mm: fix exec activate_mm vs TLB shootdown and lazy tlb switching race
[linux/fpc-iii.git] / fs / xfs / xfs_log.c
blob0c0f70e6c7d903ee3837e667b32ccb5d77b92b92
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_error.h"
26 #include "xfs_trans.h"
27 #include "xfs_trans_priv.h"
28 #include "xfs_log.h"
29 #include "xfs_log_priv.h"
30 #include "xfs_log_recover.h"
31 #include "xfs_inode.h"
32 #include "xfs_trace.h"
33 #include "xfs_fsops.h"
34 #include "xfs_cksum.h"
35 #include "xfs_sysfs.h"
36 #include "xfs_sb.h"
38 kmem_zone_t *xfs_log_ticket_zone;
40 /* Local miscellaneous function prototypes */
41 STATIC int
42 xlog_commit_record(
43 struct xlog *log,
44 struct xlog_ticket *ticket,
45 struct xlog_in_core **iclog,
46 xfs_lsn_t *commitlsnp);
48 STATIC struct xlog *
49 xlog_alloc_log(
50 struct xfs_mount *mp,
51 struct xfs_buftarg *log_target,
52 xfs_daddr_t blk_offset,
53 int num_bblks);
54 STATIC int
55 xlog_space_left(
56 struct xlog *log,
57 atomic64_t *head);
58 STATIC int
59 xlog_sync(
60 struct xlog *log,
61 struct xlog_in_core *iclog);
62 STATIC void
63 xlog_dealloc_log(
64 struct xlog *log);
66 /* local state machine functions */
67 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
68 STATIC void
69 xlog_state_do_callback(
70 struct xlog *log,
71 int aborted,
72 struct xlog_in_core *iclog);
73 STATIC int
74 xlog_state_get_iclog_space(
75 struct xlog *log,
76 int len,
77 struct xlog_in_core **iclog,
78 struct xlog_ticket *ticket,
79 int *continued_write,
80 int *logoffsetp);
81 STATIC int
82 xlog_state_release_iclog(
83 struct xlog *log,
84 struct xlog_in_core *iclog);
85 STATIC void
86 xlog_state_switch_iclogs(
87 struct xlog *log,
88 struct xlog_in_core *iclog,
89 int eventual_size);
90 STATIC void
91 xlog_state_want_sync(
92 struct xlog *log,
93 struct xlog_in_core *iclog);
95 STATIC void
96 xlog_grant_push_ail(
97 struct xlog *log,
98 int need_bytes);
99 STATIC void
100 xlog_regrant_reserve_log_space(
101 struct xlog *log,
102 struct xlog_ticket *ticket);
103 STATIC void
104 xlog_ungrant_log_space(
105 struct xlog *log,
106 struct xlog_ticket *ticket);
108 #if defined(DEBUG)
109 STATIC void
110 xlog_verify_dest_ptr(
111 struct xlog *log,
112 void *ptr);
113 STATIC void
114 xlog_verify_grant_tail(
115 struct xlog *log);
116 STATIC void
117 xlog_verify_iclog(
118 struct xlog *log,
119 struct xlog_in_core *iclog,
120 int count,
121 bool syncing);
122 STATIC void
123 xlog_verify_tail_lsn(
124 struct xlog *log,
125 struct xlog_in_core *iclog,
126 xfs_lsn_t tail_lsn);
127 #else
128 #define xlog_verify_dest_ptr(a,b)
129 #define xlog_verify_grant_tail(a)
130 #define xlog_verify_iclog(a,b,c,d)
131 #define xlog_verify_tail_lsn(a,b,c)
132 #endif
134 STATIC int
135 xlog_iclogs_empty(
136 struct xlog *log);
138 static void
139 xlog_grant_sub_space(
140 struct xlog *log,
141 atomic64_t *head,
142 int bytes)
144 int64_t head_val = atomic64_read(head);
145 int64_t new, old;
147 do {
148 int cycle, space;
150 xlog_crack_grant_head_val(head_val, &cycle, &space);
152 space -= bytes;
153 if (space < 0) {
154 space += log->l_logsize;
155 cycle--;
158 old = head_val;
159 new = xlog_assign_grant_head_val(cycle, space);
160 head_val = atomic64_cmpxchg(head, old, new);
161 } while (head_val != old);
164 static void
165 xlog_grant_add_space(
166 struct xlog *log,
167 atomic64_t *head,
168 int bytes)
170 int64_t head_val = atomic64_read(head);
171 int64_t new, old;
173 do {
174 int tmp;
175 int cycle, space;
177 xlog_crack_grant_head_val(head_val, &cycle, &space);
179 tmp = log->l_logsize - space;
180 if (tmp > bytes)
181 space += bytes;
182 else {
183 space = bytes - tmp;
184 cycle++;
187 old = head_val;
188 new = xlog_assign_grant_head_val(cycle, space);
189 head_val = atomic64_cmpxchg(head, old, new);
190 } while (head_val != old);
193 STATIC void
194 xlog_grant_head_init(
195 struct xlog_grant_head *head)
197 xlog_assign_grant_head(&head->grant, 1, 0);
198 INIT_LIST_HEAD(&head->waiters);
199 spin_lock_init(&head->lock);
202 STATIC void
203 xlog_grant_head_wake_all(
204 struct xlog_grant_head *head)
206 struct xlog_ticket *tic;
208 spin_lock(&head->lock);
209 list_for_each_entry(tic, &head->waiters, t_queue)
210 wake_up_process(tic->t_task);
211 spin_unlock(&head->lock);
214 static inline int
215 xlog_ticket_reservation(
216 struct xlog *log,
217 struct xlog_grant_head *head,
218 struct xlog_ticket *tic)
220 if (head == &log->l_write_head) {
221 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
222 return tic->t_unit_res;
223 } else {
224 if (tic->t_flags & XLOG_TIC_PERM_RESERV)
225 return tic->t_unit_res * tic->t_cnt;
226 else
227 return tic->t_unit_res;
231 STATIC bool
232 xlog_grant_head_wake(
233 struct xlog *log,
234 struct xlog_grant_head *head,
235 int *free_bytes)
237 struct xlog_ticket *tic;
238 int need_bytes;
240 list_for_each_entry(tic, &head->waiters, t_queue) {
241 need_bytes = xlog_ticket_reservation(log, head, tic);
242 if (*free_bytes < need_bytes)
243 return false;
245 *free_bytes -= need_bytes;
246 trace_xfs_log_grant_wake_up(log, tic);
247 wake_up_process(tic->t_task);
250 return true;
253 STATIC int
254 xlog_grant_head_wait(
255 struct xlog *log,
256 struct xlog_grant_head *head,
257 struct xlog_ticket *tic,
258 int need_bytes) __releases(&head->lock)
259 __acquires(&head->lock)
261 list_add_tail(&tic->t_queue, &head->waiters);
263 do {
264 if (XLOG_FORCED_SHUTDOWN(log))
265 goto shutdown;
266 xlog_grant_push_ail(log, need_bytes);
268 __set_current_state(TASK_UNINTERRUPTIBLE);
269 spin_unlock(&head->lock);
271 XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
273 trace_xfs_log_grant_sleep(log, tic);
274 schedule();
275 trace_xfs_log_grant_wake(log, tic);
277 spin_lock(&head->lock);
278 if (XLOG_FORCED_SHUTDOWN(log))
279 goto shutdown;
280 } while (xlog_space_left(log, &head->grant) < need_bytes);
282 list_del_init(&tic->t_queue);
283 return 0;
284 shutdown:
285 list_del_init(&tic->t_queue);
286 return -EIO;
290 * Atomically get the log space required for a log ticket.
292 * Once a ticket gets put onto head->waiters, it will only return after the
293 * needed reservation is satisfied.
295 * This function is structured so that it has a lock free fast path. This is
296 * necessary because every new transaction reservation will come through this
297 * path. Hence any lock will be globally hot if we take it unconditionally on
298 * every pass.
300 * As tickets are only ever moved on and off head->waiters under head->lock, we
301 * only need to take that lock if we are going to add the ticket to the queue
302 * and sleep. We can avoid taking the lock if the ticket was never added to
303 * head->waiters because the t_queue list head will be empty and we hold the
304 * only reference to it so it can safely be checked unlocked.
306 STATIC int
307 xlog_grant_head_check(
308 struct xlog *log,
309 struct xlog_grant_head *head,
310 struct xlog_ticket *tic,
311 int *need_bytes)
313 int free_bytes;
314 int error = 0;
316 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
319 * If there are other waiters on the queue then give them a chance at
320 * logspace before us. Wake up the first waiters, if we do not wake
321 * up all the waiters then go to sleep waiting for more free space,
322 * otherwise try to get some space for this transaction.
324 *need_bytes = xlog_ticket_reservation(log, head, tic);
325 free_bytes = xlog_space_left(log, &head->grant);
326 if (!list_empty_careful(&head->waiters)) {
327 spin_lock(&head->lock);
328 if (!xlog_grant_head_wake(log, head, &free_bytes) ||
329 free_bytes < *need_bytes) {
330 error = xlog_grant_head_wait(log, head, tic,
331 *need_bytes);
333 spin_unlock(&head->lock);
334 } else if (free_bytes < *need_bytes) {
335 spin_lock(&head->lock);
336 error = xlog_grant_head_wait(log, head, tic, *need_bytes);
337 spin_unlock(&head->lock);
340 return error;
343 static void
344 xlog_tic_reset_res(xlog_ticket_t *tic)
346 tic->t_res_num = 0;
347 tic->t_res_arr_sum = 0;
348 tic->t_res_num_ophdrs = 0;
351 static void
352 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
354 if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
355 /* add to overflow and start again */
356 tic->t_res_o_flow += tic->t_res_arr_sum;
357 tic->t_res_num = 0;
358 tic->t_res_arr_sum = 0;
361 tic->t_res_arr[tic->t_res_num].r_len = len;
362 tic->t_res_arr[tic->t_res_num].r_type = type;
363 tic->t_res_arr_sum += len;
364 tic->t_res_num++;
368 * Replenish the byte reservation required by moving the grant write head.
371 xfs_log_regrant(
372 struct xfs_mount *mp,
373 struct xlog_ticket *tic)
375 struct xlog *log = mp->m_log;
376 int need_bytes;
377 int error = 0;
379 if (XLOG_FORCED_SHUTDOWN(log))
380 return -EIO;
382 XFS_STATS_INC(mp, xs_try_logspace);
385 * This is a new transaction on the ticket, so we need to change the
386 * transaction ID so that the next transaction has a different TID in
387 * the log. Just add one to the existing tid so that we can see chains
388 * of rolling transactions in the log easily.
390 tic->t_tid++;
392 xlog_grant_push_ail(log, tic->t_unit_res);
394 tic->t_curr_res = tic->t_unit_res;
395 xlog_tic_reset_res(tic);
397 if (tic->t_cnt > 0)
398 return 0;
400 trace_xfs_log_regrant(log, tic);
402 error = xlog_grant_head_check(log, &log->l_write_head, tic,
403 &need_bytes);
404 if (error)
405 goto out_error;
407 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
408 trace_xfs_log_regrant_exit(log, tic);
409 xlog_verify_grant_tail(log);
410 return 0;
412 out_error:
414 * If we are failing, make sure the ticket doesn't have any current
415 * reservations. We don't want to add this back when the ticket/
416 * transaction gets cancelled.
418 tic->t_curr_res = 0;
419 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
420 return error;
424 * Reserve log space and return a ticket corresponding the reservation.
426 * Each reservation is going to reserve extra space for a log record header.
427 * When writes happen to the on-disk log, we don't subtract the length of the
428 * log record header from any reservation. By wasting space in each
429 * reservation, we prevent over allocation problems.
432 xfs_log_reserve(
433 struct xfs_mount *mp,
434 int unit_bytes,
435 int cnt,
436 struct xlog_ticket **ticp,
437 uint8_t client,
438 bool permanent)
440 struct xlog *log = mp->m_log;
441 struct xlog_ticket *tic;
442 int need_bytes;
443 int error = 0;
445 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
447 if (XLOG_FORCED_SHUTDOWN(log))
448 return -EIO;
450 XFS_STATS_INC(mp, xs_try_logspace);
452 ASSERT(*ticp == NULL);
453 tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
454 KM_SLEEP | KM_MAYFAIL);
455 if (!tic)
456 return -ENOMEM;
458 *ticp = tic;
460 xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
461 : tic->t_unit_res);
463 trace_xfs_log_reserve(log, tic);
465 error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
466 &need_bytes);
467 if (error)
468 goto out_error;
470 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
471 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
472 trace_xfs_log_reserve_exit(log, tic);
473 xlog_verify_grant_tail(log);
474 return 0;
476 out_error:
478 * If we are failing, make sure the ticket doesn't have any current
479 * reservations. We don't want to add this back when the ticket/
480 * transaction gets cancelled.
482 tic->t_curr_res = 0;
483 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
484 return error;
489 * NOTES:
491 * 1. currblock field gets updated at startup and after in-core logs
492 * marked as with WANT_SYNC.
496 * This routine is called when a user of a log manager ticket is done with
497 * the reservation. If the ticket was ever used, then a commit record for
498 * the associated transaction is written out as a log operation header with
499 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with
500 * a given ticket. If the ticket was one with a permanent reservation, then
501 * a few operations are done differently. Permanent reservation tickets by
502 * default don't release the reservation. They just commit the current
503 * transaction with the belief that the reservation is still needed. A flag
504 * must be passed in before permanent reservations are actually released.
505 * When these type of tickets are not released, they need to be set into
506 * the inited state again. By doing this, a start record will be written
507 * out when the next write occurs.
509 xfs_lsn_t
510 xfs_log_done(
511 struct xfs_mount *mp,
512 struct xlog_ticket *ticket,
513 struct xlog_in_core **iclog,
514 bool regrant)
516 struct xlog *log = mp->m_log;
517 xfs_lsn_t lsn = 0;
519 if (XLOG_FORCED_SHUTDOWN(log) ||
521 * If nothing was ever written, don't write out commit record.
522 * If we get an error, just continue and give back the log ticket.
524 (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
525 (xlog_commit_record(log, ticket, iclog, &lsn)))) {
526 lsn = (xfs_lsn_t) -1;
527 regrant = false;
531 if (!regrant) {
532 trace_xfs_log_done_nonperm(log, ticket);
535 * Release ticket if not permanent reservation or a specific
536 * request has been made to release a permanent reservation.
538 xlog_ungrant_log_space(log, ticket);
539 } else {
540 trace_xfs_log_done_perm(log, ticket);
542 xlog_regrant_reserve_log_space(log, ticket);
543 /* If this ticket was a permanent reservation and we aren't
544 * trying to release it, reset the inited flags; so next time
545 * we write, a start record will be written out.
547 ticket->t_flags |= XLOG_TIC_INITED;
550 xfs_log_ticket_put(ticket);
551 return lsn;
555 * Attaches a new iclog I/O completion callback routine during
556 * transaction commit. If the log is in error state, a non-zero
557 * return code is handed back and the caller is responsible for
558 * executing the callback at an appropriate time.
561 xfs_log_notify(
562 struct xfs_mount *mp,
563 struct xlog_in_core *iclog,
564 xfs_log_callback_t *cb)
566 int abortflg;
568 spin_lock(&iclog->ic_callback_lock);
569 abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
570 if (!abortflg) {
571 ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
572 (iclog->ic_state == XLOG_STATE_WANT_SYNC));
573 cb->cb_next = NULL;
574 *(iclog->ic_callback_tail) = cb;
575 iclog->ic_callback_tail = &(cb->cb_next);
577 spin_unlock(&iclog->ic_callback_lock);
578 return abortflg;
582 xfs_log_release_iclog(
583 struct xfs_mount *mp,
584 struct xlog_in_core *iclog)
586 if (xlog_state_release_iclog(mp->m_log, iclog)) {
587 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
588 return -EIO;
591 return 0;
595 * Mount a log filesystem
597 * mp - ubiquitous xfs mount point structure
598 * log_target - buftarg of on-disk log device
599 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
600 * num_bblocks - Number of BBSIZE blocks in on-disk log
602 * Return error or zero.
605 xfs_log_mount(
606 xfs_mount_t *mp,
607 xfs_buftarg_t *log_target,
608 xfs_daddr_t blk_offset,
609 int num_bblks)
611 bool fatal = xfs_sb_version_hascrc(&mp->m_sb);
612 int error = 0;
613 int min_logfsbs;
615 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
616 xfs_notice(mp, "Mounting V%d Filesystem",
617 XFS_SB_VERSION_NUM(&mp->m_sb));
618 } else {
619 xfs_notice(mp,
620 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
621 XFS_SB_VERSION_NUM(&mp->m_sb));
622 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
625 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
626 if (IS_ERR(mp->m_log)) {
627 error = PTR_ERR(mp->m_log);
628 goto out;
632 * Validate the given log space and drop a critical message via syslog
633 * if the log size is too small that would lead to some unexpected
634 * situations in transaction log space reservation stage.
636 * Note: we can't just reject the mount if the validation fails. This
637 * would mean that people would have to downgrade their kernel just to
638 * remedy the situation as there is no way to grow the log (short of
639 * black magic surgery with xfs_db).
641 * We can, however, reject mounts for CRC format filesystems, as the
642 * mkfs binary being used to make the filesystem should never create a
643 * filesystem with a log that is too small.
645 min_logfsbs = xfs_log_calc_minimum_size(mp);
647 if (mp->m_sb.sb_logblocks < min_logfsbs) {
648 xfs_warn(mp,
649 "Log size %d blocks too small, minimum size is %d blocks",
650 mp->m_sb.sb_logblocks, min_logfsbs);
651 error = -EINVAL;
652 } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
653 xfs_warn(mp,
654 "Log size %d blocks too large, maximum size is %lld blocks",
655 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
656 error = -EINVAL;
657 } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
658 xfs_warn(mp,
659 "log size %lld bytes too large, maximum size is %lld bytes",
660 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
661 XFS_MAX_LOG_BYTES);
662 error = -EINVAL;
663 } else if (mp->m_sb.sb_logsunit > 1 &&
664 mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) {
665 xfs_warn(mp,
666 "log stripe unit %u bytes must be a multiple of block size",
667 mp->m_sb.sb_logsunit);
668 error = -EINVAL;
669 fatal = true;
671 if (error) {
673 * Log check errors are always fatal on v5; or whenever bad
674 * metadata leads to a crash.
676 if (fatal) {
677 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
678 ASSERT(0);
679 goto out_free_log;
681 xfs_crit(mp, "Log size out of supported range.");
682 xfs_crit(mp,
683 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
687 * Initialize the AIL now we have a log.
689 error = xfs_trans_ail_init(mp);
690 if (error) {
691 xfs_warn(mp, "AIL initialisation failed: error %d", error);
692 goto out_free_log;
694 mp->m_log->l_ailp = mp->m_ail;
697 * skip log recovery on a norecovery mount. pretend it all
698 * just worked.
700 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
701 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
703 if (readonly)
704 mp->m_flags &= ~XFS_MOUNT_RDONLY;
706 error = xlog_recover(mp->m_log);
708 if (readonly)
709 mp->m_flags |= XFS_MOUNT_RDONLY;
710 if (error) {
711 xfs_warn(mp, "log mount/recovery failed: error %d",
712 error);
713 xlog_recover_cancel(mp->m_log);
714 goto out_destroy_ail;
718 error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
719 "log");
720 if (error)
721 goto out_destroy_ail;
723 /* Normal transactions can now occur */
724 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
727 * Now the log has been fully initialised and we know were our
728 * space grant counters are, we can initialise the permanent ticket
729 * needed for delayed logging to work.
731 xlog_cil_init_post_recovery(mp->m_log);
733 return 0;
735 out_destroy_ail:
736 xfs_trans_ail_destroy(mp);
737 out_free_log:
738 xlog_dealloc_log(mp->m_log);
739 out:
740 return error;
744 * Finish the recovery of the file system. This is separate from the
745 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
746 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
747 * here.
749 * If we finish recovery successfully, start the background log work. If we are
750 * not doing recovery, then we have a RO filesystem and we don't need to start
751 * it.
754 xfs_log_mount_finish(
755 struct xfs_mount *mp)
757 int error = 0;
758 bool readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
760 if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
761 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
762 return 0;
763 } else if (readonly) {
764 /* Allow unlinked processing to proceed */
765 mp->m_flags &= ~XFS_MOUNT_RDONLY;
769 * During the second phase of log recovery, we need iget and
770 * iput to behave like they do for an active filesystem.
771 * xfs_fs_drop_inode needs to be able to prevent the deletion
772 * of inodes before we're done replaying log items on those
773 * inodes. Turn it off immediately after recovery finishes
774 * so that we don't leak the quota inodes if subsequent mount
775 * activities fail.
777 * We let all inodes involved in redo item processing end up on
778 * the LRU instead of being evicted immediately so that if we do
779 * something to an unlinked inode, the irele won't cause
780 * premature truncation and freeing of the inode, which results
781 * in log recovery failure. We have to evict the unreferenced
782 * lru inodes after clearing MS_ACTIVE because we don't
783 * otherwise clean up the lru if there's a subsequent failure in
784 * xfs_mountfs, which leads to us leaking the inodes if nothing
785 * else (e.g. quotacheck) references the inodes before the
786 * mount failure occurs.
788 mp->m_super->s_flags |= MS_ACTIVE;
789 error = xlog_recover_finish(mp->m_log);
790 if (!error)
791 xfs_log_work_queue(mp);
792 mp->m_super->s_flags &= ~MS_ACTIVE;
793 evict_inodes(mp->m_super);
795 if (readonly)
796 mp->m_flags |= XFS_MOUNT_RDONLY;
798 return error;
802 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
803 * the log.
806 xfs_log_mount_cancel(
807 struct xfs_mount *mp)
809 int error;
811 error = xlog_recover_cancel(mp->m_log);
812 xfs_log_unmount(mp);
814 return error;
818 * Final log writes as part of unmount.
820 * Mark the filesystem clean as unmount happens. Note that during relocation
821 * this routine needs to be executed as part of source-bag while the
822 * deallocation must not be done until source-end.
826 * Unmount record used to have a string "Unmount filesystem--" in the
827 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
828 * We just write the magic number now since that particular field isn't
829 * currently architecture converted and "Unmount" is a bit foo.
830 * As far as I know, there weren't any dependencies on the old behaviour.
833 static int
834 xfs_log_unmount_write(xfs_mount_t *mp)
836 struct xlog *log = mp->m_log;
837 xlog_in_core_t *iclog;
838 #ifdef DEBUG
839 xlog_in_core_t *first_iclog;
840 #endif
841 xlog_ticket_t *tic = NULL;
842 xfs_lsn_t lsn;
843 int error;
846 * Don't write out unmount record on norecovery mounts or ro devices.
847 * Or, if we are doing a forced umount (typically because of IO errors).
849 if (mp->m_flags & XFS_MOUNT_NORECOVERY ||
850 xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
851 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
852 return 0;
855 error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
856 ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
858 #ifdef DEBUG
859 first_iclog = iclog = log->l_iclog;
860 do {
861 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
862 ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
863 ASSERT(iclog->ic_offset == 0);
865 iclog = iclog->ic_next;
866 } while (iclog != first_iclog);
867 #endif
868 if (! (XLOG_FORCED_SHUTDOWN(log))) {
869 error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
870 if (!error) {
871 /* the data section must be 32 bit size aligned */
872 struct {
873 uint16_t magic;
874 uint16_t pad1;
875 uint32_t pad2; /* may as well make it 64 bits */
876 } magic = {
877 .magic = XLOG_UNMOUNT_TYPE,
879 struct xfs_log_iovec reg = {
880 .i_addr = &magic,
881 .i_len = sizeof(magic),
882 .i_type = XLOG_REG_TYPE_UNMOUNT,
884 struct xfs_log_vec vec = {
885 .lv_niovecs = 1,
886 .lv_iovecp = &reg,
889 /* remove inited flag, and account for space used */
890 tic->t_flags = 0;
891 tic->t_curr_res -= sizeof(magic);
892 error = xlog_write(log, &vec, tic, &lsn,
893 NULL, XLOG_UNMOUNT_TRANS);
895 * At this point, we're umounting anyway,
896 * so there's no point in transitioning log state
897 * to IOERROR. Just continue...
901 if (error)
902 xfs_alert(mp, "%s: unmount record failed", __func__);
905 spin_lock(&log->l_icloglock);
906 iclog = log->l_iclog;
907 atomic_inc(&iclog->ic_refcnt);
908 xlog_state_want_sync(log, iclog);
909 spin_unlock(&log->l_icloglock);
910 error = xlog_state_release_iclog(log, iclog);
912 spin_lock(&log->l_icloglock);
913 if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
914 iclog->ic_state == XLOG_STATE_DIRTY)) {
915 if (!XLOG_FORCED_SHUTDOWN(log)) {
916 xlog_wait(&iclog->ic_force_wait,
917 &log->l_icloglock);
918 } else {
919 spin_unlock(&log->l_icloglock);
921 } else {
922 spin_unlock(&log->l_icloglock);
924 if (tic) {
925 trace_xfs_log_umount_write(log, tic);
926 xlog_ungrant_log_space(log, tic);
927 xfs_log_ticket_put(tic);
929 } else {
931 * We're already in forced_shutdown mode, couldn't
932 * even attempt to write out the unmount transaction.
934 * Go through the motions of sync'ing and releasing
935 * the iclog, even though no I/O will actually happen,
936 * we need to wait for other log I/Os that may already
937 * be in progress. Do this as a separate section of
938 * code so we'll know if we ever get stuck here that
939 * we're in this odd situation of trying to unmount
940 * a file system that went into forced_shutdown as
941 * the result of an unmount..
943 spin_lock(&log->l_icloglock);
944 iclog = log->l_iclog;
945 atomic_inc(&iclog->ic_refcnt);
947 xlog_state_want_sync(log, iclog);
948 spin_unlock(&log->l_icloglock);
949 error = xlog_state_release_iclog(log, iclog);
951 spin_lock(&log->l_icloglock);
953 if ( ! ( iclog->ic_state == XLOG_STATE_ACTIVE
954 || iclog->ic_state == XLOG_STATE_DIRTY
955 || iclog->ic_state == XLOG_STATE_IOERROR) ) {
957 xlog_wait(&iclog->ic_force_wait,
958 &log->l_icloglock);
959 } else {
960 spin_unlock(&log->l_icloglock);
964 return error;
965 } /* xfs_log_unmount_write */
968 * Empty the log for unmount/freeze.
970 * To do this, we first need to shut down the background log work so it is not
971 * trying to cover the log as we clean up. We then need to unpin all objects in
972 * the log so we can then flush them out. Once they have completed their IO and
973 * run the callbacks removing themselves from the AIL, we can write the unmount
974 * record.
976 void
977 xfs_log_quiesce(
978 struct xfs_mount *mp)
980 cancel_delayed_work_sync(&mp->m_log->l_work);
981 xfs_log_force(mp, XFS_LOG_SYNC);
984 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
985 * will push it, xfs_wait_buftarg() will not wait for it. Further,
986 * xfs_buf_iowait() cannot be used because it was pushed with the
987 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
988 * the IO to complete.
990 xfs_ail_push_all_sync(mp->m_ail);
991 xfs_wait_buftarg(mp->m_ddev_targp);
992 xfs_buf_lock(mp->m_sb_bp);
993 xfs_buf_unlock(mp->m_sb_bp);
995 xfs_log_unmount_write(mp);
999 * Shut down and release the AIL and Log.
1001 * During unmount, we need to ensure we flush all the dirty metadata objects
1002 * from the AIL so that the log is empty before we write the unmount record to
1003 * the log. Once this is done, we can tear down the AIL and the log.
1005 void
1006 xfs_log_unmount(
1007 struct xfs_mount *mp)
1009 xfs_log_quiesce(mp);
1011 xfs_trans_ail_destroy(mp);
1013 xfs_sysfs_del(&mp->m_log->l_kobj);
1015 xlog_dealloc_log(mp->m_log);
1018 void
1019 xfs_log_item_init(
1020 struct xfs_mount *mp,
1021 struct xfs_log_item *item,
1022 int type,
1023 const struct xfs_item_ops *ops)
1025 item->li_mountp = mp;
1026 item->li_ailp = mp->m_ail;
1027 item->li_type = type;
1028 item->li_ops = ops;
1029 item->li_lv = NULL;
1031 INIT_LIST_HEAD(&item->li_ail);
1032 INIT_LIST_HEAD(&item->li_cil);
1036 * Wake up processes waiting for log space after we have moved the log tail.
1038 void
1039 xfs_log_space_wake(
1040 struct xfs_mount *mp)
1042 struct xlog *log = mp->m_log;
1043 int free_bytes;
1045 if (XLOG_FORCED_SHUTDOWN(log))
1046 return;
1048 if (!list_empty_careful(&log->l_write_head.waiters)) {
1049 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1051 spin_lock(&log->l_write_head.lock);
1052 free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1053 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1054 spin_unlock(&log->l_write_head.lock);
1057 if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1058 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1060 spin_lock(&log->l_reserve_head.lock);
1061 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1062 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1063 spin_unlock(&log->l_reserve_head.lock);
1068 * Determine if we have a transaction that has gone to disk that needs to be
1069 * covered. To begin the transition to the idle state firstly the log needs to
1070 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1071 * we start attempting to cover the log.
1073 * Only if we are then in a state where covering is needed, the caller is
1074 * informed that dummy transactions are required to move the log into the idle
1075 * state.
1077 * If there are any items in the AIl or CIL, then we do not want to attempt to
1078 * cover the log as we may be in a situation where there isn't log space
1079 * available to run a dummy transaction and this can lead to deadlocks when the
1080 * tail of the log is pinned by an item that is modified in the CIL. Hence
1081 * there's no point in running a dummy transaction at this point because we
1082 * can't start trying to idle the log until both the CIL and AIL are empty.
1084 static int
1085 xfs_log_need_covered(xfs_mount_t *mp)
1087 struct xlog *log = mp->m_log;
1088 int needed = 0;
1090 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1091 return 0;
1093 if (!xlog_cil_empty(log))
1094 return 0;
1096 spin_lock(&log->l_icloglock);
1097 switch (log->l_covered_state) {
1098 case XLOG_STATE_COVER_DONE:
1099 case XLOG_STATE_COVER_DONE2:
1100 case XLOG_STATE_COVER_IDLE:
1101 break;
1102 case XLOG_STATE_COVER_NEED:
1103 case XLOG_STATE_COVER_NEED2:
1104 if (xfs_ail_min_lsn(log->l_ailp))
1105 break;
1106 if (!xlog_iclogs_empty(log))
1107 break;
1109 needed = 1;
1110 if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1111 log->l_covered_state = XLOG_STATE_COVER_DONE;
1112 else
1113 log->l_covered_state = XLOG_STATE_COVER_DONE2;
1114 break;
1115 default:
1116 needed = 1;
1117 break;
1119 spin_unlock(&log->l_icloglock);
1120 return needed;
1124 * We may be holding the log iclog lock upon entering this routine.
1126 xfs_lsn_t
1127 xlog_assign_tail_lsn_locked(
1128 struct xfs_mount *mp)
1130 struct xlog *log = mp->m_log;
1131 struct xfs_log_item *lip;
1132 xfs_lsn_t tail_lsn;
1134 assert_spin_locked(&mp->m_ail->xa_lock);
1137 * To make sure we always have a valid LSN for the log tail we keep
1138 * track of the last LSN which was committed in log->l_last_sync_lsn,
1139 * and use that when the AIL was empty.
1141 lip = xfs_ail_min(mp->m_ail);
1142 if (lip)
1143 tail_lsn = lip->li_lsn;
1144 else
1145 tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1146 trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1147 atomic64_set(&log->l_tail_lsn, tail_lsn);
1148 return tail_lsn;
1151 xfs_lsn_t
1152 xlog_assign_tail_lsn(
1153 struct xfs_mount *mp)
1155 xfs_lsn_t tail_lsn;
1157 spin_lock(&mp->m_ail->xa_lock);
1158 tail_lsn = xlog_assign_tail_lsn_locked(mp);
1159 spin_unlock(&mp->m_ail->xa_lock);
1161 return tail_lsn;
1165 * Return the space in the log between the tail and the head. The head
1166 * is passed in the cycle/bytes formal parms. In the special case where
1167 * the reserve head has wrapped passed the tail, this calculation is no
1168 * longer valid. In this case, just return 0 which means there is no space
1169 * in the log. This works for all places where this function is called
1170 * with the reserve head. Of course, if the write head were to ever
1171 * wrap the tail, we should blow up. Rather than catch this case here,
1172 * we depend on other ASSERTions in other parts of the code. XXXmiken
1174 * This code also handles the case where the reservation head is behind
1175 * the tail. The details of this case are described below, but the end
1176 * result is that we return the size of the log as the amount of space left.
1178 STATIC int
1179 xlog_space_left(
1180 struct xlog *log,
1181 atomic64_t *head)
1183 int free_bytes;
1184 int tail_bytes;
1185 int tail_cycle;
1186 int head_cycle;
1187 int head_bytes;
1189 xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1190 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1191 tail_bytes = BBTOB(tail_bytes);
1192 if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1193 free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1194 else if (tail_cycle + 1 < head_cycle)
1195 return 0;
1196 else if (tail_cycle < head_cycle) {
1197 ASSERT(tail_cycle == (head_cycle - 1));
1198 free_bytes = tail_bytes - head_bytes;
1199 } else {
1201 * The reservation head is behind the tail.
1202 * In this case we just want to return the size of the
1203 * log as the amount of space left.
1205 xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1206 xfs_alert(log->l_mp,
1207 " tail_cycle = %d, tail_bytes = %d",
1208 tail_cycle, tail_bytes);
1209 xfs_alert(log->l_mp,
1210 " GH cycle = %d, GH bytes = %d",
1211 head_cycle, head_bytes);
1212 ASSERT(0);
1213 free_bytes = log->l_logsize;
1215 return free_bytes;
1220 * Log function which is called when an io completes.
1222 * The log manager needs its own routine, in order to control what
1223 * happens with the buffer after the write completes.
1225 static void
1226 xlog_iodone(xfs_buf_t *bp)
1228 struct xlog_in_core *iclog = bp->b_fspriv;
1229 struct xlog *l = iclog->ic_log;
1230 int aborted = 0;
1233 * Race to shutdown the filesystem if we see an error or the iclog is in
1234 * IOABORT state. The IOABORT state is only set in DEBUG mode to inject
1235 * CRC errors into log recovery.
1237 if (XFS_TEST_ERROR(bp->b_error, l->l_mp, XFS_ERRTAG_IODONE_IOERR) ||
1238 iclog->ic_state & XLOG_STATE_IOABORT) {
1239 if (iclog->ic_state & XLOG_STATE_IOABORT)
1240 iclog->ic_state &= ~XLOG_STATE_IOABORT;
1242 xfs_buf_ioerror_alert(bp, __func__);
1243 xfs_buf_stale(bp);
1244 xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1246 * This flag will be propagated to the trans-committed
1247 * callback routines to let them know that the log-commit
1248 * didn't succeed.
1250 aborted = XFS_LI_ABORTED;
1251 } else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1252 aborted = XFS_LI_ABORTED;
1255 /* log I/O is always issued ASYNC */
1256 ASSERT(bp->b_flags & XBF_ASYNC);
1257 xlog_state_done_syncing(iclog, aborted);
1260 * drop the buffer lock now that we are done. Nothing references
1261 * the buffer after this, so an unmount waiting on this lock can now
1262 * tear it down safely. As such, it is unsafe to reference the buffer
1263 * (bp) after the unlock as we could race with it being freed.
1265 xfs_buf_unlock(bp);
1269 * Return size of each in-core log record buffer.
1271 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1273 * If the filesystem blocksize is too large, we may need to choose a
1274 * larger size since the directory code currently logs entire blocks.
1277 STATIC void
1278 xlog_get_iclog_buffer_size(
1279 struct xfs_mount *mp,
1280 struct xlog *log)
1282 int size;
1283 int xhdrs;
1285 if (mp->m_logbufs <= 0)
1286 log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1287 else
1288 log->l_iclog_bufs = mp->m_logbufs;
1291 * Buffer size passed in from mount system call.
1293 if (mp->m_logbsize > 0) {
1294 size = log->l_iclog_size = mp->m_logbsize;
1295 log->l_iclog_size_log = 0;
1296 while (size != 1) {
1297 log->l_iclog_size_log++;
1298 size >>= 1;
1301 if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1302 /* # headers = size / 32k
1303 * one header holds cycles from 32k of data
1306 xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1307 if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1308 xhdrs++;
1309 log->l_iclog_hsize = xhdrs << BBSHIFT;
1310 log->l_iclog_heads = xhdrs;
1311 } else {
1312 ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1313 log->l_iclog_hsize = BBSIZE;
1314 log->l_iclog_heads = 1;
1316 goto done;
1319 /* All machines use 32kB buffers by default. */
1320 log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1321 log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1323 /* the default log size is 16k or 32k which is one header sector */
1324 log->l_iclog_hsize = BBSIZE;
1325 log->l_iclog_heads = 1;
1327 done:
1328 /* are we being asked to make the sizes selected above visible? */
1329 if (mp->m_logbufs == 0)
1330 mp->m_logbufs = log->l_iclog_bufs;
1331 if (mp->m_logbsize == 0)
1332 mp->m_logbsize = log->l_iclog_size;
1333 } /* xlog_get_iclog_buffer_size */
1336 void
1337 xfs_log_work_queue(
1338 struct xfs_mount *mp)
1340 queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1341 msecs_to_jiffies(xfs_syncd_centisecs * 10));
1345 * Every sync period we need to unpin all items in the AIL and push them to
1346 * disk. If there is nothing dirty, then we might need to cover the log to
1347 * indicate that the filesystem is idle.
1349 static void
1350 xfs_log_worker(
1351 struct work_struct *work)
1353 struct xlog *log = container_of(to_delayed_work(work),
1354 struct xlog, l_work);
1355 struct xfs_mount *mp = log->l_mp;
1357 /* dgc: errors ignored - not fatal and nowhere to report them */
1358 if (xfs_log_need_covered(mp)) {
1360 * Dump a transaction into the log that contains no real change.
1361 * This is needed to stamp the current tail LSN into the log
1362 * during the covering operation.
1364 * We cannot use an inode here for this - that will push dirty
1365 * state back up into the VFS and then periodic inode flushing
1366 * will prevent log covering from making progress. Hence we
1367 * synchronously log the superblock instead to ensure the
1368 * superblock is immediately unpinned and can be written back.
1370 xfs_sync_sb(mp, true);
1371 } else
1372 xfs_log_force(mp, 0);
1374 /* start pushing all the metadata that is currently dirty */
1375 xfs_ail_push_all(mp->m_ail);
1377 /* queue us up again */
1378 xfs_log_work_queue(mp);
1382 * This routine initializes some of the log structure for a given mount point.
1383 * Its primary purpose is to fill in enough, so recovery can occur. However,
1384 * some other stuff may be filled in too.
1386 STATIC struct xlog *
1387 xlog_alloc_log(
1388 struct xfs_mount *mp,
1389 struct xfs_buftarg *log_target,
1390 xfs_daddr_t blk_offset,
1391 int num_bblks)
1393 struct xlog *log;
1394 xlog_rec_header_t *head;
1395 xlog_in_core_t **iclogp;
1396 xlog_in_core_t *iclog, *prev_iclog=NULL;
1397 xfs_buf_t *bp;
1398 int i;
1399 int error = -ENOMEM;
1400 uint log2_size = 0;
1402 log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1403 if (!log) {
1404 xfs_warn(mp, "Log allocation failed: No memory!");
1405 goto out;
1408 log->l_mp = mp;
1409 log->l_targ = log_target;
1410 log->l_logsize = BBTOB(num_bblks);
1411 log->l_logBBstart = blk_offset;
1412 log->l_logBBsize = num_bblks;
1413 log->l_covered_state = XLOG_STATE_COVER_IDLE;
1414 log->l_flags |= XLOG_ACTIVE_RECOVERY;
1415 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1417 log->l_prev_block = -1;
1418 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1419 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1420 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1421 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */
1423 xlog_grant_head_init(&log->l_reserve_head);
1424 xlog_grant_head_init(&log->l_write_head);
1426 error = -EFSCORRUPTED;
1427 if (xfs_sb_version_hassector(&mp->m_sb)) {
1428 log2_size = mp->m_sb.sb_logsectlog;
1429 if (log2_size < BBSHIFT) {
1430 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1431 log2_size, BBSHIFT);
1432 goto out_free_log;
1435 log2_size -= BBSHIFT;
1436 if (log2_size > mp->m_sectbb_log) {
1437 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1438 log2_size, mp->m_sectbb_log);
1439 goto out_free_log;
1442 /* for larger sector sizes, must have v2 or external log */
1443 if (log2_size && log->l_logBBstart > 0 &&
1444 !xfs_sb_version_haslogv2(&mp->m_sb)) {
1445 xfs_warn(mp,
1446 "log sector size (0x%x) invalid for configuration.",
1447 log2_size);
1448 goto out_free_log;
1451 log->l_sectBBsize = 1 << log2_size;
1453 xlog_get_iclog_buffer_size(mp, log);
1456 * Use a NULL block for the extra log buffer used during splits so that
1457 * it will trigger errors if we ever try to do IO on it without first
1458 * having set it up properly.
1460 error = -ENOMEM;
1461 bp = xfs_buf_alloc(mp->m_logdev_targp, XFS_BUF_DADDR_NULL,
1462 BTOBB(log->l_iclog_size), XBF_NO_IOACCT);
1463 if (!bp)
1464 goto out_free_log;
1467 * The iclogbuf buffer locks are held over IO but we are not going to do
1468 * IO yet. Hence unlock the buffer so that the log IO path can grab it
1469 * when appropriately.
1471 ASSERT(xfs_buf_islocked(bp));
1472 xfs_buf_unlock(bp);
1474 /* use high priority wq for log I/O completion */
1475 bp->b_ioend_wq = mp->m_log_workqueue;
1476 bp->b_iodone = xlog_iodone;
1477 log->l_xbuf = bp;
1479 spin_lock_init(&log->l_icloglock);
1480 init_waitqueue_head(&log->l_flush_wait);
1482 iclogp = &log->l_iclog;
1484 * The amount of memory to allocate for the iclog structure is
1485 * rather funky due to the way the structure is defined. It is
1486 * done this way so that we can use different sizes for machines
1487 * with different amounts of memory. See the definition of
1488 * xlog_in_core_t in xfs_log_priv.h for details.
1490 ASSERT(log->l_iclog_size >= 4096);
1491 for (i=0; i < log->l_iclog_bufs; i++) {
1492 *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1493 if (!*iclogp)
1494 goto out_free_iclog;
1496 iclog = *iclogp;
1497 iclog->ic_prev = prev_iclog;
1498 prev_iclog = iclog;
1500 bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1501 BTOBB(log->l_iclog_size),
1502 XBF_NO_IOACCT);
1503 if (!bp)
1504 goto out_free_iclog;
1506 ASSERT(xfs_buf_islocked(bp));
1507 xfs_buf_unlock(bp);
1509 /* use high priority wq for log I/O completion */
1510 bp->b_ioend_wq = mp->m_log_workqueue;
1511 bp->b_iodone = xlog_iodone;
1512 iclog->ic_bp = bp;
1513 iclog->ic_data = bp->b_addr;
1514 #ifdef DEBUG
1515 log->l_iclog_bak[i] = &iclog->ic_header;
1516 #endif
1517 head = &iclog->ic_header;
1518 memset(head, 0, sizeof(xlog_rec_header_t));
1519 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1520 head->h_version = cpu_to_be32(
1521 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1522 head->h_size = cpu_to_be32(log->l_iclog_size);
1523 /* new fields */
1524 head->h_fmt = cpu_to_be32(XLOG_FMT);
1525 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1527 iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1528 iclog->ic_state = XLOG_STATE_ACTIVE;
1529 iclog->ic_log = log;
1530 atomic_set(&iclog->ic_refcnt, 0);
1531 spin_lock_init(&iclog->ic_callback_lock);
1532 iclog->ic_callback_tail = &(iclog->ic_callback);
1533 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1535 init_waitqueue_head(&iclog->ic_force_wait);
1536 init_waitqueue_head(&iclog->ic_write_wait);
1538 iclogp = &iclog->ic_next;
1540 *iclogp = log->l_iclog; /* complete ring */
1541 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */
1543 error = xlog_cil_init(log);
1544 if (error)
1545 goto out_free_iclog;
1546 return log;
1548 out_free_iclog:
1549 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1550 prev_iclog = iclog->ic_next;
1551 if (iclog->ic_bp)
1552 xfs_buf_free(iclog->ic_bp);
1553 kmem_free(iclog);
1554 if (prev_iclog == log->l_iclog)
1555 break;
1557 spinlock_destroy(&log->l_icloglock);
1558 xfs_buf_free(log->l_xbuf);
1559 out_free_log:
1560 kmem_free(log);
1561 out:
1562 return ERR_PTR(error);
1563 } /* xlog_alloc_log */
1567 * Write out the commit record of a transaction associated with the given
1568 * ticket. Return the lsn of the commit record.
1570 STATIC int
1571 xlog_commit_record(
1572 struct xlog *log,
1573 struct xlog_ticket *ticket,
1574 struct xlog_in_core **iclog,
1575 xfs_lsn_t *commitlsnp)
1577 struct xfs_mount *mp = log->l_mp;
1578 int error;
1579 struct xfs_log_iovec reg = {
1580 .i_addr = NULL,
1581 .i_len = 0,
1582 .i_type = XLOG_REG_TYPE_COMMIT,
1584 struct xfs_log_vec vec = {
1585 .lv_niovecs = 1,
1586 .lv_iovecp = &reg,
1589 ASSERT_ALWAYS(iclog);
1590 error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1591 XLOG_COMMIT_TRANS);
1592 if (error)
1593 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1594 return error;
1598 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1599 * log space. This code pushes on the lsn which would supposedly free up
1600 * the 25% which we want to leave free. We may need to adopt a policy which
1601 * pushes on an lsn which is further along in the log once we reach the high
1602 * water mark. In this manner, we would be creating a low water mark.
1604 STATIC void
1605 xlog_grant_push_ail(
1606 struct xlog *log,
1607 int need_bytes)
1609 xfs_lsn_t threshold_lsn = 0;
1610 xfs_lsn_t last_sync_lsn;
1611 int free_blocks;
1612 int free_bytes;
1613 int threshold_block;
1614 int threshold_cycle;
1615 int free_threshold;
1617 ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1619 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1620 free_blocks = BTOBBT(free_bytes);
1623 * Set the threshold for the minimum number of free blocks in the
1624 * log to the maximum of what the caller needs, one quarter of the
1625 * log, and 256 blocks.
1627 free_threshold = BTOBB(need_bytes);
1628 free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1629 free_threshold = MAX(free_threshold, 256);
1630 if (free_blocks >= free_threshold)
1631 return;
1633 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1634 &threshold_block);
1635 threshold_block += free_threshold;
1636 if (threshold_block >= log->l_logBBsize) {
1637 threshold_block -= log->l_logBBsize;
1638 threshold_cycle += 1;
1640 threshold_lsn = xlog_assign_lsn(threshold_cycle,
1641 threshold_block);
1643 * Don't pass in an lsn greater than the lsn of the last
1644 * log record known to be on disk. Use a snapshot of the last sync lsn
1645 * so that it doesn't change between the compare and the set.
1647 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1648 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1649 threshold_lsn = last_sync_lsn;
1652 * Get the transaction layer to kick the dirty buffers out to
1653 * disk asynchronously. No point in trying to do this if
1654 * the filesystem is shutting down.
1656 if (!XLOG_FORCED_SHUTDOWN(log))
1657 xfs_ail_push(log->l_ailp, threshold_lsn);
1661 * Stamp cycle number in every block
1663 STATIC void
1664 xlog_pack_data(
1665 struct xlog *log,
1666 struct xlog_in_core *iclog,
1667 int roundoff)
1669 int i, j, k;
1670 int size = iclog->ic_offset + roundoff;
1671 __be32 cycle_lsn;
1672 char *dp;
1674 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1676 dp = iclog->ic_datap;
1677 for (i = 0; i < BTOBB(size); i++) {
1678 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1679 break;
1680 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1681 *(__be32 *)dp = cycle_lsn;
1682 dp += BBSIZE;
1685 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1686 xlog_in_core_2_t *xhdr = iclog->ic_data;
1688 for ( ; i < BTOBB(size); i++) {
1689 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1690 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1691 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1692 *(__be32 *)dp = cycle_lsn;
1693 dp += BBSIZE;
1696 for (i = 1; i < log->l_iclog_heads; i++)
1697 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1702 * Calculate the checksum for a log buffer.
1704 * This is a little more complicated than it should be because the various
1705 * headers and the actual data are non-contiguous.
1707 __le32
1708 xlog_cksum(
1709 struct xlog *log,
1710 struct xlog_rec_header *rhead,
1711 char *dp,
1712 int size)
1714 uint32_t crc;
1716 /* first generate the crc for the record header ... */
1717 crc = xfs_start_cksum_update((char *)rhead,
1718 sizeof(struct xlog_rec_header),
1719 offsetof(struct xlog_rec_header, h_crc));
1721 /* ... then for additional cycle data for v2 logs ... */
1722 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1723 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1724 int i;
1725 int xheads;
1727 xheads = size / XLOG_HEADER_CYCLE_SIZE;
1728 if (size % XLOG_HEADER_CYCLE_SIZE)
1729 xheads++;
1731 for (i = 1; i < xheads; i++) {
1732 crc = crc32c(crc, &xhdr[i].hic_xheader,
1733 sizeof(struct xlog_rec_ext_header));
1737 /* ... and finally for the payload */
1738 crc = crc32c(crc, dp, size);
1740 return xfs_end_cksum(crc);
1744 * The bdstrat callback function for log bufs. This gives us a central
1745 * place to trap bufs in case we get hit by a log I/O error and need to
1746 * shutdown. Actually, in practice, even when we didn't get a log error,
1747 * we transition the iclogs to IOERROR state *after* flushing all existing
1748 * iclogs to disk. This is because we don't want anymore new transactions to be
1749 * started or completed afterwards.
1751 * We lock the iclogbufs here so that we can serialise against IO completion
1752 * during unmount. We might be processing a shutdown triggered during unmount,
1753 * and that can occur asynchronously to the unmount thread, and hence we need to
1754 * ensure that completes before tearing down the iclogbufs. Hence we need to
1755 * hold the buffer lock across the log IO to acheive that.
1757 STATIC int
1758 xlog_bdstrat(
1759 struct xfs_buf *bp)
1761 struct xlog_in_core *iclog = bp->b_fspriv;
1763 xfs_buf_lock(bp);
1764 if (iclog->ic_state & XLOG_STATE_IOERROR) {
1765 xfs_buf_ioerror(bp, -EIO);
1766 xfs_buf_stale(bp);
1767 xfs_buf_ioend(bp);
1769 * It would seem logical to return EIO here, but we rely on
1770 * the log state machine to propagate I/O errors instead of
1771 * doing it here. Similarly, IO completion will unlock the
1772 * buffer, so we don't do it here.
1774 return 0;
1777 xfs_buf_submit(bp);
1778 return 0;
1782 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1783 * fashion. Previously, we should have moved the current iclog
1784 * ptr in the log to point to the next available iclog. This allows further
1785 * write to continue while this code syncs out an iclog ready to go.
1786 * Before an in-core log can be written out, the data section must be scanned
1787 * to save away the 1st word of each BBSIZE block into the header. We replace
1788 * it with the current cycle count. Each BBSIZE block is tagged with the
1789 * cycle count because there in an implicit assumption that drives will
1790 * guarantee that entire 512 byte blocks get written at once. In other words,
1791 * we can't have part of a 512 byte block written and part not written. By
1792 * tagging each block, we will know which blocks are valid when recovering
1793 * after an unclean shutdown.
1795 * This routine is single threaded on the iclog. No other thread can be in
1796 * this routine with the same iclog. Changing contents of iclog can there-
1797 * fore be done without grabbing the state machine lock. Updating the global
1798 * log will require grabbing the lock though.
1800 * The entire log manager uses a logical block numbering scheme. Only
1801 * log_sync (and then only bwrite()) know about the fact that the log may
1802 * not start with block zero on a given device. The log block start offset
1803 * is added immediately before calling bwrite().
1806 STATIC int
1807 xlog_sync(
1808 struct xlog *log,
1809 struct xlog_in_core *iclog)
1811 xfs_buf_t *bp;
1812 int i;
1813 uint count; /* byte count of bwrite */
1814 uint count_init; /* initial count before roundup */
1815 int roundoff; /* roundoff to BB or stripe */
1816 int split = 0; /* split write into two regions */
1817 int error;
1818 int v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1819 int size;
1821 XFS_STATS_INC(log->l_mp, xs_log_writes);
1822 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1824 /* Add for LR header */
1825 count_init = log->l_iclog_hsize + iclog->ic_offset;
1827 /* Round out the log write size */
1828 if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1829 /* we have a v2 stripe unit to use */
1830 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1831 } else {
1832 count = BBTOB(BTOBB(count_init));
1834 roundoff = count - count_init;
1835 ASSERT(roundoff >= 0);
1836 ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 &&
1837 roundoff < log->l_mp->m_sb.sb_logsunit)
1839 (log->l_mp->m_sb.sb_logsunit <= 1 &&
1840 roundoff < BBTOB(1)));
1842 /* move grant heads by roundoff in sync */
1843 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1844 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1846 /* put cycle number in every block */
1847 xlog_pack_data(log, iclog, roundoff);
1849 /* real byte length */
1850 size = iclog->ic_offset;
1851 if (v2)
1852 size += roundoff;
1853 iclog->ic_header.h_len = cpu_to_be32(size);
1855 bp = iclog->ic_bp;
1856 XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1858 XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1860 /* Do we need to split this write into 2 parts? */
1861 if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1862 char *dptr;
1864 split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1865 count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1866 iclog->ic_bwritecnt = 2;
1869 * Bump the cycle numbers at the start of each block in the
1870 * part of the iclog that ends up in the buffer that gets
1871 * written to the start of the log.
1873 * Watch out for the header magic number case, though.
1875 dptr = (char *)&iclog->ic_header + count;
1876 for (i = 0; i < split; i += BBSIZE) {
1877 uint32_t cycle = be32_to_cpu(*(__be32 *)dptr);
1878 if (++cycle == XLOG_HEADER_MAGIC_NUM)
1879 cycle++;
1880 *(__be32 *)dptr = cpu_to_be32(cycle);
1882 dptr += BBSIZE;
1884 } else {
1885 iclog->ic_bwritecnt = 1;
1888 /* calculcate the checksum */
1889 iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1890 iclog->ic_datap, size);
1892 * Intentionally corrupt the log record CRC based on the error injection
1893 * frequency, if defined. This facilitates testing log recovery in the
1894 * event of torn writes. Hence, set the IOABORT state to abort the log
1895 * write on I/O completion and shutdown the fs. The subsequent mount
1896 * detects the bad CRC and attempts to recover.
1898 if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
1899 iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
1900 iclog->ic_state |= XLOG_STATE_IOABORT;
1901 xfs_warn(log->l_mp,
1902 "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1903 be64_to_cpu(iclog->ic_header.h_lsn));
1906 bp->b_io_length = BTOBB(count);
1907 bp->b_fspriv = iclog;
1908 bp->b_flags &= ~XBF_FLUSH;
1909 bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE | XBF_FUA);
1912 * Flush the data device before flushing the log to make sure all meta
1913 * data written back from the AIL actually made it to disk before
1914 * stamping the new log tail LSN into the log buffer. For an external
1915 * log we need to issue the flush explicitly, and unfortunately
1916 * synchronously here; for an internal log we can simply use the block
1917 * layer state machine for preflushes.
1919 if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1920 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1921 else
1922 bp->b_flags |= XBF_FLUSH;
1924 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1925 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1927 xlog_verify_iclog(log, iclog, count, true);
1929 /* account for log which doesn't start at block #0 */
1930 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1933 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1934 * is shutting down.
1936 error = xlog_bdstrat(bp);
1937 if (error) {
1938 xfs_buf_ioerror_alert(bp, "xlog_sync");
1939 return error;
1941 if (split) {
1942 bp = iclog->ic_log->l_xbuf;
1943 XFS_BUF_SET_ADDR(bp, 0); /* logical 0 */
1944 xfs_buf_associate_memory(bp,
1945 (char *)&iclog->ic_header + count, split);
1946 bp->b_fspriv = iclog;
1947 bp->b_flags &= ~XBF_FLUSH;
1948 bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE | XBF_FUA);
1950 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1951 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1953 /* account for internal log which doesn't start at block #0 */
1954 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1955 error = xlog_bdstrat(bp);
1956 if (error) {
1957 xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1958 return error;
1961 return 0;
1962 } /* xlog_sync */
1965 * Deallocate a log structure
1967 STATIC void
1968 xlog_dealloc_log(
1969 struct xlog *log)
1971 xlog_in_core_t *iclog, *next_iclog;
1972 int i;
1974 xlog_cil_destroy(log);
1977 * Cycle all the iclogbuf locks to make sure all log IO completion
1978 * is done before we tear down these buffers.
1980 iclog = log->l_iclog;
1981 for (i = 0; i < log->l_iclog_bufs; i++) {
1982 xfs_buf_lock(iclog->ic_bp);
1983 xfs_buf_unlock(iclog->ic_bp);
1984 iclog = iclog->ic_next;
1988 * Always need to ensure that the extra buffer does not point to memory
1989 * owned by another log buffer before we free it. Also, cycle the lock
1990 * first to ensure we've completed IO on it.
1992 xfs_buf_lock(log->l_xbuf);
1993 xfs_buf_unlock(log->l_xbuf);
1994 xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
1995 xfs_buf_free(log->l_xbuf);
1997 iclog = log->l_iclog;
1998 for (i = 0; i < log->l_iclog_bufs; i++) {
1999 xfs_buf_free(iclog->ic_bp);
2000 next_iclog = iclog->ic_next;
2001 kmem_free(iclog);
2002 iclog = next_iclog;
2004 spinlock_destroy(&log->l_icloglock);
2006 log->l_mp->m_log = NULL;
2007 kmem_free(log);
2008 } /* xlog_dealloc_log */
2011 * Update counters atomically now that memcpy is done.
2013 /* ARGSUSED */
2014 static inline void
2015 xlog_state_finish_copy(
2016 struct xlog *log,
2017 struct xlog_in_core *iclog,
2018 int record_cnt,
2019 int copy_bytes)
2021 spin_lock(&log->l_icloglock);
2023 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
2024 iclog->ic_offset += copy_bytes;
2026 spin_unlock(&log->l_icloglock);
2027 } /* xlog_state_finish_copy */
2033 * print out info relating to regions written which consume
2034 * the reservation
2036 void
2037 xlog_print_tic_res(
2038 struct xfs_mount *mp,
2039 struct xlog_ticket *ticket)
2041 uint i;
2042 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
2044 /* match with XLOG_REG_TYPE_* in xfs_log.h */
2045 #define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str
2046 static char *res_type_str[XLOG_REG_TYPE_MAX + 1] = {
2047 REG_TYPE_STR(BFORMAT, "bformat"),
2048 REG_TYPE_STR(BCHUNK, "bchunk"),
2049 REG_TYPE_STR(EFI_FORMAT, "efi_format"),
2050 REG_TYPE_STR(EFD_FORMAT, "efd_format"),
2051 REG_TYPE_STR(IFORMAT, "iformat"),
2052 REG_TYPE_STR(ICORE, "icore"),
2053 REG_TYPE_STR(IEXT, "iext"),
2054 REG_TYPE_STR(IBROOT, "ibroot"),
2055 REG_TYPE_STR(ILOCAL, "ilocal"),
2056 REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
2057 REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
2058 REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
2059 REG_TYPE_STR(QFORMAT, "qformat"),
2060 REG_TYPE_STR(DQUOT, "dquot"),
2061 REG_TYPE_STR(QUOTAOFF, "quotaoff"),
2062 REG_TYPE_STR(LRHEADER, "LR header"),
2063 REG_TYPE_STR(UNMOUNT, "unmount"),
2064 REG_TYPE_STR(COMMIT, "commit"),
2065 REG_TYPE_STR(TRANSHDR, "trans header"),
2066 REG_TYPE_STR(ICREATE, "inode create")
2068 #undef REG_TYPE_STR
2070 xfs_warn(mp, "ticket reservation summary:");
2071 xfs_warn(mp, " unit res = %d bytes",
2072 ticket->t_unit_res);
2073 xfs_warn(mp, " current res = %d bytes",
2074 ticket->t_curr_res);
2075 xfs_warn(mp, " total reg = %u bytes (o/flow = %u bytes)",
2076 ticket->t_res_arr_sum, ticket->t_res_o_flow);
2077 xfs_warn(mp, " ophdrs = %u (ophdr space = %u bytes)",
2078 ticket->t_res_num_ophdrs, ophdr_spc);
2079 xfs_warn(mp, " ophdr + reg = %u bytes",
2080 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2081 xfs_warn(mp, " num regions = %u",
2082 ticket->t_res_num);
2084 for (i = 0; i < ticket->t_res_num; i++) {
2085 uint r_type = ticket->t_res_arr[i].r_type;
2086 xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2087 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2088 "bad-rtype" : res_type_str[r_type]),
2089 ticket->t_res_arr[i].r_len);
2094 * Print a summary of the transaction.
2096 void
2097 xlog_print_trans(
2098 struct xfs_trans *tp)
2100 struct xfs_mount *mp = tp->t_mountp;
2101 struct xfs_log_item_desc *lidp;
2103 /* dump core transaction and ticket info */
2104 xfs_warn(mp, "transaction summary:");
2105 xfs_warn(mp, " flags = 0x%x", tp->t_flags);
2107 xlog_print_tic_res(mp, tp->t_ticket);
2109 /* dump each log item */
2110 list_for_each_entry(lidp, &tp->t_items, lid_trans) {
2111 struct xfs_log_item *lip = lidp->lid_item;
2112 struct xfs_log_vec *lv = lip->li_lv;
2113 struct xfs_log_iovec *vec;
2114 int i;
2116 xfs_warn(mp, "log item: ");
2117 xfs_warn(mp, " type = 0x%x", lip->li_type);
2118 xfs_warn(mp, " flags = 0x%x", lip->li_flags);
2119 if (!lv)
2120 continue;
2121 xfs_warn(mp, " niovecs = %d", lv->lv_niovecs);
2122 xfs_warn(mp, " size = %d", lv->lv_size);
2123 xfs_warn(mp, " bytes = %d", lv->lv_bytes);
2124 xfs_warn(mp, " buf len = %d", lv->lv_buf_len);
2126 /* dump each iovec for the log item */
2127 vec = lv->lv_iovecp;
2128 for (i = 0; i < lv->lv_niovecs; i++) {
2129 int dumplen = min(vec->i_len, 32);
2131 xfs_warn(mp, " iovec[%d]", i);
2132 xfs_warn(mp, " type = 0x%x", vec->i_type);
2133 xfs_warn(mp, " len = %d", vec->i_len);
2134 xfs_warn(mp, " first %d bytes of iovec[%d]:", dumplen, i);
2135 xfs_hex_dump(vec->i_addr, dumplen);
2137 vec++;
2143 * Calculate the potential space needed by the log vector. Each region gets
2144 * its own xlog_op_header_t and may need to be double word aligned.
2146 static int
2147 xlog_write_calc_vec_length(
2148 struct xlog_ticket *ticket,
2149 struct xfs_log_vec *log_vector)
2151 struct xfs_log_vec *lv;
2152 int headers = 0;
2153 int len = 0;
2154 int i;
2156 /* acct for start rec of xact */
2157 if (ticket->t_flags & XLOG_TIC_INITED)
2158 headers++;
2160 for (lv = log_vector; lv; lv = lv->lv_next) {
2161 /* we don't write ordered log vectors */
2162 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2163 continue;
2165 headers += lv->lv_niovecs;
2167 for (i = 0; i < lv->lv_niovecs; i++) {
2168 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i];
2170 len += vecp->i_len;
2171 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2175 ticket->t_res_num_ophdrs += headers;
2176 len += headers * sizeof(struct xlog_op_header);
2178 return len;
2182 * If first write for transaction, insert start record We can't be trying to
2183 * commit if we are inited. We can't have any "partial_copy" if we are inited.
2185 static int
2186 xlog_write_start_rec(
2187 struct xlog_op_header *ophdr,
2188 struct xlog_ticket *ticket)
2190 if (!(ticket->t_flags & XLOG_TIC_INITED))
2191 return 0;
2193 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2194 ophdr->oh_clientid = ticket->t_clientid;
2195 ophdr->oh_len = 0;
2196 ophdr->oh_flags = XLOG_START_TRANS;
2197 ophdr->oh_res2 = 0;
2199 ticket->t_flags &= ~XLOG_TIC_INITED;
2201 return sizeof(struct xlog_op_header);
2204 static xlog_op_header_t *
2205 xlog_write_setup_ophdr(
2206 struct xlog *log,
2207 struct xlog_op_header *ophdr,
2208 struct xlog_ticket *ticket,
2209 uint flags)
2211 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2212 ophdr->oh_clientid = ticket->t_clientid;
2213 ophdr->oh_res2 = 0;
2215 /* are we copying a commit or unmount record? */
2216 ophdr->oh_flags = flags;
2219 * We've seen logs corrupted with bad transaction client ids. This
2220 * makes sure that XFS doesn't generate them on. Turn this into an EIO
2221 * and shut down the filesystem.
2223 switch (ophdr->oh_clientid) {
2224 case XFS_TRANSACTION:
2225 case XFS_VOLUME:
2226 case XFS_LOG:
2227 break;
2228 default:
2229 xfs_warn(log->l_mp,
2230 "Bad XFS transaction clientid 0x%x in ticket 0x%p",
2231 ophdr->oh_clientid, ticket);
2232 return NULL;
2235 return ophdr;
2239 * Set up the parameters of the region copy into the log. This has
2240 * to handle region write split across multiple log buffers - this
2241 * state is kept external to this function so that this code can
2242 * be written in an obvious, self documenting manner.
2244 static int
2245 xlog_write_setup_copy(
2246 struct xlog_ticket *ticket,
2247 struct xlog_op_header *ophdr,
2248 int space_available,
2249 int space_required,
2250 int *copy_off,
2251 int *copy_len,
2252 int *last_was_partial_copy,
2253 int *bytes_consumed)
2255 int still_to_copy;
2257 still_to_copy = space_required - *bytes_consumed;
2258 *copy_off = *bytes_consumed;
2260 if (still_to_copy <= space_available) {
2261 /* write of region completes here */
2262 *copy_len = still_to_copy;
2263 ophdr->oh_len = cpu_to_be32(*copy_len);
2264 if (*last_was_partial_copy)
2265 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2266 *last_was_partial_copy = 0;
2267 *bytes_consumed = 0;
2268 return 0;
2271 /* partial write of region, needs extra log op header reservation */
2272 *copy_len = space_available;
2273 ophdr->oh_len = cpu_to_be32(*copy_len);
2274 ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2275 if (*last_was_partial_copy)
2276 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2277 *bytes_consumed += *copy_len;
2278 (*last_was_partial_copy)++;
2280 /* account for new log op header */
2281 ticket->t_curr_res -= sizeof(struct xlog_op_header);
2282 ticket->t_res_num_ophdrs++;
2284 return sizeof(struct xlog_op_header);
2287 static int
2288 xlog_write_copy_finish(
2289 struct xlog *log,
2290 struct xlog_in_core *iclog,
2291 uint flags,
2292 int *record_cnt,
2293 int *data_cnt,
2294 int *partial_copy,
2295 int *partial_copy_len,
2296 int log_offset,
2297 struct xlog_in_core **commit_iclog)
2299 if (*partial_copy) {
2301 * This iclog has already been marked WANT_SYNC by
2302 * xlog_state_get_iclog_space.
2304 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2305 *record_cnt = 0;
2306 *data_cnt = 0;
2307 return xlog_state_release_iclog(log, iclog);
2310 *partial_copy = 0;
2311 *partial_copy_len = 0;
2313 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2314 /* no more space in this iclog - push it. */
2315 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2316 *record_cnt = 0;
2317 *data_cnt = 0;
2319 spin_lock(&log->l_icloglock);
2320 xlog_state_want_sync(log, iclog);
2321 spin_unlock(&log->l_icloglock);
2323 if (!commit_iclog)
2324 return xlog_state_release_iclog(log, iclog);
2325 ASSERT(flags & XLOG_COMMIT_TRANS);
2326 *commit_iclog = iclog;
2329 return 0;
2333 * Write some region out to in-core log
2335 * This will be called when writing externally provided regions or when
2336 * writing out a commit record for a given transaction.
2338 * General algorithm:
2339 * 1. Find total length of this write. This may include adding to the
2340 * lengths passed in.
2341 * 2. Check whether we violate the tickets reservation.
2342 * 3. While writing to this iclog
2343 * A. Reserve as much space in this iclog as can get
2344 * B. If this is first write, save away start lsn
2345 * C. While writing this region:
2346 * 1. If first write of transaction, write start record
2347 * 2. Write log operation header (header per region)
2348 * 3. Find out if we can fit entire region into this iclog
2349 * 4. Potentially, verify destination memcpy ptr
2350 * 5. Memcpy (partial) region
2351 * 6. If partial copy, release iclog; otherwise, continue
2352 * copying more regions into current iclog
2353 * 4. Mark want sync bit (in simulation mode)
2354 * 5. Release iclog for potential flush to on-disk log.
2356 * ERRORS:
2357 * 1. Panic if reservation is overrun. This should never happen since
2358 * reservation amounts are generated internal to the filesystem.
2359 * NOTES:
2360 * 1. Tickets are single threaded data structures.
2361 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2362 * syncing routine. When a single log_write region needs to span
2363 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2364 * on all log operation writes which don't contain the end of the
2365 * region. The XLOG_END_TRANS bit is used for the in-core log
2366 * operation which contains the end of the continued log_write region.
2367 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2368 * we don't really know exactly how much space will be used. As a result,
2369 * we don't update ic_offset until the end when we know exactly how many
2370 * bytes have been written out.
2373 xlog_write(
2374 struct xlog *log,
2375 struct xfs_log_vec *log_vector,
2376 struct xlog_ticket *ticket,
2377 xfs_lsn_t *start_lsn,
2378 struct xlog_in_core **commit_iclog,
2379 uint flags)
2381 struct xlog_in_core *iclog = NULL;
2382 struct xfs_log_iovec *vecp;
2383 struct xfs_log_vec *lv;
2384 int len;
2385 int index;
2386 int partial_copy = 0;
2387 int partial_copy_len = 0;
2388 int contwr = 0;
2389 int record_cnt = 0;
2390 int data_cnt = 0;
2391 int error;
2393 *start_lsn = 0;
2395 len = xlog_write_calc_vec_length(ticket, log_vector);
2398 * Region headers and bytes are already accounted for.
2399 * We only need to take into account start records and
2400 * split regions in this function.
2402 if (ticket->t_flags & XLOG_TIC_INITED)
2403 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2406 * Commit record headers need to be accounted for. These
2407 * come in as separate writes so are easy to detect.
2409 if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2410 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2412 if (ticket->t_curr_res < 0) {
2413 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2414 "ctx ticket reservation ran out. Need to up reservation");
2415 xlog_print_tic_res(log->l_mp, ticket);
2416 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
2419 index = 0;
2420 lv = log_vector;
2421 vecp = lv->lv_iovecp;
2422 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2423 void *ptr;
2424 int log_offset;
2426 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2427 &contwr, &log_offset);
2428 if (error)
2429 return error;
2431 ASSERT(log_offset <= iclog->ic_size - 1);
2432 ptr = iclog->ic_datap + log_offset;
2434 /* start_lsn is the first lsn written to. That's all we need. */
2435 if (!*start_lsn)
2436 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2439 * This loop writes out as many regions as can fit in the amount
2440 * of space which was allocated by xlog_state_get_iclog_space().
2442 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2443 struct xfs_log_iovec *reg;
2444 struct xlog_op_header *ophdr;
2445 int start_rec_copy;
2446 int copy_len;
2447 int copy_off;
2448 bool ordered = false;
2450 /* ordered log vectors have no regions to write */
2451 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2452 ASSERT(lv->lv_niovecs == 0);
2453 ordered = true;
2454 goto next_lv;
2457 reg = &vecp[index];
2458 ASSERT(reg->i_len % sizeof(int32_t) == 0);
2459 ASSERT((unsigned long)ptr % sizeof(int32_t) == 0);
2461 start_rec_copy = xlog_write_start_rec(ptr, ticket);
2462 if (start_rec_copy) {
2463 record_cnt++;
2464 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2465 start_rec_copy);
2468 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2469 if (!ophdr)
2470 return -EIO;
2472 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2473 sizeof(struct xlog_op_header));
2475 len += xlog_write_setup_copy(ticket, ophdr,
2476 iclog->ic_size-log_offset,
2477 reg->i_len,
2478 &copy_off, &copy_len,
2479 &partial_copy,
2480 &partial_copy_len);
2481 xlog_verify_dest_ptr(log, ptr);
2484 * Copy region.
2486 * Unmount records just log an opheader, so can have
2487 * empty payloads with no data region to copy. Hence we
2488 * only copy the payload if the vector says it has data
2489 * to copy.
2491 ASSERT(copy_len >= 0);
2492 if (copy_len > 0) {
2493 memcpy(ptr, reg->i_addr + copy_off, copy_len);
2494 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2495 copy_len);
2497 copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2498 record_cnt++;
2499 data_cnt += contwr ? copy_len : 0;
2501 error = xlog_write_copy_finish(log, iclog, flags,
2502 &record_cnt, &data_cnt,
2503 &partial_copy,
2504 &partial_copy_len,
2505 log_offset,
2506 commit_iclog);
2507 if (error)
2508 return error;
2511 * if we had a partial copy, we need to get more iclog
2512 * space but we don't want to increment the region
2513 * index because there is still more is this region to
2514 * write.
2516 * If we completed writing this region, and we flushed
2517 * the iclog (indicated by resetting of the record
2518 * count), then we also need to get more log space. If
2519 * this was the last record, though, we are done and
2520 * can just return.
2522 if (partial_copy)
2523 break;
2525 if (++index == lv->lv_niovecs) {
2526 next_lv:
2527 lv = lv->lv_next;
2528 index = 0;
2529 if (lv)
2530 vecp = lv->lv_iovecp;
2532 if (record_cnt == 0 && !ordered) {
2533 if (!lv)
2534 return 0;
2535 break;
2540 ASSERT(len == 0);
2542 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2543 if (!commit_iclog)
2544 return xlog_state_release_iclog(log, iclog);
2546 ASSERT(flags & XLOG_COMMIT_TRANS);
2547 *commit_iclog = iclog;
2548 return 0;
2552 /*****************************************************************************
2554 * State Machine functions
2556 *****************************************************************************
2559 /* Clean iclogs starting from the head. This ordering must be
2560 * maintained, so an iclog doesn't become ACTIVE beyond one that
2561 * is SYNCING. This is also required to maintain the notion that we use
2562 * a ordered wait queue to hold off would be writers to the log when every
2563 * iclog is trying to sync to disk.
2565 * State Change: DIRTY -> ACTIVE
2567 STATIC void
2568 xlog_state_clean_log(
2569 struct xlog *log)
2571 xlog_in_core_t *iclog;
2572 int changed = 0;
2574 iclog = log->l_iclog;
2575 do {
2576 if (iclog->ic_state == XLOG_STATE_DIRTY) {
2577 iclog->ic_state = XLOG_STATE_ACTIVE;
2578 iclog->ic_offset = 0;
2579 ASSERT(iclog->ic_callback == NULL);
2581 * If the number of ops in this iclog indicate it just
2582 * contains the dummy transaction, we can
2583 * change state into IDLE (the second time around).
2584 * Otherwise we should change the state into
2585 * NEED a dummy.
2586 * We don't need to cover the dummy.
2588 if (!changed &&
2589 (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2590 XLOG_COVER_OPS)) {
2591 changed = 1;
2592 } else {
2594 * We have two dirty iclogs so start over
2595 * This could also be num of ops indicates
2596 * this is not the dummy going out.
2598 changed = 2;
2600 iclog->ic_header.h_num_logops = 0;
2601 memset(iclog->ic_header.h_cycle_data, 0,
2602 sizeof(iclog->ic_header.h_cycle_data));
2603 iclog->ic_header.h_lsn = 0;
2604 } else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2605 /* do nothing */;
2606 else
2607 break; /* stop cleaning */
2608 iclog = iclog->ic_next;
2609 } while (iclog != log->l_iclog);
2611 /* log is locked when we are called */
2613 * Change state for the dummy log recording.
2614 * We usually go to NEED. But we go to NEED2 if the changed indicates
2615 * we are done writing the dummy record.
2616 * If we are done with the second dummy recored (DONE2), then
2617 * we go to IDLE.
2619 if (changed) {
2620 switch (log->l_covered_state) {
2621 case XLOG_STATE_COVER_IDLE:
2622 case XLOG_STATE_COVER_NEED:
2623 case XLOG_STATE_COVER_NEED2:
2624 log->l_covered_state = XLOG_STATE_COVER_NEED;
2625 break;
2627 case XLOG_STATE_COVER_DONE:
2628 if (changed == 1)
2629 log->l_covered_state = XLOG_STATE_COVER_NEED2;
2630 else
2631 log->l_covered_state = XLOG_STATE_COVER_NEED;
2632 break;
2634 case XLOG_STATE_COVER_DONE2:
2635 if (changed == 1)
2636 log->l_covered_state = XLOG_STATE_COVER_IDLE;
2637 else
2638 log->l_covered_state = XLOG_STATE_COVER_NEED;
2639 break;
2641 default:
2642 ASSERT(0);
2645 } /* xlog_state_clean_log */
2647 STATIC xfs_lsn_t
2648 xlog_get_lowest_lsn(
2649 struct xlog *log)
2651 xlog_in_core_t *lsn_log;
2652 xfs_lsn_t lowest_lsn, lsn;
2654 lsn_log = log->l_iclog;
2655 lowest_lsn = 0;
2656 do {
2657 if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2658 lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2659 if ((lsn && !lowest_lsn) ||
2660 (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2661 lowest_lsn = lsn;
2664 lsn_log = lsn_log->ic_next;
2665 } while (lsn_log != log->l_iclog);
2666 return lowest_lsn;
2670 STATIC void
2671 xlog_state_do_callback(
2672 struct xlog *log,
2673 int aborted,
2674 struct xlog_in_core *ciclog)
2676 xlog_in_core_t *iclog;
2677 xlog_in_core_t *first_iclog; /* used to know when we've
2678 * processed all iclogs once */
2679 xfs_log_callback_t *cb, *cb_next;
2680 int flushcnt = 0;
2681 xfs_lsn_t lowest_lsn;
2682 int ioerrors; /* counter: iclogs with errors */
2683 int loopdidcallbacks; /* flag: inner loop did callbacks*/
2684 int funcdidcallbacks; /* flag: function did callbacks */
2685 int repeats; /* for issuing console warnings if
2686 * looping too many times */
2688 spin_lock(&log->l_icloglock);
2689 first_iclog = iclog = log->l_iclog;
2690 ioerrors = 0;
2691 funcdidcallbacks = 0;
2692 repeats = 0;
2694 do {
2696 * Scan all iclogs starting with the one pointed to by the
2697 * log. Reset this starting point each time the log is
2698 * unlocked (during callbacks).
2700 * Keep looping through iclogs until one full pass is made
2701 * without running any callbacks.
2703 first_iclog = log->l_iclog;
2704 iclog = log->l_iclog;
2705 loopdidcallbacks = 0;
2706 repeats++;
2708 do {
2710 /* skip all iclogs in the ACTIVE & DIRTY states */
2711 if (iclog->ic_state &
2712 (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2713 iclog = iclog->ic_next;
2714 continue;
2718 * Between marking a filesystem SHUTDOWN and stopping
2719 * the log, we do flush all iclogs to disk (if there
2720 * wasn't a log I/O error). So, we do want things to
2721 * go smoothly in case of just a SHUTDOWN w/o a
2722 * LOG_IO_ERROR.
2724 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2726 * Can only perform callbacks in order. Since
2727 * this iclog is not in the DONE_SYNC/
2728 * DO_CALLBACK state, we skip the rest and
2729 * just try to clean up. If we set our iclog
2730 * to DO_CALLBACK, we will not process it when
2731 * we retry since a previous iclog is in the
2732 * CALLBACK and the state cannot change since
2733 * we are holding the l_icloglock.
2735 if (!(iclog->ic_state &
2736 (XLOG_STATE_DONE_SYNC |
2737 XLOG_STATE_DO_CALLBACK))) {
2738 if (ciclog && (ciclog->ic_state ==
2739 XLOG_STATE_DONE_SYNC)) {
2740 ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2742 break;
2745 * We now have an iclog that is in either the
2746 * DO_CALLBACK or DONE_SYNC states. The other
2747 * states (WANT_SYNC, SYNCING, or CALLBACK were
2748 * caught by the above if and are going to
2749 * clean (i.e. we aren't doing their callbacks)
2750 * see the above if.
2754 * We will do one more check here to see if we
2755 * have chased our tail around.
2758 lowest_lsn = xlog_get_lowest_lsn(log);
2759 if (lowest_lsn &&
2760 XFS_LSN_CMP(lowest_lsn,
2761 be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2762 iclog = iclog->ic_next;
2763 continue; /* Leave this iclog for
2764 * another thread */
2767 iclog->ic_state = XLOG_STATE_CALLBACK;
2771 * Completion of a iclog IO does not imply that
2772 * a transaction has completed, as transactions
2773 * can be large enough to span many iclogs. We
2774 * cannot change the tail of the log half way
2775 * through a transaction as this may be the only
2776 * transaction in the log and moving th etail to
2777 * point to the middle of it will prevent
2778 * recovery from finding the start of the
2779 * transaction. Hence we should only update the
2780 * last_sync_lsn if this iclog contains
2781 * transaction completion callbacks on it.
2783 * We have to do this before we drop the
2784 * icloglock to ensure we are the only one that
2785 * can update it.
2787 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2788 be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2789 if (iclog->ic_callback)
2790 atomic64_set(&log->l_last_sync_lsn,
2791 be64_to_cpu(iclog->ic_header.h_lsn));
2793 } else
2794 ioerrors++;
2796 spin_unlock(&log->l_icloglock);
2799 * Keep processing entries in the callback list until
2800 * we come around and it is empty. We need to
2801 * atomically see that the list is empty and change the
2802 * state to DIRTY so that we don't miss any more
2803 * callbacks being added.
2805 spin_lock(&iclog->ic_callback_lock);
2806 cb = iclog->ic_callback;
2807 while (cb) {
2808 iclog->ic_callback_tail = &(iclog->ic_callback);
2809 iclog->ic_callback = NULL;
2810 spin_unlock(&iclog->ic_callback_lock);
2812 /* perform callbacks in the order given */
2813 for (; cb; cb = cb_next) {
2814 cb_next = cb->cb_next;
2815 cb->cb_func(cb->cb_arg, aborted);
2817 spin_lock(&iclog->ic_callback_lock);
2818 cb = iclog->ic_callback;
2821 loopdidcallbacks++;
2822 funcdidcallbacks++;
2824 spin_lock(&log->l_icloglock);
2825 ASSERT(iclog->ic_callback == NULL);
2826 spin_unlock(&iclog->ic_callback_lock);
2827 if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2828 iclog->ic_state = XLOG_STATE_DIRTY;
2831 * Transition from DIRTY to ACTIVE if applicable.
2832 * NOP if STATE_IOERROR.
2834 xlog_state_clean_log(log);
2836 /* wake up threads waiting in xfs_log_force() */
2837 wake_up_all(&iclog->ic_force_wait);
2839 iclog = iclog->ic_next;
2840 } while (first_iclog != iclog);
2842 if (repeats > 5000) {
2843 flushcnt += repeats;
2844 repeats = 0;
2845 xfs_warn(log->l_mp,
2846 "%s: possible infinite loop (%d iterations)",
2847 __func__, flushcnt);
2849 } while (!ioerrors && loopdidcallbacks);
2851 #ifdef DEBUG
2853 * Make one last gasp attempt to see if iclogs are being left in limbo.
2854 * If the above loop finds an iclog earlier than the current iclog and
2855 * in one of the syncing states, the current iclog is put into
2856 * DO_CALLBACK and the callbacks are deferred to the completion of the
2857 * earlier iclog. Walk the iclogs in order and make sure that no iclog
2858 * is in DO_CALLBACK unless an earlier iclog is in one of the syncing
2859 * states.
2861 * Note that SYNCING|IOABORT is a valid state so we cannot just check
2862 * for ic_state == SYNCING.
2864 if (funcdidcallbacks) {
2865 first_iclog = iclog = log->l_iclog;
2866 do {
2867 ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2869 * Terminate the loop if iclogs are found in states
2870 * which will cause other threads to clean up iclogs.
2872 * SYNCING - i/o completion will go through logs
2873 * DONE_SYNC - interrupt thread should be waiting for
2874 * l_icloglock
2875 * IOERROR - give up hope all ye who enter here
2877 if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2878 iclog->ic_state & XLOG_STATE_SYNCING ||
2879 iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2880 iclog->ic_state == XLOG_STATE_IOERROR )
2881 break;
2882 iclog = iclog->ic_next;
2883 } while (first_iclog != iclog);
2885 #endif
2887 if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2888 wake_up_all(&log->l_flush_wait);
2890 spin_unlock(&log->l_icloglock);
2895 * Finish transitioning this iclog to the dirty state.
2897 * Make sure that we completely execute this routine only when this is
2898 * the last call to the iclog. There is a good chance that iclog flushes,
2899 * when we reach the end of the physical log, get turned into 2 separate
2900 * calls to bwrite. Hence, one iclog flush could generate two calls to this
2901 * routine. By using the reference count bwritecnt, we guarantee that only
2902 * the second completion goes through.
2904 * Callbacks could take time, so they are done outside the scope of the
2905 * global state machine log lock.
2907 STATIC void
2908 xlog_state_done_syncing(
2909 xlog_in_core_t *iclog,
2910 int aborted)
2912 struct xlog *log = iclog->ic_log;
2914 spin_lock(&log->l_icloglock);
2916 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2917 iclog->ic_state == XLOG_STATE_IOERROR);
2918 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2919 ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2923 * If we got an error, either on the first buffer, or in the case of
2924 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2925 * and none should ever be attempted to be written to disk
2926 * again.
2928 if (iclog->ic_state != XLOG_STATE_IOERROR) {
2929 if (--iclog->ic_bwritecnt == 1) {
2930 spin_unlock(&log->l_icloglock);
2931 return;
2933 iclog->ic_state = XLOG_STATE_DONE_SYNC;
2937 * Someone could be sleeping prior to writing out the next
2938 * iclog buffer, we wake them all, one will get to do the
2939 * I/O, the others get to wait for the result.
2941 wake_up_all(&iclog->ic_write_wait);
2942 spin_unlock(&log->l_icloglock);
2943 xlog_state_do_callback(log, aborted, iclog); /* also cleans log */
2944 } /* xlog_state_done_syncing */
2948 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2949 * sleep. We wait on the flush queue on the head iclog as that should be
2950 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2951 * we will wait here and all new writes will sleep until a sync completes.
2953 * The in-core logs are used in a circular fashion. They are not used
2954 * out-of-order even when an iclog past the head is free.
2956 * return:
2957 * * log_offset where xlog_write() can start writing into the in-core
2958 * log's data space.
2959 * * in-core log pointer to which xlog_write() should write.
2960 * * boolean indicating this is a continued write to an in-core log.
2961 * If this is the last write, then the in-core log's offset field
2962 * needs to be incremented, depending on the amount of data which
2963 * is copied.
2965 STATIC int
2966 xlog_state_get_iclog_space(
2967 struct xlog *log,
2968 int len,
2969 struct xlog_in_core **iclogp,
2970 struct xlog_ticket *ticket,
2971 int *continued_write,
2972 int *logoffsetp)
2974 int log_offset;
2975 xlog_rec_header_t *head;
2976 xlog_in_core_t *iclog;
2977 int error;
2979 restart:
2980 spin_lock(&log->l_icloglock);
2981 if (XLOG_FORCED_SHUTDOWN(log)) {
2982 spin_unlock(&log->l_icloglock);
2983 return -EIO;
2986 iclog = log->l_iclog;
2987 if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2988 XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2990 /* Wait for log writes to have flushed */
2991 xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2992 goto restart;
2995 head = &iclog->ic_header;
2997 atomic_inc(&iclog->ic_refcnt); /* prevents sync */
2998 log_offset = iclog->ic_offset;
3000 /* On the 1st write to an iclog, figure out lsn. This works
3001 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
3002 * committing to. If the offset is set, that's how many blocks
3003 * must be written.
3005 if (log_offset == 0) {
3006 ticket->t_curr_res -= log->l_iclog_hsize;
3007 xlog_tic_add_region(ticket,
3008 log->l_iclog_hsize,
3009 XLOG_REG_TYPE_LRHEADER);
3010 head->h_cycle = cpu_to_be32(log->l_curr_cycle);
3011 head->h_lsn = cpu_to_be64(
3012 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
3013 ASSERT(log->l_curr_block >= 0);
3016 /* If there is enough room to write everything, then do it. Otherwise,
3017 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
3018 * bit is on, so this will get flushed out. Don't update ic_offset
3019 * until you know exactly how many bytes get copied. Therefore, wait
3020 * until later to update ic_offset.
3022 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
3023 * can fit into remaining data section.
3025 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
3026 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3029 * If I'm the only one writing to this iclog, sync it to disk.
3030 * We need to do an atomic compare and decrement here to avoid
3031 * racing with concurrent atomic_dec_and_lock() calls in
3032 * xlog_state_release_iclog() when there is more than one
3033 * reference to the iclog.
3035 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
3036 /* we are the only one */
3037 spin_unlock(&log->l_icloglock);
3038 error = xlog_state_release_iclog(log, iclog);
3039 if (error)
3040 return error;
3041 } else {
3042 spin_unlock(&log->l_icloglock);
3044 goto restart;
3047 /* Do we have enough room to write the full amount in the remainder
3048 * of this iclog? Or must we continue a write on the next iclog and
3049 * mark this iclog as completely taken? In the case where we switch
3050 * iclogs (to mark it taken), this particular iclog will release/sync
3051 * to disk in xlog_write().
3053 if (len <= iclog->ic_size - iclog->ic_offset) {
3054 *continued_write = 0;
3055 iclog->ic_offset += len;
3056 } else {
3057 *continued_write = 1;
3058 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3060 *iclogp = iclog;
3062 ASSERT(iclog->ic_offset <= iclog->ic_size);
3063 spin_unlock(&log->l_icloglock);
3065 *logoffsetp = log_offset;
3066 return 0;
3067 } /* xlog_state_get_iclog_space */
3069 /* The first cnt-1 times through here we don't need to
3070 * move the grant write head because the permanent
3071 * reservation has reserved cnt times the unit amount.
3072 * Release part of current permanent unit reservation and
3073 * reset current reservation to be one units worth. Also
3074 * move grant reservation head forward.
3076 STATIC void
3077 xlog_regrant_reserve_log_space(
3078 struct xlog *log,
3079 struct xlog_ticket *ticket)
3081 trace_xfs_log_regrant_reserve_enter(log, ticket);
3083 if (ticket->t_cnt > 0)
3084 ticket->t_cnt--;
3086 xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3087 ticket->t_curr_res);
3088 xlog_grant_sub_space(log, &log->l_write_head.grant,
3089 ticket->t_curr_res);
3090 ticket->t_curr_res = ticket->t_unit_res;
3091 xlog_tic_reset_res(ticket);
3093 trace_xfs_log_regrant_reserve_sub(log, ticket);
3095 /* just return if we still have some of the pre-reserved space */
3096 if (ticket->t_cnt > 0)
3097 return;
3099 xlog_grant_add_space(log, &log->l_reserve_head.grant,
3100 ticket->t_unit_res);
3102 trace_xfs_log_regrant_reserve_exit(log, ticket);
3104 ticket->t_curr_res = ticket->t_unit_res;
3105 xlog_tic_reset_res(ticket);
3106 } /* xlog_regrant_reserve_log_space */
3110 * Give back the space left from a reservation.
3112 * All the information we need to make a correct determination of space left
3113 * is present. For non-permanent reservations, things are quite easy. The
3114 * count should have been decremented to zero. We only need to deal with the
3115 * space remaining in the current reservation part of the ticket. If the
3116 * ticket contains a permanent reservation, there may be left over space which
3117 * needs to be released. A count of N means that N-1 refills of the current
3118 * reservation can be done before we need to ask for more space. The first
3119 * one goes to fill up the first current reservation. Once we run out of
3120 * space, the count will stay at zero and the only space remaining will be
3121 * in the current reservation field.
3123 STATIC void
3124 xlog_ungrant_log_space(
3125 struct xlog *log,
3126 struct xlog_ticket *ticket)
3128 int bytes;
3130 if (ticket->t_cnt > 0)
3131 ticket->t_cnt--;
3133 trace_xfs_log_ungrant_enter(log, ticket);
3134 trace_xfs_log_ungrant_sub(log, ticket);
3137 * If this is a permanent reservation ticket, we may be able to free
3138 * up more space based on the remaining count.
3140 bytes = ticket->t_curr_res;
3141 if (ticket->t_cnt > 0) {
3142 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3143 bytes += ticket->t_unit_res*ticket->t_cnt;
3146 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3147 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3149 trace_xfs_log_ungrant_exit(log, ticket);
3151 xfs_log_space_wake(log->l_mp);
3155 * Flush iclog to disk if this is the last reference to the given iclog and
3156 * the WANT_SYNC bit is set.
3158 * When this function is entered, the iclog is not necessarily in the
3159 * WANT_SYNC state. It may be sitting around waiting to get filled.
3163 STATIC int
3164 xlog_state_release_iclog(
3165 struct xlog *log,
3166 struct xlog_in_core *iclog)
3168 int sync = 0; /* do we sync? */
3170 if (iclog->ic_state & XLOG_STATE_IOERROR)
3171 return -EIO;
3173 ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3174 if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3175 return 0;
3177 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3178 spin_unlock(&log->l_icloglock);
3179 return -EIO;
3181 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3182 iclog->ic_state == XLOG_STATE_WANT_SYNC);
3184 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
3185 /* update tail before writing to iclog */
3186 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
3187 sync++;
3188 iclog->ic_state = XLOG_STATE_SYNCING;
3189 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3190 xlog_verify_tail_lsn(log, iclog, tail_lsn);
3191 /* cycle incremented when incrementing curr_block */
3193 spin_unlock(&log->l_icloglock);
3196 * We let the log lock go, so it's possible that we hit a log I/O
3197 * error or some other SHUTDOWN condition that marks the iclog
3198 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3199 * this iclog has consistent data, so we ignore IOERROR
3200 * flags after this point.
3202 if (sync)
3203 return xlog_sync(log, iclog);
3204 return 0;
3205 } /* xlog_state_release_iclog */
3209 * This routine will mark the current iclog in the ring as WANT_SYNC
3210 * and move the current iclog pointer to the next iclog in the ring.
3211 * When this routine is called from xlog_state_get_iclog_space(), the
3212 * exact size of the iclog has not yet been determined. All we know is
3213 * that every data block. We have run out of space in this log record.
3215 STATIC void
3216 xlog_state_switch_iclogs(
3217 struct xlog *log,
3218 struct xlog_in_core *iclog,
3219 int eventual_size)
3221 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3222 if (!eventual_size)
3223 eventual_size = iclog->ic_offset;
3224 iclog->ic_state = XLOG_STATE_WANT_SYNC;
3225 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3226 log->l_prev_block = log->l_curr_block;
3227 log->l_prev_cycle = log->l_curr_cycle;
3229 /* roll log?: ic_offset changed later */
3230 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3232 /* Round up to next log-sunit */
3233 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3234 log->l_mp->m_sb.sb_logsunit > 1) {
3235 uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3236 log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3239 if (log->l_curr_block >= log->l_logBBsize) {
3241 * Rewind the current block before the cycle is bumped to make
3242 * sure that the combined LSN never transiently moves forward
3243 * when the log wraps to the next cycle. This is to support the
3244 * unlocked sample of these fields from xlog_valid_lsn(). Most
3245 * other cases should acquire l_icloglock.
3247 log->l_curr_block -= log->l_logBBsize;
3248 ASSERT(log->l_curr_block >= 0);
3249 smp_wmb();
3250 log->l_curr_cycle++;
3251 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3252 log->l_curr_cycle++;
3254 ASSERT(iclog == log->l_iclog);
3255 log->l_iclog = iclog->ic_next;
3256 } /* xlog_state_switch_iclogs */
3259 * Write out all data in the in-core log as of this exact moment in time.
3261 * Data may be written to the in-core log during this call. However,
3262 * we don't guarantee this data will be written out. A change from past
3263 * implementation means this routine will *not* write out zero length LRs.
3265 * Basically, we try and perform an intelligent scan of the in-core logs.
3266 * If we determine there is no flushable data, we just return. There is no
3267 * flushable data if:
3269 * 1. the current iclog is active and has no data; the previous iclog
3270 * is in the active or dirty state.
3271 * 2. the current iclog is drity, and the previous iclog is in the
3272 * active or dirty state.
3274 * We may sleep if:
3276 * 1. the current iclog is not in the active nor dirty state.
3277 * 2. the current iclog dirty, and the previous iclog is not in the
3278 * active nor dirty state.
3279 * 3. the current iclog is active, and there is another thread writing
3280 * to this particular iclog.
3281 * 4. a) the current iclog is active and has no other writers
3282 * b) when we return from flushing out this iclog, it is still
3283 * not in the active nor dirty state.
3286 _xfs_log_force(
3287 struct xfs_mount *mp,
3288 uint flags,
3289 int *log_flushed)
3291 struct xlog *log = mp->m_log;
3292 struct xlog_in_core *iclog;
3293 xfs_lsn_t lsn;
3295 XFS_STATS_INC(mp, xs_log_force);
3297 xlog_cil_force(log);
3299 spin_lock(&log->l_icloglock);
3301 iclog = log->l_iclog;
3302 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3303 spin_unlock(&log->l_icloglock);
3304 return -EIO;
3307 /* If the head iclog is not active nor dirty, we just attach
3308 * ourselves to the head and go to sleep.
3310 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3311 iclog->ic_state == XLOG_STATE_DIRTY) {
3313 * If the head is dirty or (active and empty), then
3314 * we need to look at the previous iclog. If the previous
3315 * iclog is active or dirty we are done. There is nothing
3316 * to sync out. Otherwise, we attach ourselves to the
3317 * previous iclog and go to sleep.
3319 if (iclog->ic_state == XLOG_STATE_DIRTY ||
3320 (atomic_read(&iclog->ic_refcnt) == 0
3321 && iclog->ic_offset == 0)) {
3322 iclog = iclog->ic_prev;
3323 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3324 iclog->ic_state == XLOG_STATE_DIRTY)
3325 goto no_sleep;
3326 else
3327 goto maybe_sleep;
3328 } else {
3329 if (atomic_read(&iclog->ic_refcnt) == 0) {
3330 /* We are the only one with access to this
3331 * iclog. Flush it out now. There should
3332 * be a roundoff of zero to show that someone
3333 * has already taken care of the roundoff from
3334 * the previous sync.
3336 atomic_inc(&iclog->ic_refcnt);
3337 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3338 xlog_state_switch_iclogs(log, iclog, 0);
3339 spin_unlock(&log->l_icloglock);
3341 if (xlog_state_release_iclog(log, iclog))
3342 return -EIO;
3344 if (log_flushed)
3345 *log_flushed = 1;
3346 spin_lock(&log->l_icloglock);
3347 if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
3348 iclog->ic_state != XLOG_STATE_DIRTY)
3349 goto maybe_sleep;
3350 else
3351 goto no_sleep;
3352 } else {
3353 /* Someone else is writing to this iclog.
3354 * Use its call to flush out the data. However,
3355 * the other thread may not force out this LR,
3356 * so we mark it WANT_SYNC.
3358 xlog_state_switch_iclogs(log, iclog, 0);
3359 goto maybe_sleep;
3364 /* By the time we come around again, the iclog could've been filled
3365 * which would give it another lsn. If we have a new lsn, just
3366 * return because the relevant data has been flushed.
3368 maybe_sleep:
3369 if (flags & XFS_LOG_SYNC) {
3371 * We must check if we're shutting down here, before
3372 * we wait, while we're holding the l_icloglock.
3373 * Then we check again after waking up, in case our
3374 * sleep was disturbed by a bad news.
3376 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3377 spin_unlock(&log->l_icloglock);
3378 return -EIO;
3380 XFS_STATS_INC(mp, xs_log_force_sleep);
3381 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3383 * No need to grab the log lock here since we're
3384 * only deciding whether or not to return EIO
3385 * and the memory read should be atomic.
3387 if (iclog->ic_state & XLOG_STATE_IOERROR)
3388 return -EIO;
3389 } else {
3391 no_sleep:
3392 spin_unlock(&log->l_icloglock);
3394 return 0;
3398 * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3399 * about errors or whether the log was flushed or not. This is the normal
3400 * interface to use when trying to unpin items or move the log forward.
3402 void
3403 xfs_log_force(
3404 xfs_mount_t *mp,
3405 uint flags)
3407 trace_xfs_log_force(mp, 0, _RET_IP_);
3408 _xfs_log_force(mp, flags, NULL);
3412 * Force the in-core log to disk for a specific LSN.
3414 * Find in-core log with lsn.
3415 * If it is in the DIRTY state, just return.
3416 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3417 * state and go to sleep or return.
3418 * If it is in any other state, go to sleep or return.
3420 * Synchronous forces are implemented with a signal variable. All callers
3421 * to force a given lsn to disk will wait on a the sv attached to the
3422 * specific in-core log. When given in-core log finally completes its
3423 * write to disk, that thread will wake up all threads waiting on the
3424 * sv.
3427 _xfs_log_force_lsn(
3428 struct xfs_mount *mp,
3429 xfs_lsn_t lsn,
3430 uint flags,
3431 int *log_flushed)
3433 struct xlog *log = mp->m_log;
3434 struct xlog_in_core *iclog;
3435 int already_slept = 0;
3437 ASSERT(lsn != 0);
3439 XFS_STATS_INC(mp, xs_log_force);
3441 lsn = xlog_cil_force_lsn(log, lsn);
3442 if (lsn == NULLCOMMITLSN)
3443 return 0;
3445 try_again:
3446 spin_lock(&log->l_icloglock);
3447 iclog = log->l_iclog;
3448 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3449 spin_unlock(&log->l_icloglock);
3450 return -EIO;
3453 do {
3454 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3455 iclog = iclog->ic_next;
3456 continue;
3459 if (iclog->ic_state == XLOG_STATE_DIRTY) {
3460 spin_unlock(&log->l_icloglock);
3461 return 0;
3464 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3466 * We sleep here if we haven't already slept (e.g.
3467 * this is the first time we've looked at the correct
3468 * iclog buf) and the buffer before us is going to
3469 * be sync'ed. The reason for this is that if we
3470 * are doing sync transactions here, by waiting for
3471 * the previous I/O to complete, we can allow a few
3472 * more transactions into this iclog before we close
3473 * it down.
3475 * Otherwise, we mark the buffer WANT_SYNC, and bump
3476 * up the refcnt so we can release the log (which
3477 * drops the ref count). The state switch keeps new
3478 * transaction commits from using this buffer. When
3479 * the current commits finish writing into the buffer,
3480 * the refcount will drop to zero and the buffer will
3481 * go out then.
3483 if (!already_slept &&
3484 (iclog->ic_prev->ic_state &
3485 (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3486 ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3488 XFS_STATS_INC(mp, xs_log_force_sleep);
3490 xlog_wait(&iclog->ic_prev->ic_write_wait,
3491 &log->l_icloglock);
3492 already_slept = 1;
3493 goto try_again;
3495 atomic_inc(&iclog->ic_refcnt);
3496 xlog_state_switch_iclogs(log, iclog, 0);
3497 spin_unlock(&log->l_icloglock);
3498 if (xlog_state_release_iclog(log, iclog))
3499 return -EIO;
3500 if (log_flushed)
3501 *log_flushed = 1;
3502 spin_lock(&log->l_icloglock);
3505 if ((flags & XFS_LOG_SYNC) && /* sleep */
3506 !(iclog->ic_state &
3507 (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3509 * Don't wait on completion if we know that we've
3510 * gotten a log write error.
3512 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3513 spin_unlock(&log->l_icloglock);
3514 return -EIO;
3516 XFS_STATS_INC(mp, xs_log_force_sleep);
3517 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3519 * No need to grab the log lock here since we're
3520 * only deciding whether or not to return EIO
3521 * and the memory read should be atomic.
3523 if (iclog->ic_state & XLOG_STATE_IOERROR)
3524 return -EIO;
3525 } else { /* just return */
3526 spin_unlock(&log->l_icloglock);
3529 return 0;
3530 } while (iclog != log->l_iclog);
3532 spin_unlock(&log->l_icloglock);
3533 return 0;
3537 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3538 * about errors or whether the log was flushed or not. This is the normal
3539 * interface to use when trying to unpin items or move the log forward.
3541 void
3542 xfs_log_force_lsn(
3543 xfs_mount_t *mp,
3544 xfs_lsn_t lsn,
3545 uint flags)
3547 trace_xfs_log_force(mp, lsn, _RET_IP_);
3548 _xfs_log_force_lsn(mp, lsn, flags, NULL);
3552 * Called when we want to mark the current iclog as being ready to sync to
3553 * disk.
3555 STATIC void
3556 xlog_state_want_sync(
3557 struct xlog *log,
3558 struct xlog_in_core *iclog)
3560 assert_spin_locked(&log->l_icloglock);
3562 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3563 xlog_state_switch_iclogs(log, iclog, 0);
3564 } else {
3565 ASSERT(iclog->ic_state &
3566 (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3571 /*****************************************************************************
3573 * TICKET functions
3575 *****************************************************************************
3579 * Free a used ticket when its refcount falls to zero.
3581 void
3582 xfs_log_ticket_put(
3583 xlog_ticket_t *ticket)
3585 ASSERT(atomic_read(&ticket->t_ref) > 0);
3586 if (atomic_dec_and_test(&ticket->t_ref))
3587 kmem_zone_free(xfs_log_ticket_zone, ticket);
3590 xlog_ticket_t *
3591 xfs_log_ticket_get(
3592 xlog_ticket_t *ticket)
3594 ASSERT(atomic_read(&ticket->t_ref) > 0);
3595 atomic_inc(&ticket->t_ref);
3596 return ticket;
3600 * Figure out the total log space unit (in bytes) that would be
3601 * required for a log ticket.
3604 xfs_log_calc_unit_res(
3605 struct xfs_mount *mp,
3606 int unit_bytes)
3608 struct xlog *log = mp->m_log;
3609 int iclog_space;
3610 uint num_headers;
3613 * Permanent reservations have up to 'cnt'-1 active log operations
3614 * in the log. A unit in this case is the amount of space for one
3615 * of these log operations. Normal reservations have a cnt of 1
3616 * and their unit amount is the total amount of space required.
3618 * The following lines of code account for non-transaction data
3619 * which occupy space in the on-disk log.
3621 * Normal form of a transaction is:
3622 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3623 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3625 * We need to account for all the leadup data and trailer data
3626 * around the transaction data.
3627 * And then we need to account for the worst case in terms of using
3628 * more space.
3629 * The worst case will happen if:
3630 * - the placement of the transaction happens to be such that the
3631 * roundoff is at its maximum
3632 * - the transaction data is synced before the commit record is synced
3633 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3634 * Therefore the commit record is in its own Log Record.
3635 * This can happen as the commit record is called with its
3636 * own region to xlog_write().
3637 * This then means that in the worst case, roundoff can happen for
3638 * the commit-rec as well.
3639 * The commit-rec is smaller than padding in this scenario and so it is
3640 * not added separately.
3643 /* for trans header */
3644 unit_bytes += sizeof(xlog_op_header_t);
3645 unit_bytes += sizeof(xfs_trans_header_t);
3647 /* for start-rec */
3648 unit_bytes += sizeof(xlog_op_header_t);
3651 * for LR headers - the space for data in an iclog is the size minus
3652 * the space used for the headers. If we use the iclog size, then we
3653 * undercalculate the number of headers required.
3655 * Furthermore - the addition of op headers for split-recs might
3656 * increase the space required enough to require more log and op
3657 * headers, so take that into account too.
3659 * IMPORTANT: This reservation makes the assumption that if this
3660 * transaction is the first in an iclog and hence has the LR headers
3661 * accounted to it, then the remaining space in the iclog is
3662 * exclusively for this transaction. i.e. if the transaction is larger
3663 * than the iclog, it will be the only thing in that iclog.
3664 * Fundamentally, this means we must pass the entire log vector to
3665 * xlog_write to guarantee this.
3667 iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3668 num_headers = howmany(unit_bytes, iclog_space);
3670 /* for split-recs - ophdrs added when data split over LRs */
3671 unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3673 /* add extra header reservations if we overrun */
3674 while (!num_headers ||
3675 howmany(unit_bytes, iclog_space) > num_headers) {
3676 unit_bytes += sizeof(xlog_op_header_t);
3677 num_headers++;
3679 unit_bytes += log->l_iclog_hsize * num_headers;
3681 /* for commit-rec LR header - note: padding will subsume the ophdr */
3682 unit_bytes += log->l_iclog_hsize;
3684 /* for roundoff padding for transaction data and one for commit record */
3685 if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3686 /* log su roundoff */
3687 unit_bytes += 2 * mp->m_sb.sb_logsunit;
3688 } else {
3689 /* BB roundoff */
3690 unit_bytes += 2 * BBSIZE;
3693 return unit_bytes;
3697 * Allocate and initialise a new log ticket.
3699 struct xlog_ticket *
3700 xlog_ticket_alloc(
3701 struct xlog *log,
3702 int unit_bytes,
3703 int cnt,
3704 char client,
3705 bool permanent,
3706 xfs_km_flags_t alloc_flags)
3708 struct xlog_ticket *tic;
3709 int unit_res;
3711 tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3712 if (!tic)
3713 return NULL;
3715 unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3717 atomic_set(&tic->t_ref, 1);
3718 tic->t_task = current;
3719 INIT_LIST_HEAD(&tic->t_queue);
3720 tic->t_unit_res = unit_res;
3721 tic->t_curr_res = unit_res;
3722 tic->t_cnt = cnt;
3723 tic->t_ocnt = cnt;
3724 tic->t_tid = prandom_u32();
3725 tic->t_clientid = client;
3726 tic->t_flags = XLOG_TIC_INITED;
3727 if (permanent)
3728 tic->t_flags |= XLOG_TIC_PERM_RESERV;
3730 xlog_tic_reset_res(tic);
3732 return tic;
3736 /******************************************************************************
3738 * Log debug routines
3740 ******************************************************************************
3742 #if defined(DEBUG)
3744 * Make sure that the destination ptr is within the valid data region of
3745 * one of the iclogs. This uses backup pointers stored in a different
3746 * part of the log in case we trash the log structure.
3748 void
3749 xlog_verify_dest_ptr(
3750 struct xlog *log,
3751 void *ptr)
3753 int i;
3754 int good_ptr = 0;
3756 for (i = 0; i < log->l_iclog_bufs; i++) {
3757 if (ptr >= log->l_iclog_bak[i] &&
3758 ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3759 good_ptr++;
3762 if (!good_ptr)
3763 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3767 * Check to make sure the grant write head didn't just over lap the tail. If
3768 * the cycles are the same, we can't be overlapping. Otherwise, make sure that
3769 * the cycles differ by exactly one and check the byte count.
3771 * This check is run unlocked, so can give false positives. Rather than assert
3772 * on failures, use a warn-once flag and a panic tag to allow the admin to
3773 * determine if they want to panic the machine when such an error occurs. For
3774 * debug kernels this will have the same effect as using an assert but, unlinke
3775 * an assert, it can be turned off at runtime.
3777 STATIC void
3778 xlog_verify_grant_tail(
3779 struct xlog *log)
3781 int tail_cycle, tail_blocks;
3782 int cycle, space;
3784 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3785 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3786 if (tail_cycle != cycle) {
3787 if (cycle - 1 != tail_cycle &&
3788 !(log->l_flags & XLOG_TAIL_WARN)) {
3789 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3790 "%s: cycle - 1 != tail_cycle", __func__);
3791 log->l_flags |= XLOG_TAIL_WARN;
3794 if (space > BBTOB(tail_blocks) &&
3795 !(log->l_flags & XLOG_TAIL_WARN)) {
3796 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3797 "%s: space > BBTOB(tail_blocks)", __func__);
3798 log->l_flags |= XLOG_TAIL_WARN;
3803 /* check if it will fit */
3804 STATIC void
3805 xlog_verify_tail_lsn(
3806 struct xlog *log,
3807 struct xlog_in_core *iclog,
3808 xfs_lsn_t tail_lsn)
3810 int blocks;
3812 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3813 blocks =
3814 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3815 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3816 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3817 } else {
3818 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3820 if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3821 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3823 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3824 if (blocks < BTOBB(iclog->ic_offset) + 1)
3825 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3827 } /* xlog_verify_tail_lsn */
3830 * Perform a number of checks on the iclog before writing to disk.
3832 * 1. Make sure the iclogs are still circular
3833 * 2. Make sure we have a good magic number
3834 * 3. Make sure we don't have magic numbers in the data
3835 * 4. Check fields of each log operation header for:
3836 * A. Valid client identifier
3837 * B. tid ptr value falls in valid ptr space (user space code)
3838 * C. Length in log record header is correct according to the
3839 * individual operation headers within record.
3840 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3841 * log, check the preceding blocks of the physical log to make sure all
3842 * the cycle numbers agree with the current cycle number.
3844 STATIC void
3845 xlog_verify_iclog(
3846 struct xlog *log,
3847 struct xlog_in_core *iclog,
3848 int count,
3849 bool syncing)
3851 xlog_op_header_t *ophead;
3852 xlog_in_core_t *icptr;
3853 xlog_in_core_2_t *xhdr;
3854 void *base_ptr, *ptr, *p;
3855 ptrdiff_t field_offset;
3856 uint8_t clientid;
3857 int len, i, j, k, op_len;
3858 int idx;
3860 /* check validity of iclog pointers */
3861 spin_lock(&log->l_icloglock);
3862 icptr = log->l_iclog;
3863 for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3864 ASSERT(icptr);
3866 if (icptr != log->l_iclog)
3867 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3868 spin_unlock(&log->l_icloglock);
3870 /* check log magic numbers */
3871 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3872 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3874 base_ptr = ptr = &iclog->ic_header;
3875 p = &iclog->ic_header;
3876 for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3877 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3878 xfs_emerg(log->l_mp, "%s: unexpected magic num",
3879 __func__);
3882 /* check fields */
3883 len = be32_to_cpu(iclog->ic_header.h_num_logops);
3884 base_ptr = ptr = iclog->ic_datap;
3885 ophead = ptr;
3886 xhdr = iclog->ic_data;
3887 for (i = 0; i < len; i++) {
3888 ophead = ptr;
3890 /* clientid is only 1 byte */
3891 p = &ophead->oh_clientid;
3892 field_offset = p - base_ptr;
3893 if (!syncing || (field_offset & 0x1ff)) {
3894 clientid = ophead->oh_clientid;
3895 } else {
3896 idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3897 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3898 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3899 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3900 clientid = xlog_get_client_id(
3901 xhdr[j].hic_xheader.xh_cycle_data[k]);
3902 } else {
3903 clientid = xlog_get_client_id(
3904 iclog->ic_header.h_cycle_data[idx]);
3907 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3908 xfs_warn(log->l_mp,
3909 "%s: invalid clientid %d op 0x%p offset 0x%lx",
3910 __func__, clientid, ophead,
3911 (unsigned long)field_offset);
3913 /* check length */
3914 p = &ophead->oh_len;
3915 field_offset = p - base_ptr;
3916 if (!syncing || (field_offset & 0x1ff)) {
3917 op_len = be32_to_cpu(ophead->oh_len);
3918 } else {
3919 idx = BTOBBT((uintptr_t)&ophead->oh_len -
3920 (uintptr_t)iclog->ic_datap);
3921 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3922 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3923 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3924 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3925 } else {
3926 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3929 ptr += sizeof(xlog_op_header_t) + op_len;
3931 } /* xlog_verify_iclog */
3932 #endif
3935 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3937 STATIC int
3938 xlog_state_ioerror(
3939 struct xlog *log)
3941 xlog_in_core_t *iclog, *ic;
3943 iclog = log->l_iclog;
3944 if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3946 * Mark all the incore logs IOERROR.
3947 * From now on, no log flushes will result.
3949 ic = iclog;
3950 do {
3951 ic->ic_state = XLOG_STATE_IOERROR;
3952 ic = ic->ic_next;
3953 } while (ic != iclog);
3954 return 0;
3957 * Return non-zero, if state transition has already happened.
3959 return 1;
3963 * This is called from xfs_force_shutdown, when we're forcibly
3964 * shutting down the filesystem, typically because of an IO error.
3965 * Our main objectives here are to make sure that:
3966 * a. if !logerror, flush the logs to disk. Anything modified
3967 * after this is ignored.
3968 * b. the filesystem gets marked 'SHUTDOWN' for all interested
3969 * parties to find out, 'atomically'.
3970 * c. those who're sleeping on log reservations, pinned objects and
3971 * other resources get woken up, and be told the bad news.
3972 * d. nothing new gets queued up after (b) and (c) are done.
3974 * Note: for the !logerror case we need to flush the regions held in memory out
3975 * to disk first. This needs to be done before the log is marked as shutdown,
3976 * otherwise the iclog writes will fail.
3979 xfs_log_force_umount(
3980 struct xfs_mount *mp,
3981 int logerror)
3983 struct xlog *log;
3984 int retval;
3986 log = mp->m_log;
3989 * If this happens during log recovery, don't worry about
3990 * locking; the log isn't open for business yet.
3992 if (!log ||
3993 log->l_flags & XLOG_ACTIVE_RECOVERY) {
3994 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3995 if (mp->m_sb_bp)
3996 mp->m_sb_bp->b_flags |= XBF_DONE;
3997 return 0;
4001 * Somebody could've already done the hard work for us.
4002 * No need to get locks for this.
4004 if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
4005 ASSERT(XLOG_FORCED_SHUTDOWN(log));
4006 return 1;
4010 * Flush all the completed transactions to disk before marking the log
4011 * being shut down. We need to do it in this order to ensure that
4012 * completed operations are safely on disk before we shut down, and that
4013 * we don't have to issue any buffer IO after the shutdown flags are set
4014 * to guarantee this.
4016 if (!logerror)
4017 _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
4020 * mark the filesystem and the as in a shutdown state and wake
4021 * everybody up to tell them the bad news.
4023 spin_lock(&log->l_icloglock);
4024 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
4025 if (mp->m_sb_bp)
4026 mp->m_sb_bp->b_flags |= XBF_DONE;
4029 * Mark the log and the iclogs with IO error flags to prevent any
4030 * further log IO from being issued or completed.
4032 log->l_flags |= XLOG_IO_ERROR;
4033 retval = xlog_state_ioerror(log);
4034 spin_unlock(&log->l_icloglock);
4037 * We don't want anybody waiting for log reservations after this. That
4038 * means we have to wake up everybody queued up on reserveq as well as
4039 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
4040 * we don't enqueue anything once the SHUTDOWN flag is set, and this
4041 * action is protected by the grant locks.
4043 xlog_grant_head_wake_all(&log->l_reserve_head);
4044 xlog_grant_head_wake_all(&log->l_write_head);
4047 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
4048 * as if the log writes were completed. The abort handling in the log
4049 * item committed callback functions will do this again under lock to
4050 * avoid races.
4052 spin_lock(&log->l_cilp->xc_push_lock);
4053 wake_up_all(&log->l_cilp->xc_commit_wait);
4054 spin_unlock(&log->l_cilp->xc_push_lock);
4055 xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
4057 #ifdef XFSERRORDEBUG
4059 xlog_in_core_t *iclog;
4061 spin_lock(&log->l_icloglock);
4062 iclog = log->l_iclog;
4063 do {
4064 ASSERT(iclog->ic_callback == 0);
4065 iclog = iclog->ic_next;
4066 } while (iclog != log->l_iclog);
4067 spin_unlock(&log->l_icloglock);
4069 #endif
4070 /* return non-zero if log IOERROR transition had already happened */
4071 return retval;
4074 STATIC int
4075 xlog_iclogs_empty(
4076 struct xlog *log)
4078 xlog_in_core_t *iclog;
4080 iclog = log->l_iclog;
4081 do {
4082 /* endianness does not matter here, zero is zero in
4083 * any language.
4085 if (iclog->ic_header.h_num_logops)
4086 return 0;
4087 iclog = iclog->ic_next;
4088 } while (iclog != log->l_iclog);
4089 return 1;
4093 * Verify that an LSN stamped into a piece of metadata is valid. This is
4094 * intended for use in read verifiers on v5 superblocks.
4096 bool
4097 xfs_log_check_lsn(
4098 struct xfs_mount *mp,
4099 xfs_lsn_t lsn)
4101 struct xlog *log = mp->m_log;
4102 bool valid;
4105 * norecovery mode skips mount-time log processing and unconditionally
4106 * resets the in-core LSN. We can't validate in this mode, but
4107 * modifications are not allowed anyways so just return true.
4109 if (mp->m_flags & XFS_MOUNT_NORECOVERY)
4110 return true;
4113 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
4114 * handled by recovery and thus safe to ignore here.
4116 if (lsn == NULLCOMMITLSN)
4117 return true;
4119 valid = xlog_valid_lsn(mp->m_log, lsn);
4121 /* warn the user about what's gone wrong before verifier failure */
4122 if (!valid) {
4123 spin_lock(&log->l_icloglock);
4124 xfs_warn(mp,
4125 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
4126 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
4127 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
4128 log->l_curr_cycle, log->l_curr_block);
4129 spin_unlock(&log->l_icloglock);
4132 return valid;