2 * Copyright (c) 2014 Red Hat, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
26 #include "xfs_mount.h"
27 #include "xfs_defer.h"
28 #include "xfs_inode.h"
29 #include "xfs_trans.h"
30 #include "xfs_alloc.h"
31 #include "xfs_btree.h"
33 #include "xfs_rmap_btree.h"
34 #include "xfs_trace.h"
35 #include "xfs_cksum.h"
36 #include "xfs_error.h"
37 #include "xfs_extent_busy.h"
38 #include "xfs_ag_resv.h"
43 * This is a per-ag tree used to track the owner(s) of a given extent. With
44 * reflink it is possible for there to be multiple owners, which is a departure
45 * from classic XFS. Owner records for data extents are inserted when the
46 * extent is mapped and removed when an extent is unmapped. Owner records for
47 * all other block types (i.e. metadata) are inserted when an extent is
48 * allocated and removed when an extent is freed. There can only be one owner
49 * of a metadata extent, usually an inode or some other metadata structure like
52 * The rmap btree is part of the free space management, so blocks for the tree
53 * are sourced from the agfl. Hence we need transaction reservation support for
54 * this tree so that the freelist is always large enough. This also impacts on
55 * the minimum space we need to leave free in the AG.
57 * The tree is ordered by [ag block, owner, offset]. This is a large key size,
58 * but it is the only way to enforce unique keys when a block can be owned by
59 * multiple files at any offset. There's no need to order/search by extent
60 * size for online updating/management of the tree. It is intended that most
61 * reverse lookups will be to find the owner(s) of a particular block, or to
62 * try to recover tree and file data from corrupt primary metadata.
65 static struct xfs_btree_cur
*
66 xfs_rmapbt_dup_cursor(
67 struct xfs_btree_cur
*cur
)
69 return xfs_rmapbt_init_cursor(cur
->bc_mp
, cur
->bc_tp
,
70 cur
->bc_private
.a
.agbp
, cur
->bc_private
.a
.agno
);
75 struct xfs_btree_cur
*cur
,
76 union xfs_btree_ptr
*ptr
,
79 struct xfs_buf
*agbp
= cur
->bc_private
.a
.agbp
;
80 struct xfs_agf
*agf
= XFS_BUF_TO_AGF(agbp
);
81 xfs_agnumber_t seqno
= be32_to_cpu(agf
->agf_seqno
);
82 int btnum
= cur
->bc_btnum
;
83 struct xfs_perag
*pag
= xfs_perag_get(cur
->bc_mp
, seqno
);
87 agf
->agf_roots
[btnum
] = ptr
->s
;
88 be32_add_cpu(&agf
->agf_levels
[btnum
], inc
);
89 pag
->pagf_levels
[btnum
] += inc
;
92 xfs_alloc_log_agf(cur
->bc_tp
, agbp
, XFS_AGF_ROOTS
| XFS_AGF_LEVELS
);
96 xfs_rmapbt_alloc_block(
97 struct xfs_btree_cur
*cur
,
98 union xfs_btree_ptr
*start
,
99 union xfs_btree_ptr
*new,
102 struct xfs_buf
*agbp
= cur
->bc_private
.a
.agbp
;
103 struct xfs_agf
*agf
= XFS_BUF_TO_AGF(agbp
);
107 XFS_BTREE_TRACE_CURSOR(cur
, XBT_ENTRY
);
109 /* Allocate the new block from the freelist. If we can't, give up. */
110 error
= xfs_alloc_get_freelist(cur
->bc_tp
, cur
->bc_private
.a
.agbp
,
113 XFS_BTREE_TRACE_CURSOR(cur
, XBT_ERROR
);
117 trace_xfs_rmapbt_alloc_block(cur
->bc_mp
, cur
->bc_private
.a
.agno
,
119 if (bno
== NULLAGBLOCK
) {
120 XFS_BTREE_TRACE_CURSOR(cur
, XBT_EXIT
);
125 xfs_extent_busy_reuse(cur
->bc_mp
, cur
->bc_private
.a
.agno
, bno
, 1,
128 xfs_trans_agbtree_delta(cur
->bc_tp
, 1);
129 new->s
= cpu_to_be32(bno
);
130 be32_add_cpu(&agf
->agf_rmap_blocks
, 1);
131 xfs_alloc_log_agf(cur
->bc_tp
, agbp
, XFS_AGF_RMAP_BLOCKS
);
133 XFS_BTREE_TRACE_CURSOR(cur
, XBT_EXIT
);
139 xfs_rmapbt_free_block(
140 struct xfs_btree_cur
*cur
,
143 struct xfs_buf
*agbp
= cur
->bc_private
.a
.agbp
;
144 struct xfs_agf
*agf
= XFS_BUF_TO_AGF(agbp
);
148 bno
= xfs_daddr_to_agbno(cur
->bc_mp
, XFS_BUF_ADDR(bp
));
149 trace_xfs_rmapbt_free_block(cur
->bc_mp
, cur
->bc_private
.a
.agno
,
151 be32_add_cpu(&agf
->agf_rmap_blocks
, -1);
152 xfs_alloc_log_agf(cur
->bc_tp
, agbp
, XFS_AGF_RMAP_BLOCKS
);
153 error
= xfs_alloc_put_freelist(cur
->bc_tp
, agbp
, NULL
, bno
, 1);
157 xfs_extent_busy_insert(cur
->bc_tp
, be32_to_cpu(agf
->agf_seqno
), bno
, 1,
158 XFS_EXTENT_BUSY_SKIP_DISCARD
);
159 xfs_trans_agbtree_delta(cur
->bc_tp
, -1);
165 xfs_rmapbt_get_minrecs(
166 struct xfs_btree_cur
*cur
,
169 return cur
->bc_mp
->m_rmap_mnr
[level
!= 0];
173 xfs_rmapbt_get_maxrecs(
174 struct xfs_btree_cur
*cur
,
177 return cur
->bc_mp
->m_rmap_mxr
[level
!= 0];
181 xfs_rmapbt_init_key_from_rec(
182 union xfs_btree_key
*key
,
183 union xfs_btree_rec
*rec
)
185 key
->rmap
.rm_startblock
= rec
->rmap
.rm_startblock
;
186 key
->rmap
.rm_owner
= rec
->rmap
.rm_owner
;
187 key
->rmap
.rm_offset
= rec
->rmap
.rm_offset
;
191 * The high key for a reverse mapping record can be computed by shifting
192 * the startblock and offset to the highest value that would still map
193 * to that record. In practice this means that we add blockcount-1 to
194 * the startblock for all records, and if the record is for a data/attr
195 * fork mapping, we add blockcount-1 to the offset too.
198 xfs_rmapbt_init_high_key_from_rec(
199 union xfs_btree_key
*key
,
200 union xfs_btree_rec
*rec
)
205 adj
= be32_to_cpu(rec
->rmap
.rm_blockcount
) - 1;
207 key
->rmap
.rm_startblock
= rec
->rmap
.rm_startblock
;
208 be32_add_cpu(&key
->rmap
.rm_startblock
, adj
);
209 key
->rmap
.rm_owner
= rec
->rmap
.rm_owner
;
210 key
->rmap
.rm_offset
= rec
->rmap
.rm_offset
;
211 if (XFS_RMAP_NON_INODE_OWNER(be64_to_cpu(rec
->rmap
.rm_owner
)) ||
212 XFS_RMAP_IS_BMBT_BLOCK(be64_to_cpu(rec
->rmap
.rm_offset
)))
214 off
= be64_to_cpu(key
->rmap
.rm_offset
);
215 off
= (XFS_RMAP_OFF(off
) + adj
) | (off
& ~XFS_RMAP_OFF_MASK
);
216 key
->rmap
.rm_offset
= cpu_to_be64(off
);
220 xfs_rmapbt_init_rec_from_cur(
221 struct xfs_btree_cur
*cur
,
222 union xfs_btree_rec
*rec
)
224 rec
->rmap
.rm_startblock
= cpu_to_be32(cur
->bc_rec
.r
.rm_startblock
);
225 rec
->rmap
.rm_blockcount
= cpu_to_be32(cur
->bc_rec
.r
.rm_blockcount
);
226 rec
->rmap
.rm_owner
= cpu_to_be64(cur
->bc_rec
.r
.rm_owner
);
227 rec
->rmap
.rm_offset
= cpu_to_be64(
228 xfs_rmap_irec_offset_pack(&cur
->bc_rec
.r
));
232 xfs_rmapbt_init_ptr_from_cur(
233 struct xfs_btree_cur
*cur
,
234 union xfs_btree_ptr
*ptr
)
236 struct xfs_agf
*agf
= XFS_BUF_TO_AGF(cur
->bc_private
.a
.agbp
);
238 ASSERT(cur
->bc_private
.a
.agno
== be32_to_cpu(agf
->agf_seqno
));
239 ASSERT(agf
->agf_roots
[cur
->bc_btnum
] != 0);
241 ptr
->s
= agf
->agf_roots
[cur
->bc_btnum
];
246 struct xfs_btree_cur
*cur
,
247 union xfs_btree_key
*key
)
249 struct xfs_rmap_irec
*rec
= &cur
->bc_rec
.r
;
250 struct xfs_rmap_key
*kp
= &key
->rmap
;
254 d
= (int64_t)be32_to_cpu(kp
->rm_startblock
) - rec
->rm_startblock
;
258 x
= be64_to_cpu(kp
->rm_owner
);
265 x
= be64_to_cpu(kp
->rm_offset
);
266 y
= xfs_rmap_irec_offset_pack(rec
);
275 xfs_rmapbt_diff_two_keys(
276 struct xfs_btree_cur
*cur
,
277 union xfs_btree_key
*k1
,
278 union xfs_btree_key
*k2
)
280 struct xfs_rmap_key
*kp1
= &k1
->rmap
;
281 struct xfs_rmap_key
*kp2
= &k2
->rmap
;
285 d
= (int64_t)be32_to_cpu(kp1
->rm_startblock
) -
286 be32_to_cpu(kp2
->rm_startblock
);
290 x
= be64_to_cpu(kp1
->rm_owner
);
291 y
= be64_to_cpu(kp2
->rm_owner
);
297 x
= be64_to_cpu(kp1
->rm_offset
);
298 y
= be64_to_cpu(kp2
->rm_offset
);
310 struct xfs_mount
*mp
= bp
->b_target
->bt_mount
;
311 struct xfs_btree_block
*block
= XFS_BUF_TO_BLOCK(bp
);
312 struct xfs_perag
*pag
= bp
->b_pag
;
316 * magic number and level verification
318 * During growfs operations, we can't verify the exact level or owner as
319 * the perag is not fully initialised and hence not attached to the
320 * buffer. In this case, check against the maximum tree depth.
322 * Similarly, during log recovery we will have a perag structure
323 * attached, but the agf information will not yet have been initialised
324 * from the on disk AGF. Again, we can only check against maximum limits
327 if (block
->bb_magic
!= cpu_to_be32(XFS_RMAP_CRC_MAGIC
))
330 if (!xfs_sb_version_hasrmapbt(&mp
->m_sb
))
332 if (!xfs_btree_sblock_v5hdr_verify(bp
))
335 level
= be16_to_cpu(block
->bb_level
);
336 if (pag
&& pag
->pagf_init
) {
337 if (level
>= pag
->pagf_levels
[XFS_BTNUM_RMAPi
])
339 } else if (level
>= mp
->m_rmap_maxlevels
)
342 return xfs_btree_sblock_verify(bp
, mp
->m_rmap_mxr
[level
!= 0]);
346 xfs_rmapbt_read_verify(
349 if (!xfs_btree_sblock_verify_crc(bp
))
350 xfs_buf_ioerror(bp
, -EFSBADCRC
);
351 else if (!xfs_rmapbt_verify(bp
))
352 xfs_buf_ioerror(bp
, -EFSCORRUPTED
);
355 trace_xfs_btree_corrupt(bp
, _RET_IP_
);
356 xfs_verifier_error(bp
);
361 xfs_rmapbt_write_verify(
364 if (!xfs_rmapbt_verify(bp
)) {
365 trace_xfs_btree_corrupt(bp
, _RET_IP_
);
366 xfs_buf_ioerror(bp
, -EFSCORRUPTED
);
367 xfs_verifier_error(bp
);
370 xfs_btree_sblock_calc_crc(bp
);
374 const struct xfs_buf_ops xfs_rmapbt_buf_ops
= {
375 .name
= "xfs_rmapbt",
376 .verify_read
= xfs_rmapbt_read_verify
,
377 .verify_write
= xfs_rmapbt_write_verify
,
381 xfs_rmapbt_keys_inorder(
382 struct xfs_btree_cur
*cur
,
383 union xfs_btree_key
*k1
,
384 union xfs_btree_key
*k2
)
391 x
= be32_to_cpu(k1
->rmap
.rm_startblock
);
392 y
= be32_to_cpu(k2
->rmap
.rm_startblock
);
397 a
= be64_to_cpu(k1
->rmap
.rm_owner
);
398 b
= be64_to_cpu(k2
->rmap
.rm_owner
);
403 a
= be64_to_cpu(k1
->rmap
.rm_offset
);
404 b
= be64_to_cpu(k2
->rmap
.rm_offset
);
411 xfs_rmapbt_recs_inorder(
412 struct xfs_btree_cur
*cur
,
413 union xfs_btree_rec
*r1
,
414 union xfs_btree_rec
*r2
)
421 x
= be32_to_cpu(r1
->rmap
.rm_startblock
);
422 y
= be32_to_cpu(r2
->rmap
.rm_startblock
);
427 a
= be64_to_cpu(r1
->rmap
.rm_owner
);
428 b
= be64_to_cpu(r2
->rmap
.rm_owner
);
433 a
= be64_to_cpu(r1
->rmap
.rm_offset
);
434 b
= be64_to_cpu(r2
->rmap
.rm_offset
);
440 static const struct xfs_btree_ops xfs_rmapbt_ops
= {
441 .rec_len
= sizeof(struct xfs_rmap_rec
),
442 .key_len
= 2 * sizeof(struct xfs_rmap_key
),
444 .dup_cursor
= xfs_rmapbt_dup_cursor
,
445 .set_root
= xfs_rmapbt_set_root
,
446 .alloc_block
= xfs_rmapbt_alloc_block
,
447 .free_block
= xfs_rmapbt_free_block
,
448 .get_minrecs
= xfs_rmapbt_get_minrecs
,
449 .get_maxrecs
= xfs_rmapbt_get_maxrecs
,
450 .init_key_from_rec
= xfs_rmapbt_init_key_from_rec
,
451 .init_high_key_from_rec
= xfs_rmapbt_init_high_key_from_rec
,
452 .init_rec_from_cur
= xfs_rmapbt_init_rec_from_cur
,
453 .init_ptr_from_cur
= xfs_rmapbt_init_ptr_from_cur
,
454 .key_diff
= xfs_rmapbt_key_diff
,
455 .buf_ops
= &xfs_rmapbt_buf_ops
,
456 .diff_two_keys
= xfs_rmapbt_diff_two_keys
,
457 .keys_inorder
= xfs_rmapbt_keys_inorder
,
458 .recs_inorder
= xfs_rmapbt_recs_inorder
,
462 * Allocate a new allocation btree cursor.
464 struct xfs_btree_cur
*
465 xfs_rmapbt_init_cursor(
466 struct xfs_mount
*mp
,
467 struct xfs_trans
*tp
,
468 struct xfs_buf
*agbp
,
471 struct xfs_agf
*agf
= XFS_BUF_TO_AGF(agbp
);
472 struct xfs_btree_cur
*cur
;
474 cur
= kmem_zone_zalloc(xfs_btree_cur_zone
, KM_NOFS
);
477 /* Overlapping btree; 2 keys per pointer. */
478 cur
->bc_btnum
= XFS_BTNUM_RMAP
;
479 cur
->bc_flags
= XFS_BTREE_CRC_BLOCKS
| XFS_BTREE_OVERLAPPING
;
480 cur
->bc_blocklog
= mp
->m_sb
.sb_blocklog
;
481 cur
->bc_ops
= &xfs_rmapbt_ops
;
482 cur
->bc_nlevels
= be32_to_cpu(agf
->agf_levels
[XFS_BTNUM_RMAP
]);
483 cur
->bc_statoff
= XFS_STATS_CALC_INDEX(xs_rmap_2
);
485 cur
->bc_private
.a
.agbp
= agbp
;
486 cur
->bc_private
.a
.agno
= agno
;
492 * Calculate number of records in an rmap btree block.
496 struct xfs_mount
*mp
,
500 blocklen
-= XFS_RMAP_BLOCK_LEN
;
503 return blocklen
/ sizeof(struct xfs_rmap_rec
);
505 (2 * sizeof(struct xfs_rmap_key
) + sizeof(xfs_rmap_ptr_t
));
508 /* Compute the maximum height of an rmap btree. */
510 xfs_rmapbt_compute_maxlevels(
511 struct xfs_mount
*mp
)
514 * On a non-reflink filesystem, the maximum number of rmap
515 * records is the number of blocks in the AG, hence the max
516 * rmapbt height is log_$maxrecs($agblocks). However, with
517 * reflink each AG block can have up to 2^32 (per the refcount
518 * record format) owners, which means that theoretically we
519 * could face up to 2^64 rmap records.
521 * That effectively means that the max rmapbt height must be
522 * XFS_BTREE_MAXLEVELS. "Fortunately" we'll run out of AG
523 * blocks to feed the rmapbt long before the rmapbt reaches
524 * maximum height. The reflink code uses ag_resv_critical to
525 * disallow reflinking when less than 10% of the per-AG metadata
526 * block reservation since the fallback is a regular file copy.
528 if (xfs_sb_version_hasreflink(&mp
->m_sb
))
529 mp
->m_rmap_maxlevels
= XFS_BTREE_MAXLEVELS
;
531 mp
->m_rmap_maxlevels
= xfs_btree_compute_maxlevels(mp
,
532 mp
->m_rmap_mnr
, mp
->m_sb
.sb_agblocks
);
535 /* Calculate the refcount btree size for some records. */
537 xfs_rmapbt_calc_size(
538 struct xfs_mount
*mp
,
539 unsigned long long len
)
541 return xfs_btree_calc_size(mp
, mp
->m_rmap_mnr
, len
);
545 * Calculate the maximum refcount btree size.
549 struct xfs_mount
*mp
,
550 xfs_agblock_t agblocks
)
552 /* Bail out if we're uninitialized, which can happen in mkfs. */
553 if (mp
->m_rmap_mxr
[0] == 0)
556 return xfs_rmapbt_calc_size(mp
, agblocks
);
560 * Figure out how many blocks to reserve and how many are used by this btree.
563 xfs_rmapbt_calc_reserves(
564 struct xfs_mount
*mp
,
569 struct xfs_buf
*agbp
;
571 xfs_agblock_t agblocks
;
572 xfs_extlen_t tree_len
;
575 if (!xfs_sb_version_hasrmapbt(&mp
->m_sb
))
578 error
= xfs_alloc_read_agf(mp
, NULL
, agno
, 0, &agbp
);
582 agf
= XFS_BUF_TO_AGF(agbp
);
583 agblocks
= be32_to_cpu(agf
->agf_length
);
584 tree_len
= be32_to_cpu(agf
->agf_rmap_blocks
);
587 /* Reserve 1% of the AG or enough for 1 block per record. */
588 *ask
+= max(agblocks
/ 100, xfs_rmapbt_max_size(mp
, agblocks
));