2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_mount.h"
24 #include "xfs_inode.h"
25 #include "xfs_trans.h"
26 #include "xfs_inode_item.h"
27 #include "xfs_error.h"
28 #include "xfs_trace.h"
29 #include "xfs_trans_priv.h"
30 #include "xfs_buf_item.h"
34 kmem_zone_t
*xfs_ili_zone
; /* inode log item zone */
36 static inline struct xfs_inode_log_item
*INODE_ITEM(struct xfs_log_item
*lip
)
38 return container_of(lip
, struct xfs_inode_log_item
, ili_item
);
42 xfs_inode_item_data_fork_size(
43 struct xfs_inode_log_item
*iip
,
47 struct xfs_inode
*ip
= iip
->ili_inode
;
49 switch (ip
->i_d
.di_format
) {
50 case XFS_DINODE_FMT_EXTENTS
:
51 if ((iip
->ili_fields
& XFS_ILOG_DEXT
) &&
52 ip
->i_d
.di_nextents
> 0 &&
53 ip
->i_df
.if_bytes
> 0) {
54 /* worst case, doesn't subtract delalloc extents */
55 *nbytes
+= XFS_IFORK_DSIZE(ip
);
59 case XFS_DINODE_FMT_BTREE
:
60 if ((iip
->ili_fields
& XFS_ILOG_DBROOT
) &&
61 ip
->i_df
.if_broot_bytes
> 0) {
62 *nbytes
+= ip
->i_df
.if_broot_bytes
;
66 case XFS_DINODE_FMT_LOCAL
:
67 if ((iip
->ili_fields
& XFS_ILOG_DDATA
) &&
68 ip
->i_df
.if_bytes
> 0) {
69 *nbytes
+= roundup(ip
->i_df
.if_bytes
, 4);
74 case XFS_DINODE_FMT_DEV
:
75 case XFS_DINODE_FMT_UUID
:
84 xfs_inode_item_attr_fork_size(
85 struct xfs_inode_log_item
*iip
,
89 struct xfs_inode
*ip
= iip
->ili_inode
;
91 switch (ip
->i_d
.di_aformat
) {
92 case XFS_DINODE_FMT_EXTENTS
:
93 if ((iip
->ili_fields
& XFS_ILOG_AEXT
) &&
94 ip
->i_d
.di_anextents
> 0 &&
95 ip
->i_afp
->if_bytes
> 0) {
96 /* worst case, doesn't subtract unused space */
97 *nbytes
+= XFS_IFORK_ASIZE(ip
);
101 case XFS_DINODE_FMT_BTREE
:
102 if ((iip
->ili_fields
& XFS_ILOG_ABROOT
) &&
103 ip
->i_afp
->if_broot_bytes
> 0) {
104 *nbytes
+= ip
->i_afp
->if_broot_bytes
;
108 case XFS_DINODE_FMT_LOCAL
:
109 if ((iip
->ili_fields
& XFS_ILOG_ADATA
) &&
110 ip
->i_afp
->if_bytes
> 0) {
111 *nbytes
+= roundup(ip
->i_afp
->if_bytes
, 4);
122 * This returns the number of iovecs needed to log the given inode item.
124 * We need one iovec for the inode log format structure, one for the
125 * inode core, and possibly one for the inode data/extents/b-tree root
126 * and one for the inode attribute data/extents/b-tree root.
130 struct xfs_log_item
*lip
,
134 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
135 struct xfs_inode
*ip
= iip
->ili_inode
;
138 *nbytes
+= sizeof(struct xfs_inode_log_format
) +
139 xfs_log_dinode_size(ip
->i_d
.di_version
);
141 xfs_inode_item_data_fork_size(iip
, nvecs
, nbytes
);
143 xfs_inode_item_attr_fork_size(iip
, nvecs
, nbytes
);
147 xfs_inode_item_format_data_fork(
148 struct xfs_inode_log_item
*iip
,
149 struct xfs_inode_log_format
*ilf
,
150 struct xfs_log_vec
*lv
,
151 struct xfs_log_iovec
**vecp
)
153 struct xfs_inode
*ip
= iip
->ili_inode
;
156 switch (ip
->i_d
.di_format
) {
157 case XFS_DINODE_FMT_EXTENTS
:
159 ~(XFS_ILOG_DDATA
| XFS_ILOG_DBROOT
|
160 XFS_ILOG_DEV
| XFS_ILOG_UUID
);
162 if ((iip
->ili_fields
& XFS_ILOG_DEXT
) &&
163 ip
->i_d
.di_nextents
> 0 &&
164 ip
->i_df
.if_bytes
> 0) {
165 struct xfs_bmbt_rec
*p
;
167 ASSERT(ip
->i_df
.if_u1
.if_extents
!= NULL
);
168 ASSERT(xfs_iext_count(&ip
->i_df
) > 0);
170 p
= xlog_prepare_iovec(lv
, vecp
, XLOG_REG_TYPE_IEXT
);
171 data_bytes
= xfs_iextents_copy(ip
, p
, XFS_DATA_FORK
);
172 xlog_finish_iovec(lv
, *vecp
, data_bytes
);
174 ASSERT(data_bytes
<= ip
->i_df
.if_bytes
);
176 ilf
->ilf_dsize
= data_bytes
;
179 iip
->ili_fields
&= ~XFS_ILOG_DEXT
;
182 case XFS_DINODE_FMT_BTREE
:
184 ~(XFS_ILOG_DDATA
| XFS_ILOG_DEXT
|
185 XFS_ILOG_DEV
| XFS_ILOG_UUID
);
187 if ((iip
->ili_fields
& XFS_ILOG_DBROOT
) &&
188 ip
->i_df
.if_broot_bytes
> 0) {
189 ASSERT(ip
->i_df
.if_broot
!= NULL
);
190 xlog_copy_iovec(lv
, vecp
, XLOG_REG_TYPE_IBROOT
,
192 ip
->i_df
.if_broot_bytes
);
193 ilf
->ilf_dsize
= ip
->i_df
.if_broot_bytes
;
196 ASSERT(!(iip
->ili_fields
&
198 iip
->ili_fields
&= ~XFS_ILOG_DBROOT
;
201 case XFS_DINODE_FMT_LOCAL
:
203 ~(XFS_ILOG_DEXT
| XFS_ILOG_DBROOT
|
204 XFS_ILOG_DEV
| XFS_ILOG_UUID
);
205 if ((iip
->ili_fields
& XFS_ILOG_DDATA
) &&
206 ip
->i_df
.if_bytes
> 0) {
208 * Round i_bytes up to a word boundary.
209 * The underlying memory is guaranteed to
210 * to be there by xfs_idata_realloc().
212 data_bytes
= roundup(ip
->i_df
.if_bytes
, 4);
213 ASSERT(ip
->i_df
.if_real_bytes
== 0 ||
214 ip
->i_df
.if_real_bytes
>= data_bytes
);
215 ASSERT(ip
->i_df
.if_u1
.if_data
!= NULL
);
216 ASSERT(ip
->i_d
.di_size
> 0);
217 xlog_copy_iovec(lv
, vecp
, XLOG_REG_TYPE_ILOCAL
,
218 ip
->i_df
.if_u1
.if_data
, data_bytes
);
219 ilf
->ilf_dsize
= (unsigned)data_bytes
;
222 iip
->ili_fields
&= ~XFS_ILOG_DDATA
;
225 case XFS_DINODE_FMT_DEV
:
227 ~(XFS_ILOG_DDATA
| XFS_ILOG_DBROOT
|
228 XFS_ILOG_DEXT
| XFS_ILOG_UUID
);
229 if (iip
->ili_fields
& XFS_ILOG_DEV
)
230 ilf
->ilf_u
.ilfu_rdev
= ip
->i_df
.if_u2
.if_rdev
;
232 case XFS_DINODE_FMT_UUID
:
234 ~(XFS_ILOG_DDATA
| XFS_ILOG_DBROOT
|
235 XFS_ILOG_DEXT
| XFS_ILOG_DEV
);
236 if (iip
->ili_fields
& XFS_ILOG_UUID
)
237 ilf
->ilf_u
.ilfu_uuid
= ip
->i_df
.if_u2
.if_uuid
;
246 xfs_inode_item_format_attr_fork(
247 struct xfs_inode_log_item
*iip
,
248 struct xfs_inode_log_format
*ilf
,
249 struct xfs_log_vec
*lv
,
250 struct xfs_log_iovec
**vecp
)
252 struct xfs_inode
*ip
= iip
->ili_inode
;
255 switch (ip
->i_d
.di_aformat
) {
256 case XFS_DINODE_FMT_EXTENTS
:
258 ~(XFS_ILOG_ADATA
| XFS_ILOG_ABROOT
);
260 if ((iip
->ili_fields
& XFS_ILOG_AEXT
) &&
261 ip
->i_d
.di_anextents
> 0 &&
262 ip
->i_afp
->if_bytes
> 0) {
263 struct xfs_bmbt_rec
*p
;
265 ASSERT(xfs_iext_count(ip
->i_afp
) ==
266 ip
->i_d
.di_anextents
);
267 ASSERT(ip
->i_afp
->if_u1
.if_extents
!= NULL
);
269 p
= xlog_prepare_iovec(lv
, vecp
, XLOG_REG_TYPE_IATTR_EXT
);
270 data_bytes
= xfs_iextents_copy(ip
, p
, XFS_ATTR_FORK
);
271 xlog_finish_iovec(lv
, *vecp
, data_bytes
);
273 ilf
->ilf_asize
= data_bytes
;
276 iip
->ili_fields
&= ~XFS_ILOG_AEXT
;
279 case XFS_DINODE_FMT_BTREE
:
281 ~(XFS_ILOG_ADATA
| XFS_ILOG_AEXT
);
283 if ((iip
->ili_fields
& XFS_ILOG_ABROOT
) &&
284 ip
->i_afp
->if_broot_bytes
> 0) {
285 ASSERT(ip
->i_afp
->if_broot
!= NULL
);
287 xlog_copy_iovec(lv
, vecp
, XLOG_REG_TYPE_IATTR_BROOT
,
289 ip
->i_afp
->if_broot_bytes
);
290 ilf
->ilf_asize
= ip
->i_afp
->if_broot_bytes
;
293 iip
->ili_fields
&= ~XFS_ILOG_ABROOT
;
296 case XFS_DINODE_FMT_LOCAL
:
298 ~(XFS_ILOG_AEXT
| XFS_ILOG_ABROOT
);
300 if ((iip
->ili_fields
& XFS_ILOG_ADATA
) &&
301 ip
->i_afp
->if_bytes
> 0) {
303 * Round i_bytes up to a word boundary.
304 * The underlying memory is guaranteed to
305 * to be there by xfs_idata_realloc().
307 data_bytes
= roundup(ip
->i_afp
->if_bytes
, 4);
308 ASSERT(ip
->i_afp
->if_real_bytes
== 0 ||
309 ip
->i_afp
->if_real_bytes
>= data_bytes
);
310 ASSERT(ip
->i_afp
->if_u1
.if_data
!= NULL
);
311 xlog_copy_iovec(lv
, vecp
, XLOG_REG_TYPE_IATTR_LOCAL
,
312 ip
->i_afp
->if_u1
.if_data
,
314 ilf
->ilf_asize
= (unsigned)data_bytes
;
317 iip
->ili_fields
&= ~XFS_ILOG_ADATA
;
327 xfs_inode_to_log_dinode(
328 struct xfs_inode
*ip
,
329 struct xfs_log_dinode
*to
,
332 struct xfs_icdinode
*from
= &ip
->i_d
;
333 struct inode
*inode
= VFS_I(ip
);
335 to
->di_magic
= XFS_DINODE_MAGIC
;
337 to
->di_version
= from
->di_version
;
338 to
->di_format
= from
->di_format
;
339 to
->di_uid
= from
->di_uid
;
340 to
->di_gid
= from
->di_gid
;
341 to
->di_projid_lo
= from
->di_projid_lo
;
342 to
->di_projid_hi
= from
->di_projid_hi
;
344 memset(to
->di_pad
, 0, sizeof(to
->di_pad
));
345 memset(to
->di_pad3
, 0, sizeof(to
->di_pad3
));
346 to
->di_atime
.t_sec
= inode
->i_atime
.tv_sec
;
347 to
->di_atime
.t_nsec
= inode
->i_atime
.tv_nsec
;
348 to
->di_mtime
.t_sec
= inode
->i_mtime
.tv_sec
;
349 to
->di_mtime
.t_nsec
= inode
->i_mtime
.tv_nsec
;
350 to
->di_ctime
.t_sec
= inode
->i_ctime
.tv_sec
;
351 to
->di_ctime
.t_nsec
= inode
->i_ctime
.tv_nsec
;
352 to
->di_nlink
= inode
->i_nlink
;
353 to
->di_gen
= inode
->i_generation
;
354 to
->di_mode
= inode
->i_mode
;
356 to
->di_size
= from
->di_size
;
357 to
->di_nblocks
= from
->di_nblocks
;
358 to
->di_extsize
= from
->di_extsize
;
359 to
->di_nextents
= from
->di_nextents
;
360 to
->di_anextents
= from
->di_anextents
;
361 to
->di_forkoff
= from
->di_forkoff
;
362 to
->di_aformat
= from
->di_aformat
;
363 to
->di_dmevmask
= from
->di_dmevmask
;
364 to
->di_dmstate
= from
->di_dmstate
;
365 to
->di_flags
= from
->di_flags
;
367 /* log a dummy value to ensure log structure is fully initialised */
368 to
->di_next_unlinked
= NULLAGINO
;
370 if (from
->di_version
== 3) {
371 to
->di_changecount
= inode
->i_version
;
372 to
->di_crtime
.t_sec
= from
->di_crtime
.t_sec
;
373 to
->di_crtime
.t_nsec
= from
->di_crtime
.t_nsec
;
374 to
->di_flags2
= from
->di_flags2
;
375 to
->di_cowextsize
= from
->di_cowextsize
;
376 to
->di_ino
= ip
->i_ino
;
378 memset(to
->di_pad2
, 0, sizeof(to
->di_pad2
));
379 uuid_copy(&to
->di_uuid
, &ip
->i_mount
->m_sb
.sb_meta_uuid
);
380 to
->di_flushiter
= 0;
382 to
->di_flushiter
= from
->di_flushiter
;
387 * Format the inode core. Current timestamp data is only in the VFS inode
388 * fields, so we need to grab them from there. Hence rather than just copying
389 * the XFS inode core structure, format the fields directly into the iovec.
392 xfs_inode_item_format_core(
393 struct xfs_inode
*ip
,
394 struct xfs_log_vec
*lv
,
395 struct xfs_log_iovec
**vecp
)
397 struct xfs_log_dinode
*dic
;
399 dic
= xlog_prepare_iovec(lv
, vecp
, XLOG_REG_TYPE_ICORE
);
400 xfs_inode_to_log_dinode(ip
, dic
, ip
->i_itemp
->ili_item
.li_lsn
);
401 xlog_finish_iovec(lv
, *vecp
, xfs_log_dinode_size(ip
->i_d
.di_version
));
405 * This is called to fill in the vector of log iovecs for the given inode
406 * log item. It fills the first item with an inode log format structure,
407 * the second with the on-disk inode structure, and a possible third and/or
408 * fourth with the inode data/extents/b-tree root and inode attributes
409 * data/extents/b-tree root.
411 * Note: Always use the 64 bit inode log format structure so we don't
412 * leave an uninitialised hole in the format item on 64 bit systems. Log
413 * recovery on 32 bit systems handles this just fine, so there's no reason
414 * for not using an initialising the properly padded structure all the time.
417 xfs_inode_item_format(
418 struct xfs_log_item
*lip
,
419 struct xfs_log_vec
*lv
)
421 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
422 struct xfs_inode
*ip
= iip
->ili_inode
;
423 struct xfs_log_iovec
*vecp
= NULL
;
424 struct xfs_inode_log_format
*ilf
;
426 ASSERT(ip
->i_d
.di_version
> 1);
428 ilf
= xlog_prepare_iovec(lv
, &vecp
, XLOG_REG_TYPE_IFORMAT
);
429 ilf
->ilf_type
= XFS_LI_INODE
;
430 ilf
->ilf_ino
= ip
->i_ino
;
431 ilf
->ilf_blkno
= ip
->i_imap
.im_blkno
;
432 ilf
->ilf_len
= ip
->i_imap
.im_len
;
433 ilf
->ilf_boffset
= ip
->i_imap
.im_boffset
;
434 ilf
->ilf_fields
= XFS_ILOG_CORE
;
435 ilf
->ilf_size
= 2; /* format + core */
438 * make sure we don't leak uninitialised data into the log in the case
439 * when we don't log every field in the inode.
444 uuid_copy(&ilf
->ilf_u
.ilfu_uuid
, &uuid_null
);
446 xlog_finish_iovec(lv
, vecp
, sizeof(*ilf
));
448 xfs_inode_item_format_core(ip
, lv
, &vecp
);
449 xfs_inode_item_format_data_fork(iip
, ilf
, lv
, &vecp
);
450 if (XFS_IFORK_Q(ip
)) {
451 xfs_inode_item_format_attr_fork(iip
, ilf
, lv
, &vecp
);
454 ~(XFS_ILOG_ADATA
| XFS_ILOG_ABROOT
| XFS_ILOG_AEXT
);
457 /* update the format with the exact fields we actually logged */
458 ilf
->ilf_fields
|= (iip
->ili_fields
& ~XFS_ILOG_TIMESTAMP
);
462 * This is called to pin the inode associated with the inode log
463 * item in memory so it cannot be written out.
467 struct xfs_log_item
*lip
)
469 struct xfs_inode
*ip
= INODE_ITEM(lip
)->ili_inode
;
471 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
));
473 trace_xfs_inode_pin(ip
, _RET_IP_
);
474 atomic_inc(&ip
->i_pincount
);
479 * This is called to unpin the inode associated with the inode log
480 * item which was previously pinned with a call to xfs_inode_item_pin().
482 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
485 xfs_inode_item_unpin(
486 struct xfs_log_item
*lip
,
489 struct xfs_inode
*ip
= INODE_ITEM(lip
)->ili_inode
;
491 trace_xfs_inode_unpin(ip
, _RET_IP_
);
492 ASSERT(atomic_read(&ip
->i_pincount
) > 0);
493 if (atomic_dec_and_test(&ip
->i_pincount
))
494 wake_up_bit(&ip
->i_flags
, __XFS_IPINNED_BIT
);
498 * Callback used to mark a buffer with XFS_LI_FAILED when items in the buffer
499 * have been failed during writeback
501 * This informs the AIL that the inode is already flush locked on the next push,
502 * and acquires a hold on the buffer to ensure that it isn't reclaimed before
503 * dirty data makes it to disk.
506 xfs_inode_item_error(
507 struct xfs_log_item
*lip
,
510 ASSERT(xfs_isiflocked(INODE_ITEM(lip
)->ili_inode
));
511 xfs_set_li_failed(lip
, bp
);
516 struct xfs_log_item
*lip
,
517 struct list_head
*buffer_list
)
518 __releases(&lip
->li_ailp
->xa_lock
)
519 __acquires(&lip
->li_ailp
->xa_lock
)
521 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
522 struct xfs_inode
*ip
= iip
->ili_inode
;
523 struct xfs_buf
*bp
= lip
->li_buf
;
524 uint rval
= XFS_ITEM_SUCCESS
;
527 if (xfs_ipincount(ip
) > 0)
528 return XFS_ITEM_PINNED
;
531 * The buffer containing this item failed to be written back
532 * previously. Resubmit the buffer for IO.
534 if (lip
->li_flags
& XFS_LI_FAILED
) {
535 if (!xfs_buf_trylock(bp
))
536 return XFS_ITEM_LOCKED
;
538 if (!xfs_buf_resubmit_failed_buffers(bp
, lip
, buffer_list
))
539 rval
= XFS_ITEM_FLUSHING
;
545 if (!xfs_ilock_nowait(ip
, XFS_ILOCK_SHARED
))
546 return XFS_ITEM_LOCKED
;
549 * Re-check the pincount now that we stabilized the value by
552 if (xfs_ipincount(ip
) > 0) {
553 rval
= XFS_ITEM_PINNED
;
558 * Stale inode items should force out the iclog.
560 if (ip
->i_flags
& XFS_ISTALE
) {
561 rval
= XFS_ITEM_PINNED
;
566 * Someone else is already flushing the inode. Nothing we can do
567 * here but wait for the flush to finish and remove the item from
570 if (!xfs_iflock_nowait(ip
)) {
571 rval
= XFS_ITEM_FLUSHING
;
575 ASSERT(iip
->ili_fields
!= 0 || XFS_FORCED_SHUTDOWN(ip
->i_mount
));
576 ASSERT(iip
->ili_logged
== 0 || XFS_FORCED_SHUTDOWN(ip
->i_mount
));
578 spin_unlock(&lip
->li_ailp
->xa_lock
);
580 error
= xfs_iflush(ip
, &bp
);
582 if (!xfs_buf_delwri_queue(bp
, buffer_list
))
583 rval
= XFS_ITEM_FLUSHING
;
587 spin_lock(&lip
->li_ailp
->xa_lock
);
589 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
594 * Unlock the inode associated with the inode log item.
595 * Clear the fields of the inode and inode log item that
596 * are specific to the current transaction. If the
597 * hold flags is set, do not unlock the inode.
600 xfs_inode_item_unlock(
601 struct xfs_log_item
*lip
)
603 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
604 struct xfs_inode
*ip
= iip
->ili_inode
;
605 unsigned short lock_flags
;
607 ASSERT(ip
->i_itemp
!= NULL
);
608 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
));
610 lock_flags
= iip
->ili_lock_flags
;
611 iip
->ili_lock_flags
= 0;
613 xfs_iunlock(ip
, lock_flags
);
617 * This is called to find out where the oldest active copy of the inode log
618 * item in the on disk log resides now that the last log write of it completed
619 * at the given lsn. Since we always re-log all dirty data in an inode, the
620 * latest copy in the on disk log is the only one that matters. Therefore,
621 * simply return the given lsn.
623 * If the inode has been marked stale because the cluster is being freed, we
624 * don't want to (re-)insert this inode into the AIL. There is a race condition
625 * where the cluster buffer may be unpinned before the inode is inserted into
626 * the AIL during transaction committed processing. If the buffer is unpinned
627 * before the inode item has been committed and inserted, then it is possible
628 * for the buffer to be written and IO completes before the inode is inserted
629 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
630 * AIL which will never get removed. It will, however, get reclaimed which
631 * triggers an assert in xfs_inode_free() complaining about freein an inode
634 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
635 * transaction committed code knows that it does not need to do any further
636 * processing on the item.
639 xfs_inode_item_committed(
640 struct xfs_log_item
*lip
,
643 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
644 struct xfs_inode
*ip
= iip
->ili_inode
;
646 if (xfs_iflags_test(ip
, XFS_ISTALE
)) {
647 xfs_inode_item_unpin(lip
, 0);
654 * XXX rcc - this one really has to do something. Probably needs
655 * to stamp in a new field in the incore inode.
658 xfs_inode_item_committing(
659 struct xfs_log_item
*lip
,
662 INODE_ITEM(lip
)->ili_last_lsn
= lsn
;
666 * This is the ops vector shared by all buf log items.
668 static const struct xfs_item_ops xfs_inode_item_ops
= {
669 .iop_size
= xfs_inode_item_size
,
670 .iop_format
= xfs_inode_item_format
,
671 .iop_pin
= xfs_inode_item_pin
,
672 .iop_unpin
= xfs_inode_item_unpin
,
673 .iop_unlock
= xfs_inode_item_unlock
,
674 .iop_committed
= xfs_inode_item_committed
,
675 .iop_push
= xfs_inode_item_push
,
676 .iop_committing
= xfs_inode_item_committing
,
677 .iop_error
= xfs_inode_item_error
682 * Initialize the inode log item for a newly allocated (in-core) inode.
686 struct xfs_inode
*ip
,
687 struct xfs_mount
*mp
)
689 struct xfs_inode_log_item
*iip
;
691 ASSERT(ip
->i_itemp
== NULL
);
692 iip
= ip
->i_itemp
= kmem_zone_zalloc(xfs_ili_zone
, KM_SLEEP
);
695 xfs_log_item_init(mp
, &iip
->ili_item
, XFS_LI_INODE
,
696 &xfs_inode_item_ops
);
700 * Free the inode log item and any memory hanging off of it.
703 xfs_inode_item_destroy(
706 kmem_free(ip
->i_itemp
->ili_item
.li_lv_shadow
);
707 kmem_zone_free(xfs_ili_zone
, ip
->i_itemp
);
712 * This is the inode flushing I/O completion routine. It is called
713 * from interrupt level when the buffer containing the inode is
714 * flushed to disk. It is responsible for removing the inode item
715 * from the AIL if it has not been re-logged, and unlocking the inode's
718 * To reduce AIL lock traffic as much as possible, we scan the buffer log item
719 * list for other inodes that will run this function. We remove them from the
720 * buffer list so we can process all the inode IO completions in one AIL lock
726 struct xfs_log_item
*lip
)
728 struct xfs_inode_log_item
*iip
;
729 struct xfs_log_item
*blip
;
730 struct xfs_log_item
*next
;
731 struct xfs_log_item
*prev
;
732 struct xfs_ail
*ailp
= lip
->li_ailp
;
736 * Scan the buffer IO completions for other inodes being completed and
737 * attach them to the current inode log item.
741 while (blip
!= NULL
) {
742 if (blip
->li_cb
!= xfs_iflush_done
) {
744 blip
= blip
->li_bio_list
;
748 /* remove from list */
749 next
= blip
->li_bio_list
;
753 prev
->li_bio_list
= next
;
756 /* add to current list */
757 blip
->li_bio_list
= lip
->li_bio_list
;
758 lip
->li_bio_list
= blip
;
761 * while we have the item, do the unlocked check for needing
764 iip
= INODE_ITEM(blip
);
765 if ((iip
->ili_logged
&& blip
->li_lsn
== iip
->ili_flush_lsn
) ||
766 (blip
->li_flags
& XFS_LI_FAILED
))
772 /* make sure we capture the state of the initial inode. */
773 iip
= INODE_ITEM(lip
);
774 if ((iip
->ili_logged
&& lip
->li_lsn
== iip
->ili_flush_lsn
) ||
775 lip
->li_flags
& XFS_LI_FAILED
)
779 * We only want to pull the item from the AIL if it is
780 * actually there and its location in the log has not
781 * changed since we started the flush. Thus, we only bother
782 * if the ili_logged flag is set and the inode's lsn has not
783 * changed. First we check the lsn outside
784 * the lock since it's cheaper, and then we recheck while
785 * holding the lock before removing the inode from the AIL.
788 bool mlip_changed
= false;
790 /* this is an opencoded batch version of xfs_trans_ail_delete */
791 spin_lock(&ailp
->xa_lock
);
792 for (blip
= lip
; blip
; blip
= blip
->li_bio_list
) {
793 if (INODE_ITEM(blip
)->ili_logged
&&
794 blip
->li_lsn
== INODE_ITEM(blip
)->ili_flush_lsn
)
795 mlip_changed
|= xfs_ail_delete_one(ailp
, blip
);
797 xfs_clear_li_failed(blip
);
802 if (!XFS_FORCED_SHUTDOWN(ailp
->xa_mount
))
803 xlog_assign_tail_lsn_locked(ailp
->xa_mount
);
804 if (list_empty(&ailp
->xa_ail
))
805 wake_up_all(&ailp
->xa_empty
);
807 spin_unlock(&ailp
->xa_lock
);
810 xfs_log_space_wake(ailp
->xa_mount
);
814 * clean up and unlock the flush lock now we are done. We can clear the
815 * ili_last_fields bits now that we know that the data corresponding to
816 * them is safely on disk.
818 for (blip
= lip
; blip
; blip
= next
) {
819 next
= blip
->li_bio_list
;
820 blip
->li_bio_list
= NULL
;
822 iip
= INODE_ITEM(blip
);
824 iip
->ili_last_fields
= 0;
825 xfs_ifunlock(iip
->ili_inode
);
830 * This is the inode flushing abort routine. It is called from xfs_iflush when
831 * the filesystem is shutting down to clean up the inode state. It is
832 * responsible for removing the inode item from the AIL if it has not been
833 * re-logged, and unlocking the inode's flush lock.
840 xfs_inode_log_item_t
*iip
= ip
->i_itemp
;
843 if (iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
) {
844 xfs_trans_ail_remove(&iip
->ili_item
,
845 stale
? SHUTDOWN_LOG_IO_ERROR
:
846 SHUTDOWN_CORRUPT_INCORE
);
850 * Clear the ili_last_fields bits now that we know that the
851 * data corresponding to them is safely on disk.
853 iip
->ili_last_fields
= 0;
855 * Clear the inode logging fields so no more flushes are
859 iip
->ili_fsync_fields
= 0;
862 * Release the inode's flush lock since we're done with it.
870 struct xfs_log_item
*lip
)
872 xfs_iflush_abort(INODE_ITEM(lip
)->ili_inode
, true);
876 * convert an xfs_inode_log_format struct from the old 32 bit version
877 * (which can have different field alignments) to the native 64 bit version
880 xfs_inode_item_format_convert(
881 struct xfs_log_iovec
*buf
,
882 struct xfs_inode_log_format
*in_f
)
884 struct xfs_inode_log_format_32
*in_f32
= buf
->i_addr
;
886 if (buf
->i_len
!= sizeof(*in_f32
))
887 return -EFSCORRUPTED
;
889 in_f
->ilf_type
= in_f32
->ilf_type
;
890 in_f
->ilf_size
= in_f32
->ilf_size
;
891 in_f
->ilf_fields
= in_f32
->ilf_fields
;
892 in_f
->ilf_asize
= in_f32
->ilf_asize
;
893 in_f
->ilf_dsize
= in_f32
->ilf_dsize
;
894 in_f
->ilf_ino
= in_f32
->ilf_ino
;
895 /* copy biggest field of ilf_u */
896 uuid_copy(&in_f
->ilf_u
.ilfu_uuid
, &in_f32
->ilf_u
.ilfu_uuid
);
897 in_f
->ilf_blkno
= in_f32
->ilf_blkno
;
898 in_f
->ilf_len
= in_f32
->ilf_len
;
899 in_f
->ilf_boffset
= in_f32
->ilf_boffset
;