2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_error.h"
26 #include "xfs_trans.h"
27 #include "xfs_trans_priv.h"
29 #include "xfs_log_priv.h"
30 #include "xfs_log_recover.h"
31 #include "xfs_inode.h"
32 #include "xfs_trace.h"
33 #include "xfs_fsops.h"
34 #include "xfs_cksum.h"
35 #include "xfs_sysfs.h"
38 kmem_zone_t
*xfs_log_ticket_zone
;
40 /* Local miscellaneous function prototypes */
44 struct xlog_ticket
*ticket
,
45 struct xlog_in_core
**iclog
,
46 xfs_lsn_t
*commitlsnp
);
51 struct xfs_buftarg
*log_target
,
52 xfs_daddr_t blk_offset
,
61 struct xlog_in_core
*iclog
);
66 /* local state machine functions */
67 STATIC
void xlog_state_done_syncing(xlog_in_core_t
*iclog
, int);
69 xlog_state_do_callback(
72 struct xlog_in_core
*iclog
);
74 xlog_state_get_iclog_space(
77 struct xlog_in_core
**iclog
,
78 struct xlog_ticket
*ticket
,
82 xlog_state_release_iclog(
84 struct xlog_in_core
*iclog
);
86 xlog_state_switch_iclogs(
88 struct xlog_in_core
*iclog
,
93 struct xlog_in_core
*iclog
);
100 xlog_regrant_reserve_log_space(
102 struct xlog_ticket
*ticket
);
104 xlog_ungrant_log_space(
106 struct xlog_ticket
*ticket
);
110 xlog_verify_dest_ptr(
114 xlog_verify_grant_tail(
119 struct xlog_in_core
*iclog
,
123 xlog_verify_tail_lsn(
125 struct xlog_in_core
*iclog
,
128 #define xlog_verify_dest_ptr(a,b)
129 #define xlog_verify_grant_tail(a)
130 #define xlog_verify_iclog(a,b,c,d)
131 #define xlog_verify_tail_lsn(a,b,c)
139 xlog_grant_sub_space(
144 int64_t head_val
= atomic64_read(head
);
150 xlog_crack_grant_head_val(head_val
, &cycle
, &space
);
154 space
+= log
->l_logsize
;
159 new = xlog_assign_grant_head_val(cycle
, space
);
160 head_val
= atomic64_cmpxchg(head
, old
, new);
161 } while (head_val
!= old
);
165 xlog_grant_add_space(
170 int64_t head_val
= atomic64_read(head
);
177 xlog_crack_grant_head_val(head_val
, &cycle
, &space
);
179 tmp
= log
->l_logsize
- space
;
188 new = xlog_assign_grant_head_val(cycle
, space
);
189 head_val
= atomic64_cmpxchg(head
, old
, new);
190 } while (head_val
!= old
);
194 xlog_grant_head_init(
195 struct xlog_grant_head
*head
)
197 xlog_assign_grant_head(&head
->grant
, 1, 0);
198 INIT_LIST_HEAD(&head
->waiters
);
199 spin_lock_init(&head
->lock
);
203 xlog_grant_head_wake_all(
204 struct xlog_grant_head
*head
)
206 struct xlog_ticket
*tic
;
208 spin_lock(&head
->lock
);
209 list_for_each_entry(tic
, &head
->waiters
, t_queue
)
210 wake_up_process(tic
->t_task
);
211 spin_unlock(&head
->lock
);
215 xlog_ticket_reservation(
217 struct xlog_grant_head
*head
,
218 struct xlog_ticket
*tic
)
220 if (head
== &log
->l_write_head
) {
221 ASSERT(tic
->t_flags
& XLOG_TIC_PERM_RESERV
);
222 return tic
->t_unit_res
;
224 if (tic
->t_flags
& XLOG_TIC_PERM_RESERV
)
225 return tic
->t_unit_res
* tic
->t_cnt
;
227 return tic
->t_unit_res
;
232 xlog_grant_head_wake(
234 struct xlog_grant_head
*head
,
237 struct xlog_ticket
*tic
;
240 list_for_each_entry(tic
, &head
->waiters
, t_queue
) {
241 need_bytes
= xlog_ticket_reservation(log
, head
, tic
);
242 if (*free_bytes
< need_bytes
)
245 *free_bytes
-= need_bytes
;
246 trace_xfs_log_grant_wake_up(log
, tic
);
247 wake_up_process(tic
->t_task
);
254 xlog_grant_head_wait(
256 struct xlog_grant_head
*head
,
257 struct xlog_ticket
*tic
,
258 int need_bytes
) __releases(&head
->lock
)
259 __acquires(&head
->lock
)
261 list_add_tail(&tic
->t_queue
, &head
->waiters
);
264 if (XLOG_FORCED_SHUTDOWN(log
))
266 xlog_grant_push_ail(log
, need_bytes
);
268 __set_current_state(TASK_UNINTERRUPTIBLE
);
269 spin_unlock(&head
->lock
);
271 XFS_STATS_INC(log
->l_mp
, xs_sleep_logspace
);
273 trace_xfs_log_grant_sleep(log
, tic
);
275 trace_xfs_log_grant_wake(log
, tic
);
277 spin_lock(&head
->lock
);
278 if (XLOG_FORCED_SHUTDOWN(log
))
280 } while (xlog_space_left(log
, &head
->grant
) < need_bytes
);
282 list_del_init(&tic
->t_queue
);
285 list_del_init(&tic
->t_queue
);
290 * Atomically get the log space required for a log ticket.
292 * Once a ticket gets put onto head->waiters, it will only return after the
293 * needed reservation is satisfied.
295 * This function is structured so that it has a lock free fast path. This is
296 * necessary because every new transaction reservation will come through this
297 * path. Hence any lock will be globally hot if we take it unconditionally on
300 * As tickets are only ever moved on and off head->waiters under head->lock, we
301 * only need to take that lock if we are going to add the ticket to the queue
302 * and sleep. We can avoid taking the lock if the ticket was never added to
303 * head->waiters because the t_queue list head will be empty and we hold the
304 * only reference to it so it can safely be checked unlocked.
307 xlog_grant_head_check(
309 struct xlog_grant_head
*head
,
310 struct xlog_ticket
*tic
,
316 ASSERT(!(log
->l_flags
& XLOG_ACTIVE_RECOVERY
));
319 * If there are other waiters on the queue then give them a chance at
320 * logspace before us. Wake up the first waiters, if we do not wake
321 * up all the waiters then go to sleep waiting for more free space,
322 * otherwise try to get some space for this transaction.
324 *need_bytes
= xlog_ticket_reservation(log
, head
, tic
);
325 free_bytes
= xlog_space_left(log
, &head
->grant
);
326 if (!list_empty_careful(&head
->waiters
)) {
327 spin_lock(&head
->lock
);
328 if (!xlog_grant_head_wake(log
, head
, &free_bytes
) ||
329 free_bytes
< *need_bytes
) {
330 error
= xlog_grant_head_wait(log
, head
, tic
,
333 spin_unlock(&head
->lock
);
334 } else if (free_bytes
< *need_bytes
) {
335 spin_lock(&head
->lock
);
336 error
= xlog_grant_head_wait(log
, head
, tic
, *need_bytes
);
337 spin_unlock(&head
->lock
);
344 xlog_tic_reset_res(xlog_ticket_t
*tic
)
347 tic
->t_res_arr_sum
= 0;
348 tic
->t_res_num_ophdrs
= 0;
352 xlog_tic_add_region(xlog_ticket_t
*tic
, uint len
, uint type
)
354 if (tic
->t_res_num
== XLOG_TIC_LEN_MAX
) {
355 /* add to overflow and start again */
356 tic
->t_res_o_flow
+= tic
->t_res_arr_sum
;
358 tic
->t_res_arr_sum
= 0;
361 tic
->t_res_arr
[tic
->t_res_num
].r_len
= len
;
362 tic
->t_res_arr
[tic
->t_res_num
].r_type
= type
;
363 tic
->t_res_arr_sum
+= len
;
368 * Replenish the byte reservation required by moving the grant write head.
372 struct xfs_mount
*mp
,
373 struct xlog_ticket
*tic
)
375 struct xlog
*log
= mp
->m_log
;
379 if (XLOG_FORCED_SHUTDOWN(log
))
382 XFS_STATS_INC(mp
, xs_try_logspace
);
385 * This is a new transaction on the ticket, so we need to change the
386 * transaction ID so that the next transaction has a different TID in
387 * the log. Just add one to the existing tid so that we can see chains
388 * of rolling transactions in the log easily.
392 xlog_grant_push_ail(log
, tic
->t_unit_res
);
394 tic
->t_curr_res
= tic
->t_unit_res
;
395 xlog_tic_reset_res(tic
);
400 trace_xfs_log_regrant(log
, tic
);
402 error
= xlog_grant_head_check(log
, &log
->l_write_head
, tic
,
407 xlog_grant_add_space(log
, &log
->l_write_head
.grant
, need_bytes
);
408 trace_xfs_log_regrant_exit(log
, tic
);
409 xlog_verify_grant_tail(log
);
414 * If we are failing, make sure the ticket doesn't have any current
415 * reservations. We don't want to add this back when the ticket/
416 * transaction gets cancelled.
419 tic
->t_cnt
= 0; /* ungrant will give back unit_res * t_cnt. */
424 * Reserve log space and return a ticket corresponding the reservation.
426 * Each reservation is going to reserve extra space for a log record header.
427 * When writes happen to the on-disk log, we don't subtract the length of the
428 * log record header from any reservation. By wasting space in each
429 * reservation, we prevent over allocation problems.
433 struct xfs_mount
*mp
,
436 struct xlog_ticket
**ticp
,
440 struct xlog
*log
= mp
->m_log
;
441 struct xlog_ticket
*tic
;
445 ASSERT(client
== XFS_TRANSACTION
|| client
== XFS_LOG
);
447 if (XLOG_FORCED_SHUTDOWN(log
))
450 XFS_STATS_INC(mp
, xs_try_logspace
);
452 ASSERT(*ticp
== NULL
);
453 tic
= xlog_ticket_alloc(log
, unit_bytes
, cnt
, client
, permanent
,
454 KM_SLEEP
| KM_MAYFAIL
);
460 xlog_grant_push_ail(log
, tic
->t_cnt
? tic
->t_unit_res
* tic
->t_cnt
463 trace_xfs_log_reserve(log
, tic
);
465 error
= xlog_grant_head_check(log
, &log
->l_reserve_head
, tic
,
470 xlog_grant_add_space(log
, &log
->l_reserve_head
.grant
, need_bytes
);
471 xlog_grant_add_space(log
, &log
->l_write_head
.grant
, need_bytes
);
472 trace_xfs_log_reserve_exit(log
, tic
);
473 xlog_verify_grant_tail(log
);
478 * If we are failing, make sure the ticket doesn't have any current
479 * reservations. We don't want to add this back when the ticket/
480 * transaction gets cancelled.
483 tic
->t_cnt
= 0; /* ungrant will give back unit_res * t_cnt. */
491 * 1. currblock field gets updated at startup and after in-core logs
492 * marked as with WANT_SYNC.
496 * This routine is called when a user of a log manager ticket is done with
497 * the reservation. If the ticket was ever used, then a commit record for
498 * the associated transaction is written out as a log operation header with
499 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with
500 * a given ticket. If the ticket was one with a permanent reservation, then
501 * a few operations are done differently. Permanent reservation tickets by
502 * default don't release the reservation. They just commit the current
503 * transaction with the belief that the reservation is still needed. A flag
504 * must be passed in before permanent reservations are actually released.
505 * When these type of tickets are not released, they need to be set into
506 * the inited state again. By doing this, a start record will be written
507 * out when the next write occurs.
511 struct xfs_mount
*mp
,
512 struct xlog_ticket
*ticket
,
513 struct xlog_in_core
**iclog
,
516 struct xlog
*log
= mp
->m_log
;
519 if (XLOG_FORCED_SHUTDOWN(log
) ||
521 * If nothing was ever written, don't write out commit record.
522 * If we get an error, just continue and give back the log ticket.
524 (((ticket
->t_flags
& XLOG_TIC_INITED
) == 0) &&
525 (xlog_commit_record(log
, ticket
, iclog
, &lsn
)))) {
526 lsn
= (xfs_lsn_t
) -1;
532 trace_xfs_log_done_nonperm(log
, ticket
);
535 * Release ticket if not permanent reservation or a specific
536 * request has been made to release a permanent reservation.
538 xlog_ungrant_log_space(log
, ticket
);
540 trace_xfs_log_done_perm(log
, ticket
);
542 xlog_regrant_reserve_log_space(log
, ticket
);
543 /* If this ticket was a permanent reservation and we aren't
544 * trying to release it, reset the inited flags; so next time
545 * we write, a start record will be written out.
547 ticket
->t_flags
|= XLOG_TIC_INITED
;
550 xfs_log_ticket_put(ticket
);
555 * Attaches a new iclog I/O completion callback routine during
556 * transaction commit. If the log is in error state, a non-zero
557 * return code is handed back and the caller is responsible for
558 * executing the callback at an appropriate time.
562 struct xfs_mount
*mp
,
563 struct xlog_in_core
*iclog
,
564 xfs_log_callback_t
*cb
)
568 spin_lock(&iclog
->ic_callback_lock
);
569 abortflg
= (iclog
->ic_state
& XLOG_STATE_IOERROR
);
571 ASSERT_ALWAYS((iclog
->ic_state
== XLOG_STATE_ACTIVE
) ||
572 (iclog
->ic_state
== XLOG_STATE_WANT_SYNC
));
574 *(iclog
->ic_callback_tail
) = cb
;
575 iclog
->ic_callback_tail
= &(cb
->cb_next
);
577 spin_unlock(&iclog
->ic_callback_lock
);
582 xfs_log_release_iclog(
583 struct xfs_mount
*mp
,
584 struct xlog_in_core
*iclog
)
586 if (xlog_state_release_iclog(mp
->m_log
, iclog
)) {
587 xfs_force_shutdown(mp
, SHUTDOWN_LOG_IO_ERROR
);
595 * Mount a log filesystem
597 * mp - ubiquitous xfs mount point structure
598 * log_target - buftarg of on-disk log device
599 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
600 * num_bblocks - Number of BBSIZE blocks in on-disk log
602 * Return error or zero.
607 xfs_buftarg_t
*log_target
,
608 xfs_daddr_t blk_offset
,
611 bool fatal
= xfs_sb_version_hascrc(&mp
->m_sb
);
615 if (!(mp
->m_flags
& XFS_MOUNT_NORECOVERY
)) {
616 xfs_notice(mp
, "Mounting V%d Filesystem",
617 XFS_SB_VERSION_NUM(&mp
->m_sb
));
620 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
621 XFS_SB_VERSION_NUM(&mp
->m_sb
));
622 ASSERT(mp
->m_flags
& XFS_MOUNT_RDONLY
);
625 mp
->m_log
= xlog_alloc_log(mp
, log_target
, blk_offset
, num_bblks
);
626 if (IS_ERR(mp
->m_log
)) {
627 error
= PTR_ERR(mp
->m_log
);
632 * Validate the given log space and drop a critical message via syslog
633 * if the log size is too small that would lead to some unexpected
634 * situations in transaction log space reservation stage.
636 * Note: we can't just reject the mount if the validation fails. This
637 * would mean that people would have to downgrade their kernel just to
638 * remedy the situation as there is no way to grow the log (short of
639 * black magic surgery with xfs_db).
641 * We can, however, reject mounts for CRC format filesystems, as the
642 * mkfs binary being used to make the filesystem should never create a
643 * filesystem with a log that is too small.
645 min_logfsbs
= xfs_log_calc_minimum_size(mp
);
647 if (mp
->m_sb
.sb_logblocks
< min_logfsbs
) {
649 "Log size %d blocks too small, minimum size is %d blocks",
650 mp
->m_sb
.sb_logblocks
, min_logfsbs
);
652 } else if (mp
->m_sb
.sb_logblocks
> XFS_MAX_LOG_BLOCKS
) {
654 "Log size %d blocks too large, maximum size is %lld blocks",
655 mp
->m_sb
.sb_logblocks
, XFS_MAX_LOG_BLOCKS
);
657 } else if (XFS_FSB_TO_B(mp
, mp
->m_sb
.sb_logblocks
) > XFS_MAX_LOG_BYTES
) {
659 "log size %lld bytes too large, maximum size is %lld bytes",
660 XFS_FSB_TO_B(mp
, mp
->m_sb
.sb_logblocks
),
663 } else if (mp
->m_sb
.sb_logsunit
> 1 &&
664 mp
->m_sb
.sb_logsunit
% mp
->m_sb
.sb_blocksize
) {
666 "log stripe unit %u bytes must be a multiple of block size",
667 mp
->m_sb
.sb_logsunit
);
673 * Log check errors are always fatal on v5; or whenever bad
674 * metadata leads to a crash.
677 xfs_crit(mp
, "AAIEEE! Log failed size checks. Abort!");
681 xfs_crit(mp
, "Log size out of supported range.");
683 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
687 * Initialize the AIL now we have a log.
689 error
= xfs_trans_ail_init(mp
);
691 xfs_warn(mp
, "AIL initialisation failed: error %d", error
);
694 mp
->m_log
->l_ailp
= mp
->m_ail
;
697 * skip log recovery on a norecovery mount. pretend it all
700 if (!(mp
->m_flags
& XFS_MOUNT_NORECOVERY
)) {
701 int readonly
= (mp
->m_flags
& XFS_MOUNT_RDONLY
);
704 mp
->m_flags
&= ~XFS_MOUNT_RDONLY
;
706 error
= xlog_recover(mp
->m_log
);
709 mp
->m_flags
|= XFS_MOUNT_RDONLY
;
711 xfs_warn(mp
, "log mount/recovery failed: error %d",
713 xlog_recover_cancel(mp
->m_log
);
714 goto out_destroy_ail
;
718 error
= xfs_sysfs_init(&mp
->m_log
->l_kobj
, &xfs_log_ktype
, &mp
->m_kobj
,
721 goto out_destroy_ail
;
723 /* Normal transactions can now occur */
724 mp
->m_log
->l_flags
&= ~XLOG_ACTIVE_RECOVERY
;
727 * Now the log has been fully initialised and we know were our
728 * space grant counters are, we can initialise the permanent ticket
729 * needed for delayed logging to work.
731 xlog_cil_init_post_recovery(mp
->m_log
);
736 xfs_trans_ail_destroy(mp
);
738 xlog_dealloc_log(mp
->m_log
);
744 * Finish the recovery of the file system. This is separate from the
745 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
746 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
749 * If we finish recovery successfully, start the background log work. If we are
750 * not doing recovery, then we have a RO filesystem and we don't need to start
754 xfs_log_mount_finish(
755 struct xfs_mount
*mp
)
758 bool readonly
= (mp
->m_flags
& XFS_MOUNT_RDONLY
);
760 if (mp
->m_flags
& XFS_MOUNT_NORECOVERY
) {
761 ASSERT(mp
->m_flags
& XFS_MOUNT_RDONLY
);
763 } else if (readonly
) {
764 /* Allow unlinked processing to proceed */
765 mp
->m_flags
&= ~XFS_MOUNT_RDONLY
;
769 * During the second phase of log recovery, we need iget and
770 * iput to behave like they do for an active filesystem.
771 * xfs_fs_drop_inode needs to be able to prevent the deletion
772 * of inodes before we're done replaying log items on those
773 * inodes. Turn it off immediately after recovery finishes
774 * so that we don't leak the quota inodes if subsequent mount
777 * We let all inodes involved in redo item processing end up on
778 * the LRU instead of being evicted immediately so that if we do
779 * something to an unlinked inode, the irele won't cause
780 * premature truncation and freeing of the inode, which results
781 * in log recovery failure. We have to evict the unreferenced
782 * lru inodes after clearing MS_ACTIVE because we don't
783 * otherwise clean up the lru if there's a subsequent failure in
784 * xfs_mountfs, which leads to us leaking the inodes if nothing
785 * else (e.g. quotacheck) references the inodes before the
786 * mount failure occurs.
788 mp
->m_super
->s_flags
|= MS_ACTIVE
;
789 error
= xlog_recover_finish(mp
->m_log
);
791 xfs_log_work_queue(mp
);
792 mp
->m_super
->s_flags
&= ~MS_ACTIVE
;
793 evict_inodes(mp
->m_super
);
796 mp
->m_flags
|= XFS_MOUNT_RDONLY
;
802 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
806 xfs_log_mount_cancel(
807 struct xfs_mount
*mp
)
811 error
= xlog_recover_cancel(mp
->m_log
);
818 * Final log writes as part of unmount.
820 * Mark the filesystem clean as unmount happens. Note that during relocation
821 * this routine needs to be executed as part of source-bag while the
822 * deallocation must not be done until source-end.
826 * Unmount record used to have a string "Unmount filesystem--" in the
827 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
828 * We just write the magic number now since that particular field isn't
829 * currently architecture converted and "Unmount" is a bit foo.
830 * As far as I know, there weren't any dependencies on the old behaviour.
834 xfs_log_unmount_write(xfs_mount_t
*mp
)
836 struct xlog
*log
= mp
->m_log
;
837 xlog_in_core_t
*iclog
;
839 xlog_in_core_t
*first_iclog
;
841 xlog_ticket_t
*tic
= NULL
;
846 * Don't write out unmount record on norecovery mounts or ro devices.
847 * Or, if we are doing a forced umount (typically because of IO errors).
849 if (mp
->m_flags
& XFS_MOUNT_NORECOVERY
||
850 xfs_readonly_buftarg(log
->l_mp
->m_logdev_targp
)) {
851 ASSERT(mp
->m_flags
& XFS_MOUNT_RDONLY
);
855 error
= _xfs_log_force(mp
, XFS_LOG_SYNC
, NULL
);
856 ASSERT(error
|| !(XLOG_FORCED_SHUTDOWN(log
)));
859 first_iclog
= iclog
= log
->l_iclog
;
861 if (!(iclog
->ic_state
& XLOG_STATE_IOERROR
)) {
862 ASSERT(iclog
->ic_state
& XLOG_STATE_ACTIVE
);
863 ASSERT(iclog
->ic_offset
== 0);
865 iclog
= iclog
->ic_next
;
866 } while (iclog
!= first_iclog
);
868 if (! (XLOG_FORCED_SHUTDOWN(log
))) {
869 error
= xfs_log_reserve(mp
, 600, 1, &tic
, XFS_LOG
, 0);
871 /* the data section must be 32 bit size aligned */
875 uint32_t pad2
; /* may as well make it 64 bits */
877 .magic
= XLOG_UNMOUNT_TYPE
,
879 struct xfs_log_iovec reg
= {
881 .i_len
= sizeof(magic
),
882 .i_type
= XLOG_REG_TYPE_UNMOUNT
,
884 struct xfs_log_vec vec
= {
889 /* remove inited flag, and account for space used */
891 tic
->t_curr_res
-= sizeof(magic
);
892 error
= xlog_write(log
, &vec
, tic
, &lsn
,
893 NULL
, XLOG_UNMOUNT_TRANS
);
895 * At this point, we're umounting anyway,
896 * so there's no point in transitioning log state
897 * to IOERROR. Just continue...
902 xfs_alert(mp
, "%s: unmount record failed", __func__
);
905 spin_lock(&log
->l_icloglock
);
906 iclog
= log
->l_iclog
;
907 atomic_inc(&iclog
->ic_refcnt
);
908 xlog_state_want_sync(log
, iclog
);
909 spin_unlock(&log
->l_icloglock
);
910 error
= xlog_state_release_iclog(log
, iclog
);
912 spin_lock(&log
->l_icloglock
);
913 if (!(iclog
->ic_state
== XLOG_STATE_ACTIVE
||
914 iclog
->ic_state
== XLOG_STATE_DIRTY
)) {
915 if (!XLOG_FORCED_SHUTDOWN(log
)) {
916 xlog_wait(&iclog
->ic_force_wait
,
919 spin_unlock(&log
->l_icloglock
);
922 spin_unlock(&log
->l_icloglock
);
925 trace_xfs_log_umount_write(log
, tic
);
926 xlog_ungrant_log_space(log
, tic
);
927 xfs_log_ticket_put(tic
);
931 * We're already in forced_shutdown mode, couldn't
932 * even attempt to write out the unmount transaction.
934 * Go through the motions of sync'ing and releasing
935 * the iclog, even though no I/O will actually happen,
936 * we need to wait for other log I/Os that may already
937 * be in progress. Do this as a separate section of
938 * code so we'll know if we ever get stuck here that
939 * we're in this odd situation of trying to unmount
940 * a file system that went into forced_shutdown as
941 * the result of an unmount..
943 spin_lock(&log
->l_icloglock
);
944 iclog
= log
->l_iclog
;
945 atomic_inc(&iclog
->ic_refcnt
);
947 xlog_state_want_sync(log
, iclog
);
948 spin_unlock(&log
->l_icloglock
);
949 error
= xlog_state_release_iclog(log
, iclog
);
951 spin_lock(&log
->l_icloglock
);
953 if ( ! ( iclog
->ic_state
== XLOG_STATE_ACTIVE
954 || iclog
->ic_state
== XLOG_STATE_DIRTY
955 || iclog
->ic_state
== XLOG_STATE_IOERROR
) ) {
957 xlog_wait(&iclog
->ic_force_wait
,
960 spin_unlock(&log
->l_icloglock
);
965 } /* xfs_log_unmount_write */
968 * Empty the log for unmount/freeze.
970 * To do this, we first need to shut down the background log work so it is not
971 * trying to cover the log as we clean up. We then need to unpin all objects in
972 * the log so we can then flush them out. Once they have completed their IO and
973 * run the callbacks removing themselves from the AIL, we can write the unmount
978 struct xfs_mount
*mp
)
980 cancel_delayed_work_sync(&mp
->m_log
->l_work
);
981 xfs_log_force(mp
, XFS_LOG_SYNC
);
984 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
985 * will push it, xfs_wait_buftarg() will not wait for it. Further,
986 * xfs_buf_iowait() cannot be used because it was pushed with the
987 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
988 * the IO to complete.
990 xfs_ail_push_all_sync(mp
->m_ail
);
991 xfs_wait_buftarg(mp
->m_ddev_targp
);
992 xfs_buf_lock(mp
->m_sb_bp
);
993 xfs_buf_unlock(mp
->m_sb_bp
);
995 xfs_log_unmount_write(mp
);
999 * Shut down and release the AIL and Log.
1001 * During unmount, we need to ensure we flush all the dirty metadata objects
1002 * from the AIL so that the log is empty before we write the unmount record to
1003 * the log. Once this is done, we can tear down the AIL and the log.
1007 struct xfs_mount
*mp
)
1009 xfs_log_quiesce(mp
);
1011 xfs_trans_ail_destroy(mp
);
1013 xfs_sysfs_del(&mp
->m_log
->l_kobj
);
1015 xlog_dealloc_log(mp
->m_log
);
1020 struct xfs_mount
*mp
,
1021 struct xfs_log_item
*item
,
1023 const struct xfs_item_ops
*ops
)
1025 item
->li_mountp
= mp
;
1026 item
->li_ailp
= mp
->m_ail
;
1027 item
->li_type
= type
;
1031 INIT_LIST_HEAD(&item
->li_ail
);
1032 INIT_LIST_HEAD(&item
->li_cil
);
1036 * Wake up processes waiting for log space after we have moved the log tail.
1040 struct xfs_mount
*mp
)
1042 struct xlog
*log
= mp
->m_log
;
1045 if (XLOG_FORCED_SHUTDOWN(log
))
1048 if (!list_empty_careful(&log
->l_write_head
.waiters
)) {
1049 ASSERT(!(log
->l_flags
& XLOG_ACTIVE_RECOVERY
));
1051 spin_lock(&log
->l_write_head
.lock
);
1052 free_bytes
= xlog_space_left(log
, &log
->l_write_head
.grant
);
1053 xlog_grant_head_wake(log
, &log
->l_write_head
, &free_bytes
);
1054 spin_unlock(&log
->l_write_head
.lock
);
1057 if (!list_empty_careful(&log
->l_reserve_head
.waiters
)) {
1058 ASSERT(!(log
->l_flags
& XLOG_ACTIVE_RECOVERY
));
1060 spin_lock(&log
->l_reserve_head
.lock
);
1061 free_bytes
= xlog_space_left(log
, &log
->l_reserve_head
.grant
);
1062 xlog_grant_head_wake(log
, &log
->l_reserve_head
, &free_bytes
);
1063 spin_unlock(&log
->l_reserve_head
.lock
);
1068 * Determine if we have a transaction that has gone to disk that needs to be
1069 * covered. To begin the transition to the idle state firstly the log needs to
1070 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1071 * we start attempting to cover the log.
1073 * Only if we are then in a state where covering is needed, the caller is
1074 * informed that dummy transactions are required to move the log into the idle
1077 * If there are any items in the AIl or CIL, then we do not want to attempt to
1078 * cover the log as we may be in a situation where there isn't log space
1079 * available to run a dummy transaction and this can lead to deadlocks when the
1080 * tail of the log is pinned by an item that is modified in the CIL. Hence
1081 * there's no point in running a dummy transaction at this point because we
1082 * can't start trying to idle the log until both the CIL and AIL are empty.
1085 xfs_log_need_covered(xfs_mount_t
*mp
)
1087 struct xlog
*log
= mp
->m_log
;
1090 if (!xfs_fs_writable(mp
, SB_FREEZE_WRITE
))
1093 if (!xlog_cil_empty(log
))
1096 spin_lock(&log
->l_icloglock
);
1097 switch (log
->l_covered_state
) {
1098 case XLOG_STATE_COVER_DONE
:
1099 case XLOG_STATE_COVER_DONE2
:
1100 case XLOG_STATE_COVER_IDLE
:
1102 case XLOG_STATE_COVER_NEED
:
1103 case XLOG_STATE_COVER_NEED2
:
1104 if (xfs_ail_min_lsn(log
->l_ailp
))
1106 if (!xlog_iclogs_empty(log
))
1110 if (log
->l_covered_state
== XLOG_STATE_COVER_NEED
)
1111 log
->l_covered_state
= XLOG_STATE_COVER_DONE
;
1113 log
->l_covered_state
= XLOG_STATE_COVER_DONE2
;
1119 spin_unlock(&log
->l_icloglock
);
1124 * We may be holding the log iclog lock upon entering this routine.
1127 xlog_assign_tail_lsn_locked(
1128 struct xfs_mount
*mp
)
1130 struct xlog
*log
= mp
->m_log
;
1131 struct xfs_log_item
*lip
;
1134 assert_spin_locked(&mp
->m_ail
->xa_lock
);
1137 * To make sure we always have a valid LSN for the log tail we keep
1138 * track of the last LSN which was committed in log->l_last_sync_lsn,
1139 * and use that when the AIL was empty.
1141 lip
= xfs_ail_min(mp
->m_ail
);
1143 tail_lsn
= lip
->li_lsn
;
1145 tail_lsn
= atomic64_read(&log
->l_last_sync_lsn
);
1146 trace_xfs_log_assign_tail_lsn(log
, tail_lsn
);
1147 atomic64_set(&log
->l_tail_lsn
, tail_lsn
);
1152 xlog_assign_tail_lsn(
1153 struct xfs_mount
*mp
)
1157 spin_lock(&mp
->m_ail
->xa_lock
);
1158 tail_lsn
= xlog_assign_tail_lsn_locked(mp
);
1159 spin_unlock(&mp
->m_ail
->xa_lock
);
1165 * Return the space in the log between the tail and the head. The head
1166 * is passed in the cycle/bytes formal parms. In the special case where
1167 * the reserve head has wrapped passed the tail, this calculation is no
1168 * longer valid. In this case, just return 0 which means there is no space
1169 * in the log. This works for all places where this function is called
1170 * with the reserve head. Of course, if the write head were to ever
1171 * wrap the tail, we should blow up. Rather than catch this case here,
1172 * we depend on other ASSERTions in other parts of the code. XXXmiken
1174 * This code also handles the case where the reservation head is behind
1175 * the tail. The details of this case are described below, but the end
1176 * result is that we return the size of the log as the amount of space left.
1189 xlog_crack_grant_head(head
, &head_cycle
, &head_bytes
);
1190 xlog_crack_atomic_lsn(&log
->l_tail_lsn
, &tail_cycle
, &tail_bytes
);
1191 tail_bytes
= BBTOB(tail_bytes
);
1192 if (tail_cycle
== head_cycle
&& head_bytes
>= tail_bytes
)
1193 free_bytes
= log
->l_logsize
- (head_bytes
- tail_bytes
);
1194 else if (tail_cycle
+ 1 < head_cycle
)
1196 else if (tail_cycle
< head_cycle
) {
1197 ASSERT(tail_cycle
== (head_cycle
- 1));
1198 free_bytes
= tail_bytes
- head_bytes
;
1201 * The reservation head is behind the tail.
1202 * In this case we just want to return the size of the
1203 * log as the amount of space left.
1205 xfs_alert(log
->l_mp
, "xlog_space_left: head behind tail");
1206 xfs_alert(log
->l_mp
,
1207 " tail_cycle = %d, tail_bytes = %d",
1208 tail_cycle
, tail_bytes
);
1209 xfs_alert(log
->l_mp
,
1210 " GH cycle = %d, GH bytes = %d",
1211 head_cycle
, head_bytes
);
1213 free_bytes
= log
->l_logsize
;
1220 * Log function which is called when an io completes.
1222 * The log manager needs its own routine, in order to control what
1223 * happens with the buffer after the write completes.
1226 xlog_iodone(xfs_buf_t
*bp
)
1228 struct xlog_in_core
*iclog
= bp
->b_fspriv
;
1229 struct xlog
*l
= iclog
->ic_log
;
1233 * Race to shutdown the filesystem if we see an error or the iclog is in
1234 * IOABORT state. The IOABORT state is only set in DEBUG mode to inject
1235 * CRC errors into log recovery.
1237 if (XFS_TEST_ERROR(bp
->b_error
, l
->l_mp
, XFS_ERRTAG_IODONE_IOERR
) ||
1238 iclog
->ic_state
& XLOG_STATE_IOABORT
) {
1239 if (iclog
->ic_state
& XLOG_STATE_IOABORT
)
1240 iclog
->ic_state
&= ~XLOG_STATE_IOABORT
;
1242 xfs_buf_ioerror_alert(bp
, __func__
);
1244 xfs_force_shutdown(l
->l_mp
, SHUTDOWN_LOG_IO_ERROR
);
1246 * This flag will be propagated to the trans-committed
1247 * callback routines to let them know that the log-commit
1250 aborted
= XFS_LI_ABORTED
;
1251 } else if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
1252 aborted
= XFS_LI_ABORTED
;
1255 /* log I/O is always issued ASYNC */
1256 ASSERT(bp
->b_flags
& XBF_ASYNC
);
1257 xlog_state_done_syncing(iclog
, aborted
);
1260 * drop the buffer lock now that we are done. Nothing references
1261 * the buffer after this, so an unmount waiting on this lock can now
1262 * tear it down safely. As such, it is unsafe to reference the buffer
1263 * (bp) after the unlock as we could race with it being freed.
1269 * Return size of each in-core log record buffer.
1271 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1273 * If the filesystem blocksize is too large, we may need to choose a
1274 * larger size since the directory code currently logs entire blocks.
1278 xlog_get_iclog_buffer_size(
1279 struct xfs_mount
*mp
,
1285 if (mp
->m_logbufs
<= 0)
1286 log
->l_iclog_bufs
= XLOG_MAX_ICLOGS
;
1288 log
->l_iclog_bufs
= mp
->m_logbufs
;
1291 * Buffer size passed in from mount system call.
1293 if (mp
->m_logbsize
> 0) {
1294 size
= log
->l_iclog_size
= mp
->m_logbsize
;
1295 log
->l_iclog_size_log
= 0;
1297 log
->l_iclog_size_log
++;
1301 if (xfs_sb_version_haslogv2(&mp
->m_sb
)) {
1302 /* # headers = size / 32k
1303 * one header holds cycles from 32k of data
1306 xhdrs
= mp
->m_logbsize
/ XLOG_HEADER_CYCLE_SIZE
;
1307 if (mp
->m_logbsize
% XLOG_HEADER_CYCLE_SIZE
)
1309 log
->l_iclog_hsize
= xhdrs
<< BBSHIFT
;
1310 log
->l_iclog_heads
= xhdrs
;
1312 ASSERT(mp
->m_logbsize
<= XLOG_BIG_RECORD_BSIZE
);
1313 log
->l_iclog_hsize
= BBSIZE
;
1314 log
->l_iclog_heads
= 1;
1319 /* All machines use 32kB buffers by default. */
1320 log
->l_iclog_size
= XLOG_BIG_RECORD_BSIZE
;
1321 log
->l_iclog_size_log
= XLOG_BIG_RECORD_BSHIFT
;
1323 /* the default log size is 16k or 32k which is one header sector */
1324 log
->l_iclog_hsize
= BBSIZE
;
1325 log
->l_iclog_heads
= 1;
1328 /* are we being asked to make the sizes selected above visible? */
1329 if (mp
->m_logbufs
== 0)
1330 mp
->m_logbufs
= log
->l_iclog_bufs
;
1331 if (mp
->m_logbsize
== 0)
1332 mp
->m_logbsize
= log
->l_iclog_size
;
1333 } /* xlog_get_iclog_buffer_size */
1338 struct xfs_mount
*mp
)
1340 queue_delayed_work(mp
->m_sync_workqueue
, &mp
->m_log
->l_work
,
1341 msecs_to_jiffies(xfs_syncd_centisecs
* 10));
1345 * Every sync period we need to unpin all items in the AIL and push them to
1346 * disk. If there is nothing dirty, then we might need to cover the log to
1347 * indicate that the filesystem is idle.
1351 struct work_struct
*work
)
1353 struct xlog
*log
= container_of(to_delayed_work(work
),
1354 struct xlog
, l_work
);
1355 struct xfs_mount
*mp
= log
->l_mp
;
1357 /* dgc: errors ignored - not fatal and nowhere to report them */
1358 if (xfs_log_need_covered(mp
)) {
1360 * Dump a transaction into the log that contains no real change.
1361 * This is needed to stamp the current tail LSN into the log
1362 * during the covering operation.
1364 * We cannot use an inode here for this - that will push dirty
1365 * state back up into the VFS and then periodic inode flushing
1366 * will prevent log covering from making progress. Hence we
1367 * synchronously log the superblock instead to ensure the
1368 * superblock is immediately unpinned and can be written back.
1370 xfs_sync_sb(mp
, true);
1372 xfs_log_force(mp
, 0);
1374 /* start pushing all the metadata that is currently dirty */
1375 xfs_ail_push_all(mp
->m_ail
);
1377 /* queue us up again */
1378 xfs_log_work_queue(mp
);
1382 * This routine initializes some of the log structure for a given mount point.
1383 * Its primary purpose is to fill in enough, so recovery can occur. However,
1384 * some other stuff may be filled in too.
1386 STATIC
struct xlog
*
1388 struct xfs_mount
*mp
,
1389 struct xfs_buftarg
*log_target
,
1390 xfs_daddr_t blk_offset
,
1394 xlog_rec_header_t
*head
;
1395 xlog_in_core_t
**iclogp
;
1396 xlog_in_core_t
*iclog
, *prev_iclog
=NULL
;
1399 int error
= -ENOMEM
;
1402 log
= kmem_zalloc(sizeof(struct xlog
), KM_MAYFAIL
);
1404 xfs_warn(mp
, "Log allocation failed: No memory!");
1409 log
->l_targ
= log_target
;
1410 log
->l_logsize
= BBTOB(num_bblks
);
1411 log
->l_logBBstart
= blk_offset
;
1412 log
->l_logBBsize
= num_bblks
;
1413 log
->l_covered_state
= XLOG_STATE_COVER_IDLE
;
1414 log
->l_flags
|= XLOG_ACTIVE_RECOVERY
;
1415 INIT_DELAYED_WORK(&log
->l_work
, xfs_log_worker
);
1417 log
->l_prev_block
= -1;
1418 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1419 xlog_assign_atomic_lsn(&log
->l_tail_lsn
, 1, 0);
1420 xlog_assign_atomic_lsn(&log
->l_last_sync_lsn
, 1, 0);
1421 log
->l_curr_cycle
= 1; /* 0 is bad since this is initial value */
1423 xlog_grant_head_init(&log
->l_reserve_head
);
1424 xlog_grant_head_init(&log
->l_write_head
);
1426 error
= -EFSCORRUPTED
;
1427 if (xfs_sb_version_hassector(&mp
->m_sb
)) {
1428 log2_size
= mp
->m_sb
.sb_logsectlog
;
1429 if (log2_size
< BBSHIFT
) {
1430 xfs_warn(mp
, "Log sector size too small (0x%x < 0x%x)",
1431 log2_size
, BBSHIFT
);
1435 log2_size
-= BBSHIFT
;
1436 if (log2_size
> mp
->m_sectbb_log
) {
1437 xfs_warn(mp
, "Log sector size too large (0x%x > 0x%x)",
1438 log2_size
, mp
->m_sectbb_log
);
1442 /* for larger sector sizes, must have v2 or external log */
1443 if (log2_size
&& log
->l_logBBstart
> 0 &&
1444 !xfs_sb_version_haslogv2(&mp
->m_sb
)) {
1446 "log sector size (0x%x) invalid for configuration.",
1451 log
->l_sectBBsize
= 1 << log2_size
;
1453 xlog_get_iclog_buffer_size(mp
, log
);
1456 * Use a NULL block for the extra log buffer used during splits so that
1457 * it will trigger errors if we ever try to do IO on it without first
1458 * having set it up properly.
1461 bp
= xfs_buf_alloc(mp
->m_logdev_targp
, XFS_BUF_DADDR_NULL
,
1462 BTOBB(log
->l_iclog_size
), XBF_NO_IOACCT
);
1467 * The iclogbuf buffer locks are held over IO but we are not going to do
1468 * IO yet. Hence unlock the buffer so that the log IO path can grab it
1469 * when appropriately.
1471 ASSERT(xfs_buf_islocked(bp
));
1474 /* use high priority wq for log I/O completion */
1475 bp
->b_ioend_wq
= mp
->m_log_workqueue
;
1476 bp
->b_iodone
= xlog_iodone
;
1479 spin_lock_init(&log
->l_icloglock
);
1480 init_waitqueue_head(&log
->l_flush_wait
);
1482 iclogp
= &log
->l_iclog
;
1484 * The amount of memory to allocate for the iclog structure is
1485 * rather funky due to the way the structure is defined. It is
1486 * done this way so that we can use different sizes for machines
1487 * with different amounts of memory. See the definition of
1488 * xlog_in_core_t in xfs_log_priv.h for details.
1490 ASSERT(log
->l_iclog_size
>= 4096);
1491 for (i
=0; i
< log
->l_iclog_bufs
; i
++) {
1492 *iclogp
= kmem_zalloc(sizeof(xlog_in_core_t
), KM_MAYFAIL
);
1494 goto out_free_iclog
;
1497 iclog
->ic_prev
= prev_iclog
;
1500 bp
= xfs_buf_get_uncached(mp
->m_logdev_targp
,
1501 BTOBB(log
->l_iclog_size
),
1504 goto out_free_iclog
;
1506 ASSERT(xfs_buf_islocked(bp
));
1509 /* use high priority wq for log I/O completion */
1510 bp
->b_ioend_wq
= mp
->m_log_workqueue
;
1511 bp
->b_iodone
= xlog_iodone
;
1513 iclog
->ic_data
= bp
->b_addr
;
1515 log
->l_iclog_bak
[i
] = &iclog
->ic_header
;
1517 head
= &iclog
->ic_header
;
1518 memset(head
, 0, sizeof(xlog_rec_header_t
));
1519 head
->h_magicno
= cpu_to_be32(XLOG_HEADER_MAGIC_NUM
);
1520 head
->h_version
= cpu_to_be32(
1521 xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
) ? 2 : 1);
1522 head
->h_size
= cpu_to_be32(log
->l_iclog_size
);
1524 head
->h_fmt
= cpu_to_be32(XLOG_FMT
);
1525 memcpy(&head
->h_fs_uuid
, &mp
->m_sb
.sb_uuid
, sizeof(uuid_t
));
1527 iclog
->ic_size
= BBTOB(bp
->b_length
) - log
->l_iclog_hsize
;
1528 iclog
->ic_state
= XLOG_STATE_ACTIVE
;
1529 iclog
->ic_log
= log
;
1530 atomic_set(&iclog
->ic_refcnt
, 0);
1531 spin_lock_init(&iclog
->ic_callback_lock
);
1532 iclog
->ic_callback_tail
= &(iclog
->ic_callback
);
1533 iclog
->ic_datap
= (char *)iclog
->ic_data
+ log
->l_iclog_hsize
;
1535 init_waitqueue_head(&iclog
->ic_force_wait
);
1536 init_waitqueue_head(&iclog
->ic_write_wait
);
1538 iclogp
= &iclog
->ic_next
;
1540 *iclogp
= log
->l_iclog
; /* complete ring */
1541 log
->l_iclog
->ic_prev
= prev_iclog
; /* re-write 1st prev ptr */
1543 error
= xlog_cil_init(log
);
1545 goto out_free_iclog
;
1549 for (iclog
= log
->l_iclog
; iclog
; iclog
= prev_iclog
) {
1550 prev_iclog
= iclog
->ic_next
;
1552 xfs_buf_free(iclog
->ic_bp
);
1554 if (prev_iclog
== log
->l_iclog
)
1557 spinlock_destroy(&log
->l_icloglock
);
1558 xfs_buf_free(log
->l_xbuf
);
1562 return ERR_PTR(error
);
1563 } /* xlog_alloc_log */
1567 * Write out the commit record of a transaction associated with the given
1568 * ticket. Return the lsn of the commit record.
1573 struct xlog_ticket
*ticket
,
1574 struct xlog_in_core
**iclog
,
1575 xfs_lsn_t
*commitlsnp
)
1577 struct xfs_mount
*mp
= log
->l_mp
;
1579 struct xfs_log_iovec reg
= {
1582 .i_type
= XLOG_REG_TYPE_COMMIT
,
1584 struct xfs_log_vec vec
= {
1589 ASSERT_ALWAYS(iclog
);
1590 error
= xlog_write(log
, &vec
, ticket
, commitlsnp
, iclog
,
1593 xfs_force_shutdown(mp
, SHUTDOWN_LOG_IO_ERROR
);
1598 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1599 * log space. This code pushes on the lsn which would supposedly free up
1600 * the 25% which we want to leave free. We may need to adopt a policy which
1601 * pushes on an lsn which is further along in the log once we reach the high
1602 * water mark. In this manner, we would be creating a low water mark.
1605 xlog_grant_push_ail(
1609 xfs_lsn_t threshold_lsn
= 0;
1610 xfs_lsn_t last_sync_lsn
;
1613 int threshold_block
;
1614 int threshold_cycle
;
1617 ASSERT(BTOBB(need_bytes
) < log
->l_logBBsize
);
1619 free_bytes
= xlog_space_left(log
, &log
->l_reserve_head
.grant
);
1620 free_blocks
= BTOBBT(free_bytes
);
1623 * Set the threshold for the minimum number of free blocks in the
1624 * log to the maximum of what the caller needs, one quarter of the
1625 * log, and 256 blocks.
1627 free_threshold
= BTOBB(need_bytes
);
1628 free_threshold
= MAX(free_threshold
, (log
->l_logBBsize
>> 2));
1629 free_threshold
= MAX(free_threshold
, 256);
1630 if (free_blocks
>= free_threshold
)
1633 xlog_crack_atomic_lsn(&log
->l_tail_lsn
, &threshold_cycle
,
1635 threshold_block
+= free_threshold
;
1636 if (threshold_block
>= log
->l_logBBsize
) {
1637 threshold_block
-= log
->l_logBBsize
;
1638 threshold_cycle
+= 1;
1640 threshold_lsn
= xlog_assign_lsn(threshold_cycle
,
1643 * Don't pass in an lsn greater than the lsn of the last
1644 * log record known to be on disk. Use a snapshot of the last sync lsn
1645 * so that it doesn't change between the compare and the set.
1647 last_sync_lsn
= atomic64_read(&log
->l_last_sync_lsn
);
1648 if (XFS_LSN_CMP(threshold_lsn
, last_sync_lsn
) > 0)
1649 threshold_lsn
= last_sync_lsn
;
1652 * Get the transaction layer to kick the dirty buffers out to
1653 * disk asynchronously. No point in trying to do this if
1654 * the filesystem is shutting down.
1656 if (!XLOG_FORCED_SHUTDOWN(log
))
1657 xfs_ail_push(log
->l_ailp
, threshold_lsn
);
1661 * Stamp cycle number in every block
1666 struct xlog_in_core
*iclog
,
1670 int size
= iclog
->ic_offset
+ roundoff
;
1674 cycle_lsn
= CYCLE_LSN_DISK(iclog
->ic_header
.h_lsn
);
1676 dp
= iclog
->ic_datap
;
1677 for (i
= 0; i
< BTOBB(size
); i
++) {
1678 if (i
>= (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
))
1680 iclog
->ic_header
.h_cycle_data
[i
] = *(__be32
*)dp
;
1681 *(__be32
*)dp
= cycle_lsn
;
1685 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
1686 xlog_in_core_2_t
*xhdr
= iclog
->ic_data
;
1688 for ( ; i
< BTOBB(size
); i
++) {
1689 j
= i
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
1690 k
= i
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
1691 xhdr
[j
].hic_xheader
.xh_cycle_data
[k
] = *(__be32
*)dp
;
1692 *(__be32
*)dp
= cycle_lsn
;
1696 for (i
= 1; i
< log
->l_iclog_heads
; i
++)
1697 xhdr
[i
].hic_xheader
.xh_cycle
= cycle_lsn
;
1702 * Calculate the checksum for a log buffer.
1704 * This is a little more complicated than it should be because the various
1705 * headers and the actual data are non-contiguous.
1710 struct xlog_rec_header
*rhead
,
1716 /* first generate the crc for the record header ... */
1717 crc
= xfs_start_cksum_update((char *)rhead
,
1718 sizeof(struct xlog_rec_header
),
1719 offsetof(struct xlog_rec_header
, h_crc
));
1721 /* ... then for additional cycle data for v2 logs ... */
1722 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
1723 union xlog_in_core2
*xhdr
= (union xlog_in_core2
*)rhead
;
1727 xheads
= size
/ XLOG_HEADER_CYCLE_SIZE
;
1728 if (size
% XLOG_HEADER_CYCLE_SIZE
)
1731 for (i
= 1; i
< xheads
; i
++) {
1732 crc
= crc32c(crc
, &xhdr
[i
].hic_xheader
,
1733 sizeof(struct xlog_rec_ext_header
));
1737 /* ... and finally for the payload */
1738 crc
= crc32c(crc
, dp
, size
);
1740 return xfs_end_cksum(crc
);
1744 * The bdstrat callback function for log bufs. This gives us a central
1745 * place to trap bufs in case we get hit by a log I/O error and need to
1746 * shutdown. Actually, in practice, even when we didn't get a log error,
1747 * we transition the iclogs to IOERROR state *after* flushing all existing
1748 * iclogs to disk. This is because we don't want anymore new transactions to be
1749 * started or completed afterwards.
1751 * We lock the iclogbufs here so that we can serialise against IO completion
1752 * during unmount. We might be processing a shutdown triggered during unmount,
1753 * and that can occur asynchronously to the unmount thread, and hence we need to
1754 * ensure that completes before tearing down the iclogbufs. Hence we need to
1755 * hold the buffer lock across the log IO to acheive that.
1761 struct xlog_in_core
*iclog
= bp
->b_fspriv
;
1764 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
1765 xfs_buf_ioerror(bp
, -EIO
);
1769 * It would seem logical to return EIO here, but we rely on
1770 * the log state machine to propagate I/O errors instead of
1771 * doing it here. Similarly, IO completion will unlock the
1772 * buffer, so we don't do it here.
1782 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1783 * fashion. Previously, we should have moved the current iclog
1784 * ptr in the log to point to the next available iclog. This allows further
1785 * write to continue while this code syncs out an iclog ready to go.
1786 * Before an in-core log can be written out, the data section must be scanned
1787 * to save away the 1st word of each BBSIZE block into the header. We replace
1788 * it with the current cycle count. Each BBSIZE block is tagged with the
1789 * cycle count because there in an implicit assumption that drives will
1790 * guarantee that entire 512 byte blocks get written at once. In other words,
1791 * we can't have part of a 512 byte block written and part not written. By
1792 * tagging each block, we will know which blocks are valid when recovering
1793 * after an unclean shutdown.
1795 * This routine is single threaded on the iclog. No other thread can be in
1796 * this routine with the same iclog. Changing contents of iclog can there-
1797 * fore be done without grabbing the state machine lock. Updating the global
1798 * log will require grabbing the lock though.
1800 * The entire log manager uses a logical block numbering scheme. Only
1801 * log_sync (and then only bwrite()) know about the fact that the log may
1802 * not start with block zero on a given device. The log block start offset
1803 * is added immediately before calling bwrite().
1809 struct xlog_in_core
*iclog
)
1813 uint count
; /* byte count of bwrite */
1814 uint count_init
; /* initial count before roundup */
1815 int roundoff
; /* roundoff to BB or stripe */
1816 int split
= 0; /* split write into two regions */
1818 int v2
= xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
);
1821 XFS_STATS_INC(log
->l_mp
, xs_log_writes
);
1822 ASSERT(atomic_read(&iclog
->ic_refcnt
) == 0);
1824 /* Add for LR header */
1825 count_init
= log
->l_iclog_hsize
+ iclog
->ic_offset
;
1827 /* Round out the log write size */
1828 if (v2
&& log
->l_mp
->m_sb
.sb_logsunit
> 1) {
1829 /* we have a v2 stripe unit to use */
1830 count
= XLOG_LSUNITTOB(log
, XLOG_BTOLSUNIT(log
, count_init
));
1832 count
= BBTOB(BTOBB(count_init
));
1834 roundoff
= count
- count_init
;
1835 ASSERT(roundoff
>= 0);
1836 ASSERT((v2
&& log
->l_mp
->m_sb
.sb_logsunit
> 1 &&
1837 roundoff
< log
->l_mp
->m_sb
.sb_logsunit
)
1839 (log
->l_mp
->m_sb
.sb_logsunit
<= 1 &&
1840 roundoff
< BBTOB(1)));
1842 /* move grant heads by roundoff in sync */
1843 xlog_grant_add_space(log
, &log
->l_reserve_head
.grant
, roundoff
);
1844 xlog_grant_add_space(log
, &log
->l_write_head
.grant
, roundoff
);
1846 /* put cycle number in every block */
1847 xlog_pack_data(log
, iclog
, roundoff
);
1849 /* real byte length */
1850 size
= iclog
->ic_offset
;
1853 iclog
->ic_header
.h_len
= cpu_to_be32(size
);
1856 XFS_BUF_SET_ADDR(bp
, BLOCK_LSN(be64_to_cpu(iclog
->ic_header
.h_lsn
)));
1858 XFS_STATS_ADD(log
->l_mp
, xs_log_blocks
, BTOBB(count
));
1860 /* Do we need to split this write into 2 parts? */
1861 if (XFS_BUF_ADDR(bp
) + BTOBB(count
) > log
->l_logBBsize
) {
1864 split
= count
- (BBTOB(log
->l_logBBsize
- XFS_BUF_ADDR(bp
)));
1865 count
= BBTOB(log
->l_logBBsize
- XFS_BUF_ADDR(bp
));
1866 iclog
->ic_bwritecnt
= 2;
1869 * Bump the cycle numbers at the start of each block in the
1870 * part of the iclog that ends up in the buffer that gets
1871 * written to the start of the log.
1873 * Watch out for the header magic number case, though.
1875 dptr
= (char *)&iclog
->ic_header
+ count
;
1876 for (i
= 0; i
< split
; i
+= BBSIZE
) {
1877 uint32_t cycle
= be32_to_cpu(*(__be32
*)dptr
);
1878 if (++cycle
== XLOG_HEADER_MAGIC_NUM
)
1880 *(__be32
*)dptr
= cpu_to_be32(cycle
);
1885 iclog
->ic_bwritecnt
= 1;
1888 /* calculcate the checksum */
1889 iclog
->ic_header
.h_crc
= xlog_cksum(log
, &iclog
->ic_header
,
1890 iclog
->ic_datap
, size
);
1892 * Intentionally corrupt the log record CRC based on the error injection
1893 * frequency, if defined. This facilitates testing log recovery in the
1894 * event of torn writes. Hence, set the IOABORT state to abort the log
1895 * write on I/O completion and shutdown the fs. The subsequent mount
1896 * detects the bad CRC and attempts to recover.
1898 if (XFS_TEST_ERROR(false, log
->l_mp
, XFS_ERRTAG_LOG_BAD_CRC
)) {
1899 iclog
->ic_header
.h_crc
&= cpu_to_le32(0xAAAAAAAA);
1900 iclog
->ic_state
|= XLOG_STATE_IOABORT
;
1902 "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1903 be64_to_cpu(iclog
->ic_header
.h_lsn
));
1906 bp
->b_io_length
= BTOBB(count
);
1907 bp
->b_fspriv
= iclog
;
1908 bp
->b_flags
&= ~XBF_FLUSH
;
1909 bp
->b_flags
|= (XBF_ASYNC
| XBF_SYNCIO
| XBF_WRITE
| XBF_FUA
);
1912 * Flush the data device before flushing the log to make sure all meta
1913 * data written back from the AIL actually made it to disk before
1914 * stamping the new log tail LSN into the log buffer. For an external
1915 * log we need to issue the flush explicitly, and unfortunately
1916 * synchronously here; for an internal log we can simply use the block
1917 * layer state machine for preflushes.
1919 if (log
->l_mp
->m_logdev_targp
!= log
->l_mp
->m_ddev_targp
)
1920 xfs_blkdev_issue_flush(log
->l_mp
->m_ddev_targp
);
1922 bp
->b_flags
|= XBF_FLUSH
;
1924 ASSERT(XFS_BUF_ADDR(bp
) <= log
->l_logBBsize
-1);
1925 ASSERT(XFS_BUF_ADDR(bp
) + BTOBB(count
) <= log
->l_logBBsize
);
1927 xlog_verify_iclog(log
, iclog
, count
, true);
1929 /* account for log which doesn't start at block #0 */
1930 XFS_BUF_SET_ADDR(bp
, XFS_BUF_ADDR(bp
) + log
->l_logBBstart
);
1933 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1936 error
= xlog_bdstrat(bp
);
1938 xfs_buf_ioerror_alert(bp
, "xlog_sync");
1942 bp
= iclog
->ic_log
->l_xbuf
;
1943 XFS_BUF_SET_ADDR(bp
, 0); /* logical 0 */
1944 xfs_buf_associate_memory(bp
,
1945 (char *)&iclog
->ic_header
+ count
, split
);
1946 bp
->b_fspriv
= iclog
;
1947 bp
->b_flags
&= ~XBF_FLUSH
;
1948 bp
->b_flags
|= (XBF_ASYNC
| XBF_SYNCIO
| XBF_WRITE
| XBF_FUA
);
1950 ASSERT(XFS_BUF_ADDR(bp
) <= log
->l_logBBsize
-1);
1951 ASSERT(XFS_BUF_ADDR(bp
) + BTOBB(count
) <= log
->l_logBBsize
);
1953 /* account for internal log which doesn't start at block #0 */
1954 XFS_BUF_SET_ADDR(bp
, XFS_BUF_ADDR(bp
) + log
->l_logBBstart
);
1955 error
= xlog_bdstrat(bp
);
1957 xfs_buf_ioerror_alert(bp
, "xlog_sync (split)");
1965 * Deallocate a log structure
1971 xlog_in_core_t
*iclog
, *next_iclog
;
1974 xlog_cil_destroy(log
);
1977 * Cycle all the iclogbuf locks to make sure all log IO completion
1978 * is done before we tear down these buffers.
1980 iclog
= log
->l_iclog
;
1981 for (i
= 0; i
< log
->l_iclog_bufs
; i
++) {
1982 xfs_buf_lock(iclog
->ic_bp
);
1983 xfs_buf_unlock(iclog
->ic_bp
);
1984 iclog
= iclog
->ic_next
;
1988 * Always need to ensure that the extra buffer does not point to memory
1989 * owned by another log buffer before we free it. Also, cycle the lock
1990 * first to ensure we've completed IO on it.
1992 xfs_buf_lock(log
->l_xbuf
);
1993 xfs_buf_unlock(log
->l_xbuf
);
1994 xfs_buf_set_empty(log
->l_xbuf
, BTOBB(log
->l_iclog_size
));
1995 xfs_buf_free(log
->l_xbuf
);
1997 iclog
= log
->l_iclog
;
1998 for (i
= 0; i
< log
->l_iclog_bufs
; i
++) {
1999 xfs_buf_free(iclog
->ic_bp
);
2000 next_iclog
= iclog
->ic_next
;
2004 spinlock_destroy(&log
->l_icloglock
);
2006 log
->l_mp
->m_log
= NULL
;
2008 } /* xlog_dealloc_log */
2011 * Update counters atomically now that memcpy is done.
2015 xlog_state_finish_copy(
2017 struct xlog_in_core
*iclog
,
2021 spin_lock(&log
->l_icloglock
);
2023 be32_add_cpu(&iclog
->ic_header
.h_num_logops
, record_cnt
);
2024 iclog
->ic_offset
+= copy_bytes
;
2026 spin_unlock(&log
->l_icloglock
);
2027 } /* xlog_state_finish_copy */
2033 * print out info relating to regions written which consume
2038 struct xfs_mount
*mp
,
2039 struct xlog_ticket
*ticket
)
2042 uint ophdr_spc
= ticket
->t_res_num_ophdrs
* (uint
)sizeof(xlog_op_header_t
);
2044 /* match with XLOG_REG_TYPE_* in xfs_log.h */
2045 #define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str
2046 static char *res_type_str
[XLOG_REG_TYPE_MAX
+ 1] = {
2047 REG_TYPE_STR(BFORMAT
, "bformat"),
2048 REG_TYPE_STR(BCHUNK
, "bchunk"),
2049 REG_TYPE_STR(EFI_FORMAT
, "efi_format"),
2050 REG_TYPE_STR(EFD_FORMAT
, "efd_format"),
2051 REG_TYPE_STR(IFORMAT
, "iformat"),
2052 REG_TYPE_STR(ICORE
, "icore"),
2053 REG_TYPE_STR(IEXT
, "iext"),
2054 REG_TYPE_STR(IBROOT
, "ibroot"),
2055 REG_TYPE_STR(ILOCAL
, "ilocal"),
2056 REG_TYPE_STR(IATTR_EXT
, "iattr_ext"),
2057 REG_TYPE_STR(IATTR_BROOT
, "iattr_broot"),
2058 REG_TYPE_STR(IATTR_LOCAL
, "iattr_local"),
2059 REG_TYPE_STR(QFORMAT
, "qformat"),
2060 REG_TYPE_STR(DQUOT
, "dquot"),
2061 REG_TYPE_STR(QUOTAOFF
, "quotaoff"),
2062 REG_TYPE_STR(LRHEADER
, "LR header"),
2063 REG_TYPE_STR(UNMOUNT
, "unmount"),
2064 REG_TYPE_STR(COMMIT
, "commit"),
2065 REG_TYPE_STR(TRANSHDR
, "trans header"),
2066 REG_TYPE_STR(ICREATE
, "inode create")
2070 xfs_warn(mp
, "ticket reservation summary:");
2071 xfs_warn(mp
, " unit res = %d bytes",
2072 ticket
->t_unit_res
);
2073 xfs_warn(mp
, " current res = %d bytes",
2074 ticket
->t_curr_res
);
2075 xfs_warn(mp
, " total reg = %u bytes (o/flow = %u bytes)",
2076 ticket
->t_res_arr_sum
, ticket
->t_res_o_flow
);
2077 xfs_warn(mp
, " ophdrs = %u (ophdr space = %u bytes)",
2078 ticket
->t_res_num_ophdrs
, ophdr_spc
);
2079 xfs_warn(mp
, " ophdr + reg = %u bytes",
2080 ticket
->t_res_arr_sum
+ ticket
->t_res_o_flow
+ ophdr_spc
);
2081 xfs_warn(mp
, " num regions = %u",
2084 for (i
= 0; i
< ticket
->t_res_num
; i
++) {
2085 uint r_type
= ticket
->t_res_arr
[i
].r_type
;
2086 xfs_warn(mp
, "region[%u]: %s - %u bytes", i
,
2087 ((r_type
<= 0 || r_type
> XLOG_REG_TYPE_MAX
) ?
2088 "bad-rtype" : res_type_str
[r_type
]),
2089 ticket
->t_res_arr
[i
].r_len
);
2094 * Print a summary of the transaction.
2098 struct xfs_trans
*tp
)
2100 struct xfs_mount
*mp
= tp
->t_mountp
;
2101 struct xfs_log_item_desc
*lidp
;
2103 /* dump core transaction and ticket info */
2104 xfs_warn(mp
, "transaction summary:");
2105 xfs_warn(mp
, " flags = 0x%x", tp
->t_flags
);
2107 xlog_print_tic_res(mp
, tp
->t_ticket
);
2109 /* dump each log item */
2110 list_for_each_entry(lidp
, &tp
->t_items
, lid_trans
) {
2111 struct xfs_log_item
*lip
= lidp
->lid_item
;
2112 struct xfs_log_vec
*lv
= lip
->li_lv
;
2113 struct xfs_log_iovec
*vec
;
2116 xfs_warn(mp
, "log item: ");
2117 xfs_warn(mp
, " type = 0x%x", lip
->li_type
);
2118 xfs_warn(mp
, " flags = 0x%x", lip
->li_flags
);
2121 xfs_warn(mp
, " niovecs = %d", lv
->lv_niovecs
);
2122 xfs_warn(mp
, " size = %d", lv
->lv_size
);
2123 xfs_warn(mp
, " bytes = %d", lv
->lv_bytes
);
2124 xfs_warn(mp
, " buf len = %d", lv
->lv_buf_len
);
2126 /* dump each iovec for the log item */
2127 vec
= lv
->lv_iovecp
;
2128 for (i
= 0; i
< lv
->lv_niovecs
; i
++) {
2129 int dumplen
= min(vec
->i_len
, 32);
2131 xfs_warn(mp
, " iovec[%d]", i
);
2132 xfs_warn(mp
, " type = 0x%x", vec
->i_type
);
2133 xfs_warn(mp
, " len = %d", vec
->i_len
);
2134 xfs_warn(mp
, " first %d bytes of iovec[%d]:", dumplen
, i
);
2135 xfs_hex_dump(vec
->i_addr
, dumplen
);
2143 * Calculate the potential space needed by the log vector. Each region gets
2144 * its own xlog_op_header_t and may need to be double word aligned.
2147 xlog_write_calc_vec_length(
2148 struct xlog_ticket
*ticket
,
2149 struct xfs_log_vec
*log_vector
)
2151 struct xfs_log_vec
*lv
;
2156 /* acct for start rec of xact */
2157 if (ticket
->t_flags
& XLOG_TIC_INITED
)
2160 for (lv
= log_vector
; lv
; lv
= lv
->lv_next
) {
2161 /* we don't write ordered log vectors */
2162 if (lv
->lv_buf_len
== XFS_LOG_VEC_ORDERED
)
2165 headers
+= lv
->lv_niovecs
;
2167 for (i
= 0; i
< lv
->lv_niovecs
; i
++) {
2168 struct xfs_log_iovec
*vecp
= &lv
->lv_iovecp
[i
];
2171 xlog_tic_add_region(ticket
, vecp
->i_len
, vecp
->i_type
);
2175 ticket
->t_res_num_ophdrs
+= headers
;
2176 len
+= headers
* sizeof(struct xlog_op_header
);
2182 * If first write for transaction, insert start record We can't be trying to
2183 * commit if we are inited. We can't have any "partial_copy" if we are inited.
2186 xlog_write_start_rec(
2187 struct xlog_op_header
*ophdr
,
2188 struct xlog_ticket
*ticket
)
2190 if (!(ticket
->t_flags
& XLOG_TIC_INITED
))
2193 ophdr
->oh_tid
= cpu_to_be32(ticket
->t_tid
);
2194 ophdr
->oh_clientid
= ticket
->t_clientid
;
2196 ophdr
->oh_flags
= XLOG_START_TRANS
;
2199 ticket
->t_flags
&= ~XLOG_TIC_INITED
;
2201 return sizeof(struct xlog_op_header
);
2204 static xlog_op_header_t
*
2205 xlog_write_setup_ophdr(
2207 struct xlog_op_header
*ophdr
,
2208 struct xlog_ticket
*ticket
,
2211 ophdr
->oh_tid
= cpu_to_be32(ticket
->t_tid
);
2212 ophdr
->oh_clientid
= ticket
->t_clientid
;
2215 /* are we copying a commit or unmount record? */
2216 ophdr
->oh_flags
= flags
;
2219 * We've seen logs corrupted with bad transaction client ids. This
2220 * makes sure that XFS doesn't generate them on. Turn this into an EIO
2221 * and shut down the filesystem.
2223 switch (ophdr
->oh_clientid
) {
2224 case XFS_TRANSACTION
:
2230 "Bad XFS transaction clientid 0x%x in ticket 0x%p",
2231 ophdr
->oh_clientid
, ticket
);
2239 * Set up the parameters of the region copy into the log. This has
2240 * to handle region write split across multiple log buffers - this
2241 * state is kept external to this function so that this code can
2242 * be written in an obvious, self documenting manner.
2245 xlog_write_setup_copy(
2246 struct xlog_ticket
*ticket
,
2247 struct xlog_op_header
*ophdr
,
2248 int space_available
,
2252 int *last_was_partial_copy
,
2253 int *bytes_consumed
)
2257 still_to_copy
= space_required
- *bytes_consumed
;
2258 *copy_off
= *bytes_consumed
;
2260 if (still_to_copy
<= space_available
) {
2261 /* write of region completes here */
2262 *copy_len
= still_to_copy
;
2263 ophdr
->oh_len
= cpu_to_be32(*copy_len
);
2264 if (*last_was_partial_copy
)
2265 ophdr
->oh_flags
|= (XLOG_END_TRANS
|XLOG_WAS_CONT_TRANS
);
2266 *last_was_partial_copy
= 0;
2267 *bytes_consumed
= 0;
2271 /* partial write of region, needs extra log op header reservation */
2272 *copy_len
= space_available
;
2273 ophdr
->oh_len
= cpu_to_be32(*copy_len
);
2274 ophdr
->oh_flags
|= XLOG_CONTINUE_TRANS
;
2275 if (*last_was_partial_copy
)
2276 ophdr
->oh_flags
|= XLOG_WAS_CONT_TRANS
;
2277 *bytes_consumed
+= *copy_len
;
2278 (*last_was_partial_copy
)++;
2280 /* account for new log op header */
2281 ticket
->t_curr_res
-= sizeof(struct xlog_op_header
);
2282 ticket
->t_res_num_ophdrs
++;
2284 return sizeof(struct xlog_op_header
);
2288 xlog_write_copy_finish(
2290 struct xlog_in_core
*iclog
,
2295 int *partial_copy_len
,
2297 struct xlog_in_core
**commit_iclog
)
2299 if (*partial_copy
) {
2301 * This iclog has already been marked WANT_SYNC by
2302 * xlog_state_get_iclog_space.
2304 xlog_state_finish_copy(log
, iclog
, *record_cnt
, *data_cnt
);
2307 return xlog_state_release_iclog(log
, iclog
);
2311 *partial_copy_len
= 0;
2313 if (iclog
->ic_size
- log_offset
<= sizeof(xlog_op_header_t
)) {
2314 /* no more space in this iclog - push it. */
2315 xlog_state_finish_copy(log
, iclog
, *record_cnt
, *data_cnt
);
2319 spin_lock(&log
->l_icloglock
);
2320 xlog_state_want_sync(log
, iclog
);
2321 spin_unlock(&log
->l_icloglock
);
2324 return xlog_state_release_iclog(log
, iclog
);
2325 ASSERT(flags
& XLOG_COMMIT_TRANS
);
2326 *commit_iclog
= iclog
;
2333 * Write some region out to in-core log
2335 * This will be called when writing externally provided regions or when
2336 * writing out a commit record for a given transaction.
2338 * General algorithm:
2339 * 1. Find total length of this write. This may include adding to the
2340 * lengths passed in.
2341 * 2. Check whether we violate the tickets reservation.
2342 * 3. While writing to this iclog
2343 * A. Reserve as much space in this iclog as can get
2344 * B. If this is first write, save away start lsn
2345 * C. While writing this region:
2346 * 1. If first write of transaction, write start record
2347 * 2. Write log operation header (header per region)
2348 * 3. Find out if we can fit entire region into this iclog
2349 * 4. Potentially, verify destination memcpy ptr
2350 * 5. Memcpy (partial) region
2351 * 6. If partial copy, release iclog; otherwise, continue
2352 * copying more regions into current iclog
2353 * 4. Mark want sync bit (in simulation mode)
2354 * 5. Release iclog for potential flush to on-disk log.
2357 * 1. Panic if reservation is overrun. This should never happen since
2358 * reservation amounts are generated internal to the filesystem.
2360 * 1. Tickets are single threaded data structures.
2361 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2362 * syncing routine. When a single log_write region needs to span
2363 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2364 * on all log operation writes which don't contain the end of the
2365 * region. The XLOG_END_TRANS bit is used for the in-core log
2366 * operation which contains the end of the continued log_write region.
2367 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2368 * we don't really know exactly how much space will be used. As a result,
2369 * we don't update ic_offset until the end when we know exactly how many
2370 * bytes have been written out.
2375 struct xfs_log_vec
*log_vector
,
2376 struct xlog_ticket
*ticket
,
2377 xfs_lsn_t
*start_lsn
,
2378 struct xlog_in_core
**commit_iclog
,
2381 struct xlog_in_core
*iclog
= NULL
;
2382 struct xfs_log_iovec
*vecp
;
2383 struct xfs_log_vec
*lv
;
2386 int partial_copy
= 0;
2387 int partial_copy_len
= 0;
2395 len
= xlog_write_calc_vec_length(ticket
, log_vector
);
2398 * Region headers and bytes are already accounted for.
2399 * We only need to take into account start records and
2400 * split regions in this function.
2402 if (ticket
->t_flags
& XLOG_TIC_INITED
)
2403 ticket
->t_curr_res
-= sizeof(xlog_op_header_t
);
2406 * Commit record headers need to be accounted for. These
2407 * come in as separate writes so are easy to detect.
2409 if (flags
& (XLOG_COMMIT_TRANS
| XLOG_UNMOUNT_TRANS
))
2410 ticket
->t_curr_res
-= sizeof(xlog_op_header_t
);
2412 if (ticket
->t_curr_res
< 0) {
2413 xfs_alert_tag(log
->l_mp
, XFS_PTAG_LOGRES
,
2414 "ctx ticket reservation ran out. Need to up reservation");
2415 xlog_print_tic_res(log
->l_mp
, ticket
);
2416 xfs_force_shutdown(log
->l_mp
, SHUTDOWN_LOG_IO_ERROR
);
2421 vecp
= lv
->lv_iovecp
;
2422 while (lv
&& (!lv
->lv_niovecs
|| index
< lv
->lv_niovecs
)) {
2426 error
= xlog_state_get_iclog_space(log
, len
, &iclog
, ticket
,
2427 &contwr
, &log_offset
);
2431 ASSERT(log_offset
<= iclog
->ic_size
- 1);
2432 ptr
= iclog
->ic_datap
+ log_offset
;
2434 /* start_lsn is the first lsn written to. That's all we need. */
2436 *start_lsn
= be64_to_cpu(iclog
->ic_header
.h_lsn
);
2439 * This loop writes out as many regions as can fit in the amount
2440 * of space which was allocated by xlog_state_get_iclog_space().
2442 while (lv
&& (!lv
->lv_niovecs
|| index
< lv
->lv_niovecs
)) {
2443 struct xfs_log_iovec
*reg
;
2444 struct xlog_op_header
*ophdr
;
2448 bool ordered
= false;
2450 /* ordered log vectors have no regions to write */
2451 if (lv
->lv_buf_len
== XFS_LOG_VEC_ORDERED
) {
2452 ASSERT(lv
->lv_niovecs
== 0);
2458 ASSERT(reg
->i_len
% sizeof(int32_t) == 0);
2459 ASSERT((unsigned long)ptr
% sizeof(int32_t) == 0);
2461 start_rec_copy
= xlog_write_start_rec(ptr
, ticket
);
2462 if (start_rec_copy
) {
2464 xlog_write_adv_cnt(&ptr
, &len
, &log_offset
,
2468 ophdr
= xlog_write_setup_ophdr(log
, ptr
, ticket
, flags
);
2472 xlog_write_adv_cnt(&ptr
, &len
, &log_offset
,
2473 sizeof(struct xlog_op_header
));
2475 len
+= xlog_write_setup_copy(ticket
, ophdr
,
2476 iclog
->ic_size
-log_offset
,
2478 ©_off
, ©_len
,
2481 xlog_verify_dest_ptr(log
, ptr
);
2486 * Unmount records just log an opheader, so can have
2487 * empty payloads with no data region to copy. Hence we
2488 * only copy the payload if the vector says it has data
2491 ASSERT(copy_len
>= 0);
2493 memcpy(ptr
, reg
->i_addr
+ copy_off
, copy_len
);
2494 xlog_write_adv_cnt(&ptr
, &len
, &log_offset
,
2497 copy_len
+= start_rec_copy
+ sizeof(xlog_op_header_t
);
2499 data_cnt
+= contwr
? copy_len
: 0;
2501 error
= xlog_write_copy_finish(log
, iclog
, flags
,
2502 &record_cnt
, &data_cnt
,
2511 * if we had a partial copy, we need to get more iclog
2512 * space but we don't want to increment the region
2513 * index because there is still more is this region to
2516 * If we completed writing this region, and we flushed
2517 * the iclog (indicated by resetting of the record
2518 * count), then we also need to get more log space. If
2519 * this was the last record, though, we are done and
2525 if (++index
== lv
->lv_niovecs
) {
2530 vecp
= lv
->lv_iovecp
;
2532 if (record_cnt
== 0 && !ordered
) {
2542 xlog_state_finish_copy(log
, iclog
, record_cnt
, data_cnt
);
2544 return xlog_state_release_iclog(log
, iclog
);
2546 ASSERT(flags
& XLOG_COMMIT_TRANS
);
2547 *commit_iclog
= iclog
;
2552 /*****************************************************************************
2554 * State Machine functions
2556 *****************************************************************************
2559 /* Clean iclogs starting from the head. This ordering must be
2560 * maintained, so an iclog doesn't become ACTIVE beyond one that
2561 * is SYNCING. This is also required to maintain the notion that we use
2562 * a ordered wait queue to hold off would be writers to the log when every
2563 * iclog is trying to sync to disk.
2565 * State Change: DIRTY -> ACTIVE
2568 xlog_state_clean_log(
2571 xlog_in_core_t
*iclog
;
2574 iclog
= log
->l_iclog
;
2576 if (iclog
->ic_state
== XLOG_STATE_DIRTY
) {
2577 iclog
->ic_state
= XLOG_STATE_ACTIVE
;
2578 iclog
->ic_offset
= 0;
2579 ASSERT(iclog
->ic_callback
== NULL
);
2581 * If the number of ops in this iclog indicate it just
2582 * contains the dummy transaction, we can
2583 * change state into IDLE (the second time around).
2584 * Otherwise we should change the state into
2586 * We don't need to cover the dummy.
2589 (be32_to_cpu(iclog
->ic_header
.h_num_logops
) ==
2594 * We have two dirty iclogs so start over
2595 * This could also be num of ops indicates
2596 * this is not the dummy going out.
2600 iclog
->ic_header
.h_num_logops
= 0;
2601 memset(iclog
->ic_header
.h_cycle_data
, 0,
2602 sizeof(iclog
->ic_header
.h_cycle_data
));
2603 iclog
->ic_header
.h_lsn
= 0;
2604 } else if (iclog
->ic_state
== XLOG_STATE_ACTIVE
)
2607 break; /* stop cleaning */
2608 iclog
= iclog
->ic_next
;
2609 } while (iclog
!= log
->l_iclog
);
2611 /* log is locked when we are called */
2613 * Change state for the dummy log recording.
2614 * We usually go to NEED. But we go to NEED2 if the changed indicates
2615 * we are done writing the dummy record.
2616 * If we are done with the second dummy recored (DONE2), then
2620 switch (log
->l_covered_state
) {
2621 case XLOG_STATE_COVER_IDLE
:
2622 case XLOG_STATE_COVER_NEED
:
2623 case XLOG_STATE_COVER_NEED2
:
2624 log
->l_covered_state
= XLOG_STATE_COVER_NEED
;
2627 case XLOG_STATE_COVER_DONE
:
2629 log
->l_covered_state
= XLOG_STATE_COVER_NEED2
;
2631 log
->l_covered_state
= XLOG_STATE_COVER_NEED
;
2634 case XLOG_STATE_COVER_DONE2
:
2636 log
->l_covered_state
= XLOG_STATE_COVER_IDLE
;
2638 log
->l_covered_state
= XLOG_STATE_COVER_NEED
;
2645 } /* xlog_state_clean_log */
2648 xlog_get_lowest_lsn(
2651 xlog_in_core_t
*lsn_log
;
2652 xfs_lsn_t lowest_lsn
, lsn
;
2654 lsn_log
= log
->l_iclog
;
2657 if (!(lsn_log
->ic_state
& (XLOG_STATE_ACTIVE
|XLOG_STATE_DIRTY
))) {
2658 lsn
= be64_to_cpu(lsn_log
->ic_header
.h_lsn
);
2659 if ((lsn
&& !lowest_lsn
) ||
2660 (XFS_LSN_CMP(lsn
, lowest_lsn
) < 0)) {
2664 lsn_log
= lsn_log
->ic_next
;
2665 } while (lsn_log
!= log
->l_iclog
);
2671 xlog_state_do_callback(
2674 struct xlog_in_core
*ciclog
)
2676 xlog_in_core_t
*iclog
;
2677 xlog_in_core_t
*first_iclog
; /* used to know when we've
2678 * processed all iclogs once */
2679 xfs_log_callback_t
*cb
, *cb_next
;
2681 xfs_lsn_t lowest_lsn
;
2682 int ioerrors
; /* counter: iclogs with errors */
2683 int loopdidcallbacks
; /* flag: inner loop did callbacks*/
2684 int funcdidcallbacks
; /* flag: function did callbacks */
2685 int repeats
; /* for issuing console warnings if
2686 * looping too many times */
2688 spin_lock(&log
->l_icloglock
);
2689 first_iclog
= iclog
= log
->l_iclog
;
2691 funcdidcallbacks
= 0;
2696 * Scan all iclogs starting with the one pointed to by the
2697 * log. Reset this starting point each time the log is
2698 * unlocked (during callbacks).
2700 * Keep looping through iclogs until one full pass is made
2701 * without running any callbacks.
2703 first_iclog
= log
->l_iclog
;
2704 iclog
= log
->l_iclog
;
2705 loopdidcallbacks
= 0;
2710 /* skip all iclogs in the ACTIVE & DIRTY states */
2711 if (iclog
->ic_state
&
2712 (XLOG_STATE_ACTIVE
|XLOG_STATE_DIRTY
)) {
2713 iclog
= iclog
->ic_next
;
2718 * Between marking a filesystem SHUTDOWN and stopping
2719 * the log, we do flush all iclogs to disk (if there
2720 * wasn't a log I/O error). So, we do want things to
2721 * go smoothly in case of just a SHUTDOWN w/o a
2724 if (!(iclog
->ic_state
& XLOG_STATE_IOERROR
)) {
2726 * Can only perform callbacks in order. Since
2727 * this iclog is not in the DONE_SYNC/
2728 * DO_CALLBACK state, we skip the rest and
2729 * just try to clean up. If we set our iclog
2730 * to DO_CALLBACK, we will not process it when
2731 * we retry since a previous iclog is in the
2732 * CALLBACK and the state cannot change since
2733 * we are holding the l_icloglock.
2735 if (!(iclog
->ic_state
&
2736 (XLOG_STATE_DONE_SYNC
|
2737 XLOG_STATE_DO_CALLBACK
))) {
2738 if (ciclog
&& (ciclog
->ic_state
==
2739 XLOG_STATE_DONE_SYNC
)) {
2740 ciclog
->ic_state
= XLOG_STATE_DO_CALLBACK
;
2745 * We now have an iclog that is in either the
2746 * DO_CALLBACK or DONE_SYNC states. The other
2747 * states (WANT_SYNC, SYNCING, or CALLBACK were
2748 * caught by the above if and are going to
2749 * clean (i.e. we aren't doing their callbacks)
2754 * We will do one more check here to see if we
2755 * have chased our tail around.
2758 lowest_lsn
= xlog_get_lowest_lsn(log
);
2760 XFS_LSN_CMP(lowest_lsn
,
2761 be64_to_cpu(iclog
->ic_header
.h_lsn
)) < 0) {
2762 iclog
= iclog
->ic_next
;
2763 continue; /* Leave this iclog for
2767 iclog
->ic_state
= XLOG_STATE_CALLBACK
;
2771 * Completion of a iclog IO does not imply that
2772 * a transaction has completed, as transactions
2773 * can be large enough to span many iclogs. We
2774 * cannot change the tail of the log half way
2775 * through a transaction as this may be the only
2776 * transaction in the log and moving th etail to
2777 * point to the middle of it will prevent
2778 * recovery from finding the start of the
2779 * transaction. Hence we should only update the
2780 * last_sync_lsn if this iclog contains
2781 * transaction completion callbacks on it.
2783 * We have to do this before we drop the
2784 * icloglock to ensure we are the only one that
2787 ASSERT(XFS_LSN_CMP(atomic64_read(&log
->l_last_sync_lsn
),
2788 be64_to_cpu(iclog
->ic_header
.h_lsn
)) <= 0);
2789 if (iclog
->ic_callback
)
2790 atomic64_set(&log
->l_last_sync_lsn
,
2791 be64_to_cpu(iclog
->ic_header
.h_lsn
));
2796 spin_unlock(&log
->l_icloglock
);
2799 * Keep processing entries in the callback list until
2800 * we come around and it is empty. We need to
2801 * atomically see that the list is empty and change the
2802 * state to DIRTY so that we don't miss any more
2803 * callbacks being added.
2805 spin_lock(&iclog
->ic_callback_lock
);
2806 cb
= iclog
->ic_callback
;
2808 iclog
->ic_callback_tail
= &(iclog
->ic_callback
);
2809 iclog
->ic_callback
= NULL
;
2810 spin_unlock(&iclog
->ic_callback_lock
);
2812 /* perform callbacks in the order given */
2813 for (; cb
; cb
= cb_next
) {
2814 cb_next
= cb
->cb_next
;
2815 cb
->cb_func(cb
->cb_arg
, aborted
);
2817 spin_lock(&iclog
->ic_callback_lock
);
2818 cb
= iclog
->ic_callback
;
2824 spin_lock(&log
->l_icloglock
);
2825 ASSERT(iclog
->ic_callback
== NULL
);
2826 spin_unlock(&iclog
->ic_callback_lock
);
2827 if (!(iclog
->ic_state
& XLOG_STATE_IOERROR
))
2828 iclog
->ic_state
= XLOG_STATE_DIRTY
;
2831 * Transition from DIRTY to ACTIVE if applicable.
2832 * NOP if STATE_IOERROR.
2834 xlog_state_clean_log(log
);
2836 /* wake up threads waiting in xfs_log_force() */
2837 wake_up_all(&iclog
->ic_force_wait
);
2839 iclog
= iclog
->ic_next
;
2840 } while (first_iclog
!= iclog
);
2842 if (repeats
> 5000) {
2843 flushcnt
+= repeats
;
2846 "%s: possible infinite loop (%d iterations)",
2847 __func__
, flushcnt
);
2849 } while (!ioerrors
&& loopdidcallbacks
);
2853 * Make one last gasp attempt to see if iclogs are being left in limbo.
2854 * If the above loop finds an iclog earlier than the current iclog and
2855 * in one of the syncing states, the current iclog is put into
2856 * DO_CALLBACK and the callbacks are deferred to the completion of the
2857 * earlier iclog. Walk the iclogs in order and make sure that no iclog
2858 * is in DO_CALLBACK unless an earlier iclog is in one of the syncing
2861 * Note that SYNCING|IOABORT is a valid state so we cannot just check
2862 * for ic_state == SYNCING.
2864 if (funcdidcallbacks
) {
2865 first_iclog
= iclog
= log
->l_iclog
;
2867 ASSERT(iclog
->ic_state
!= XLOG_STATE_DO_CALLBACK
);
2869 * Terminate the loop if iclogs are found in states
2870 * which will cause other threads to clean up iclogs.
2872 * SYNCING - i/o completion will go through logs
2873 * DONE_SYNC - interrupt thread should be waiting for
2875 * IOERROR - give up hope all ye who enter here
2877 if (iclog
->ic_state
== XLOG_STATE_WANT_SYNC
||
2878 iclog
->ic_state
& XLOG_STATE_SYNCING
||
2879 iclog
->ic_state
== XLOG_STATE_DONE_SYNC
||
2880 iclog
->ic_state
== XLOG_STATE_IOERROR
)
2882 iclog
= iclog
->ic_next
;
2883 } while (first_iclog
!= iclog
);
2887 if (log
->l_iclog
->ic_state
& (XLOG_STATE_ACTIVE
|XLOG_STATE_IOERROR
))
2888 wake_up_all(&log
->l_flush_wait
);
2890 spin_unlock(&log
->l_icloglock
);
2895 * Finish transitioning this iclog to the dirty state.
2897 * Make sure that we completely execute this routine only when this is
2898 * the last call to the iclog. There is a good chance that iclog flushes,
2899 * when we reach the end of the physical log, get turned into 2 separate
2900 * calls to bwrite. Hence, one iclog flush could generate two calls to this
2901 * routine. By using the reference count bwritecnt, we guarantee that only
2902 * the second completion goes through.
2904 * Callbacks could take time, so they are done outside the scope of the
2905 * global state machine log lock.
2908 xlog_state_done_syncing(
2909 xlog_in_core_t
*iclog
,
2912 struct xlog
*log
= iclog
->ic_log
;
2914 spin_lock(&log
->l_icloglock
);
2916 ASSERT(iclog
->ic_state
== XLOG_STATE_SYNCING
||
2917 iclog
->ic_state
== XLOG_STATE_IOERROR
);
2918 ASSERT(atomic_read(&iclog
->ic_refcnt
) == 0);
2919 ASSERT(iclog
->ic_bwritecnt
== 1 || iclog
->ic_bwritecnt
== 2);
2923 * If we got an error, either on the first buffer, or in the case of
2924 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2925 * and none should ever be attempted to be written to disk
2928 if (iclog
->ic_state
!= XLOG_STATE_IOERROR
) {
2929 if (--iclog
->ic_bwritecnt
== 1) {
2930 spin_unlock(&log
->l_icloglock
);
2933 iclog
->ic_state
= XLOG_STATE_DONE_SYNC
;
2937 * Someone could be sleeping prior to writing out the next
2938 * iclog buffer, we wake them all, one will get to do the
2939 * I/O, the others get to wait for the result.
2941 wake_up_all(&iclog
->ic_write_wait
);
2942 spin_unlock(&log
->l_icloglock
);
2943 xlog_state_do_callback(log
, aborted
, iclog
); /* also cleans log */
2944 } /* xlog_state_done_syncing */
2948 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2949 * sleep. We wait on the flush queue on the head iclog as that should be
2950 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2951 * we will wait here and all new writes will sleep until a sync completes.
2953 * The in-core logs are used in a circular fashion. They are not used
2954 * out-of-order even when an iclog past the head is free.
2957 * * log_offset where xlog_write() can start writing into the in-core
2959 * * in-core log pointer to which xlog_write() should write.
2960 * * boolean indicating this is a continued write to an in-core log.
2961 * If this is the last write, then the in-core log's offset field
2962 * needs to be incremented, depending on the amount of data which
2966 xlog_state_get_iclog_space(
2969 struct xlog_in_core
**iclogp
,
2970 struct xlog_ticket
*ticket
,
2971 int *continued_write
,
2975 xlog_rec_header_t
*head
;
2976 xlog_in_core_t
*iclog
;
2980 spin_lock(&log
->l_icloglock
);
2981 if (XLOG_FORCED_SHUTDOWN(log
)) {
2982 spin_unlock(&log
->l_icloglock
);
2986 iclog
= log
->l_iclog
;
2987 if (iclog
->ic_state
!= XLOG_STATE_ACTIVE
) {
2988 XFS_STATS_INC(log
->l_mp
, xs_log_noiclogs
);
2990 /* Wait for log writes to have flushed */
2991 xlog_wait(&log
->l_flush_wait
, &log
->l_icloglock
);
2995 head
= &iclog
->ic_header
;
2997 atomic_inc(&iclog
->ic_refcnt
); /* prevents sync */
2998 log_offset
= iclog
->ic_offset
;
3000 /* On the 1st write to an iclog, figure out lsn. This works
3001 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
3002 * committing to. If the offset is set, that's how many blocks
3005 if (log_offset
== 0) {
3006 ticket
->t_curr_res
-= log
->l_iclog_hsize
;
3007 xlog_tic_add_region(ticket
,
3009 XLOG_REG_TYPE_LRHEADER
);
3010 head
->h_cycle
= cpu_to_be32(log
->l_curr_cycle
);
3011 head
->h_lsn
= cpu_to_be64(
3012 xlog_assign_lsn(log
->l_curr_cycle
, log
->l_curr_block
));
3013 ASSERT(log
->l_curr_block
>= 0);
3016 /* If there is enough room to write everything, then do it. Otherwise,
3017 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
3018 * bit is on, so this will get flushed out. Don't update ic_offset
3019 * until you know exactly how many bytes get copied. Therefore, wait
3020 * until later to update ic_offset.
3022 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
3023 * can fit into remaining data section.
3025 if (iclog
->ic_size
- iclog
->ic_offset
< 2*sizeof(xlog_op_header_t
)) {
3026 xlog_state_switch_iclogs(log
, iclog
, iclog
->ic_size
);
3029 * If I'm the only one writing to this iclog, sync it to disk.
3030 * We need to do an atomic compare and decrement here to avoid
3031 * racing with concurrent atomic_dec_and_lock() calls in
3032 * xlog_state_release_iclog() when there is more than one
3033 * reference to the iclog.
3035 if (!atomic_add_unless(&iclog
->ic_refcnt
, -1, 1)) {
3036 /* we are the only one */
3037 spin_unlock(&log
->l_icloglock
);
3038 error
= xlog_state_release_iclog(log
, iclog
);
3042 spin_unlock(&log
->l_icloglock
);
3047 /* Do we have enough room to write the full amount in the remainder
3048 * of this iclog? Or must we continue a write on the next iclog and
3049 * mark this iclog as completely taken? In the case where we switch
3050 * iclogs (to mark it taken), this particular iclog will release/sync
3051 * to disk in xlog_write().
3053 if (len
<= iclog
->ic_size
- iclog
->ic_offset
) {
3054 *continued_write
= 0;
3055 iclog
->ic_offset
+= len
;
3057 *continued_write
= 1;
3058 xlog_state_switch_iclogs(log
, iclog
, iclog
->ic_size
);
3062 ASSERT(iclog
->ic_offset
<= iclog
->ic_size
);
3063 spin_unlock(&log
->l_icloglock
);
3065 *logoffsetp
= log_offset
;
3067 } /* xlog_state_get_iclog_space */
3069 /* The first cnt-1 times through here we don't need to
3070 * move the grant write head because the permanent
3071 * reservation has reserved cnt times the unit amount.
3072 * Release part of current permanent unit reservation and
3073 * reset current reservation to be one units worth. Also
3074 * move grant reservation head forward.
3077 xlog_regrant_reserve_log_space(
3079 struct xlog_ticket
*ticket
)
3081 trace_xfs_log_regrant_reserve_enter(log
, ticket
);
3083 if (ticket
->t_cnt
> 0)
3086 xlog_grant_sub_space(log
, &log
->l_reserve_head
.grant
,
3087 ticket
->t_curr_res
);
3088 xlog_grant_sub_space(log
, &log
->l_write_head
.grant
,
3089 ticket
->t_curr_res
);
3090 ticket
->t_curr_res
= ticket
->t_unit_res
;
3091 xlog_tic_reset_res(ticket
);
3093 trace_xfs_log_regrant_reserve_sub(log
, ticket
);
3095 /* just return if we still have some of the pre-reserved space */
3096 if (ticket
->t_cnt
> 0)
3099 xlog_grant_add_space(log
, &log
->l_reserve_head
.grant
,
3100 ticket
->t_unit_res
);
3102 trace_xfs_log_regrant_reserve_exit(log
, ticket
);
3104 ticket
->t_curr_res
= ticket
->t_unit_res
;
3105 xlog_tic_reset_res(ticket
);
3106 } /* xlog_regrant_reserve_log_space */
3110 * Give back the space left from a reservation.
3112 * All the information we need to make a correct determination of space left
3113 * is present. For non-permanent reservations, things are quite easy. The
3114 * count should have been decremented to zero. We only need to deal with the
3115 * space remaining in the current reservation part of the ticket. If the
3116 * ticket contains a permanent reservation, there may be left over space which
3117 * needs to be released. A count of N means that N-1 refills of the current
3118 * reservation can be done before we need to ask for more space. The first
3119 * one goes to fill up the first current reservation. Once we run out of
3120 * space, the count will stay at zero and the only space remaining will be
3121 * in the current reservation field.
3124 xlog_ungrant_log_space(
3126 struct xlog_ticket
*ticket
)
3130 if (ticket
->t_cnt
> 0)
3133 trace_xfs_log_ungrant_enter(log
, ticket
);
3134 trace_xfs_log_ungrant_sub(log
, ticket
);
3137 * If this is a permanent reservation ticket, we may be able to free
3138 * up more space based on the remaining count.
3140 bytes
= ticket
->t_curr_res
;
3141 if (ticket
->t_cnt
> 0) {
3142 ASSERT(ticket
->t_flags
& XLOG_TIC_PERM_RESERV
);
3143 bytes
+= ticket
->t_unit_res
*ticket
->t_cnt
;
3146 xlog_grant_sub_space(log
, &log
->l_reserve_head
.grant
, bytes
);
3147 xlog_grant_sub_space(log
, &log
->l_write_head
.grant
, bytes
);
3149 trace_xfs_log_ungrant_exit(log
, ticket
);
3151 xfs_log_space_wake(log
->l_mp
);
3155 * Flush iclog to disk if this is the last reference to the given iclog and
3156 * the WANT_SYNC bit is set.
3158 * When this function is entered, the iclog is not necessarily in the
3159 * WANT_SYNC state. It may be sitting around waiting to get filled.
3164 xlog_state_release_iclog(
3166 struct xlog_in_core
*iclog
)
3168 int sync
= 0; /* do we sync? */
3170 if (iclog
->ic_state
& XLOG_STATE_IOERROR
)
3173 ASSERT(atomic_read(&iclog
->ic_refcnt
) > 0);
3174 if (!atomic_dec_and_lock(&iclog
->ic_refcnt
, &log
->l_icloglock
))
3177 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3178 spin_unlock(&log
->l_icloglock
);
3181 ASSERT(iclog
->ic_state
== XLOG_STATE_ACTIVE
||
3182 iclog
->ic_state
== XLOG_STATE_WANT_SYNC
);
3184 if (iclog
->ic_state
== XLOG_STATE_WANT_SYNC
) {
3185 /* update tail before writing to iclog */
3186 xfs_lsn_t tail_lsn
= xlog_assign_tail_lsn(log
->l_mp
);
3188 iclog
->ic_state
= XLOG_STATE_SYNCING
;
3189 iclog
->ic_header
.h_tail_lsn
= cpu_to_be64(tail_lsn
);
3190 xlog_verify_tail_lsn(log
, iclog
, tail_lsn
);
3191 /* cycle incremented when incrementing curr_block */
3193 spin_unlock(&log
->l_icloglock
);
3196 * We let the log lock go, so it's possible that we hit a log I/O
3197 * error or some other SHUTDOWN condition that marks the iclog
3198 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3199 * this iclog has consistent data, so we ignore IOERROR
3200 * flags after this point.
3203 return xlog_sync(log
, iclog
);
3205 } /* xlog_state_release_iclog */
3209 * This routine will mark the current iclog in the ring as WANT_SYNC
3210 * and move the current iclog pointer to the next iclog in the ring.
3211 * When this routine is called from xlog_state_get_iclog_space(), the
3212 * exact size of the iclog has not yet been determined. All we know is
3213 * that every data block. We have run out of space in this log record.
3216 xlog_state_switch_iclogs(
3218 struct xlog_in_core
*iclog
,
3221 ASSERT(iclog
->ic_state
== XLOG_STATE_ACTIVE
);
3223 eventual_size
= iclog
->ic_offset
;
3224 iclog
->ic_state
= XLOG_STATE_WANT_SYNC
;
3225 iclog
->ic_header
.h_prev_block
= cpu_to_be32(log
->l_prev_block
);
3226 log
->l_prev_block
= log
->l_curr_block
;
3227 log
->l_prev_cycle
= log
->l_curr_cycle
;
3229 /* roll log?: ic_offset changed later */
3230 log
->l_curr_block
+= BTOBB(eventual_size
)+BTOBB(log
->l_iclog_hsize
);
3232 /* Round up to next log-sunit */
3233 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
) &&
3234 log
->l_mp
->m_sb
.sb_logsunit
> 1) {
3235 uint32_t sunit_bb
= BTOBB(log
->l_mp
->m_sb
.sb_logsunit
);
3236 log
->l_curr_block
= roundup(log
->l_curr_block
, sunit_bb
);
3239 if (log
->l_curr_block
>= log
->l_logBBsize
) {
3241 * Rewind the current block before the cycle is bumped to make
3242 * sure that the combined LSN never transiently moves forward
3243 * when the log wraps to the next cycle. This is to support the
3244 * unlocked sample of these fields from xlog_valid_lsn(). Most
3245 * other cases should acquire l_icloglock.
3247 log
->l_curr_block
-= log
->l_logBBsize
;
3248 ASSERT(log
->l_curr_block
>= 0);
3250 log
->l_curr_cycle
++;
3251 if (log
->l_curr_cycle
== XLOG_HEADER_MAGIC_NUM
)
3252 log
->l_curr_cycle
++;
3254 ASSERT(iclog
== log
->l_iclog
);
3255 log
->l_iclog
= iclog
->ic_next
;
3256 } /* xlog_state_switch_iclogs */
3259 * Write out all data in the in-core log as of this exact moment in time.
3261 * Data may be written to the in-core log during this call. However,
3262 * we don't guarantee this data will be written out. A change from past
3263 * implementation means this routine will *not* write out zero length LRs.
3265 * Basically, we try and perform an intelligent scan of the in-core logs.
3266 * If we determine there is no flushable data, we just return. There is no
3267 * flushable data if:
3269 * 1. the current iclog is active and has no data; the previous iclog
3270 * is in the active or dirty state.
3271 * 2. the current iclog is drity, and the previous iclog is in the
3272 * active or dirty state.
3276 * 1. the current iclog is not in the active nor dirty state.
3277 * 2. the current iclog dirty, and the previous iclog is not in the
3278 * active nor dirty state.
3279 * 3. the current iclog is active, and there is another thread writing
3280 * to this particular iclog.
3281 * 4. a) the current iclog is active and has no other writers
3282 * b) when we return from flushing out this iclog, it is still
3283 * not in the active nor dirty state.
3287 struct xfs_mount
*mp
,
3291 struct xlog
*log
= mp
->m_log
;
3292 struct xlog_in_core
*iclog
;
3295 XFS_STATS_INC(mp
, xs_log_force
);
3297 xlog_cil_force(log
);
3299 spin_lock(&log
->l_icloglock
);
3301 iclog
= log
->l_iclog
;
3302 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3303 spin_unlock(&log
->l_icloglock
);
3307 /* If the head iclog is not active nor dirty, we just attach
3308 * ourselves to the head and go to sleep.
3310 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
||
3311 iclog
->ic_state
== XLOG_STATE_DIRTY
) {
3313 * If the head is dirty or (active and empty), then
3314 * we need to look at the previous iclog. If the previous
3315 * iclog is active or dirty we are done. There is nothing
3316 * to sync out. Otherwise, we attach ourselves to the
3317 * previous iclog and go to sleep.
3319 if (iclog
->ic_state
== XLOG_STATE_DIRTY
||
3320 (atomic_read(&iclog
->ic_refcnt
) == 0
3321 && iclog
->ic_offset
== 0)) {
3322 iclog
= iclog
->ic_prev
;
3323 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
||
3324 iclog
->ic_state
== XLOG_STATE_DIRTY
)
3329 if (atomic_read(&iclog
->ic_refcnt
) == 0) {
3330 /* We are the only one with access to this
3331 * iclog. Flush it out now. There should
3332 * be a roundoff of zero to show that someone
3333 * has already taken care of the roundoff from
3334 * the previous sync.
3336 atomic_inc(&iclog
->ic_refcnt
);
3337 lsn
= be64_to_cpu(iclog
->ic_header
.h_lsn
);
3338 xlog_state_switch_iclogs(log
, iclog
, 0);
3339 spin_unlock(&log
->l_icloglock
);
3341 if (xlog_state_release_iclog(log
, iclog
))
3346 spin_lock(&log
->l_icloglock
);
3347 if (be64_to_cpu(iclog
->ic_header
.h_lsn
) == lsn
&&
3348 iclog
->ic_state
!= XLOG_STATE_DIRTY
)
3353 /* Someone else is writing to this iclog.
3354 * Use its call to flush out the data. However,
3355 * the other thread may not force out this LR,
3356 * so we mark it WANT_SYNC.
3358 xlog_state_switch_iclogs(log
, iclog
, 0);
3364 /* By the time we come around again, the iclog could've been filled
3365 * which would give it another lsn. If we have a new lsn, just
3366 * return because the relevant data has been flushed.
3369 if (flags
& XFS_LOG_SYNC
) {
3371 * We must check if we're shutting down here, before
3372 * we wait, while we're holding the l_icloglock.
3373 * Then we check again after waking up, in case our
3374 * sleep was disturbed by a bad news.
3376 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3377 spin_unlock(&log
->l_icloglock
);
3380 XFS_STATS_INC(mp
, xs_log_force_sleep
);
3381 xlog_wait(&iclog
->ic_force_wait
, &log
->l_icloglock
);
3383 * No need to grab the log lock here since we're
3384 * only deciding whether or not to return EIO
3385 * and the memory read should be atomic.
3387 if (iclog
->ic_state
& XLOG_STATE_IOERROR
)
3392 spin_unlock(&log
->l_icloglock
);
3398 * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3399 * about errors or whether the log was flushed or not. This is the normal
3400 * interface to use when trying to unpin items or move the log forward.
3407 trace_xfs_log_force(mp
, 0, _RET_IP_
);
3408 _xfs_log_force(mp
, flags
, NULL
);
3412 * Force the in-core log to disk for a specific LSN.
3414 * Find in-core log with lsn.
3415 * If it is in the DIRTY state, just return.
3416 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3417 * state and go to sleep or return.
3418 * If it is in any other state, go to sleep or return.
3420 * Synchronous forces are implemented with a signal variable. All callers
3421 * to force a given lsn to disk will wait on a the sv attached to the
3422 * specific in-core log. When given in-core log finally completes its
3423 * write to disk, that thread will wake up all threads waiting on the
3428 struct xfs_mount
*mp
,
3433 struct xlog
*log
= mp
->m_log
;
3434 struct xlog_in_core
*iclog
;
3435 int already_slept
= 0;
3439 XFS_STATS_INC(mp
, xs_log_force
);
3441 lsn
= xlog_cil_force_lsn(log
, lsn
);
3442 if (lsn
== NULLCOMMITLSN
)
3446 spin_lock(&log
->l_icloglock
);
3447 iclog
= log
->l_iclog
;
3448 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3449 spin_unlock(&log
->l_icloglock
);
3454 if (be64_to_cpu(iclog
->ic_header
.h_lsn
) != lsn
) {
3455 iclog
= iclog
->ic_next
;
3459 if (iclog
->ic_state
== XLOG_STATE_DIRTY
) {
3460 spin_unlock(&log
->l_icloglock
);
3464 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
) {
3466 * We sleep here if we haven't already slept (e.g.
3467 * this is the first time we've looked at the correct
3468 * iclog buf) and the buffer before us is going to
3469 * be sync'ed. The reason for this is that if we
3470 * are doing sync transactions here, by waiting for
3471 * the previous I/O to complete, we can allow a few
3472 * more transactions into this iclog before we close
3475 * Otherwise, we mark the buffer WANT_SYNC, and bump
3476 * up the refcnt so we can release the log (which
3477 * drops the ref count). The state switch keeps new
3478 * transaction commits from using this buffer. When
3479 * the current commits finish writing into the buffer,
3480 * the refcount will drop to zero and the buffer will
3483 if (!already_slept
&&
3484 (iclog
->ic_prev
->ic_state
&
3485 (XLOG_STATE_WANT_SYNC
| XLOG_STATE_SYNCING
))) {
3486 ASSERT(!(iclog
->ic_state
& XLOG_STATE_IOERROR
));
3488 XFS_STATS_INC(mp
, xs_log_force_sleep
);
3490 xlog_wait(&iclog
->ic_prev
->ic_write_wait
,
3495 atomic_inc(&iclog
->ic_refcnt
);
3496 xlog_state_switch_iclogs(log
, iclog
, 0);
3497 spin_unlock(&log
->l_icloglock
);
3498 if (xlog_state_release_iclog(log
, iclog
))
3502 spin_lock(&log
->l_icloglock
);
3505 if ((flags
& XFS_LOG_SYNC
) && /* sleep */
3507 (XLOG_STATE_ACTIVE
| XLOG_STATE_DIRTY
))) {
3509 * Don't wait on completion if we know that we've
3510 * gotten a log write error.
3512 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3513 spin_unlock(&log
->l_icloglock
);
3516 XFS_STATS_INC(mp
, xs_log_force_sleep
);
3517 xlog_wait(&iclog
->ic_force_wait
, &log
->l_icloglock
);
3519 * No need to grab the log lock here since we're
3520 * only deciding whether or not to return EIO
3521 * and the memory read should be atomic.
3523 if (iclog
->ic_state
& XLOG_STATE_IOERROR
)
3525 } else { /* just return */
3526 spin_unlock(&log
->l_icloglock
);
3530 } while (iclog
!= log
->l_iclog
);
3532 spin_unlock(&log
->l_icloglock
);
3537 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3538 * about errors or whether the log was flushed or not. This is the normal
3539 * interface to use when trying to unpin items or move the log forward.
3547 trace_xfs_log_force(mp
, lsn
, _RET_IP_
);
3548 _xfs_log_force_lsn(mp
, lsn
, flags
, NULL
);
3552 * Called when we want to mark the current iclog as being ready to sync to
3556 xlog_state_want_sync(
3558 struct xlog_in_core
*iclog
)
3560 assert_spin_locked(&log
->l_icloglock
);
3562 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
) {
3563 xlog_state_switch_iclogs(log
, iclog
, 0);
3565 ASSERT(iclog
->ic_state
&
3566 (XLOG_STATE_WANT_SYNC
|XLOG_STATE_IOERROR
));
3571 /*****************************************************************************
3575 *****************************************************************************
3579 * Free a used ticket when its refcount falls to zero.
3583 xlog_ticket_t
*ticket
)
3585 ASSERT(atomic_read(&ticket
->t_ref
) > 0);
3586 if (atomic_dec_and_test(&ticket
->t_ref
))
3587 kmem_zone_free(xfs_log_ticket_zone
, ticket
);
3592 xlog_ticket_t
*ticket
)
3594 ASSERT(atomic_read(&ticket
->t_ref
) > 0);
3595 atomic_inc(&ticket
->t_ref
);
3600 * Figure out the total log space unit (in bytes) that would be
3601 * required for a log ticket.
3604 xfs_log_calc_unit_res(
3605 struct xfs_mount
*mp
,
3608 struct xlog
*log
= mp
->m_log
;
3613 * Permanent reservations have up to 'cnt'-1 active log operations
3614 * in the log. A unit in this case is the amount of space for one
3615 * of these log operations. Normal reservations have a cnt of 1
3616 * and their unit amount is the total amount of space required.
3618 * The following lines of code account for non-transaction data
3619 * which occupy space in the on-disk log.
3621 * Normal form of a transaction is:
3622 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3623 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3625 * We need to account for all the leadup data and trailer data
3626 * around the transaction data.
3627 * And then we need to account for the worst case in terms of using
3629 * The worst case will happen if:
3630 * - the placement of the transaction happens to be such that the
3631 * roundoff is at its maximum
3632 * - the transaction data is synced before the commit record is synced
3633 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3634 * Therefore the commit record is in its own Log Record.
3635 * This can happen as the commit record is called with its
3636 * own region to xlog_write().
3637 * This then means that in the worst case, roundoff can happen for
3638 * the commit-rec as well.
3639 * The commit-rec is smaller than padding in this scenario and so it is
3640 * not added separately.
3643 /* for trans header */
3644 unit_bytes
+= sizeof(xlog_op_header_t
);
3645 unit_bytes
+= sizeof(xfs_trans_header_t
);
3648 unit_bytes
+= sizeof(xlog_op_header_t
);
3651 * for LR headers - the space for data in an iclog is the size minus
3652 * the space used for the headers. If we use the iclog size, then we
3653 * undercalculate the number of headers required.
3655 * Furthermore - the addition of op headers for split-recs might
3656 * increase the space required enough to require more log and op
3657 * headers, so take that into account too.
3659 * IMPORTANT: This reservation makes the assumption that if this
3660 * transaction is the first in an iclog and hence has the LR headers
3661 * accounted to it, then the remaining space in the iclog is
3662 * exclusively for this transaction. i.e. if the transaction is larger
3663 * than the iclog, it will be the only thing in that iclog.
3664 * Fundamentally, this means we must pass the entire log vector to
3665 * xlog_write to guarantee this.
3667 iclog_space
= log
->l_iclog_size
- log
->l_iclog_hsize
;
3668 num_headers
= howmany(unit_bytes
, iclog_space
);
3670 /* for split-recs - ophdrs added when data split over LRs */
3671 unit_bytes
+= sizeof(xlog_op_header_t
) * num_headers
;
3673 /* add extra header reservations if we overrun */
3674 while (!num_headers
||
3675 howmany(unit_bytes
, iclog_space
) > num_headers
) {
3676 unit_bytes
+= sizeof(xlog_op_header_t
);
3679 unit_bytes
+= log
->l_iclog_hsize
* num_headers
;
3681 /* for commit-rec LR header - note: padding will subsume the ophdr */
3682 unit_bytes
+= log
->l_iclog_hsize
;
3684 /* for roundoff padding for transaction data and one for commit record */
3685 if (xfs_sb_version_haslogv2(&mp
->m_sb
) && mp
->m_sb
.sb_logsunit
> 1) {
3686 /* log su roundoff */
3687 unit_bytes
+= 2 * mp
->m_sb
.sb_logsunit
;
3690 unit_bytes
+= 2 * BBSIZE
;
3697 * Allocate and initialise a new log ticket.
3699 struct xlog_ticket
*
3706 xfs_km_flags_t alloc_flags
)
3708 struct xlog_ticket
*tic
;
3711 tic
= kmem_zone_zalloc(xfs_log_ticket_zone
, alloc_flags
);
3715 unit_res
= xfs_log_calc_unit_res(log
->l_mp
, unit_bytes
);
3717 atomic_set(&tic
->t_ref
, 1);
3718 tic
->t_task
= current
;
3719 INIT_LIST_HEAD(&tic
->t_queue
);
3720 tic
->t_unit_res
= unit_res
;
3721 tic
->t_curr_res
= unit_res
;
3724 tic
->t_tid
= prandom_u32();
3725 tic
->t_clientid
= client
;
3726 tic
->t_flags
= XLOG_TIC_INITED
;
3728 tic
->t_flags
|= XLOG_TIC_PERM_RESERV
;
3730 xlog_tic_reset_res(tic
);
3736 /******************************************************************************
3738 * Log debug routines
3740 ******************************************************************************
3744 * Make sure that the destination ptr is within the valid data region of
3745 * one of the iclogs. This uses backup pointers stored in a different
3746 * part of the log in case we trash the log structure.
3749 xlog_verify_dest_ptr(
3756 for (i
= 0; i
< log
->l_iclog_bufs
; i
++) {
3757 if (ptr
>= log
->l_iclog_bak
[i
] &&
3758 ptr
<= log
->l_iclog_bak
[i
] + log
->l_iclog_size
)
3763 xfs_emerg(log
->l_mp
, "%s: invalid ptr", __func__
);
3767 * Check to make sure the grant write head didn't just over lap the tail. If
3768 * the cycles are the same, we can't be overlapping. Otherwise, make sure that
3769 * the cycles differ by exactly one and check the byte count.
3771 * This check is run unlocked, so can give false positives. Rather than assert
3772 * on failures, use a warn-once flag and a panic tag to allow the admin to
3773 * determine if they want to panic the machine when such an error occurs. For
3774 * debug kernels this will have the same effect as using an assert but, unlinke
3775 * an assert, it can be turned off at runtime.
3778 xlog_verify_grant_tail(
3781 int tail_cycle
, tail_blocks
;
3784 xlog_crack_grant_head(&log
->l_write_head
.grant
, &cycle
, &space
);
3785 xlog_crack_atomic_lsn(&log
->l_tail_lsn
, &tail_cycle
, &tail_blocks
);
3786 if (tail_cycle
!= cycle
) {
3787 if (cycle
- 1 != tail_cycle
&&
3788 !(log
->l_flags
& XLOG_TAIL_WARN
)) {
3789 xfs_alert_tag(log
->l_mp
, XFS_PTAG_LOGRES
,
3790 "%s: cycle - 1 != tail_cycle", __func__
);
3791 log
->l_flags
|= XLOG_TAIL_WARN
;
3794 if (space
> BBTOB(tail_blocks
) &&
3795 !(log
->l_flags
& XLOG_TAIL_WARN
)) {
3796 xfs_alert_tag(log
->l_mp
, XFS_PTAG_LOGRES
,
3797 "%s: space > BBTOB(tail_blocks)", __func__
);
3798 log
->l_flags
|= XLOG_TAIL_WARN
;
3803 /* check if it will fit */
3805 xlog_verify_tail_lsn(
3807 struct xlog_in_core
*iclog
,
3812 if (CYCLE_LSN(tail_lsn
) == log
->l_prev_cycle
) {
3814 log
->l_logBBsize
- (log
->l_prev_block
- BLOCK_LSN(tail_lsn
));
3815 if (blocks
< BTOBB(iclog
->ic_offset
)+BTOBB(log
->l_iclog_hsize
))
3816 xfs_emerg(log
->l_mp
, "%s: ran out of log space", __func__
);
3818 ASSERT(CYCLE_LSN(tail_lsn
)+1 == log
->l_prev_cycle
);
3820 if (BLOCK_LSN(tail_lsn
) == log
->l_prev_block
)
3821 xfs_emerg(log
->l_mp
, "%s: tail wrapped", __func__
);
3823 blocks
= BLOCK_LSN(tail_lsn
) - log
->l_prev_block
;
3824 if (blocks
< BTOBB(iclog
->ic_offset
) + 1)
3825 xfs_emerg(log
->l_mp
, "%s: ran out of log space", __func__
);
3827 } /* xlog_verify_tail_lsn */
3830 * Perform a number of checks on the iclog before writing to disk.
3832 * 1. Make sure the iclogs are still circular
3833 * 2. Make sure we have a good magic number
3834 * 3. Make sure we don't have magic numbers in the data
3835 * 4. Check fields of each log operation header for:
3836 * A. Valid client identifier
3837 * B. tid ptr value falls in valid ptr space (user space code)
3838 * C. Length in log record header is correct according to the
3839 * individual operation headers within record.
3840 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3841 * log, check the preceding blocks of the physical log to make sure all
3842 * the cycle numbers agree with the current cycle number.
3847 struct xlog_in_core
*iclog
,
3851 xlog_op_header_t
*ophead
;
3852 xlog_in_core_t
*icptr
;
3853 xlog_in_core_2_t
*xhdr
;
3854 void *base_ptr
, *ptr
, *p
;
3855 ptrdiff_t field_offset
;
3857 int len
, i
, j
, k
, op_len
;
3860 /* check validity of iclog pointers */
3861 spin_lock(&log
->l_icloglock
);
3862 icptr
= log
->l_iclog
;
3863 for (i
= 0; i
< log
->l_iclog_bufs
; i
++, icptr
= icptr
->ic_next
)
3866 if (icptr
!= log
->l_iclog
)
3867 xfs_emerg(log
->l_mp
, "%s: corrupt iclog ring", __func__
);
3868 spin_unlock(&log
->l_icloglock
);
3870 /* check log magic numbers */
3871 if (iclog
->ic_header
.h_magicno
!= cpu_to_be32(XLOG_HEADER_MAGIC_NUM
))
3872 xfs_emerg(log
->l_mp
, "%s: invalid magic num", __func__
);
3874 base_ptr
= ptr
= &iclog
->ic_header
;
3875 p
= &iclog
->ic_header
;
3876 for (ptr
+= BBSIZE
; ptr
< base_ptr
+ count
; ptr
+= BBSIZE
) {
3877 if (*(__be32
*)ptr
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
))
3878 xfs_emerg(log
->l_mp
, "%s: unexpected magic num",
3883 len
= be32_to_cpu(iclog
->ic_header
.h_num_logops
);
3884 base_ptr
= ptr
= iclog
->ic_datap
;
3886 xhdr
= iclog
->ic_data
;
3887 for (i
= 0; i
< len
; i
++) {
3890 /* clientid is only 1 byte */
3891 p
= &ophead
->oh_clientid
;
3892 field_offset
= p
- base_ptr
;
3893 if (!syncing
|| (field_offset
& 0x1ff)) {
3894 clientid
= ophead
->oh_clientid
;
3896 idx
= BTOBBT((char *)&ophead
->oh_clientid
- iclog
->ic_datap
);
3897 if (idx
>= (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
)) {
3898 j
= idx
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3899 k
= idx
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3900 clientid
= xlog_get_client_id(
3901 xhdr
[j
].hic_xheader
.xh_cycle_data
[k
]);
3903 clientid
= xlog_get_client_id(
3904 iclog
->ic_header
.h_cycle_data
[idx
]);
3907 if (clientid
!= XFS_TRANSACTION
&& clientid
!= XFS_LOG
)
3909 "%s: invalid clientid %d op 0x%p offset 0x%lx",
3910 __func__
, clientid
, ophead
,
3911 (unsigned long)field_offset
);
3914 p
= &ophead
->oh_len
;
3915 field_offset
= p
- base_ptr
;
3916 if (!syncing
|| (field_offset
& 0x1ff)) {
3917 op_len
= be32_to_cpu(ophead
->oh_len
);
3919 idx
= BTOBBT((uintptr_t)&ophead
->oh_len
-
3920 (uintptr_t)iclog
->ic_datap
);
3921 if (idx
>= (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
)) {
3922 j
= idx
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3923 k
= idx
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3924 op_len
= be32_to_cpu(xhdr
[j
].hic_xheader
.xh_cycle_data
[k
]);
3926 op_len
= be32_to_cpu(iclog
->ic_header
.h_cycle_data
[idx
]);
3929 ptr
+= sizeof(xlog_op_header_t
) + op_len
;
3931 } /* xlog_verify_iclog */
3935 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3941 xlog_in_core_t
*iclog
, *ic
;
3943 iclog
= log
->l_iclog
;
3944 if (! (iclog
->ic_state
& XLOG_STATE_IOERROR
)) {
3946 * Mark all the incore logs IOERROR.
3947 * From now on, no log flushes will result.
3951 ic
->ic_state
= XLOG_STATE_IOERROR
;
3953 } while (ic
!= iclog
);
3957 * Return non-zero, if state transition has already happened.
3963 * This is called from xfs_force_shutdown, when we're forcibly
3964 * shutting down the filesystem, typically because of an IO error.
3965 * Our main objectives here are to make sure that:
3966 * a. if !logerror, flush the logs to disk. Anything modified
3967 * after this is ignored.
3968 * b. the filesystem gets marked 'SHUTDOWN' for all interested
3969 * parties to find out, 'atomically'.
3970 * c. those who're sleeping on log reservations, pinned objects and
3971 * other resources get woken up, and be told the bad news.
3972 * d. nothing new gets queued up after (b) and (c) are done.
3974 * Note: for the !logerror case we need to flush the regions held in memory out
3975 * to disk first. This needs to be done before the log is marked as shutdown,
3976 * otherwise the iclog writes will fail.
3979 xfs_log_force_umount(
3980 struct xfs_mount
*mp
,
3989 * If this happens during log recovery, don't worry about
3990 * locking; the log isn't open for business yet.
3993 log
->l_flags
& XLOG_ACTIVE_RECOVERY
) {
3994 mp
->m_flags
|= XFS_MOUNT_FS_SHUTDOWN
;
3996 mp
->m_sb_bp
->b_flags
|= XBF_DONE
;
4001 * Somebody could've already done the hard work for us.
4002 * No need to get locks for this.
4004 if (logerror
&& log
->l_iclog
->ic_state
& XLOG_STATE_IOERROR
) {
4005 ASSERT(XLOG_FORCED_SHUTDOWN(log
));
4010 * Flush all the completed transactions to disk before marking the log
4011 * being shut down. We need to do it in this order to ensure that
4012 * completed operations are safely on disk before we shut down, and that
4013 * we don't have to issue any buffer IO after the shutdown flags are set
4014 * to guarantee this.
4017 _xfs_log_force(mp
, XFS_LOG_SYNC
, NULL
);
4020 * mark the filesystem and the as in a shutdown state and wake
4021 * everybody up to tell them the bad news.
4023 spin_lock(&log
->l_icloglock
);
4024 mp
->m_flags
|= XFS_MOUNT_FS_SHUTDOWN
;
4026 mp
->m_sb_bp
->b_flags
|= XBF_DONE
;
4029 * Mark the log and the iclogs with IO error flags to prevent any
4030 * further log IO from being issued or completed.
4032 log
->l_flags
|= XLOG_IO_ERROR
;
4033 retval
= xlog_state_ioerror(log
);
4034 spin_unlock(&log
->l_icloglock
);
4037 * We don't want anybody waiting for log reservations after this. That
4038 * means we have to wake up everybody queued up on reserveq as well as
4039 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
4040 * we don't enqueue anything once the SHUTDOWN flag is set, and this
4041 * action is protected by the grant locks.
4043 xlog_grant_head_wake_all(&log
->l_reserve_head
);
4044 xlog_grant_head_wake_all(&log
->l_write_head
);
4047 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
4048 * as if the log writes were completed. The abort handling in the log
4049 * item committed callback functions will do this again under lock to
4052 spin_lock(&log
->l_cilp
->xc_push_lock
);
4053 wake_up_all(&log
->l_cilp
->xc_commit_wait
);
4054 spin_unlock(&log
->l_cilp
->xc_push_lock
);
4055 xlog_state_do_callback(log
, XFS_LI_ABORTED
, NULL
);
4057 #ifdef XFSERRORDEBUG
4059 xlog_in_core_t
*iclog
;
4061 spin_lock(&log
->l_icloglock
);
4062 iclog
= log
->l_iclog
;
4064 ASSERT(iclog
->ic_callback
== 0);
4065 iclog
= iclog
->ic_next
;
4066 } while (iclog
!= log
->l_iclog
);
4067 spin_unlock(&log
->l_icloglock
);
4070 /* return non-zero if log IOERROR transition had already happened */
4078 xlog_in_core_t
*iclog
;
4080 iclog
= log
->l_iclog
;
4082 /* endianness does not matter here, zero is zero in
4085 if (iclog
->ic_header
.h_num_logops
)
4087 iclog
= iclog
->ic_next
;
4088 } while (iclog
!= log
->l_iclog
);
4093 * Verify that an LSN stamped into a piece of metadata is valid. This is
4094 * intended for use in read verifiers on v5 superblocks.
4098 struct xfs_mount
*mp
,
4101 struct xlog
*log
= mp
->m_log
;
4105 * norecovery mode skips mount-time log processing and unconditionally
4106 * resets the in-core LSN. We can't validate in this mode, but
4107 * modifications are not allowed anyways so just return true.
4109 if (mp
->m_flags
& XFS_MOUNT_NORECOVERY
)
4113 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
4114 * handled by recovery and thus safe to ignore here.
4116 if (lsn
== NULLCOMMITLSN
)
4119 valid
= xlog_valid_lsn(mp
->m_log
, lsn
);
4121 /* warn the user about what's gone wrong before verifier failure */
4123 spin_lock(&log
->l_icloglock
);
4125 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
4126 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
4127 CYCLE_LSN(lsn
), BLOCK_LSN(lsn
),
4128 log
->l_curr_cycle
, log
->l_curr_block
);
4129 spin_unlock(&log
->l_icloglock
);