2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36 #include <linux/sched/mm.h>
38 #include "xfs_format.h"
39 #include "xfs_log_format.h"
40 #include "xfs_trans_resv.h"
42 #include "xfs_mount.h"
43 #include "xfs_trace.h"
46 static kmem_zone_t
*xfs_buf_zone
;
48 #ifdef XFS_BUF_LOCK_TRACKING
49 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
50 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
51 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
53 # define XB_SET_OWNER(bp) do { } while (0)
54 # define XB_CLEAR_OWNER(bp) do { } while (0)
55 # define XB_GET_OWNER(bp) do { } while (0)
58 #define xb_to_gfp(flags) \
59 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
66 * b_sema (caller holds)
70 * b_sema (caller holds)
79 * xfs_buftarg_wait_rele
81 * b_lock (trylock due to inversion)
85 * b_lock (trylock due to inversion)
93 * Return true if the buffer is vmapped.
95 * b_addr is null if the buffer is not mapped, but the code is clever
96 * enough to know it doesn't have to map a single page, so the check has
97 * to be both for b_addr and bp->b_page_count > 1.
99 return bp
->b_addr
&& bp
->b_page_count
> 1;
106 return (bp
->b_page_count
* PAGE_SIZE
) - bp
->b_offset
;
110 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
111 * this buffer. The count is incremented once per buffer (per hold cycle)
112 * because the corresponding decrement is deferred to buffer release. Buffers
113 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
114 * tracking adds unnecessary overhead. This is used for sychronization purposes
115 * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
118 * Buffers that are never released (e.g., superblock, iclog buffers) must set
119 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
120 * never reaches zero and unmount hangs indefinitely.
126 if (bp
->b_flags
& XBF_NO_IOACCT
)
129 ASSERT(bp
->b_flags
& XBF_ASYNC
);
130 spin_lock(&bp
->b_lock
);
131 if (!(bp
->b_state
& XFS_BSTATE_IN_FLIGHT
)) {
132 bp
->b_state
|= XFS_BSTATE_IN_FLIGHT
;
133 percpu_counter_inc(&bp
->b_target
->bt_io_count
);
135 spin_unlock(&bp
->b_lock
);
139 * Clear the in-flight state on a buffer about to be released to the LRU or
140 * freed and unaccount from the buftarg.
143 __xfs_buf_ioacct_dec(
146 lockdep_assert_held(&bp
->b_lock
);
148 if (bp
->b_state
& XFS_BSTATE_IN_FLIGHT
) {
149 bp
->b_state
&= ~XFS_BSTATE_IN_FLIGHT
;
150 percpu_counter_dec(&bp
->b_target
->bt_io_count
);
158 spin_lock(&bp
->b_lock
);
159 __xfs_buf_ioacct_dec(bp
);
160 spin_unlock(&bp
->b_lock
);
164 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
165 * b_lru_ref count so that the buffer is freed immediately when the buffer
166 * reference count falls to zero. If the buffer is already on the LRU, we need
167 * to remove the reference that LRU holds on the buffer.
169 * This prevents build-up of stale buffers on the LRU.
175 ASSERT(xfs_buf_islocked(bp
));
177 bp
->b_flags
|= XBF_STALE
;
180 * Clear the delwri status so that a delwri queue walker will not
181 * flush this buffer to disk now that it is stale. The delwri queue has
182 * a reference to the buffer, so this is safe to do.
184 bp
->b_flags
&= ~_XBF_DELWRI_Q
;
187 * Once the buffer is marked stale and unlocked, a subsequent lookup
188 * could reset b_flags. There is no guarantee that the buffer is
189 * unaccounted (released to LRU) before that occurs. Drop in-flight
190 * status now to preserve accounting consistency.
192 spin_lock(&bp
->b_lock
);
193 __xfs_buf_ioacct_dec(bp
);
195 atomic_set(&bp
->b_lru_ref
, 0);
196 if (!(bp
->b_state
& XFS_BSTATE_DISPOSE
) &&
197 (list_lru_del(&bp
->b_target
->bt_lru
, &bp
->b_lru
)))
198 atomic_dec(&bp
->b_hold
);
200 ASSERT(atomic_read(&bp
->b_hold
) >= 1);
201 spin_unlock(&bp
->b_lock
);
209 ASSERT(bp
->b_maps
== NULL
);
210 bp
->b_map_count
= map_count
;
212 if (map_count
== 1) {
213 bp
->b_maps
= &bp
->__b_map
;
217 bp
->b_maps
= kmem_zalloc(map_count
* sizeof(struct xfs_buf_map
),
225 * Frees b_pages if it was allocated.
231 if (bp
->b_maps
!= &bp
->__b_map
) {
232 kmem_free(bp
->b_maps
);
239 struct xfs_buftarg
*target
,
240 struct xfs_buf_map
*map
,
242 xfs_buf_flags_t flags
)
248 bp
= kmem_zone_zalloc(xfs_buf_zone
, KM_NOFS
);
253 * We don't want certain flags to appear in b_flags unless they are
254 * specifically set by later operations on the buffer.
256 flags
&= ~(XBF_UNMAPPED
| XBF_TRYLOCK
| XBF_ASYNC
| XBF_READ_AHEAD
);
258 atomic_set(&bp
->b_hold
, 1);
259 atomic_set(&bp
->b_lru_ref
, 1);
260 init_completion(&bp
->b_iowait
);
261 INIT_LIST_HEAD(&bp
->b_lru
);
262 INIT_LIST_HEAD(&bp
->b_list
);
263 sema_init(&bp
->b_sema
, 0); /* held, no waiters */
264 spin_lock_init(&bp
->b_lock
);
266 bp
->b_target
= target
;
270 * Set length and io_length to the same value initially.
271 * I/O routines should use io_length, which will be the same in
272 * most cases but may be reset (e.g. XFS recovery).
274 error
= xfs_buf_get_maps(bp
, nmaps
);
276 kmem_zone_free(xfs_buf_zone
, bp
);
280 bp
->b_bn
= map
[0].bm_bn
;
282 for (i
= 0; i
< nmaps
; i
++) {
283 bp
->b_maps
[i
].bm_bn
= map
[i
].bm_bn
;
284 bp
->b_maps
[i
].bm_len
= map
[i
].bm_len
;
285 bp
->b_length
+= map
[i
].bm_len
;
287 bp
->b_io_length
= bp
->b_length
;
289 atomic_set(&bp
->b_pin_count
, 0);
290 init_waitqueue_head(&bp
->b_waiters
);
292 XFS_STATS_INC(target
->bt_mount
, xb_create
);
293 trace_xfs_buf_init(bp
, _RET_IP_
);
299 * Allocate a page array capable of holding a specified number
300 * of pages, and point the page buf at it.
307 /* Make sure that we have a page list */
308 if (bp
->b_pages
== NULL
) {
309 bp
->b_page_count
= page_count
;
310 if (page_count
<= XB_PAGES
) {
311 bp
->b_pages
= bp
->b_page_array
;
313 bp
->b_pages
= kmem_alloc(sizeof(struct page
*) *
314 page_count
, KM_NOFS
);
315 if (bp
->b_pages
== NULL
)
318 memset(bp
->b_pages
, 0, sizeof(struct page
*) * page_count
);
324 * Frees b_pages if it was allocated.
330 if (bp
->b_pages
!= bp
->b_page_array
) {
331 kmem_free(bp
->b_pages
);
337 * Releases the specified buffer.
339 * The modification state of any associated pages is left unchanged.
340 * The buffer must not be on any hash - use xfs_buf_rele instead for
341 * hashed and refcounted buffers
347 trace_xfs_buf_free(bp
, _RET_IP_
);
349 ASSERT(list_empty(&bp
->b_lru
));
351 if (bp
->b_flags
& _XBF_PAGES
) {
354 if (xfs_buf_is_vmapped(bp
))
355 vm_unmap_ram(bp
->b_addr
- bp
->b_offset
,
358 for (i
= 0; i
< bp
->b_page_count
; i
++) {
359 struct page
*page
= bp
->b_pages
[i
];
363 } else if (bp
->b_flags
& _XBF_KMEM
)
364 kmem_free(bp
->b_addr
);
365 _xfs_buf_free_pages(bp
);
366 xfs_buf_free_maps(bp
);
367 kmem_zone_free(xfs_buf_zone
, bp
);
371 * Allocates all the pages for buffer in question and builds it's page list.
374 xfs_buf_allocate_memory(
379 size_t nbytes
, offset
;
380 gfp_t gfp_mask
= xb_to_gfp(flags
);
381 unsigned short page_count
, i
;
382 xfs_off_t start
, end
;
386 * for buffers that are contained within a single page, just allocate
387 * the memory from the heap - there's no need for the complexity of
388 * page arrays to keep allocation down to order 0.
390 size
= BBTOB(bp
->b_length
);
391 if (size
< PAGE_SIZE
) {
392 bp
->b_addr
= kmem_alloc(size
, KM_NOFS
);
394 /* low memory - use alloc_page loop instead */
398 if (((unsigned long)(bp
->b_addr
+ size
- 1) & PAGE_MASK
) !=
399 ((unsigned long)bp
->b_addr
& PAGE_MASK
)) {
400 /* b_addr spans two pages - use alloc_page instead */
401 kmem_free(bp
->b_addr
);
405 bp
->b_offset
= offset_in_page(bp
->b_addr
);
406 bp
->b_pages
= bp
->b_page_array
;
407 bp
->b_pages
[0] = virt_to_page(bp
->b_addr
);
408 bp
->b_page_count
= 1;
409 bp
->b_flags
|= _XBF_KMEM
;
414 start
= BBTOB(bp
->b_maps
[0].bm_bn
) >> PAGE_SHIFT
;
415 end
= (BBTOB(bp
->b_maps
[0].bm_bn
+ bp
->b_length
) + PAGE_SIZE
- 1)
417 page_count
= end
- start
;
418 error
= _xfs_buf_get_pages(bp
, page_count
);
422 offset
= bp
->b_offset
;
423 bp
->b_flags
|= _XBF_PAGES
;
425 for (i
= 0; i
< bp
->b_page_count
; i
++) {
429 page
= alloc_page(gfp_mask
);
430 if (unlikely(page
== NULL
)) {
431 if (flags
& XBF_READ_AHEAD
) {
432 bp
->b_page_count
= i
;
438 * This could deadlock.
440 * But until all the XFS lowlevel code is revamped to
441 * handle buffer allocation failures we can't do much.
443 if (!(++retries
% 100))
445 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
446 current
->comm
, current
->pid
,
449 XFS_STATS_INC(bp
->b_target
->bt_mount
, xb_page_retries
);
450 congestion_wait(BLK_RW_ASYNC
, HZ
/50);
454 XFS_STATS_INC(bp
->b_target
->bt_mount
, xb_page_found
);
456 nbytes
= min_t(size_t, size
, PAGE_SIZE
- offset
);
458 bp
->b_pages
[i
] = page
;
464 for (i
= 0; i
< bp
->b_page_count
; i
++)
465 __free_page(bp
->b_pages
[i
]);
466 bp
->b_flags
&= ~_XBF_PAGES
;
471 * Map buffer into kernel address-space if necessary.
478 ASSERT(bp
->b_flags
& _XBF_PAGES
);
479 if (bp
->b_page_count
== 1) {
480 /* A single page buffer is always mappable */
481 bp
->b_addr
= page_address(bp
->b_pages
[0]) + bp
->b_offset
;
482 } else if (flags
& XBF_UNMAPPED
) {
489 * vm_map_ram() will allocate auxillary structures (e.g.
490 * pagetables) with GFP_KERNEL, yet we are likely to be under
491 * GFP_NOFS context here. Hence we need to tell memory reclaim
492 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
493 * memory reclaim re-entering the filesystem here and
494 * potentially deadlocking.
496 nofs_flag
= memalloc_nofs_save();
498 bp
->b_addr
= vm_map_ram(bp
->b_pages
, bp
->b_page_count
,
503 } while (retried
++ <= 1);
504 memalloc_nofs_restore(nofs_flag
);
508 bp
->b_addr
+= bp
->b_offset
;
515 * Finding and Reading Buffers
519 struct rhashtable_compare_arg
*arg
,
522 const struct xfs_buf_map
*map
= arg
->key
;
523 const struct xfs_buf
*bp
= obj
;
526 * The key hashing in the lookup path depends on the key being the
527 * first element of the compare_arg, make sure to assert this.
529 BUILD_BUG_ON(offsetof(struct xfs_buf_map
, bm_bn
) != 0);
531 if (bp
->b_bn
!= map
->bm_bn
)
534 if (unlikely(bp
->b_length
!= map
->bm_len
)) {
536 * found a block number match. If the range doesn't
537 * match, the only way this is allowed is if the buffer
538 * in the cache is stale and the transaction that made
539 * it stale has not yet committed. i.e. we are
540 * reallocating a busy extent. Skip this buffer and
541 * continue searching for an exact match.
543 ASSERT(bp
->b_flags
& XBF_STALE
);
549 static const struct rhashtable_params xfs_buf_hash_params
= {
550 .min_size
= 32, /* empty AGs have minimal footprint */
552 .key_len
= sizeof(xfs_daddr_t
),
553 .key_offset
= offsetof(struct xfs_buf
, b_bn
),
554 .head_offset
= offsetof(struct xfs_buf
, b_rhash_head
),
555 .automatic_shrinking
= true,
556 .obj_cmpfn
= _xfs_buf_obj_cmp
,
561 struct xfs_perag
*pag
)
563 spin_lock_init(&pag
->pag_buf_lock
);
564 return rhashtable_init(&pag
->pag_buf_hash
, &xfs_buf_hash_params
);
568 xfs_buf_hash_destroy(
569 struct xfs_perag
*pag
)
571 rhashtable_destroy(&pag
->pag_buf_hash
);
575 * Look up, and creates if absent, a lockable buffer for
576 * a given range of an inode. The buffer is returned
577 * locked. No I/O is implied by this call.
581 struct xfs_buftarg
*btp
,
582 struct xfs_buf_map
*map
,
584 xfs_buf_flags_t flags
,
587 struct xfs_perag
*pag
;
589 struct xfs_buf_map cmap
= { .bm_bn
= map
[0].bm_bn
};
593 for (i
= 0; i
< nmaps
; i
++)
594 cmap
.bm_len
+= map
[i
].bm_len
;
596 /* Check for IOs smaller than the sector size / not sector aligned */
597 ASSERT(!(BBTOB(cmap
.bm_len
) < btp
->bt_meta_sectorsize
));
598 ASSERT(!(BBTOB(cmap
.bm_bn
) & (xfs_off_t
)btp
->bt_meta_sectormask
));
601 * Corrupted block numbers can get through to here, unfortunately, so we
602 * have to check that the buffer falls within the filesystem bounds.
604 eofs
= XFS_FSB_TO_BB(btp
->bt_mount
, btp
->bt_mount
->m_sb
.sb_dblocks
);
605 if (cmap
.bm_bn
< 0 || cmap
.bm_bn
>= eofs
) {
607 * XXX (dgc): we should really be returning -EFSCORRUPTED here,
608 * but none of the higher level infrastructure supports
609 * returning a specific error on buffer lookup failures.
611 xfs_alert(btp
->bt_mount
,
612 "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
613 __func__
, cmap
.bm_bn
, eofs
);
618 pag
= xfs_perag_get(btp
->bt_mount
,
619 xfs_daddr_to_agno(btp
->bt_mount
, cmap
.bm_bn
));
621 spin_lock(&pag
->pag_buf_lock
);
622 bp
= rhashtable_lookup_fast(&pag
->pag_buf_hash
, &cmap
,
623 xfs_buf_hash_params
);
625 atomic_inc(&bp
->b_hold
);
631 /* the buffer keeps the perag reference until it is freed */
633 rhashtable_insert_fast(&pag
->pag_buf_hash
,
634 &new_bp
->b_rhash_head
,
635 xfs_buf_hash_params
);
636 spin_unlock(&pag
->pag_buf_lock
);
638 XFS_STATS_INC(btp
->bt_mount
, xb_miss_locked
);
639 spin_unlock(&pag
->pag_buf_lock
);
645 spin_unlock(&pag
->pag_buf_lock
);
648 if (!xfs_buf_trylock(bp
)) {
649 if (flags
& XBF_TRYLOCK
) {
651 XFS_STATS_INC(btp
->bt_mount
, xb_busy_locked
);
655 XFS_STATS_INC(btp
->bt_mount
, xb_get_locked_waited
);
659 * if the buffer is stale, clear all the external state associated with
660 * it. We need to keep flags such as how we allocated the buffer memory
663 if (bp
->b_flags
& XBF_STALE
) {
664 ASSERT((bp
->b_flags
& _XBF_DELWRI_Q
) == 0);
665 ASSERT(bp
->b_iodone
== NULL
);
666 bp
->b_flags
&= _XBF_KMEM
| _XBF_PAGES
;
670 trace_xfs_buf_find(bp
, flags
, _RET_IP_
);
671 XFS_STATS_INC(btp
->bt_mount
, xb_get_locked
);
676 * Assembles a buffer covering the specified range. The code is optimised for
677 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
678 * more hits than misses.
682 struct xfs_buftarg
*target
,
683 struct xfs_buf_map
*map
,
685 xfs_buf_flags_t flags
)
688 struct xfs_buf
*new_bp
;
691 bp
= _xfs_buf_find(target
, map
, nmaps
, flags
, NULL
);
695 new_bp
= _xfs_buf_alloc(target
, map
, nmaps
, flags
);
696 if (unlikely(!new_bp
))
699 error
= xfs_buf_allocate_memory(new_bp
, flags
);
701 xfs_buf_free(new_bp
);
705 bp
= _xfs_buf_find(target
, map
, nmaps
, flags
, new_bp
);
707 xfs_buf_free(new_bp
);
712 xfs_buf_free(new_bp
);
716 error
= _xfs_buf_map_pages(bp
, flags
);
717 if (unlikely(error
)) {
718 xfs_warn(target
->bt_mount
,
719 "%s: failed to map pagesn", __func__
);
726 * Clear b_error if this is a lookup from a caller that doesn't expect
727 * valid data to be found in the buffer.
729 if (!(flags
& XBF_READ
))
730 xfs_buf_ioerror(bp
, 0);
732 XFS_STATS_INC(target
->bt_mount
, xb_get
);
733 trace_xfs_buf_get(bp
, flags
, _RET_IP_
);
740 xfs_buf_flags_t flags
)
742 ASSERT(!(flags
& XBF_WRITE
));
743 ASSERT(bp
->b_maps
[0].bm_bn
!= XFS_BUF_DADDR_NULL
);
745 bp
->b_flags
&= ~(XBF_WRITE
| XBF_ASYNC
| XBF_READ_AHEAD
);
746 bp
->b_flags
|= flags
& (XBF_READ
| XBF_ASYNC
| XBF_READ_AHEAD
);
748 if (flags
& XBF_ASYNC
) {
752 return xfs_buf_submit_wait(bp
);
757 struct xfs_buftarg
*target
,
758 struct xfs_buf_map
*map
,
760 xfs_buf_flags_t flags
,
761 const struct xfs_buf_ops
*ops
)
767 bp
= xfs_buf_get_map(target
, map
, nmaps
, flags
);
769 trace_xfs_buf_read(bp
, flags
, _RET_IP_
);
771 if (!(bp
->b_flags
& XBF_DONE
)) {
772 XFS_STATS_INC(target
->bt_mount
, xb_get_read
);
774 _xfs_buf_read(bp
, flags
);
775 } else if (flags
& XBF_ASYNC
) {
777 * Read ahead call which is already satisfied,
783 /* We do not want read in the flags */
784 bp
->b_flags
&= ~XBF_READ
;
792 * If we are not low on memory then do the readahead in a deadlock
796 xfs_buf_readahead_map(
797 struct xfs_buftarg
*target
,
798 struct xfs_buf_map
*map
,
800 const struct xfs_buf_ops
*ops
)
802 if (bdi_read_congested(target
->bt_bdev
->bd_bdi
))
805 xfs_buf_read_map(target
, map
, nmaps
,
806 XBF_TRYLOCK
|XBF_ASYNC
|XBF_READ_AHEAD
, ops
);
810 * Read an uncached buffer from disk. Allocates and returns a locked
811 * buffer containing the disk contents or nothing.
814 xfs_buf_read_uncached(
815 struct xfs_buftarg
*target
,
819 struct xfs_buf
**bpp
,
820 const struct xfs_buf_ops
*ops
)
826 bp
= xfs_buf_get_uncached(target
, numblks
, flags
);
830 /* set up the buffer for a read IO */
831 ASSERT(bp
->b_map_count
== 1);
832 bp
->b_bn
= XFS_BUF_DADDR_NULL
; /* always null for uncached buffers */
833 bp
->b_maps
[0].bm_bn
= daddr
;
834 bp
->b_flags
|= XBF_READ
;
837 xfs_buf_submit_wait(bp
);
839 int error
= bp
->b_error
;
849 * Return a buffer allocated as an empty buffer and associated to external
850 * memory via xfs_buf_associate_memory() back to it's empty state.
858 _xfs_buf_free_pages(bp
);
861 bp
->b_page_count
= 0;
863 bp
->b_length
= numblks
;
864 bp
->b_io_length
= numblks
;
866 ASSERT(bp
->b_map_count
== 1);
867 bp
->b_bn
= XFS_BUF_DADDR_NULL
;
868 bp
->b_maps
[0].bm_bn
= XFS_BUF_DADDR_NULL
;
869 bp
->b_maps
[0].bm_len
= bp
->b_length
;
872 static inline struct page
*
876 if ((!is_vmalloc_addr(addr
))) {
877 return virt_to_page(addr
);
879 return vmalloc_to_page(addr
);
884 xfs_buf_associate_memory(
891 unsigned long pageaddr
;
892 unsigned long offset
;
896 pageaddr
= (unsigned long)mem
& PAGE_MASK
;
897 offset
= (unsigned long)mem
- pageaddr
;
898 buflen
= PAGE_ALIGN(len
+ offset
);
899 page_count
= buflen
>> PAGE_SHIFT
;
901 /* Free any previous set of page pointers */
903 _xfs_buf_free_pages(bp
);
908 rval
= _xfs_buf_get_pages(bp
, page_count
);
912 bp
->b_offset
= offset
;
914 for (i
= 0; i
< bp
->b_page_count
; i
++) {
915 bp
->b_pages
[i
] = mem_to_page((void *)pageaddr
);
916 pageaddr
+= PAGE_SIZE
;
919 bp
->b_io_length
= BTOBB(len
);
920 bp
->b_length
= BTOBB(buflen
);
926 xfs_buf_get_uncached(
927 struct xfs_buftarg
*target
,
931 unsigned long page_count
;
934 DEFINE_SINGLE_BUF_MAP(map
, XFS_BUF_DADDR_NULL
, numblks
);
936 /* flags might contain irrelevant bits, pass only what we care about */
937 bp
= _xfs_buf_alloc(target
, &map
, 1, flags
& XBF_NO_IOACCT
);
938 if (unlikely(bp
== NULL
))
941 page_count
= PAGE_ALIGN(numblks
<< BBSHIFT
) >> PAGE_SHIFT
;
942 error
= _xfs_buf_get_pages(bp
, page_count
);
946 for (i
= 0; i
< page_count
; i
++) {
947 bp
->b_pages
[i
] = alloc_page(xb_to_gfp(flags
));
951 bp
->b_flags
|= _XBF_PAGES
;
953 error
= _xfs_buf_map_pages(bp
, 0);
954 if (unlikely(error
)) {
955 xfs_warn(target
->bt_mount
,
956 "%s: failed to map pages", __func__
);
960 trace_xfs_buf_get_uncached(bp
, _RET_IP_
);
965 __free_page(bp
->b_pages
[i
]);
966 _xfs_buf_free_pages(bp
);
968 xfs_buf_free_maps(bp
);
969 kmem_zone_free(xfs_buf_zone
, bp
);
975 * Increment reference count on buffer, to hold the buffer concurrently
976 * with another thread which may release (free) the buffer asynchronously.
977 * Must hold the buffer already to call this function.
983 trace_xfs_buf_hold(bp
, _RET_IP_
);
984 atomic_inc(&bp
->b_hold
);
988 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
989 * placed on LRU or freed (depending on b_lru_ref).
995 struct xfs_perag
*pag
= bp
->b_pag
;
997 bool freebuf
= false;
999 trace_xfs_buf_rele(bp
, _RET_IP_
);
1002 ASSERT(list_empty(&bp
->b_lru
));
1003 if (atomic_dec_and_test(&bp
->b_hold
)) {
1004 xfs_buf_ioacct_dec(bp
);
1010 ASSERT(atomic_read(&bp
->b_hold
) > 0);
1013 * We grab the b_lock here first to serialise racing xfs_buf_rele()
1014 * calls. The pag_buf_lock being taken on the last reference only
1015 * serialises against racing lookups in xfs_buf_find(). IOWs, the second
1016 * to last reference we drop here is not serialised against the last
1017 * reference until we take bp->b_lock. Hence if we don't grab b_lock
1018 * first, the last "release" reference can win the race to the lock and
1019 * free the buffer before the second-to-last reference is processed,
1020 * leading to a use-after-free scenario.
1022 spin_lock(&bp
->b_lock
);
1023 release
= atomic_dec_and_lock(&bp
->b_hold
, &pag
->pag_buf_lock
);
1026 * Drop the in-flight state if the buffer is already on the LRU
1027 * and it holds the only reference. This is racy because we
1028 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
1029 * ensures the decrement occurs only once per-buf.
1031 if ((atomic_read(&bp
->b_hold
) == 1) && !list_empty(&bp
->b_lru
))
1032 __xfs_buf_ioacct_dec(bp
);
1036 /* the last reference has been dropped ... */
1037 __xfs_buf_ioacct_dec(bp
);
1038 if (!(bp
->b_flags
& XBF_STALE
) && atomic_read(&bp
->b_lru_ref
)) {
1040 * If the buffer is added to the LRU take a new reference to the
1041 * buffer for the LRU and clear the (now stale) dispose list
1044 if (list_lru_add(&bp
->b_target
->bt_lru
, &bp
->b_lru
)) {
1045 bp
->b_state
&= ~XFS_BSTATE_DISPOSE
;
1046 atomic_inc(&bp
->b_hold
);
1048 spin_unlock(&pag
->pag_buf_lock
);
1051 * most of the time buffers will already be removed from the
1052 * LRU, so optimise that case by checking for the
1053 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1054 * was on was the disposal list
1056 if (!(bp
->b_state
& XFS_BSTATE_DISPOSE
)) {
1057 list_lru_del(&bp
->b_target
->bt_lru
, &bp
->b_lru
);
1059 ASSERT(list_empty(&bp
->b_lru
));
1062 ASSERT(!(bp
->b_flags
& _XBF_DELWRI_Q
));
1063 rhashtable_remove_fast(&pag
->pag_buf_hash
, &bp
->b_rhash_head
,
1064 xfs_buf_hash_params
);
1065 spin_unlock(&pag
->pag_buf_lock
);
1071 spin_unlock(&bp
->b_lock
);
1079 * Lock a buffer object, if it is not already locked.
1081 * If we come across a stale, pinned, locked buffer, we know that we are
1082 * being asked to lock a buffer that has been reallocated. Because it is
1083 * pinned, we know that the log has not been pushed to disk and hence it
1084 * will still be locked. Rather than continuing to have trylock attempts
1085 * fail until someone else pushes the log, push it ourselves before
1086 * returning. This means that the xfsaild will not get stuck trying
1087 * to push on stale inode buffers.
1095 locked
= down_trylock(&bp
->b_sema
) == 0;
1098 trace_xfs_buf_trylock(bp
, _RET_IP_
);
1100 trace_xfs_buf_trylock_fail(bp
, _RET_IP_
);
1106 * Lock a buffer object.
1108 * If we come across a stale, pinned, locked buffer, we know that we
1109 * are being asked to lock a buffer that has been reallocated. Because
1110 * it is pinned, we know that the log has not been pushed to disk and
1111 * hence it will still be locked. Rather than sleeping until someone
1112 * else pushes the log, push it ourselves before trying to get the lock.
1118 trace_xfs_buf_lock(bp
, _RET_IP_
);
1120 if (atomic_read(&bp
->b_pin_count
) && (bp
->b_flags
& XBF_STALE
))
1121 xfs_log_force(bp
->b_target
->bt_mount
, 0);
1125 trace_xfs_buf_lock_done(bp
, _RET_IP_
);
1132 ASSERT(xfs_buf_islocked(bp
));
1137 trace_xfs_buf_unlock(bp
, _RET_IP_
);
1144 DECLARE_WAITQUEUE (wait
, current
);
1146 if (atomic_read(&bp
->b_pin_count
) == 0)
1149 add_wait_queue(&bp
->b_waiters
, &wait
);
1151 set_current_state(TASK_UNINTERRUPTIBLE
);
1152 if (atomic_read(&bp
->b_pin_count
) == 0)
1156 remove_wait_queue(&bp
->b_waiters
, &wait
);
1157 set_current_state(TASK_RUNNING
);
1161 * Buffer Utility Routines
1168 bool read
= bp
->b_flags
& XBF_READ
;
1170 trace_xfs_buf_iodone(bp
, _RET_IP_
);
1172 bp
->b_flags
&= ~(XBF_READ
| XBF_WRITE
| XBF_READ_AHEAD
);
1175 * Pull in IO completion errors now. We are guaranteed to be running
1176 * single threaded, so we don't need the lock to read b_io_error.
1178 if (!bp
->b_error
&& bp
->b_io_error
)
1179 xfs_buf_ioerror(bp
, bp
->b_io_error
);
1181 /* Only validate buffers that were read without errors */
1182 if (read
&& !bp
->b_error
&& bp
->b_ops
) {
1183 ASSERT(!bp
->b_iodone
);
1184 bp
->b_ops
->verify_read(bp
);
1188 bp
->b_flags
|= XBF_DONE
;
1191 (*(bp
->b_iodone
))(bp
);
1192 else if (bp
->b_flags
& XBF_ASYNC
)
1195 complete(&bp
->b_iowait
);
1200 struct work_struct
*work
)
1202 struct xfs_buf
*bp
=
1203 container_of(work
, xfs_buf_t
, b_ioend_work
);
1209 xfs_buf_ioend_async(
1212 INIT_WORK(&bp
->b_ioend_work
, xfs_buf_ioend_work
);
1213 queue_work(bp
->b_ioend_wq
, &bp
->b_ioend_work
);
1221 ASSERT(error
<= 0 && error
>= -1000);
1222 bp
->b_error
= error
;
1223 trace_xfs_buf_ioerror(bp
, error
, _RET_IP_
);
1227 xfs_buf_ioerror_alert(
1231 xfs_alert(bp
->b_target
->bt_mount
,
1232 "metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1233 (uint64_t)XFS_BUF_ADDR(bp
), func
, -bp
->b_error
, bp
->b_length
);
1242 ASSERT(xfs_buf_islocked(bp
));
1244 bp
->b_flags
|= XBF_WRITE
;
1245 bp
->b_flags
&= ~(XBF_ASYNC
| XBF_READ
| _XBF_DELWRI_Q
|
1246 XBF_WRITE_FAIL
| XBF_DONE
);
1248 error
= xfs_buf_submit_wait(bp
);
1250 xfs_force_shutdown(bp
->b_target
->bt_mount
,
1251 SHUTDOWN_META_IO_ERROR
);
1260 struct xfs_buf
*bp
= (struct xfs_buf
*)bio
->bi_private
;
1263 * don't overwrite existing errors - otherwise we can lose errors on
1264 * buffers that require multiple bios to complete.
1266 if (bio
->bi_status
) {
1267 int error
= blk_status_to_errno(bio
->bi_status
);
1269 cmpxchg(&bp
->b_io_error
, 0, error
);
1272 if (!bp
->b_error
&& xfs_buf_is_vmapped(bp
) && (bp
->b_flags
& XBF_READ
))
1273 invalidate_kernel_vmap_range(bp
->b_addr
, xfs_buf_vmap_len(bp
));
1275 if (atomic_dec_and_test(&bp
->b_io_remaining
) == 1)
1276 xfs_buf_ioend_async(bp
);
1281 xfs_buf_ioapply_map(
1290 int total_nr_pages
= bp
->b_page_count
;
1293 sector_t sector
= bp
->b_maps
[map
].bm_bn
;
1297 /* skip the pages in the buffer before the start offset */
1299 offset
= *buf_offset
;
1300 while (offset
>= PAGE_SIZE
) {
1302 offset
-= PAGE_SIZE
;
1306 * Limit the IO size to the length of the current vector, and update the
1307 * remaining IO count for the next time around.
1309 size
= min_t(int, BBTOB(bp
->b_maps
[map
].bm_len
), *count
);
1311 *buf_offset
+= size
;
1314 atomic_inc(&bp
->b_io_remaining
);
1315 nr_pages
= min(total_nr_pages
, BIO_MAX_PAGES
);
1317 bio
= bio_alloc(GFP_NOIO
, nr_pages
);
1318 bio_set_dev(bio
, bp
->b_target
->bt_bdev
);
1319 bio
->bi_iter
.bi_sector
= sector
;
1320 bio
->bi_end_io
= xfs_buf_bio_end_io
;
1321 bio
->bi_private
= bp
;
1322 bio_set_op_attrs(bio
, op
, op_flags
);
1324 for (; size
&& nr_pages
; nr_pages
--, page_index
++) {
1325 int rbytes
, nbytes
= PAGE_SIZE
- offset
;
1330 rbytes
= bio_add_page(bio
, bp
->b_pages
[page_index
], nbytes
,
1332 if (rbytes
< nbytes
)
1336 sector
+= BTOBB(nbytes
);
1341 if (likely(bio
->bi_iter
.bi_size
)) {
1342 if (xfs_buf_is_vmapped(bp
)) {
1343 flush_kernel_vmap_range(bp
->b_addr
,
1344 xfs_buf_vmap_len(bp
));
1351 * This is guaranteed not to be the last io reference count
1352 * because the caller (xfs_buf_submit) holds a count itself.
1354 atomic_dec(&bp
->b_io_remaining
);
1355 xfs_buf_ioerror(bp
, -EIO
);
1365 struct blk_plug plug
;
1373 * Make sure we capture only current IO errors rather than stale errors
1374 * left over from previous use of the buffer (e.g. failed readahead).
1379 * Initialize the I/O completion workqueue if we haven't yet or the
1380 * submitter has not opted to specify a custom one.
1382 if (!bp
->b_ioend_wq
)
1383 bp
->b_ioend_wq
= bp
->b_target
->bt_mount
->m_buf_workqueue
;
1385 if (bp
->b_flags
& XBF_WRITE
) {
1387 if (bp
->b_flags
& XBF_SYNCIO
)
1388 op_flags
= REQ_SYNC
;
1389 if (bp
->b_flags
& XBF_FUA
)
1390 op_flags
|= REQ_FUA
;
1391 if (bp
->b_flags
& XBF_FLUSH
)
1392 op_flags
|= REQ_PREFLUSH
;
1395 * Run the write verifier callback function if it exists. If
1396 * this function fails it will mark the buffer with an error and
1397 * the IO should not be dispatched.
1400 bp
->b_ops
->verify_write(bp
);
1402 xfs_force_shutdown(bp
->b_target
->bt_mount
,
1403 SHUTDOWN_CORRUPT_INCORE
);
1406 } else if (bp
->b_bn
!= XFS_BUF_DADDR_NULL
) {
1407 struct xfs_mount
*mp
= bp
->b_target
->bt_mount
;
1410 * non-crc filesystems don't attach verifiers during
1411 * log recovery, so don't warn for such filesystems.
1413 if (xfs_sb_version_hascrc(&mp
->m_sb
)) {
1415 "%s: no ops on block 0x%llx/0x%x",
1416 __func__
, bp
->b_bn
, bp
->b_length
);
1417 xfs_hex_dump(bp
->b_addr
, 64);
1421 } else if (bp
->b_flags
& XBF_READ_AHEAD
) {
1423 op_flags
= REQ_RAHEAD
;
1428 /* we only use the buffer cache for meta-data */
1429 op_flags
|= REQ_META
;
1432 * Walk all the vectors issuing IO on them. Set up the initial offset
1433 * into the buffer and the desired IO size before we start -
1434 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1437 offset
= bp
->b_offset
;
1438 size
= BBTOB(bp
->b_io_length
);
1439 blk_start_plug(&plug
);
1440 for (i
= 0; i
< bp
->b_map_count
; i
++) {
1441 xfs_buf_ioapply_map(bp
, i
, &offset
, &size
, op
, op_flags
);
1445 break; /* all done */
1447 blk_finish_plug(&plug
);
1451 * Asynchronous IO submission path. This transfers the buffer lock ownership and
1452 * the current reference to the IO. It is not safe to reference the buffer after
1453 * a call to this function unless the caller holds an additional reference
1460 trace_xfs_buf_submit(bp
, _RET_IP_
);
1462 ASSERT(!(bp
->b_flags
& _XBF_DELWRI_Q
));
1463 ASSERT(bp
->b_flags
& XBF_ASYNC
);
1465 /* on shutdown we stale and complete the buffer immediately */
1466 if (XFS_FORCED_SHUTDOWN(bp
->b_target
->bt_mount
)) {
1467 xfs_buf_ioerror(bp
, -EIO
);
1468 bp
->b_flags
&= ~XBF_DONE
;
1474 if (bp
->b_flags
& XBF_WRITE
)
1475 xfs_buf_wait_unpin(bp
);
1477 /* clear the internal error state to avoid spurious errors */
1481 * The caller's reference is released during I/O completion.
1482 * This occurs some time after the last b_io_remaining reference is
1483 * released, so after we drop our Io reference we have to have some
1484 * other reference to ensure the buffer doesn't go away from underneath
1485 * us. Take a direct reference to ensure we have safe access to the
1486 * buffer until we are finished with it.
1491 * Set the count to 1 initially, this will stop an I/O completion
1492 * callout which happens before we have started all the I/O from calling
1493 * xfs_buf_ioend too early.
1495 atomic_set(&bp
->b_io_remaining
, 1);
1496 xfs_buf_ioacct_inc(bp
);
1497 _xfs_buf_ioapply(bp
);
1500 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1501 * reference we took above. If we drop it to zero, run completion so
1502 * that we don't return to the caller with completion still pending.
1504 if (atomic_dec_and_test(&bp
->b_io_remaining
) == 1) {
1508 xfs_buf_ioend_async(bp
);
1512 /* Note: it is not safe to reference bp now we've dropped our ref */
1516 * Synchronous buffer IO submission path, read or write.
1519 xfs_buf_submit_wait(
1524 trace_xfs_buf_submit_wait(bp
, _RET_IP_
);
1526 ASSERT(!(bp
->b_flags
& (_XBF_DELWRI_Q
| XBF_ASYNC
)));
1528 if (XFS_FORCED_SHUTDOWN(bp
->b_target
->bt_mount
)) {
1529 xfs_buf_ioerror(bp
, -EIO
);
1531 bp
->b_flags
&= ~XBF_DONE
;
1535 if (bp
->b_flags
& XBF_WRITE
)
1536 xfs_buf_wait_unpin(bp
);
1538 /* clear the internal error state to avoid spurious errors */
1542 * For synchronous IO, the IO does not inherit the submitters reference
1543 * count, nor the buffer lock. Hence we cannot release the reference we
1544 * are about to take until we've waited for all IO completion to occur,
1545 * including any xfs_buf_ioend_async() work that may be pending.
1550 * Set the count to 1 initially, this will stop an I/O completion
1551 * callout which happens before we have started all the I/O from calling
1552 * xfs_buf_ioend too early.
1554 atomic_set(&bp
->b_io_remaining
, 1);
1555 _xfs_buf_ioapply(bp
);
1558 * make sure we run completion synchronously if it raced with us and is
1561 if (atomic_dec_and_test(&bp
->b_io_remaining
) == 1)
1564 /* wait for completion before gathering the error from the buffer */
1565 trace_xfs_buf_iowait(bp
, _RET_IP_
);
1566 wait_for_completion(&bp
->b_iowait
);
1567 trace_xfs_buf_iowait_done(bp
, _RET_IP_
);
1568 error
= bp
->b_error
;
1571 * all done now, we can release the hold that keeps the buffer
1572 * referenced for the entire IO.
1586 return bp
->b_addr
+ offset
;
1588 offset
+= bp
->b_offset
;
1589 page
= bp
->b_pages
[offset
>> PAGE_SHIFT
];
1590 return page_address(page
) + (offset
& (PAGE_SIZE
-1));
1594 * Move data into or out of a buffer.
1598 xfs_buf_t
*bp
, /* buffer to process */
1599 size_t boff
, /* starting buffer offset */
1600 size_t bsize
, /* length to copy */
1601 void *data
, /* data address */
1602 xfs_buf_rw_t mode
) /* read/write/zero flag */
1606 bend
= boff
+ bsize
;
1607 while (boff
< bend
) {
1609 int page_index
, page_offset
, csize
;
1611 page_index
= (boff
+ bp
->b_offset
) >> PAGE_SHIFT
;
1612 page_offset
= (boff
+ bp
->b_offset
) & ~PAGE_MASK
;
1613 page
= bp
->b_pages
[page_index
];
1614 csize
= min_t(size_t, PAGE_SIZE
- page_offset
,
1615 BBTOB(bp
->b_io_length
) - boff
);
1617 ASSERT((csize
+ page_offset
) <= PAGE_SIZE
);
1621 memset(page_address(page
) + page_offset
, 0, csize
);
1624 memcpy(data
, page_address(page
) + page_offset
, csize
);
1627 memcpy(page_address(page
) + page_offset
, data
, csize
);
1636 * Handling of buffer targets (buftargs).
1640 * Wait for any bufs with callbacks that have been submitted but have not yet
1641 * returned. These buffers will have an elevated hold count, so wait on those
1642 * while freeing all the buffers only held by the LRU.
1644 static enum lru_status
1645 xfs_buftarg_wait_rele(
1646 struct list_head
*item
,
1647 struct list_lru_one
*lru
,
1648 spinlock_t
*lru_lock
,
1652 struct xfs_buf
*bp
= container_of(item
, struct xfs_buf
, b_lru
);
1653 struct list_head
*dispose
= arg
;
1655 if (atomic_read(&bp
->b_hold
) > 1) {
1656 /* need to wait, so skip it this pass */
1657 trace_xfs_buf_wait_buftarg(bp
, _RET_IP_
);
1660 if (!spin_trylock(&bp
->b_lock
))
1664 * clear the LRU reference count so the buffer doesn't get
1665 * ignored in xfs_buf_rele().
1667 atomic_set(&bp
->b_lru_ref
, 0);
1668 bp
->b_state
|= XFS_BSTATE_DISPOSE
;
1669 list_lru_isolate_move(lru
, item
, dispose
);
1670 spin_unlock(&bp
->b_lock
);
1676 struct xfs_buftarg
*btp
)
1682 * First wait on the buftarg I/O count for all in-flight buffers to be
1683 * released. This is critical as new buffers do not make the LRU until
1684 * they are released.
1686 * Next, flush the buffer workqueue to ensure all completion processing
1687 * has finished. Just waiting on buffer locks is not sufficient for
1688 * async IO as the reference count held over IO is not released until
1689 * after the buffer lock is dropped. Hence we need to ensure here that
1690 * all reference counts have been dropped before we start walking the
1693 while (percpu_counter_sum(&btp
->bt_io_count
))
1695 flush_workqueue(btp
->bt_mount
->m_buf_workqueue
);
1697 /* loop until there is nothing left on the lru list. */
1698 while (list_lru_count(&btp
->bt_lru
)) {
1699 list_lru_walk(&btp
->bt_lru
, xfs_buftarg_wait_rele
,
1700 &dispose
, LONG_MAX
);
1702 while (!list_empty(&dispose
)) {
1704 bp
= list_first_entry(&dispose
, struct xfs_buf
, b_lru
);
1705 list_del_init(&bp
->b_lru
);
1706 if (bp
->b_flags
& XBF_WRITE_FAIL
) {
1707 xfs_alert(btp
->bt_mount
,
1708 "Corruption Alert: Buffer at block 0x%llx had permanent write failures!",
1709 (long long)bp
->b_bn
);
1710 xfs_alert(btp
->bt_mount
,
1711 "Please run xfs_repair to determine the extent of the problem.");
1720 static enum lru_status
1721 xfs_buftarg_isolate(
1722 struct list_head
*item
,
1723 struct list_lru_one
*lru
,
1724 spinlock_t
*lru_lock
,
1727 struct xfs_buf
*bp
= container_of(item
, struct xfs_buf
, b_lru
);
1728 struct list_head
*dispose
= arg
;
1731 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1732 * If we fail to get the lock, just skip it.
1734 if (!spin_trylock(&bp
->b_lock
))
1737 * Decrement the b_lru_ref count unless the value is already
1738 * zero. If the value is already zero, we need to reclaim the
1739 * buffer, otherwise it gets another trip through the LRU.
1741 if (atomic_add_unless(&bp
->b_lru_ref
, -1, 0)) {
1742 spin_unlock(&bp
->b_lock
);
1746 bp
->b_state
|= XFS_BSTATE_DISPOSE
;
1747 list_lru_isolate_move(lru
, item
, dispose
);
1748 spin_unlock(&bp
->b_lock
);
1752 static unsigned long
1753 xfs_buftarg_shrink_scan(
1754 struct shrinker
*shrink
,
1755 struct shrink_control
*sc
)
1757 struct xfs_buftarg
*btp
= container_of(shrink
,
1758 struct xfs_buftarg
, bt_shrinker
);
1760 unsigned long freed
;
1762 freed
= list_lru_shrink_walk(&btp
->bt_lru
, sc
,
1763 xfs_buftarg_isolate
, &dispose
);
1765 while (!list_empty(&dispose
)) {
1767 bp
= list_first_entry(&dispose
, struct xfs_buf
, b_lru
);
1768 list_del_init(&bp
->b_lru
);
1775 static unsigned long
1776 xfs_buftarg_shrink_count(
1777 struct shrinker
*shrink
,
1778 struct shrink_control
*sc
)
1780 struct xfs_buftarg
*btp
= container_of(shrink
,
1781 struct xfs_buftarg
, bt_shrinker
);
1782 return list_lru_shrink_count(&btp
->bt_lru
, sc
);
1787 struct xfs_mount
*mp
,
1788 struct xfs_buftarg
*btp
)
1790 unregister_shrinker(&btp
->bt_shrinker
);
1791 ASSERT(percpu_counter_sum(&btp
->bt_io_count
) == 0);
1792 percpu_counter_destroy(&btp
->bt_io_count
);
1793 list_lru_destroy(&btp
->bt_lru
);
1795 xfs_blkdev_issue_flush(btp
);
1801 xfs_setsize_buftarg(
1803 unsigned int sectorsize
)
1805 /* Set up metadata sector size info */
1806 btp
->bt_meta_sectorsize
= sectorsize
;
1807 btp
->bt_meta_sectormask
= sectorsize
- 1;
1809 if (set_blocksize(btp
->bt_bdev
, sectorsize
)) {
1810 xfs_warn(btp
->bt_mount
,
1811 "Cannot set_blocksize to %u on device %pg",
1812 sectorsize
, btp
->bt_bdev
);
1816 /* Set up device logical sector size mask */
1817 btp
->bt_logical_sectorsize
= bdev_logical_block_size(btp
->bt_bdev
);
1818 btp
->bt_logical_sectormask
= bdev_logical_block_size(btp
->bt_bdev
) - 1;
1824 * When allocating the initial buffer target we have not yet
1825 * read in the superblock, so don't know what sized sectors
1826 * are being used at this early stage. Play safe.
1829 xfs_setsize_buftarg_early(
1831 struct block_device
*bdev
)
1833 return xfs_setsize_buftarg(btp
, bdev_logical_block_size(bdev
));
1838 struct xfs_mount
*mp
,
1839 struct block_device
*bdev
,
1840 struct dax_device
*dax_dev
)
1844 btp
= kmem_zalloc(sizeof(*btp
), KM_SLEEP
| KM_NOFS
);
1847 btp
->bt_dev
= bdev
->bd_dev
;
1848 btp
->bt_bdev
= bdev
;
1849 btp
->bt_daxdev
= dax_dev
;
1851 if (xfs_setsize_buftarg_early(btp
, bdev
))
1854 if (list_lru_init(&btp
->bt_lru
))
1857 if (percpu_counter_init(&btp
->bt_io_count
, 0, GFP_KERNEL
))
1860 btp
->bt_shrinker
.count_objects
= xfs_buftarg_shrink_count
;
1861 btp
->bt_shrinker
.scan_objects
= xfs_buftarg_shrink_scan
;
1862 btp
->bt_shrinker
.seeks
= DEFAULT_SEEKS
;
1863 btp
->bt_shrinker
.flags
= SHRINKER_NUMA_AWARE
;
1864 if (register_shrinker(&btp
->bt_shrinker
))
1869 percpu_counter_destroy(&btp
->bt_io_count
);
1871 list_lru_destroy(&btp
->bt_lru
);
1878 * Cancel a delayed write list.
1880 * Remove each buffer from the list, clear the delwri queue flag and drop the
1881 * associated buffer reference.
1884 xfs_buf_delwri_cancel(
1885 struct list_head
*list
)
1889 while (!list_empty(list
)) {
1890 bp
= list_first_entry(list
, struct xfs_buf
, b_list
);
1893 bp
->b_flags
&= ~_XBF_DELWRI_Q
;
1894 list_del_init(&bp
->b_list
);
1900 * Add a buffer to the delayed write list.
1902 * This queues a buffer for writeout if it hasn't already been. Note that
1903 * neither this routine nor the buffer list submission functions perform
1904 * any internal synchronization. It is expected that the lists are thread-local
1907 * Returns true if we queued up the buffer, or false if it already had
1908 * been on the buffer list.
1911 xfs_buf_delwri_queue(
1913 struct list_head
*list
)
1915 ASSERT(xfs_buf_islocked(bp
));
1916 ASSERT(!(bp
->b_flags
& XBF_READ
));
1919 * If the buffer is already marked delwri it already is queued up
1920 * by someone else for imediate writeout. Just ignore it in that
1923 if (bp
->b_flags
& _XBF_DELWRI_Q
) {
1924 trace_xfs_buf_delwri_queued(bp
, _RET_IP_
);
1928 trace_xfs_buf_delwri_queue(bp
, _RET_IP_
);
1931 * If a buffer gets written out synchronously or marked stale while it
1932 * is on a delwri list we lazily remove it. To do this, the other party
1933 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1934 * It remains referenced and on the list. In a rare corner case it
1935 * might get readded to a delwri list after the synchronous writeout, in
1936 * which case we need just need to re-add the flag here.
1938 bp
->b_flags
|= _XBF_DELWRI_Q
;
1939 if (list_empty(&bp
->b_list
)) {
1940 atomic_inc(&bp
->b_hold
);
1941 list_add_tail(&bp
->b_list
, list
);
1948 * Compare function is more complex than it needs to be because
1949 * the return value is only 32 bits and we are doing comparisons
1955 struct list_head
*a
,
1956 struct list_head
*b
)
1958 struct xfs_buf
*ap
= container_of(a
, struct xfs_buf
, b_list
);
1959 struct xfs_buf
*bp
= container_of(b
, struct xfs_buf
, b_list
);
1962 diff
= ap
->b_maps
[0].bm_bn
- bp
->b_maps
[0].bm_bn
;
1971 * submit buffers for write.
1973 * When we have a large buffer list, we do not want to hold all the buffers
1974 * locked while we block on the request queue waiting for IO dispatch. To avoid
1975 * this problem, we lock and submit buffers in groups of 50, thereby minimising
1976 * the lock hold times for lists which may contain thousands of objects.
1978 * To do this, we sort the buffer list before we walk the list to lock and
1979 * submit buffers, and we plug and unplug around each group of buffers we
1983 xfs_buf_delwri_submit_buffers(
1984 struct list_head
*buffer_list
,
1985 struct list_head
*wait_list
)
1987 struct xfs_buf
*bp
, *n
;
1988 LIST_HEAD (submit_list
);
1990 struct blk_plug plug
;
1992 list_sort(NULL
, buffer_list
, xfs_buf_cmp
);
1994 blk_start_plug(&plug
);
1995 list_for_each_entry_safe(bp
, n
, buffer_list
, b_list
) {
1997 if (xfs_buf_ispinned(bp
)) {
2001 if (!xfs_buf_trylock(bp
))
2008 * Someone else might have written the buffer synchronously or
2009 * marked it stale in the meantime. In that case only the
2010 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
2011 * reference and remove it from the list here.
2013 if (!(bp
->b_flags
& _XBF_DELWRI_Q
)) {
2014 list_del_init(&bp
->b_list
);
2019 trace_xfs_buf_delwri_split(bp
, _RET_IP_
);
2022 * We do all IO submission async. This means if we need
2023 * to wait for IO completion we need to take an extra
2024 * reference so the buffer is still valid on the other
2025 * side. We need to move the buffer onto the io_list
2026 * at this point so the caller can still access it.
2028 bp
->b_flags
&= ~(_XBF_DELWRI_Q
| XBF_WRITE_FAIL
);
2029 bp
->b_flags
|= XBF_WRITE
| XBF_ASYNC
;
2032 list_move_tail(&bp
->b_list
, wait_list
);
2034 list_del_init(&bp
->b_list
);
2038 blk_finish_plug(&plug
);
2044 * Write out a buffer list asynchronously.
2046 * This will take the @buffer_list, write all non-locked and non-pinned buffers
2047 * out and not wait for I/O completion on any of the buffers. This interface
2048 * is only safely useable for callers that can track I/O completion by higher
2049 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2053 xfs_buf_delwri_submit_nowait(
2054 struct list_head
*buffer_list
)
2056 return xfs_buf_delwri_submit_buffers(buffer_list
, NULL
);
2060 * Write out a buffer list synchronously.
2062 * This will take the @buffer_list, write all buffers out and wait for I/O
2063 * completion on all of the buffers. @buffer_list is consumed by the function,
2064 * so callers must have some other way of tracking buffers if they require such
2068 xfs_buf_delwri_submit(
2069 struct list_head
*buffer_list
)
2071 LIST_HEAD (wait_list
);
2072 int error
= 0, error2
;
2075 xfs_buf_delwri_submit_buffers(buffer_list
, &wait_list
);
2077 /* Wait for IO to complete. */
2078 while (!list_empty(&wait_list
)) {
2079 bp
= list_first_entry(&wait_list
, struct xfs_buf
, b_list
);
2081 list_del_init(&bp
->b_list
);
2083 /* locking the buffer will wait for async IO completion. */
2085 error2
= bp
->b_error
;
2095 * Push a single buffer on a delwri queue.
2097 * The purpose of this function is to submit a single buffer of a delwri queue
2098 * and return with the buffer still on the original queue. The waiting delwri
2099 * buffer submission infrastructure guarantees transfer of the delwri queue
2100 * buffer reference to a temporary wait list. We reuse this infrastructure to
2101 * transfer the buffer back to the original queue.
2103 * Note the buffer transitions from the queued state, to the submitted and wait
2104 * listed state and back to the queued state during this call. The buffer
2105 * locking and queue management logic between _delwri_pushbuf() and
2106 * _delwri_queue() guarantee that the buffer cannot be queued to another list
2110 xfs_buf_delwri_pushbuf(
2112 struct list_head
*buffer_list
)
2114 LIST_HEAD (submit_list
);
2117 ASSERT(bp
->b_flags
& _XBF_DELWRI_Q
);
2119 trace_xfs_buf_delwri_pushbuf(bp
, _RET_IP_
);
2122 * Isolate the buffer to a new local list so we can submit it for I/O
2123 * independently from the rest of the original list.
2126 list_move(&bp
->b_list
, &submit_list
);
2130 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2131 * the buffer on the wait list with an associated reference. Rather than
2132 * bounce the buffer from a local wait list back to the original list
2133 * after I/O completion, reuse the original list as the wait list.
2135 xfs_buf_delwri_submit_buffers(&submit_list
, buffer_list
);
2138 * The buffer is now under I/O and wait listed as during typical delwri
2139 * submission. Lock the buffer to wait for I/O completion. Rather than
2140 * remove the buffer from the wait list and release the reference, we
2141 * want to return with the buffer queued to the original list. The
2142 * buffer already sits on the original list with a wait list reference,
2143 * however. If we let the queue inherit that wait list reference, all we
2144 * need to do is reset the DELWRI_Q flag.
2147 error
= bp
->b_error
;
2148 bp
->b_flags
|= _XBF_DELWRI_Q
;
2157 xfs_buf_zone
= kmem_zone_init_flags(sizeof(xfs_buf_t
), "xfs_buf",
2158 KM_ZONE_HWALIGN
, NULL
);
2169 xfs_buf_terminate(void)
2171 kmem_zone_destroy(xfs_buf_zone
);