * Insert a single inobt record. Cursor must already point to desired location.
151 xfs_inobt_insert_rec(
152 struct xfs_btree_cur
*cur
,
159 cur
->bc_rec
.i
.ir_holemask
= holemask
;
160 cur
->bc_rec
.i
.ir_count
= count
;
161 cur
->bc_rec
.i
.ir_freecount
= freecount
;
162 cur
->bc_rec
.i
.ir_free
= free
;
163 return xfs_btree_insert(cur
, stat
);
167 * Insert records describing a newly allocated inode chunk into the inobt.
171 struct xfs_mount
*mp
,
172 struct xfs_trans
*tp
,
173 struct xfs_buf
*agbp
,
178 struct xfs_btree_cur
*cur
;
179 struct xfs_agi
*agi
= XFS_BUF_TO_AGI(agbp
);
180 xfs_agnumber_t agno
= be32_to_cpu(agi
->agi_seqno
);
185 cur
= xfs_inobt_init_cursor(mp
, tp
, agbp
, agno
, btnum
);
187 for (thisino
= newino
;
188 thisino
< newino
+ newlen
;
189 thisino
+= XFS_INODES_PER_CHUNK
) {
190 error
= xfs_inobt_lookup(cur
, thisino
, XFS_LOOKUP_EQ
, &i
);
192 xfs_btree_del_cursor(cur
, XFS_BTREE_ERROR
);
197 error
= xfs_inobt_insert_rec(cur
, XFS_INOBT_HOLEMASK_FULL
,
198 XFS_INODES_PER_CHUNK
,
199 XFS_INODES_PER_CHUNK
,
200 XFS_INOBT_ALL_FREE
, &i
);
202 xfs_btree_del_cursor(cur
, XFS_BTREE_ERROR
);
208 xfs_btree_del_cursor(cur
, XFS_BTREE_NOERROR
);
214 * Verify that the number of free inodes in the AGI is correct.
218 xfs_check_agi_freecount(
219 struct xfs_btree_cur
*cur
,
222 if (cur
->bc_nlevels
== 1) {
223 xfs_inobt_rec_incore_t rec
;
228 error
= xfs_inobt_lookup(cur
, 0, XFS_LOOKUP_GE
, &i
);
233 error
= xfs_inobt_get_rec(cur
, &rec
, &i
);
238 freecount
+= rec
.ir_freecount
;
239 error
= xfs_btree_increment(cur
, 0, &i
);
245 if (!XFS_FORCED_SHUTDOWN(cur
->bc_mp
))
246 ASSERT(freecount
== be32_to_cpu(agi
->agi_freecount
));
251 #define xfs_check_agi_freecount(cur, agi) 0
255 * Initialise a new set of inodes. When called without a transaction context
256 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
257 * than logging them (which in a transaction context puts them into the AIL
258 * for writeback rather than the xfsbufd queue).
261 xfs_ialloc_inode_init(
262 struct xfs_mount
*mp
,
263 struct xfs_trans
*tp
,
264 struct list_head
*buffer_list
,
268 xfs_agblock_t length
,
271 struct xfs_buf
*fbuf
;
272 struct xfs_dinode
*free
;
273 int nbufs
, blks_per_cluster
, inodes_per_cluster
;
280 * Loop over the new block(s), filling in the inodes. For small block
281 * sizes, manipulate the inodes in buffers which are multiples of the
284 blks_per_cluster
= xfs_icluster_size_fsb(mp
);
285 inodes_per_cluster
= blks_per_cluster
<< mp
->m_sb
.sb_inopblog
;
286 nbufs
= length
/ blks_per_cluster
;
289 * Figure out what version number to use in the inodes we create. If
290 * the superblock version has caught up to the one that supports the new
291 * inode format, then use the new inode version. Otherwise use the old
292 * version so that old kernels will continue to be able to use the file
295 * For v3 inodes, we also need to write the inode number into the inode,
296 * so calculate the first inode number of the chunk here as
297 * XFS_OFFBNO_TO_AGINO() only works within a filesystem block, not
298 * across multiple filesystem blocks (such as a cluster) and so cannot
299 * be used in the cluster buffer loop below.
301 * Further, because we are writing the inode directly into the buffer
302 * and calculating a CRC on the entire inode, we have ot log the entire
303 * inode so that the entire range the CRC covers is present in the log.
304 * That means for v3 inode we log the entire buffer rather than just the
307 if (xfs_sb_version_hascrc(&mp
->m_sb
)) {
309 ino
= XFS_AGINO_TO_INO(mp
, agno
,
310 XFS_OFFBNO_TO_AGINO(mp
, agbno
, 0));
313 * log the initialisation that is about to take place as an
314 * logical operation. This means the transaction does not
315 * need to log the physical changes to the inode buffers as log
316 * recovery will know what initialisation is actually needed.
317 * Hence we only need to log the buffers as "ordered" buffers so
318 * they track in the AIL as if they were physically logged.
321 xfs_icreate_log(tp
, agno
, agbno
, icount
,
322 mp
->m_sb
.sb_inodesize
, length
, gen
);
326 for (j
= 0; j
< nbufs
; j
++) {
330 d
= XFS_AGB_TO_DADDR(mp
, agno
, agbno
+ (j
* blks_per_cluster
));
331 fbuf
= xfs_trans_get_buf(tp
, mp
->m_ddev_targp
, d
,
332 mp
->m_bsize
* blks_per_cluster
,
337 /* Initialize the inode buffers and log them appropriately. */
338 fbuf
->b_ops
= &xfs_inode_buf_ops
;
339 xfs_buf_zero(fbuf
, 0, BBTOB(fbuf
->b_length
));
340 for (i
= 0; i
< inodes_per_cluster
; i
++) {
341 int ioffset
= i
<< mp
->m_sb
.sb_inodelog
;
342 uint isize
= xfs_dinode_size(version
);
344 free
= xfs_make_iptr(mp
, fbuf
, i
);
345 free
->di_magic
= cpu_to_be16(XFS_DINODE_MAGIC
);
346 free
->di_version
= version
;
347 free
->di_gen
= cpu_to_be32(gen
);
348 free
->di_next_unlinked
= cpu_to_be32(NULLAGINO
);
351 free
->di_ino
= cpu_to_be64(ino
);
353 uuid_copy(&free
->di_uuid
,
354 &mp
->m_sb
.sb_meta_uuid
);
355 xfs_dinode_calc_crc(mp
, free
);
357 /* just log the inode core */
358 xfs_trans_log_buf(tp
, fbuf
, ioffset
,
359 ioffset
+ isize
- 1);
365 * Mark the buffer as an inode allocation buffer so it
366 * sticks in AIL at the point of this allocation
367 * transaction. This ensures the they are on disk before
368 * the tail of the log can be moved past this
369 * transaction (i.e. by preventing relogging from moving
370 * it forward in the log).
372 xfs_trans_inode_alloc_buf(tp
, fbuf
);
375 * Mark the buffer as ordered so that they are
376 * not physically logged in the transaction but
377 * still tracked in the AIL as part of the
378 * transaction and pin the log appropriately.
380 xfs_trans_ordered_buf(tp
, fbuf
);
383 fbuf
->b_flags
|= XBF_DONE
;
384 xfs_buf_delwri_queue(fbuf
, buffer_list
);
392 * Align startino and allocmask for a recently allocated sparse chunk such that
393 * they are fit for insertion (or merge) into the on-disk inode btrees.
397 * When enabled, sparse inode support increases the inode alignment from cluster
398 * size to inode chunk size. This means that the minimum range between two
399 * non-adjacent inode records in the inobt is large enough for a full inode
400 * record. This allows for cluster sized, cluster aligned block allocation
401 * without need to worry about whether the resulting inode record overlaps with
402 * another record in the tree. Without this basic rule, we would have to deal
403 * with the consequences of overlap by potentially undoing recent allocations in
404 * the inode allocation codepath.
406 * Because of this alignment rule (which is enforced on mount), there are two
407 * inobt possibilities for newly allocated sparse chunks. One is that the
408 * aligned inode record for the chunk covers a range of inodes not already
409 * covered in the inobt (i.e., it is safe to insert a new sparse record). The
410 * other is that a record already exists at the aligned startino that considers
411 * the newly allocated range as sparse. In the latter case, record content is
412 * merged in hope that sparse inode chunks fill to full chunks over time.
415 xfs_align_sparse_ino(
416 struct xfs_mount
*mp
,
417 xfs_agino_t
*startino
,
424 agbno
= XFS_AGINO_TO_AGBNO(mp
, *startino
);
425 mod
= agbno
% mp
->m_sb
.sb_inoalignmt
;
429 /* calculate the inode offset and align startino */
430 offset
= mod
<< mp
->m_sb
.sb_inopblog
;
434 * Since startino has been aligned down, left shift allocmask such that
435 * it continues to represent the same physical inodes relative to the
438 *allocmask
<<= offset
/ XFS_INODES_PER_HOLEMASK_BIT
;
442 * Determine whether the source inode record can merge into the target. Both
443 * records must be sparse, the inode ranges must match and there must be no
444 * allocation overlap between the records.
447 __xfs_inobt_can_merge(
448 struct xfs_inobt_rec_incore
*trec
, /* tgt record */
449 struct xfs_inobt_rec_incore
*srec
) /* src record */
454 /* records must cover the same inode range */
455 if (trec
->ir_startino
!= srec
->ir_startino
)
458 /* both records must be sparse */
459 if (!xfs_inobt_issparse(trec
->ir_holemask
) ||
460 !xfs_inobt_issparse(srec
->ir_holemask
))
463 /* both records must track some inodes */
464 if (!trec
->ir_count
|| !srec
->ir_count
)
467 /* can't exceed capacity of a full record */
468 if (trec
->ir_count
+ srec
->ir_count
> XFS_INODES_PER_CHUNK
)
471 /* verify there is no allocation overlap */
472 talloc
= xfs_inobt_irec_to_allocmask(trec
);
473 salloc
= xfs_inobt_irec_to_allocmask(srec
);
481 * Merge the source inode record into the target. The caller must call
482 * __xfs_inobt_can_merge() to ensure the merge is valid.
485 __xfs_inobt_rec_merge(
486 struct xfs_inobt_rec_incore
*trec
, /* target */
487 struct xfs_inobt_rec_incore
*srec
) /* src */
489 ASSERT(trec
->ir_startino
== srec
->ir_startino
);
491 /* combine the counts */
492 trec
->ir_count
+= srec
->ir_count
;
493 trec
->ir_freecount
+= srec
->ir_freecount
;
496 * Merge the holemask and free mask. For both fields, 0 bits refer to
497 * allocated inodes. We combine the allocated ranges with bitwise AND.
499 trec
->ir_holemask
&= srec
->ir_holemask
;
500 trec
->ir_free
&= srec
->ir_free
;
504 * Insert a new sparse inode chunk into the associated inode btree. The inode
505 * record for the sparse chunk is pre-aligned to a startino that should match
506 * any pre-existing sparse inode record in the tree. This allows sparse chunks
509 * This function supports two modes of handling preexisting records depending on
510 * the merge flag. If merge is true, the provided record is merged with the
511 * existing record and updated in place. The merged record is returned in nrec.
512 * If merge is false, an existing record is replaced with the provided record.
513 * If no preexisting record exists, the provided record is always inserted.
515 * It is considered corruption if a merge is requested and not possible. Given
516 * the sparse inode alignment constraints, this should never happen.
519 xfs_inobt_insert_sprec(
520 struct xfs_mount
*mp
,
521 struct xfs_trans
*tp
,
522 struct xfs_buf
*agbp
,
524 struct xfs_inobt_rec_incore
*nrec
, /* in/out: new/merged rec. */
525 bool merge
) /* merge or replace */
527 struct xfs_btree_cur
*cur
;
528 struct xfs_agi
*agi
= XFS_BUF_TO_AGI(agbp
);
529 xfs_agnumber_t agno
= be32_to_cpu(agi
->agi_seqno
);
532 struct xfs_inobt_rec_incore rec
;
534 cur
= xfs_inobt_init_cursor(mp
, tp
, agbp
, agno
, btnum
);
536 /* the new record is pre-aligned so we know where to look */
537 error
= xfs_inobt_lookup(cur
, nrec
->ir_startino
, XFS_LOOKUP_EQ
, &i
);
540 /* if nothing there, insert a new record and return */
542 error
= xfs_inobt_insert_rec(cur
, nrec
->ir_holemask
,
543 nrec
->ir_count
, nrec
->ir_freecount
,
547 XFS_WANT_CORRUPTED_GOTO(mp
, i
== 1, error
);
553 * A record exists at this startino. Merge or replace the record
554 * depending on what we've been asked to do.
557 error
= xfs_inobt_get_rec(cur
, &rec
, &i
);
560 XFS_WANT_CORRUPTED_GOTO(mp
, i
== 1, error
);
561 XFS_WANT_CORRUPTED_GOTO(mp
,
562 rec
.ir_startino
== nrec
->ir_startino
,
566 * This should never fail. If we have coexisting records that
567 * cannot merge, something is seriously wrong.
569 XFS_WANT_CORRUPTED_GOTO(mp
, __xfs_inobt_can_merge(nrec
, &rec
),
572 trace_xfs_irec_merge_pre(mp
, agno
, rec
.ir_startino
,
573 rec
.ir_holemask
, nrec
->ir_startino
,
576 /* merge to nrec to output the updated record */
577 __xfs_inobt_rec_merge(nrec
, &rec
);
579 trace_xfs_irec_merge_post(mp
, agno
, nrec
->ir_startino
,
582 error
= xfs_inobt_rec_check_count(mp
, nrec
);
587 error
= xfs_inobt_update(cur
, nrec
);
592 xfs_btree_del_cursor(cur
, XFS_BTREE_NOERROR
);
595 xfs_btree_del_cursor(cur
, XFS_BTREE_ERROR
);
600 * Allocate new inodes in the allocation group specified by agbp.
601 * Return 0 for success, else error code.
603 STATIC
int /* error code or 0 */
605 xfs_trans_t
*tp
, /* transaction pointer */
606 xfs_buf_t
*agbp
, /* alloc group buffer */
609 xfs_agi_t
*agi
; /* allocation group header */
610 xfs_alloc_arg_t args
; /* allocation argument structure */
613 xfs_agino_t newino
; /* new first inode's number */
614 xfs_agino_t newlen
; /* new number of inodes */
615 int isaligned
= 0; /* inode allocation at stripe unit */
617 uint16_t allocmask
= (uint16_t) -1; /* init. to full chunk */
618 struct xfs_inobt_rec_incore rec
;
619 struct xfs_perag
*pag
;
622 memset(&args
, 0, sizeof(args
));
624 args
.mp
= tp
->t_mountp
;
625 args
.fsbno
= NULLFSBLOCK
;
626 xfs_rmap_ag_owner(&args
.oinfo
, XFS_RMAP_OWN_INODES
);
629 /* randomly do sparse inode allocations */
630 if (xfs_sb_version_hassparseinodes(&tp
->t_mountp
->m_sb
) &&
631 args
.mp
->m_ialloc_min_blks
< args
.mp
->m_ialloc_blks
)
632 do_sparse
= prandom_u32() & 1;
636 * Locking will ensure that we don't have two callers in here
639 newlen
= args
.mp
->m_ialloc_inos
;
640 if (args
.mp
->m_maxicount
&&
641 percpu_counter_read_positive(&args
.mp
->m_icount
) + newlen
>
642 args
.mp
->m_maxicount
)
644 args
.minlen
= args
.maxlen
= args
.mp
->m_ialloc_blks
;
646 * First try to allocate inodes contiguous with the last-allocated
647 * chunk of inodes. If the filesystem is striped, this will fill
648 * an entire stripe unit with inodes.
650 agi
= XFS_BUF_TO_AGI(agbp
);
651 newino
= be32_to_cpu(agi
->agi_newino
);
652 agno
= be32_to_cpu(agi
->agi_seqno
);
653 args
.agbno
= XFS_AGINO_TO_AGBNO(args
.mp
, newino
) +
654 args
.mp
->m_ialloc_blks
;
657 if (likely(newino
!= NULLAGINO
&&
658 (args
.agbno
< be32_to_cpu(agi
->agi_length
)))) {
659 args
.fsbno
= XFS_AGB_TO_FSB(args
.mp
, agno
, args
.agbno
);
660 args
.type
= XFS_ALLOCTYPE_THIS_BNO
;
664 * We need to take into account alignment here to ensure that
665 * we don't modify the free list if we fail to have an exact
666 * block. If we don't have an exact match, and every oher
667 * attempt allocation attempt fails, we'll end up cancelling
668 * a dirty transaction and shutting down.
670 * For an exact allocation, alignment must be 1,
671 * however we need to take cluster alignment into account when
672 * fixing up the freelist. Use the minalignslop field to
673 * indicate that extra blocks might be required for alignment,
674 * but not to use them in the actual exact allocation.
677 args
.minalignslop
= xfs_ialloc_cluster_alignment(args
.mp
) - 1;
679 /* Allow space for the inode btree to split. */
680 args
.minleft
= args
.mp
->m_in_maxlevels
- 1;
681 if ((error
= xfs_alloc_vextent(&args
)))
685 * This request might have dirtied the transaction if the AG can
686 * satisfy the request, but the exact block was not available.
687 * If the allocation did fail, subsequent requests will relax
688 * the exact agbno requirement and increase the alignment
689 * instead. It is critical that the total size of the request
690 * (len + alignment + slop) does not increase from this point
691 * on, so reset minalignslop to ensure it is not included in
692 * subsequent requests.
694 args
.minalignslop
= 0;
697 if (unlikely(args
.fsbno
== NULLFSBLOCK
)) {
699 * Set the alignment for the allocation.
700 * If stripe alignment is turned on then align at stripe unit
702 * If the cluster size is smaller than a filesystem block
703 * then we're doing I/O for inodes in filesystem block size
704 * pieces, so don't need alignment anyway.
707 if (args
.mp
->m_sinoalign
) {
708 ASSERT(!(args
.mp
->m_flags
& XFS_MOUNT_NOALIGN
));
709 args
.alignment
= args
.mp
->m_dalign
;
712 args
.alignment
= xfs_ialloc_cluster_alignment(args
.mp
);
714 * Need to figure out where to allocate the inode blocks.
715 * Ideally they should be spaced out through the a.g.
716 * For now, just allocate blocks up front.
718 args
.agbno
= be32_to_cpu(agi
->agi_root
);
719 args
.fsbno
= XFS_AGB_TO_FSB(args
.mp
, agno
, args
.agbno
);
721 * Allocate a fixed-size extent of inodes.
723 args
.type
= XFS_ALLOCTYPE_NEAR_BNO
;
726 * Allow space for the inode btree to split.
728 args
.minleft
= args
.mp
->m_in_maxlevels
- 1;
729 if ((error
= xfs_alloc_vextent(&args
)))
734 * If stripe alignment is turned on, then try again with cluster
737 if (isaligned
&& args
.fsbno
== NULLFSBLOCK
) {
738 args
.type
= XFS_ALLOCTYPE_NEAR_BNO
;
739 args
.agbno
= be32_to_cpu(agi
->agi_root
);
740 args
.fsbno
= XFS_AGB_TO_FSB(args
.mp
, agno
, args
.agbno
);
741 args
.alignment
= xfs_ialloc_cluster_alignment(args
.mp
);
742 if ((error
= xfs_alloc_vextent(&args
)))
747 * Finally, try a sparse allocation if the filesystem supports it and
748 * the sparse allocation length is smaller than a full chunk.
750 if (xfs_sb_version_hassparseinodes(&args
.mp
->m_sb
) &&
751 args
.mp
->m_ialloc_min_blks
< args
.mp
->m_ialloc_blks
&&
752 args
.fsbno
== NULLFSBLOCK
) {
754 args
.type
= XFS_ALLOCTYPE_NEAR_BNO
;
755 args
.agbno
= be32_to_cpu(agi
->agi_root
);
756 args
.fsbno
= XFS_AGB_TO_FSB(args
.mp
, agno
, args
.agbno
);
757 args
.alignment
= args
.mp
->m_sb
.sb_spino_align
;
760 args
.minlen
= args
.mp
->m_ialloc_min_blks
;
761 args
.maxlen
= args
.minlen
;
764 * The inode record will be aligned to full chunk size. We must
765 * prevent sparse allocation from AG boundaries that result in
766 * invalid inode records, such as records that start at agbno 0
767 * or extend beyond the AG.
769 * Set min agbno to the first aligned, non-zero agbno and max to
770 * the last aligned agbno that is at least one full chunk from
773 args
.min_agbno
= args
.mp
->m_sb
.sb_inoalignmt
;
774 args
.max_agbno
= round_down(args
.mp
->m_sb
.sb_agblocks
,
775 args
.mp
->m_sb
.sb_inoalignmt
) -
776 args
.mp
->m_ialloc_blks
;
778 error
= xfs_alloc_vextent(&args
);
782 newlen
= args
.len
<< args
.mp
->m_sb
.sb_inopblog
;
783 ASSERT(newlen
<= XFS_INODES_PER_CHUNK
);
784 allocmask
= (1 << (newlen
/ XFS_INODES_PER_HOLEMASK_BIT
)) - 1;
787 if (args
.fsbno
== NULLFSBLOCK
) {
791 ASSERT(args
.len
== args
.minlen
);
794 * Stamp and write the inode buffers.
796 * Seed the new inode cluster with a random generation number. This
797 * prevents short-term reuse of generation numbers if a chunk is
798 * freed and then immediately reallocated. We use random numbers
799 * rather than a linear progression to prevent the next generation
800 * number from being easily guessable.
802 error
= xfs_ialloc_inode_init(args
.mp
, tp
, NULL
, newlen
, agno
,
803 args
.agbno
, args
.len
, prandom_u32());
808 * Convert the results.
810 newino
= XFS_OFFBNO_TO_AGINO(args
.mp
, args
.agbno
, 0);
812 if (xfs_inobt_issparse(~allocmask
)) {
814 * We've allocated a sparse chunk. Align the startino and mask.
816 xfs_align_sparse_ino(args
.mp
, &newino
, &allocmask
);
818 rec
.ir_startino
= newino
;
819 rec
.ir_holemask
= ~allocmask
;
820 rec
.ir_count
= newlen
;
821 rec
.ir_freecount
= newlen
;
822 rec
.ir_free
= XFS_INOBT_ALL_FREE
;
825 * Insert the sparse record into the inobt and allow for a merge
826 * if necessary. If a merge does occur, rec is updated to the
829 error
= xfs_inobt_insert_sprec(args
.mp
, tp
, agbp
, XFS_BTNUM_INO
,
831 if (error
== -EFSCORRUPTED
) {
833 "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
834 XFS_AGINO_TO_INO(args
.mp
, agno
,
836 rec
.ir_holemask
, rec
.ir_count
);
837 xfs_force_shutdown(args
.mp
, SHUTDOWN_CORRUPT_INCORE
);
843 * We can't merge the part we've just allocated as for the inobt
844 * due to finobt semantics. The original record may or may not
845 * exist independent of whether physical inodes exist in this
848 * We must update the finobt record based on the inobt record.
849 * rec contains the fully merged and up to date inobt record
850 * from the previous call. Set merge false to replace any
851 * existing record with this one.
853 if (xfs_sb_version_hasfinobt(&args
.mp
->m_sb
)) {
854 error
= xfs_inobt_insert_sprec(args
.mp
, tp
, agbp
,
855 XFS_BTNUM_FINO
, &rec
,
861 /* full chunk - insert new records to both btrees */
862 error
= xfs_inobt_insert(args
.mp
, tp
, agbp
, newino
, newlen
,
867 if (xfs_sb_version_hasfinobt(&args
.mp
->m_sb
)) {
868 error
= xfs_inobt_insert(args
.mp
, tp
, agbp
, newino
,
869 newlen
, XFS_BTNUM_FINO
);
876 * Update AGI counts and newino.
878 be32_add_cpu(&agi
->agi_count
, newlen
);
879 be32_add_cpu(&agi
->agi_freecount
, newlen
);
880 pag
= xfs_perag_get(args
.mp
, agno
);
881 pag
->pagi_freecount
+= newlen
;
883 agi
->agi_newino
= cpu_to_be32(newino
);
886 * Log allocation group header fields
888 xfs_ialloc_log_agi(tp
, agbp
,
889 XFS_AGI_COUNT
| XFS_AGI_FREECOUNT
| XFS_AGI_NEWINO
);
891 * Modify/log superblock values for inode count and inode free count.
893 xfs_trans_mod_sb(tp
, XFS_TRANS_SB_ICOUNT
, (long)newlen
);
894 xfs_trans_mod_sb(tp
, XFS_TRANS_SB_IFREE
, (long)newlen
);
899 STATIC xfs_agnumber_t
905 spin_lock(&mp
->m_agirotor_lock
);
906 agno
= mp
->m_agirotor
;
907 if (++mp
->m_agirotor
>= mp
->m_maxagi
)
909 spin_unlock(&mp
->m_agirotor_lock
);
915 * Select an allocation group to look for a free inode in, based on the parent
916 * inode and the mode. Return the allocation group buffer.
918 STATIC xfs_agnumber_t
919 xfs_ialloc_ag_select(
920 xfs_trans_t
*tp
, /* transaction pointer */
921 xfs_ino_t parent
, /* parent directory inode number */
922 umode_t mode
, /* bits set to indicate file type */
923 int okalloc
) /* ok to allocate more space */
925 xfs_agnumber_t agcount
; /* number of ag's in the filesystem */
926 xfs_agnumber_t agno
; /* current ag number */
927 int flags
; /* alloc buffer locking flags */
928 xfs_extlen_t ineed
; /* blocks needed for inode allocation */
929 xfs_extlen_t longest
= 0; /* longest extent available */
930 xfs_mount_t
*mp
; /* mount point structure */
931 int needspace
; /* file mode implies space allocated */
932 xfs_perag_t
*pag
; /* per allocation group data */
933 xfs_agnumber_t pagno
; /* parent (starting) ag number */
937 * Files of these types need at least one block if length > 0
938 * (and they won't fit in the inode, but that's hard to figure out).
940 needspace
= S_ISDIR(mode
) || S_ISREG(mode
) || S_ISLNK(mode
);
942 agcount
= mp
->m_maxagi
;
944 pagno
= xfs_ialloc_next_ag(mp
);
946 pagno
= XFS_INO_TO_AGNO(mp
, parent
);
947 if (pagno
>= agcount
)
951 ASSERT(pagno
< agcount
);
954 * Loop through allocation groups, looking for one with a little
955 * free space in it. Note we don't look for free inodes, exactly.
956 * Instead, we include whether there is a need to allocate inodes
957 * to mean that blocks must be allocated for them,
958 * if none are currently free.
961 flags
= XFS_ALLOC_FLAG_TRYLOCK
;
963 pag
= xfs_perag_get(mp
, agno
);
964 if (!pag
->pagi_inodeok
) {
965 xfs_ialloc_next_ag(mp
);
969 if (!pag
->pagi_init
) {
970 error
= xfs_ialloc_pagi_init(mp
, tp
, agno
);
975 if (pag
->pagi_freecount
) {
983 if (!pag
->pagf_init
) {
984 error
= xfs_alloc_pagf_init(mp
, tp
, agno
, flags
);
990 * Check that there is enough free space for the file plus a
991 * chunk of inodes if we need to allocate some. If this is the
992 * first pass across the AGs, take into account the potential
993 * space needed for alignment of inode chunks when checking the
994 * longest contiguous free space in the AG - this prevents us
995 * from getting ENOSPC because we have free space larger than
996 * m_ialloc_blks but alignment constraints prevent us from using
999 * If we can't find an AG with space for full alignment slack to
1000 * be taken into account, we must be near ENOSPC in all AGs.
1001 * Hence we don't include alignment for the second pass and so
1002 * if we fail allocation due to alignment issues then it is most
1003 * likely a real ENOSPC condition.
1005 ineed
= mp
->m_ialloc_min_blks
;
1006 if (flags
&& ineed
> 1)
1007 ineed
+= xfs_ialloc_cluster_alignment(mp
);
1008 longest
= pag
->pagf_longest
;
1010 longest
= pag
->pagf_flcount
> 0;
1012 if (pag
->pagf_freeblks
>= needspace
+ ineed
&&
1020 * No point in iterating over the rest, if we're shutting
1023 if (XFS_FORCED_SHUTDOWN(mp
))
1024 return NULLAGNUMBER
;
1026 if (agno
>= agcount
)
1028 if (agno
== pagno
) {
1030 return NULLAGNUMBER
;
1037 * Try to retrieve the next record to the left/right from the current one.
1040 xfs_ialloc_next_rec(
1041 struct xfs_btree_cur
*cur
,
1042 xfs_inobt_rec_incore_t
*rec
,
1050 error
= xfs_btree_decrement(cur
, 0, &i
);
1052 error
= xfs_btree_increment(cur
, 0, &i
);
1058 error
= xfs_inobt_get_rec(cur
, rec
, &i
);
1061 XFS_WANT_CORRUPTED_RETURN(cur
->bc_mp
, i
== 1);
1069 struct xfs_btree_cur
*cur
,
1071 xfs_inobt_rec_incore_t
*rec
,
1077 error
= xfs_inobt_lookup(cur
, agino
, XFS_LOOKUP_EQ
, &i
);
1082 error
= xfs_inobt_get_rec(cur
, rec
, &i
);
1085 XFS_WANT_CORRUPTED_RETURN(cur
->bc_mp
, i
== 1);
1092 * Return the offset of the first free inode in the record. If the inode chunk
1093 * is sparsely allocated, we convert the record holemask to inode granularity
1094 * and mask off the unallocated regions from the inode free mask.
1097 xfs_inobt_first_free_inode(
1098 struct xfs_inobt_rec_incore
*rec
)
1100 xfs_inofree_t realfree
;
1102 /* if there are no holes, return the first available offset */
1103 if (!xfs_inobt_issparse(rec
->ir_holemask
))
1104 return xfs_lowbit64(rec
->ir_free
);
1106 realfree
= xfs_inobt_irec_to_allocmask(rec
);
1107 realfree
&= rec
->ir_free
;
1109 return xfs_lowbit64(realfree
);
1113 * Allocate an inode using the inobt-only algorithm.
1116 xfs_dialloc_ag_inobt(
1117 struct xfs_trans
*tp
,
1118 struct xfs_buf
*agbp
,
1122 struct xfs_mount
*mp
= tp
->t_mountp
;
1123 struct xfs_agi
*agi
= XFS_BUF_TO_AGI(agbp
);
1124 xfs_agnumber_t agno
= be32_to_cpu(agi
->agi_seqno
);
1125 xfs_agnumber_t pagno
= XFS_INO_TO_AGNO(mp
, parent
);
1126 xfs_agino_t pagino
= XFS_INO_TO_AGINO(mp
, parent
);
1127 struct xfs_perag
*pag
;
1128 struct xfs_btree_cur
*cur
, *tcur
;
1129 struct xfs_inobt_rec_incore rec
, trec
;
1134 int searchdistance
= 10;
1136 pag
= xfs_perag_get(mp
, agno
);
1138 ASSERT(pag
->pagi_init
);
1139 ASSERT(pag
->pagi_inodeok
);
1140 ASSERT(pag
->pagi_freecount
> 0);
1143 cur
= xfs_inobt_init_cursor(mp
, tp
, agbp
, agno
, XFS_BTNUM_INO
);
1145 * If pagino is 0 (this is the root inode allocation) use newino.
1146 * This must work because we've just allocated some.
1149 pagino
= be32_to_cpu(agi
->agi_newino
);
1151 error
= xfs_check_agi_freecount(cur
, agi
);
1156 * If in the same AG as the parent, try to get near the parent.
1158 if (pagno
== agno
) {
1159 int doneleft
; /* done, to the left */
1160 int doneright
; /* done, to the right */
1162 error
= xfs_inobt_lookup(cur
, pagino
, XFS_LOOKUP_LE
, &i
);
1165 XFS_WANT_CORRUPTED_GOTO(mp
, i
== 1, error0
);
1167 error
= xfs_inobt_get_rec(cur
, &rec
, &j
);
1170 XFS_WANT_CORRUPTED_GOTO(mp
, j
== 1, error0
);
1172 if (rec
.ir_freecount
> 0) {
1174 * Found a free inode in the same chunk
1175 * as the parent, done.
1182 * In the same AG as parent, but parent's chunk is full.
1185 /* duplicate the cursor, search left & right simultaneously */
1186 error
= xfs_btree_dup_cursor(cur
, &tcur
);
1191 * Skip to last blocks looked up if same parent inode.
1193 if (pagino
!= NULLAGINO
&&
1194 pag
->pagl_pagino
== pagino
&&
1195 pag
->pagl_leftrec
!= NULLAGINO
&&
1196 pag
->pagl_rightrec
!= NULLAGINO
) {
1197 error
= xfs_ialloc_get_rec(tcur
, pag
->pagl_leftrec
,
1202 error
= xfs_ialloc_get_rec(cur
, pag
->pagl_rightrec
,
1207 /* search left with tcur, back up 1 record */
1208 error
= xfs_ialloc_next_rec(tcur
, &trec
, &doneleft
, 1);
1212 /* search right with cur, go forward 1 record. */
1213 error
= xfs_ialloc_next_rec(cur
, &rec
, &doneright
, 0);
1219 * Loop until we find an inode chunk with a free inode.
1221 while (--searchdistance
> 0 && (!doneleft
|| !doneright
)) {
1222 int useleft
; /* using left inode chunk this time */
1224 /* figure out the closer block if both are valid. */
1225 if (!doneleft
&& !doneright
) {
1227 (trec
.ir_startino
+ XFS_INODES_PER_CHUNK
- 1) <
1228 rec
.ir_startino
- pagino
;
1230 useleft
= !doneleft
;
1233 /* free inodes to the left? */
1234 if (useleft
&& trec
.ir_freecount
) {
1235 xfs_btree_del_cursor(cur
, XFS_BTREE_NOERROR
);
1238 pag
->pagl_leftrec
= trec
.ir_startino
;
1239 pag
->pagl_rightrec
= rec
.ir_startino
;
1240 pag
->pagl_pagino
= pagino
;
1245 /* free inodes to the right? */
1246 if (!useleft
&& rec
.ir_freecount
) {
1247 xfs_btree_del_cursor(tcur
, XFS_BTREE_NOERROR
);
1249 pag
->pagl_leftrec
= trec
.ir_startino
;
1250 pag
->pagl_rightrec
= rec
.ir_startino
;
1251 pag
->pagl_pagino
= pagino
;
1255 /* get next record to check */
1257 error
= xfs_ialloc_next_rec(tcur
, &trec
,
1260 error
= xfs_ialloc_next_rec(cur
, &rec
,
1267 if (searchdistance
<= 0) {
1269 * Not in range - save last search
1270 * location and allocate a new inode
1272 xfs_btree_del_cursor(tcur
, XFS_BTREE_NOERROR
);
1273 pag
->pagl_leftrec
= trec
.ir_startino
;
1274 pag
->pagl_rightrec
= rec
.ir_startino
;
1275 pag
->pagl_pagino
= pagino
;
1279 * We've reached the end of the btree. because
1280 * we are only searching a small chunk of the
1281 * btree each search, there is obviously free
1282 * inodes closer to the parent inode than we
1283 * are now. restart the search again.
1285 pag
->pagl_pagino
= NULLAGINO
;
1286 pag
->pagl_leftrec
= NULLAGINO
;
1287 pag
->pagl_rightrec
= NULLAGINO
;
1288 xfs_btree_del_cursor(tcur
, XFS_BTREE_NOERROR
);
1289 xfs_btree_del_cursor(cur
, XFS_BTREE_NOERROR
);
1295 * In a different AG from the parent.
1296 * See if the most recently allocated block has any free.
1298 if (agi
->agi_newino
!= cpu_to_be32(NULLAGINO
)) {
1299 error
= xfs_inobt_lookup(cur
, be32_to_cpu(agi
->agi_newino
),
1305 error
= xfs_inobt_get_rec(cur
, &rec
, &j
);
1309 if (j
== 1 && rec
.ir_freecount
> 0) {
1311 * The last chunk allocated in the group
1312 * still has a free inode.
1320 * None left in the last group, search the whole AG
1322 error
= xfs_inobt_lookup(cur
, 0, XFS_LOOKUP_GE
, &i
);
1325 XFS_WANT_CORRUPTED_GOTO(mp
, i
== 1, error0
);
1328 error
= xfs_inobt_get_rec(cur
, &rec
, &i
);
1331 XFS_WANT_CORRUPTED_GOTO(mp
, i
== 1, error0
);
1332 if (rec
.ir_freecount
> 0)
1334 error
= xfs_btree_increment(cur
, 0, &i
);
1337 XFS_WANT_CORRUPTED_GOTO(mp
, i
== 1, error0
);
1341 offset
= xfs_inobt_first_free_inode(&rec
);
1342 ASSERT(offset
>= 0);
1343 ASSERT(offset
< XFS_INODES_PER_CHUNK
);
1344 ASSERT((XFS_AGINO_TO_OFFSET(mp
, rec
.ir_startino
) %
1345 XFS_INODES_PER_CHUNK
) == 0);
1346 ino
= XFS_AGINO_TO_INO(mp
, agno
, rec
.ir_startino
+ offset
);
1347 rec
.ir_free
&= ~XFS_INOBT_MASK(offset
);
1349 error
= xfs_inobt_update(cur
, &rec
);
1352 be32_add_cpu(&agi
->agi_freecount
, -1);
1353 xfs_ialloc_log_agi(tp
, agbp
, XFS_AGI_FREECOUNT
);
1354 pag
->pagi_freecount
--;
1356 error
= xfs_check_agi_freecount(cur
, agi
);
1360 xfs_btree_del_cursor(cur
, XFS_BTREE_NOERROR
);
1361 xfs_trans_mod_sb(tp
, XFS_TRANS_SB_IFREE
, -1);
1366 xfs_btree_del_cursor(tcur
, XFS_BTREE_ERROR
);
1368 xfs_btree_del_cursor(cur
, XFS_BTREE_ERROR
);
1374 * Use the free inode btree to allocate an inode based on distance from the
1375 * parent. Note that the provided cursor may be deleted and replaced.
1378 xfs_dialloc_ag_finobt_near(
1380 struct xfs_btree_cur
**ocur
,
1381 struct xfs_inobt_rec_incore
*rec
)
1383 struct xfs_btree_cur
*lcur
= *ocur
; /* left search cursor */
1384 struct xfs_btree_cur
*rcur
; /* right search cursor */
1385 struct xfs_inobt_rec_incore rrec
;
1389 error
= xfs_inobt_lookup(lcur
, pagino
, XFS_LOOKUP_LE
, &i
);
1394 error
= xfs_inobt_get_rec(lcur
, rec
, &i
);
1397 XFS_WANT_CORRUPTED_RETURN(lcur
->bc_mp
, i
== 1);
1400 * See if we've landed in the parent inode record. The finobt
1401 * only tracks chunks with at least one free inode, so record
1402 * existence is enough.
1404 if (pagino
>= rec
->ir_startino
&&
1405 pagino
< (rec
->ir_startino
+ XFS_INODES_PER_CHUNK
))
1409 error
= xfs_btree_dup_cursor(lcur
, &rcur
);
1413 error
= xfs_inobt_lookup(rcur
, pagino
, XFS_LOOKUP_GE
, &j
);
1417 error
= xfs_inobt_get_rec(rcur
, &rrec
, &j
);
1420 XFS_WANT_CORRUPTED_GOTO(lcur
->bc_mp
, j
== 1, error_rcur
);
1423 XFS_WANT_CORRUPTED_GOTO(lcur
->bc_mp
, i
== 1 || j
== 1, error_rcur
);
1424 if (i
== 1 && j
== 1) {
1426 * Both the left and right records are valid. Choose the closer
1427 * inode chunk to the target.
1429 if ((pagino
- rec
->ir_startino
+ XFS_INODES_PER_CHUNK
- 1) >
1430 (rrec
.ir_startino
- pagino
)) {
1432 xfs_btree_del_cursor(lcur
, XFS_BTREE_NOERROR
);
1435 xfs_btree_del_cursor(rcur
, XFS_BTREE_NOERROR
);
1437 } else if (j
== 1) {
1438 /* only the right record is valid */
1440 xfs_btree_del_cursor(lcur
, XFS_BTREE_NOERROR
);
1442 } else if (i
== 1) {
1443 /* only the left record is valid */
1444 xfs_btree_del_cursor(rcur
, XFS_BTREE_NOERROR
);
1450 xfs_btree_del_cursor(rcur
, XFS_BTREE_ERROR
);
1455 * Use the free inode btree to find a free inode based on a newino hint. If
1456 * the hint is NULL, find the first free inode in the AG.
1459 xfs_dialloc_ag_finobt_newino(
1460 struct xfs_agi
*agi
,
1461 struct xfs_btree_cur
*cur
,
1462 struct xfs_inobt_rec_incore
*rec
)
1467 if (agi
->agi_newino
!= cpu_to_be32(NULLAGINO
)) {
1468 error
= xfs_inobt_lookup(cur
, be32_to_cpu(agi
->agi_newino
),
1473 error
= xfs_inobt_get_rec(cur
, rec
, &i
);
1476 XFS_WANT_CORRUPTED_RETURN(cur
->bc_mp
, i
== 1);
1482 * Find the first inode available in the AG.
1484 error
= xfs_inobt_lookup(cur
, 0, XFS_LOOKUP_GE
, &i
);
1487 XFS_WANT_CORRUPTED_RETURN(cur
->bc_mp
, i
== 1);
1489 error
= xfs_inobt_get_rec(cur
, rec
, &i
);
1492 XFS_WANT_CORRUPTED_RETURN(cur
->bc_mp
, i
== 1);
1498 * Update the inobt based on a modification made to the finobt. Also ensure that
1499 * the records from both trees are equivalent post-modification.
1502 xfs_dialloc_ag_update_inobt(
1503 struct xfs_btree_cur
*cur
, /* inobt cursor */
1504 struct xfs_inobt_rec_incore
*frec
, /* finobt record */
1505 int offset
) /* inode offset */
1507 struct xfs_inobt_rec_incore rec
;
1511 error
= xfs_inobt_lookup(cur
, frec
->ir_startino
, XFS_LOOKUP_EQ
, &i
);
1514 XFS_WANT_CORRUPTED_RETURN(cur
->bc_mp
, i
== 1);
1516 error
= xfs_inobt_get_rec(cur
, &rec
, &i
);
1519 XFS_WANT_CORRUPTED_RETURN(cur
->bc_mp
, i
== 1);
1520 ASSERT((XFS_AGINO_TO_OFFSET(cur
->bc_mp
, rec
.ir_startino
) %
1521 XFS_INODES_PER_CHUNK
) == 0);
1523 rec
.ir_free
&= ~XFS_INOBT_MASK(offset
);
1526 XFS_WANT_CORRUPTED_RETURN(cur
->bc_mp
, (rec
.ir_free
== frec
->ir_free
) &&
1527 (rec
.ir_freecount
== frec
->ir_freecount
));
1529 return xfs_inobt_update(cur
, &rec
);
1533 * Allocate an inode using the free inode btree, if available. Otherwise, fall
1534 * back to the inobt search algorithm.
1536 * The caller selected an AG for us, and made sure that free inodes are
1541 struct xfs_trans
*tp
,
1542 struct xfs_buf
*agbp
,
1546 struct xfs_mount
*mp
= tp
->t_mountp
;
1547 struct xfs_agi
*agi
= XFS_BUF_TO_AGI(agbp
);
1548 xfs_agnumber_t agno
= be32_to_cpu(agi
->agi_seqno
);
1549 xfs_agnumber_t pagno
= XFS_INO_TO_AGNO(mp
, parent
);
1550 xfs_agino_t pagino
= XFS_INO_TO_AGINO(mp
, parent
);
1551 struct xfs_perag
*pag
;
1552 struct xfs_btree_cur
*cur
; /* finobt cursor */
1553 struct xfs_btree_cur
*icur
; /* inobt cursor */
1554 struct xfs_inobt_rec_incore rec
;
1560 if (!xfs_sb_version_hasfinobt(&mp
->m_sb
))
1561 return xfs_dialloc_ag_inobt(tp
, agbp
, parent
, inop
);
1563 pag
= xfs_perag_get(mp
, agno
);
1566 * If pagino is 0 (this is the root inode allocation) use newino.
1567 * This must work because we've just allocated some.
1570 pagino
= be32_to_cpu(agi
->agi_newino
);
1572 cur
= xfs_inobt_init_cursor(mp
, tp
, agbp
, agno
, XFS_BTNUM_FINO
);
1574 error
= xfs_check_agi_freecount(cur
, agi
);
1579 * The search algorithm depends on whether we're in the same AG as the
1580 * parent. If so, find the closest available inode to the parent. If
1581 * not, consider the agi hint or find the first free inode in the AG.
1584 error
= xfs_dialloc_ag_finobt_near(pagino
, &cur
, &rec
);
1586 error
= xfs_dialloc_ag_finobt_newino(agi
, cur
, &rec
);
1590 offset
= xfs_inobt_first_free_inode(&rec
);
1591 ASSERT(offset
>= 0);
1592 ASSERT(offset
< XFS_INODES_PER_CHUNK
);
1593 ASSERT((XFS_AGINO_TO_OFFSET(mp
, rec
.ir_startino
) %
1594 XFS_INODES_PER_CHUNK
) == 0);
1595 ino
= XFS_AGINO_TO_INO(mp
, agno
, rec
.ir_startino
+ offset
);
1598 * Modify or remove the finobt record.
1600 rec
.ir_free
&= ~XFS_INOBT_MASK(offset
);
1602 if (rec
.ir_freecount
)
1603 error
= xfs_inobt_update(cur
, &rec
);
1605 error
= xfs_btree_delete(cur
, &i
);
1610 * The finobt has now been updated appropriately. We haven't updated the
1611 * agi and superblock yet, so we can create an inobt cursor and validate
1612 * the original freecount. If all is well, make the equivalent update to
1613 * the inobt using the finobt record and offset information.
1615 icur
= xfs_inobt_init_cursor(mp
, tp
, agbp
, agno
, XFS_BTNUM_INO
);
1617 error
= xfs_check_agi_freecount(icur
, agi
);
1621 error
= xfs_dialloc_ag_update_inobt(icur
, &rec
, offset
);
1626 * Both trees have now been updated. We must update the perag and
1627 * superblock before we can check the freecount for each btree.
1629 be32_add_cpu(&agi
->agi_freecount
, -1);
1630 xfs_ialloc_log_agi(tp
, agbp
, XFS_AGI_FREECOUNT
);
1631 pag
->pagi_freecount
--;
1633 xfs_trans_mod_sb(tp
, XFS_TRANS_SB_IFREE
, -1);
1635 error
= xfs_check_agi_freecount(icur
, agi
);
1638 error
= xfs_check_agi_freecount(cur
, agi
);
1642 xfs_btree_del_cursor(icur
, XFS_BTREE_NOERROR
);
1643 xfs_btree_del_cursor(cur
, XFS_BTREE_NOERROR
);
1649 xfs_btree_del_cursor(icur
, XFS_BTREE_ERROR
);
1651 xfs_btree_del_cursor(cur
, XFS_BTREE_ERROR
);
1657 * Allocate an inode on disk.
1659 * Mode is used to tell whether the new inode will need space, and whether it
1662 * This function is designed to be called twice if it has to do an allocation
1663 * to make more free inodes. On the first call, *IO_agbp should be set to NULL.
1664 * If an inode is available without having to performn an allocation, an inode
1665 * number is returned. In this case, *IO_agbp is set to NULL. If an allocation
1666 * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp.
1667 * The caller should then commit the current transaction, allocate a
1668 * new transaction, and call xfs_dialloc() again, passing in the previous value
1669 * of *IO_agbp. IO_agbp should be held across the transactions. Since the AGI
1670 * buffer is locked across the two calls, the second call is guaranteed to have
1671 * a free inode available.
1673 * Once we successfully pick an inode its number is returned and the on-disk
1674 * data structures are updated. The inode itself is not read in, since doing so
1675 * would break ordering constraints with xfs_reclaim.
1679 struct xfs_trans
*tp
,
1683 struct xfs_buf
**IO_agbp
,
1686 struct xfs_mount
*mp
= tp
->t_mountp
;
1687 struct xfs_buf
*agbp
;
1688 xfs_agnumber_t agno
;
1692 xfs_agnumber_t start_agno
;
1693 struct xfs_perag
*pag
;
1697 * If the caller passes in a pointer to the AGI buffer,
1698 * continue where we left off before. In this case, we
1699 * know that the allocation group has free inodes.
1706 * We do not have an agbp, so select an initial allocation
1707 * group for inode allocation.
1709 start_agno
= xfs_ialloc_ag_select(tp
, parent
, mode
, okalloc
);
1710 if (start_agno
== NULLAGNUMBER
) {
1716 * If we have already hit the ceiling of inode blocks then clear
1717 * okalloc so we scan all available agi structures for a free
1720 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1721 * which will sacrifice the preciseness but improve the performance.
1723 if (mp
->m_maxicount
&&
1724 percpu_counter_read_positive(&mp
->m_icount
) + mp
->m_ialloc_inos
1725 > mp
->m_maxicount
) {
1731 * Loop until we find an allocation group that either has free inodes
1732 * or in which we can allocate some inodes. Iterate through the
1733 * allocation groups upward, wrapping at the end.
1737 pag
= xfs_perag_get(mp
, agno
);
1738 if (!pag
->pagi_inodeok
) {
1739 xfs_ialloc_next_ag(mp
);
1743 if (!pag
->pagi_init
) {
1744 error
= xfs_ialloc_pagi_init(mp
, tp
, agno
);
1750 * Do a first racy fast path check if this AG is usable.
1752 if (!pag
->pagi_freecount
&& !okalloc
)
1756 * Then read in the AGI buffer and recheck with the AGI buffer
1759 error
= xfs_ialloc_read_agi(mp
, tp
, agno
, &agbp
);
1763 if (pag
->pagi_freecount
) {
1769 goto nextag_relse_buffer
;
1772 error
= xfs_ialloc_ag_alloc(tp
, agbp
, &ialloced
);
1774 xfs_trans_brelse(tp
, agbp
);
1776 if (error
!= -ENOSPC
)
1786 * We successfully allocated some inodes, return
1787 * the current context to the caller so that it
1788 * can commit the current transaction and call
1789 * us again where we left off.
1791 ASSERT(pag
->pagi_freecount
> 0);
1799 nextag_relse_buffer
:
1800 xfs_trans_brelse(tp
, agbp
);
1803 if (++agno
== mp
->m_sb
.sb_agcount
)
1805 if (agno
== start_agno
) {
1807 return noroom
? -ENOSPC
: 0;
1813 return xfs_dialloc_ag(tp
, agbp
, parent
, inop
);
1820 * Free the blocks of an inode chunk. We must consider that the inode chunk
1821 * might be sparse and only free the regions that are allocated as part of the
1825 xfs_difree_inode_chunk(
1826 struct xfs_mount
*mp
,
1827 xfs_agnumber_t agno
,
1828 struct xfs_inobt_rec_incore
*rec
,
1829 struct xfs_defer_ops
*dfops
)
1831 xfs_agblock_t sagbno
= XFS_AGINO_TO_AGBNO(mp
, rec
->ir_startino
);
1832 int startidx
, endidx
;
1834 xfs_agblock_t agbno
;
1836 struct xfs_owner_info oinfo
;
1837 DECLARE_BITMAP(holemask
, XFS_INOBT_HOLEMASK_BITS
);
1838 xfs_rmap_ag_owner(&oinfo
, XFS_RMAP_OWN_INODES
);
1840 if (!xfs_inobt_issparse(rec
->ir_holemask
)) {
1841 /* not sparse, calculate extent info directly */
1842 xfs_bmap_add_free(mp
, dfops
, XFS_AGB_TO_FSB(mp
, agno
, sagbno
),
1843 mp
->m_ialloc_blks
, &oinfo
);
1847 /* holemask is only 16-bits (fits in an unsigned long) */
1848 ASSERT(sizeof(rec
->ir_holemask
) <= sizeof(holemask
[0]));
1849 holemask
[0] = rec
->ir_holemask
;
1852 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1853 * holemask and convert the start/end index of each range to an extent.
1854 * We start with the start and end index both pointing at the first 0 in
1857 startidx
= endidx
= find_first_zero_bit(holemask
,
1858 XFS_INOBT_HOLEMASK_BITS
);
1859 nextbit
= startidx
+ 1;
1860 while (startidx
< XFS_INOBT_HOLEMASK_BITS
) {
1861 nextbit
= find_next_zero_bit(holemask
, XFS_INOBT_HOLEMASK_BITS
,
1864 * If the next zero bit is contiguous, update the end index of
1865 * the current range and continue.
1867 if (nextbit
!= XFS_INOBT_HOLEMASK_BITS
&&
1868 nextbit
== endidx
+ 1) {
1874 * nextbit is not contiguous with the current end index. Convert
1875 * the current start/end to an extent and add it to the free
1878 agbno
= sagbno
+ (startidx
* XFS_INODES_PER_HOLEMASK_BIT
) /
1879 mp
->m_sb
.sb_inopblock
;
1880 contigblk
= ((endidx
- startidx
+ 1) *
1881 XFS_INODES_PER_HOLEMASK_BIT
) /
1882 mp
->m_sb
.sb_inopblock
;
1884 ASSERT(agbno
% mp
->m_sb
.sb_spino_align
== 0);
1885 ASSERT(contigblk
% mp
->m_sb
.sb_spino_align
== 0);
1886 xfs_bmap_add_free(mp
, dfops
, XFS_AGB_TO_FSB(mp
, agno
, agbno
),
1889 /* reset range to current bit and carry on... */
1890 startidx
= endidx
= nextbit
;
1899 struct xfs_mount
*mp
,
1900 struct xfs_trans
*tp
,
1901 struct xfs_buf
*agbp
,
1903 struct xfs_defer_ops
*dfops
,
1904 struct xfs_icluster
*xic
,
1905 struct xfs_inobt_rec_incore
*orec
)
1907 struct xfs_agi
*agi
= XFS_BUF_TO_AGI(agbp
);
1908 xfs_agnumber_t agno
= be32_to_cpu(agi
->agi_seqno
);
1909 struct xfs_perag
*pag
;
1910 struct xfs_btree_cur
*cur
;
1911 struct xfs_inobt_rec_incore rec
;
1917 ASSERT(agi
->agi_magicnum
== cpu_to_be32(XFS_AGI_MAGIC
));
1918 ASSERT(XFS_AGINO_TO_AGBNO(mp
, agino
) < be32_to_cpu(agi
->agi_length
));
1921 * Initialize the cursor.
1923 cur
= xfs_inobt_init_cursor(mp
, tp
, agbp
, agno
, XFS_BTNUM_INO
);
1925 error
= xfs_check_agi_freecount(cur
, agi
);
1930 * Look for the entry describing this inode.
1932 if ((error
= xfs_inobt_lookup(cur
, agino
, XFS_LOOKUP_LE
, &i
))) {
1933 xfs_warn(mp
, "%s: xfs_inobt_lookup() returned error %d.",
1937 XFS_WANT_CORRUPTED_GOTO(mp
, i
== 1, error0
);
1938 error
= xfs_inobt_get_rec(cur
, &rec
, &i
);
1940 xfs_warn(mp
, "%s: xfs_inobt_get_rec() returned error %d.",
1944 XFS_WANT_CORRUPTED_GOTO(mp
, i
== 1, error0
);
1946 * Get the offset in the inode chunk.
1948 off
= agino
- rec
.ir_startino
;
1949 ASSERT(off
>= 0 && off
< XFS_INODES_PER_CHUNK
);
1950 ASSERT(!(rec
.ir_free
& XFS_INOBT_MASK(off
)));
1952 * Mark the inode free & increment the count.
1954 rec
.ir_free
|= XFS_INOBT_MASK(off
);
1958 * When an inode chunk is free, it becomes eligible for removal. Don't
1959 * remove the chunk if the block size is large enough for multiple inode
1960 * chunks (that might not be free).
1962 if (!(mp
->m_flags
& XFS_MOUNT_IKEEP
) &&
1963 rec
.ir_free
== XFS_INOBT_ALL_FREE
&&
1964 mp
->m_sb
.sb_inopblock
<= XFS_INODES_PER_CHUNK
) {
1965 xic
->deleted
= true;
1966 xic
->first_ino
= XFS_AGINO_TO_INO(mp
, agno
, rec
.ir_startino
);
1967 xic
->alloc
= xfs_inobt_irec_to_allocmask(&rec
);
1970 * Remove the inode cluster from the AGI B+Tree, adjust the
1971 * AGI and Superblock inode counts, and mark the disk space
1972 * to be freed when the transaction is committed.
1974 ilen
= rec
.ir_freecount
;
1975 be32_add_cpu(&agi
->agi_count
, -ilen
);
1976 be32_add_cpu(&agi
->agi_freecount
, -(ilen
- 1));
1977 xfs_ialloc_log_agi(tp
, agbp
, XFS_AGI_COUNT
| XFS_AGI_FREECOUNT
);
1978 pag
= xfs_perag_get(mp
, agno
);
1979 pag
->pagi_freecount
-= ilen
- 1;
1981 xfs_trans_mod_sb(tp
, XFS_TRANS_SB_ICOUNT
, -ilen
);
1982 xfs_trans_mod_sb(tp
, XFS_TRANS_SB_IFREE
, -(ilen
- 1));
1984 if ((error
= xfs_btree_delete(cur
, &i
))) {
1985 xfs_warn(mp
, "%s: xfs_btree_delete returned error %d.",
1990 xfs_difree_inode_chunk(mp
, agno
, &rec
, dfops
);
1992 xic
->deleted
= false;
1994 error
= xfs_inobt_update(cur
, &rec
);
1996 xfs_warn(mp
, "%s: xfs_inobt_update returned error %d.",
2002 * Change the inode free counts and log the ag/sb changes.
2004 be32_add_cpu(&agi
->agi_freecount
, 1);
2005 xfs_ialloc_log_agi(tp
, agbp
, XFS_AGI_FREECOUNT
);
2006 pag
= xfs_perag_get(mp
, agno
);
2007 pag
->pagi_freecount
++;
2009 xfs_trans_mod_sb(tp
, XFS_TRANS_SB_IFREE
, 1);
2012 error
= xfs_check_agi_freecount(cur
, agi
);
2017 xfs_btree_del_cursor(cur
, XFS_BTREE_NOERROR
);
2021 xfs_btree_del_cursor(cur
, XFS_BTREE_ERROR
);
2026 * Free an inode in the free inode btree.
2030 struct xfs_mount
*mp
,
2031 struct xfs_trans
*tp
,
2032 struct xfs_buf
*agbp
,
2034 struct xfs_inobt_rec_incore
*ibtrec
) /* inobt record */
2036 struct xfs_agi
*agi
= XFS_BUF_TO_AGI(agbp
);
2037 xfs_agnumber_t agno
= be32_to_cpu(agi
->agi_seqno
);
2038 struct xfs_btree_cur
*cur
;
2039 struct xfs_inobt_rec_incore rec
;
2040 int offset
= agino
- ibtrec
->ir_startino
;
2044 cur
= xfs_inobt_init_cursor(mp
, tp
, agbp
, agno
, XFS_BTNUM_FINO
);
2046 error
= xfs_inobt_lookup(cur
, ibtrec
->ir_startino
, XFS_LOOKUP_EQ
, &i
);
2051 * If the record does not exist in the finobt, we must have just
2052 * freed an inode in a previously fully allocated chunk. If not,
2053 * something is out of sync.
2055 XFS_WANT_CORRUPTED_GOTO(mp
, ibtrec
->ir_freecount
== 1, error
);
2057 error
= xfs_inobt_insert_rec(cur
, ibtrec
->ir_holemask
,
2059 ibtrec
->ir_freecount
,
2060 ibtrec
->ir_free
, &i
);
2069 * Read and update the existing record. We could just copy the ibtrec
2070 * across here, but that would defeat the purpose of having redundant
2071 * metadata. By making the modifications independently, we can catch
2072 * corruptions that we wouldn't see if we just copied from one record
2075 error
= xfs_inobt_get_rec(cur
, &rec
, &i
);
2078 XFS_WANT_CORRUPTED_GOTO(mp
, i
== 1, error
);
2080 rec
.ir_free
|= XFS_INOBT_MASK(offset
);
2083 XFS_WANT_CORRUPTED_GOTO(mp
, (rec
.ir_free
== ibtrec
->ir_free
) &&
2084 (rec
.ir_freecount
== ibtrec
->ir_freecount
),
2088 * The content of inobt records should always match between the inobt
2089 * and finobt. The lifecycle of records in the finobt is different from
2090 * the inobt in that the finobt only tracks records with at least one
2091 * free inode. Hence, if all of the inodes are free and we aren't
2092 * keeping inode chunks permanently on disk, remove the record.
2093 * Otherwise, update the record with the new information.
2095 * Note that we currently can't free chunks when the block size is large
2096 * enough for multiple chunks. Leave the finobt record to remain in sync
2099 if (rec
.ir_free
== XFS_INOBT_ALL_FREE
&&
2100 mp
->m_sb
.sb_inopblock
<= XFS_INODES_PER_CHUNK
&&
2101 !(mp
->m_flags
& XFS_MOUNT_IKEEP
)) {
2102 error
= xfs_btree_delete(cur
, &i
);
2107 error
= xfs_inobt_update(cur
, &rec
);
2113 error
= xfs_check_agi_freecount(cur
, agi
);
2117 xfs_btree_del_cursor(cur
, XFS_BTREE_NOERROR
);
2121 xfs_btree_del_cursor(cur
, XFS_BTREE_ERROR
);
2126 * Free disk inode. Carefully avoids touching the incore inode, all
2127 * manipulations incore are the caller's responsibility.
2128 * The on-disk inode is not changed by this operation, only the
2129 * btree (free inode mask) is changed.
2133 struct xfs_trans
*tp
, /* transaction pointer */
2134 xfs_ino_t inode
, /* inode to be freed */
2135 struct xfs_defer_ops
*dfops
, /* extents to free */
2136 struct xfs_icluster
*xic
) /* cluster info if deleted */
2139 xfs_agblock_t agbno
; /* block number containing inode */
2140 struct xfs_buf
*agbp
; /* buffer for allocation group header */
2141 xfs_agino_t agino
; /* allocation group inode number */
2142 xfs_agnumber_t agno
; /* allocation group number */
2143 int error
; /* error return value */
2144 struct xfs_mount
*mp
; /* mount structure for filesystem */
2145 struct xfs_inobt_rec_incore rec
;/* btree record */
2150 * Break up inode number into its components.
2152 agno
= XFS_INO_TO_AGNO(mp
, inode
);
2153 if (agno
>= mp
->m_sb
.sb_agcount
) {
2154 xfs_warn(mp
, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).",
2155 __func__
, agno
, mp
->m_sb
.sb_agcount
);
2159 agino
= XFS_INO_TO_AGINO(mp
, inode
);
2160 if (inode
!= XFS_AGINO_TO_INO(mp
, agno
, agino
)) {
2161 xfs_warn(mp
, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2162 __func__
, (unsigned long long)inode
,
2163 (unsigned long long)XFS_AGINO_TO_INO(mp
, agno
, agino
));
2167 agbno
= XFS_AGINO_TO_AGBNO(mp
, agino
);
2168 if (agbno
>= mp
->m_sb
.sb_agblocks
) {
2169 xfs_warn(mp
, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2170 __func__
, agbno
, mp
->m_sb
.sb_agblocks
);
2175 * Get the allocation group header.
2177 error
= xfs_ialloc_read_agi(mp
, tp
, agno
, &agbp
);
2179 xfs_warn(mp
, "%s: xfs_ialloc_read_agi() returned error %d.",
2185 * Fix up the inode allocation btree.
2187 error
= xfs_difree_inobt(mp
, tp
, agbp
, agino
, dfops
, xic
, &rec
);
2192 * Fix up the free inode btree.
2194 if (xfs_sb_version_hasfinobt(&mp
->m_sb
)) {
2195 error
= xfs_difree_finobt(mp
, tp
, agbp
, agino
, &rec
);
2208 struct xfs_mount
*mp
,
2209 struct xfs_trans
*tp
,
2210 xfs_agnumber_t agno
,
2212 xfs_agblock_t agbno
,
2213 xfs_agblock_t
*chunk_agbno
,
2214 xfs_agblock_t
*offset_agbno
,
2217 struct xfs_inobt_rec_incore rec
;
2218 struct xfs_btree_cur
*cur
;
2219 struct xfs_buf
*agbp
;
2223 error
= xfs_ialloc_read_agi(mp
, tp
, agno
, &agbp
);
2226 "%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2227 __func__
, error
, agno
);
2232 * Lookup the inode record for the given agino. If the record cannot be
2233 * found, then it's an invalid inode number and we should abort. Once
2234 * we have a record, we need to ensure it contains the inode number
2235 * we are looking up.
2237 cur
= xfs_inobt_init_cursor(mp
, tp
, agbp
, agno
, XFS_BTNUM_INO
);
2238 error
= xfs_inobt_lookup(cur
, agino
, XFS_LOOKUP_LE
, &i
);
2241 error
= xfs_inobt_get_rec(cur
, &rec
, &i
);
2242 if (!error
&& i
== 0)
2246 xfs_trans_brelse(tp
, agbp
);
2247 xfs_btree_del_cursor(cur
, error
? XFS_BTREE_ERROR
: XFS_BTREE_NOERROR
);
2251 /* check that the returned record contains the required inode */
2252 if (rec
.ir_startino
> agino
||
2253 rec
.ir_startino
+ mp
->m_ialloc_inos
<= agino
)
2256 /* for untrusted inodes check it is allocated first */
2257 if ((flags
& XFS_IGET_UNTRUSTED
) &&
2258 (rec
.ir_free
& XFS_INOBT_MASK(agino
- rec
.ir_startino
)))
2261 *chunk_agbno
= XFS_AGINO_TO_AGBNO(mp
, rec
.ir_startino
);
2262 *offset_agbno
= agbno
- *chunk_agbno
;
2267 * Return the location of the inode in imap, for mapping it into a buffer.
2271 xfs_mount_t
*mp
, /* file system mount structure */
2272 xfs_trans_t
*tp
, /* transaction pointer */
2273 xfs_ino_t ino
, /* inode to locate */
2274 struct xfs_imap
*imap
, /* location map structure */
2275 uint flags
) /* flags for inode btree lookup */
2277 xfs_agblock_t agbno
; /* block number of inode in the alloc group */
2278 xfs_agino_t agino
; /* inode number within alloc group */
2279 xfs_agnumber_t agno
; /* allocation group number */
2280 int blks_per_cluster
; /* num blocks per inode cluster */
2281 xfs_agblock_t chunk_agbno
; /* first block in inode chunk */
2282 xfs_agblock_t cluster_agbno
; /* first block in inode cluster */
2283 int error
; /* error code */
2284 int offset
; /* index of inode in its buffer */
2285 xfs_agblock_t offset_agbno
; /* blks from chunk start to inode */
2287 ASSERT(ino
!= NULLFSINO
);
2290 * Split up the inode number into its parts.
2292 agno
= XFS_INO_TO_AGNO(mp
, ino
);
2293 agino
= XFS_INO_TO_AGINO(mp
, ino
);
2294 agbno
= XFS_AGINO_TO_AGBNO(mp
, agino
);
2295 if (agno
>= mp
->m_sb
.sb_agcount
|| agbno
>= mp
->m_sb
.sb_agblocks
||
2296 ino
!= XFS_AGINO_TO_INO(mp
, agno
, agino
)) {
2299 * Don't output diagnostic information for untrusted inodes
2300 * as they can be invalid without implying corruption.
2302 if (flags
& XFS_IGET_UNTRUSTED
)
2304 if (agno
>= mp
->m_sb
.sb_agcount
) {
2306 "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
2307 __func__
, agno
, mp
->m_sb
.sb_agcount
);
2309 if (agbno
>= mp
->m_sb
.sb_agblocks
) {
2311 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2312 __func__
, (unsigned long long)agbno
,
2313 (unsigned long)mp
->m_sb
.sb_agblocks
);
2315 if (ino
!= XFS_AGINO_TO_INO(mp
, agno
, agino
)) {
2317 "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2319 XFS_AGINO_TO_INO(mp
, agno
, agino
));
2326 blks_per_cluster
= xfs_icluster_size_fsb(mp
);
2329 * For bulkstat and handle lookups, we have an untrusted inode number
2330 * that we have to verify is valid. We cannot do this just by reading
2331 * the inode buffer as it may have been unlinked and removed leaving
2332 * inodes in stale state on disk. Hence we have to do a btree lookup
2333 * in all cases where an untrusted inode number is passed.
2335 if (flags
& XFS_IGET_UNTRUSTED
) {
2336 error
= xfs_imap_lookup(mp
, tp
, agno
, agino
, agbno
,
2337 &chunk_agbno
, &offset_agbno
, flags
);
2344 * If the inode cluster size is the same as the blocksize or
2345 * smaller we get to the buffer by simple arithmetics.
2347 if (blks_per_cluster
== 1) {
2348 offset
= XFS_INO_TO_OFFSET(mp
, ino
);
2349 ASSERT(offset
< mp
->m_sb
.sb_inopblock
);
2351 imap
->im_blkno
= XFS_AGB_TO_DADDR(mp
, agno
, agbno
);
2352 imap
->im_len
= XFS_FSB_TO_BB(mp
, 1);
2353 imap
->im_boffset
= (unsigned short)(offset
<<
2354 mp
->m_sb
.sb_inodelog
);
2359 * If the inode chunks are aligned then use simple maths to
2360 * find the location. Otherwise we have to do a btree
2361 * lookup to find the location.
2363 if (mp
->m_inoalign_mask
) {
2364 offset_agbno
= agbno
& mp
->m_inoalign_mask
;
2365 chunk_agbno
= agbno
- offset_agbno
;
2367 error
= xfs_imap_lookup(mp
, tp
, agno
, agino
, agbno
,
2368 &chunk_agbno
, &offset_agbno
, flags
);
2374 ASSERT(agbno
>= chunk_agbno
);
2375 cluster_agbno
= chunk_agbno
+
2376 ((offset_agbno
/ blks_per_cluster
) * blks_per_cluster
);
2377 offset
= ((agbno
- cluster_agbno
) * mp
->m_sb
.sb_inopblock
) +
2378 XFS_INO_TO_OFFSET(mp
, ino
);
2380 imap
->im_blkno
= XFS_AGB_TO_DADDR(mp
, agno
, cluster_agbno
);
2381 imap
->im_len
= XFS_FSB_TO_BB(mp
, blks_per_cluster
);
2382 imap
->im_boffset
= (unsigned short)(offset
<< mp
->m_sb
.sb_inodelog
);
2385 * If the inode number maps to a block outside the bounds
2386 * of the file system then return NULL rather than calling
2387 * read_buf and panicing when we get an error from the
2390 if ((imap
->im_blkno
+ imap
->im_len
) >
2391 XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_dblocks
)) {
2393 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2394 __func__
, (unsigned long long) imap
->im_blkno
,
2395 (unsigned long long) imap
->im_len
,
2396 XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_dblocks
));
2403 * Compute and fill in value of m_in_maxlevels.
2406 xfs_ialloc_compute_maxlevels(
2407 xfs_mount_t
*mp
) /* file system mount structure */
2411 inodes
= (1LL << XFS_INO_AGINO_BITS(mp
)) >> XFS_INODES_PER_CHUNK_LOG
;
2412 mp
->m_in_maxlevels
= xfs_btree_compute_maxlevels(mp
, mp
->m_inobt_mnr
,
2417 * Log specified fields for the ag hdr (inode section). The growth of the agi
2418 * structure over time requires that we interpret the buffer as two logical
2419 * regions delineated by the end of the unlinked list. This is due to the size
2420 * of the hash table and its location in the middle of the agi.
2422 * For example, a request to log a field before agi_unlinked and a field after
2423 * agi_unlinked could cause us to log the entire hash table and use an excessive
2424 * amount of log space. To avoid this behavior, log the region up through
2425 * agi_unlinked in one call and the region after agi_unlinked through the end of
2426 * the structure in another.
2430 xfs_trans_t
*tp
, /* transaction pointer */
2431 xfs_buf_t
*bp
, /* allocation group header buffer */
2432 int fields
) /* bitmask of fields to log */
2434 int first
; /* first byte number */
2435 int last
; /* last byte number */
2436 static const short offsets
[] = { /* field starting offsets */
2437 /* keep in sync with bit definitions */
2438 offsetof(xfs_agi_t
, agi_magicnum
),
2439 offsetof(xfs_agi_t
, agi_versionnum
),
2440 offsetof(xfs_agi_t
, agi_seqno
),
2441 offsetof(xfs_agi_t
, agi_length
),
2442 offsetof(xfs_agi_t
, agi_count
),
2443 offsetof(xfs_agi_t
, agi_root
),
2444 offsetof(xfs_agi_t
, agi_level
),
2445 offsetof(xfs_agi_t
, agi_freecount
),
2446 offsetof(xfs_agi_t
, agi_newino
),
2447 offsetof(xfs_agi_t
, agi_dirino
),
2448 offsetof(xfs_agi_t
, agi_unlinked
),
2449 offsetof(xfs_agi_t
, agi_free_root
),
2450 offsetof(xfs_agi_t
, agi_free_level
),
2454 xfs_agi_t
*agi
; /* allocation group header */
2456 agi
= XFS_BUF_TO_AGI(bp
);
2457 ASSERT(agi
->agi_magicnum
== cpu_to_be32(XFS_AGI_MAGIC
));
2461 * Compute byte offsets for the first and last fields in the first
2462 * region and log the agi buffer. This only logs up through
2465 if (fields
& XFS_AGI_ALL_BITS_R1
) {
2466 xfs_btree_offsets(fields
, offsets
, XFS_AGI_NUM_BITS_R1
,
2468 xfs_trans_log_buf(tp
, bp
, first
, last
);
2472 * Mask off the bits in the first region and calculate the first and
2473 * last field offsets for any bits in the second region.
2475 fields
&= ~XFS_AGI_ALL_BITS_R1
;
2477 xfs_btree_offsets(fields
, offsets
, XFS_AGI_NUM_BITS_R2
,
2479 xfs_trans_log_buf(tp
, bp
, first
, last
);
2485 xfs_check_agi_unlinked(
2486 struct xfs_agi
*agi
)
2490 for (i
= 0; i
< XFS_AGI_UNLINKED_BUCKETS
; i
++)
2491 ASSERT(agi
->agi_unlinked
[i
]);
2494 #define xfs_check_agi_unlinked(agi)
2501 struct xfs_mount
*mp
= bp
->b_target
->bt_mount
;
2502 struct xfs_agi
*agi
= XFS_BUF_TO_AGI(bp
);
2504 if (xfs_sb_version_hascrc(&mp
->m_sb
)) {
2505 if (!uuid_equal(&agi
->agi_uuid
, &mp
->m_sb
.sb_meta_uuid
))
2507 if (!xfs_log_check_lsn(mp
,
2508 be64_to_cpu(XFS_BUF_TO_AGI(bp
)->agi_lsn
)))
2513 * Validate the magic number of the agi block.
2515 if (agi
->agi_magicnum
!= cpu_to_be32(XFS_AGI_MAGIC
))
2517 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi
->agi_versionnum
)))
2520 if (be32_to_cpu(agi
->agi_level
) < 1 ||
2521 be32_to_cpu(agi
->agi_level
) > XFS_BTREE_MAXLEVELS
)
2524 if (xfs_sb_version_hasfinobt(&mp
->m_sb
) &&
2525 (be32_to_cpu(agi
->agi_free_level
) < 1 ||
2526 be32_to_cpu(agi
->agi_free_level
) > XFS_BTREE_MAXLEVELS
))
2530 * during growfs operations, the perag is not fully initialised,
2531 * so we can't use it for any useful checking. growfs ensures we can't
2532 * use it by using uncached buffers that don't have the perag attached
2533 * so we can detect and avoid this problem.
2535 if (bp
->b_pag
&& be32_to_cpu(agi
->agi_seqno
) != bp
->b_pag
->pag_agno
)
2538 xfs_check_agi_unlinked(agi
);
2543 xfs_agi_read_verify(
2546 struct xfs_mount
*mp
= bp
->b_target
->bt_mount
;
2548 if (xfs_sb_version_hascrc(&mp
->m_sb
) &&
2549 !xfs_buf_verify_cksum(bp
, XFS_AGI_CRC_OFF
))
2550 xfs_buf_ioerror(bp
, -EFSBADCRC
);
2551 else if (XFS_TEST_ERROR(!xfs_agi_verify(bp
), mp
,
2552 XFS_ERRTAG_IALLOC_READ_AGI
))
2553 xfs_buf_ioerror(bp
, -EFSCORRUPTED
);
2556 xfs_verifier_error(bp
);
2560 xfs_agi_write_verify(
2563 struct xfs_mount
*mp
= bp
->b_target
->bt_mount
;
2564 struct xfs_buf_log_item
*bip
= bp
->b_fspriv
;
2566 if (!xfs_agi_verify(bp
)) {
2567 xfs_buf_ioerror(bp
, -EFSCORRUPTED
);
2568 xfs_verifier_error(bp
);
2572 if (!xfs_sb_version_hascrc(&mp
->m_sb
))
2576 XFS_BUF_TO_AGI(bp
)->agi_lsn
= cpu_to_be64(bip
->bli_item
.li_lsn
);
2577 xfs_buf_update_cksum(bp
, XFS_AGI_CRC_OFF
);
2580 const struct xfs_buf_ops xfs_agi_buf_ops
= {
2582 .verify_read
= xfs_agi_read_verify
,
2583 .verify_write
= xfs_agi_write_verify
,
2587 * Read in the allocation group header (inode allocation section)
2591 struct xfs_mount
*mp
, /* file system mount structure */
2592 struct xfs_trans
*tp
, /* transaction pointer */
2593 xfs_agnumber_t agno
, /* allocation group number */
2594 struct xfs_buf
**bpp
) /* allocation group hdr buf */
2598 trace_xfs_read_agi(mp
, agno
);
2600 ASSERT(agno
!= NULLAGNUMBER
);
2601 error
= xfs_trans_read_buf(mp
, tp
, mp
->m_ddev_targp
,
2602 XFS_AG_DADDR(mp
, agno
, XFS_AGI_DADDR(mp
)),
2603 XFS_FSS_TO_BB(mp
, 1), 0, bpp
, &xfs_agi_buf_ops
);
2607 xfs_trans_buf_set_type(tp
, *bpp
, XFS_BLFT_AGI_BUF
);
2609 xfs_buf_set_ref(*bpp
, XFS_AGI_REF
);
2614 xfs_ialloc_read_agi(
2615 struct xfs_mount
*mp
, /* file system mount structure */
2616 struct xfs_trans
*tp
, /* transaction pointer */
2617 xfs_agnumber_t agno
, /* allocation group number */
2618 struct xfs_buf
**bpp
) /* allocation group hdr buf */
2620 struct xfs_agi
*agi
; /* allocation group header */
2621 struct xfs_perag
*pag
; /* per allocation group data */
2624 trace_xfs_ialloc_read_agi(mp
, agno
);
2626 error
= xfs_read_agi(mp
, tp
, agno
, bpp
);
2630 agi
= XFS_BUF_TO_AGI(*bpp
);
2631 pag
= xfs_perag_get(mp
, agno
);
2632 if (!pag
->pagi_init
) {
2633 pag
->pagi_freecount
= be32_to_cpu(agi
->agi_freecount
);
2634 pag
->pagi_count
= be32_to_cpu(agi
->agi_count
);
2639 * It's possible for these to be out of sync if
2640 * we are in the middle of a forced shutdown.
2642 ASSERT(pag
->pagi_freecount
== be32_to_cpu(agi
->agi_freecount
) ||
2643 XFS_FORCED_SHUTDOWN(mp
));
2649 * Read in the agi to initialise the per-ag data in the mount structure
2652 xfs_ialloc_pagi_init(
2653 xfs_mount_t
*mp
, /* file system mount structure */
2654 xfs_trans_t
*tp
, /* transaction pointer */
2655 xfs_agnumber_t agno
) /* allocation group number */
2657 xfs_buf_t
*bp
= NULL
;
2660 error
= xfs_ialloc_read_agi(mp
, tp
, agno
, &bp
);
2664 xfs_trans_brelse(tp
, bp
);