2 * kernel/stop_machine.c
4 * Copyright (C) 2008, 2005 IBM Corporation.
5 * Copyright (C) 2008, 2005 Rusty Russell rusty@rustcorp.com.au
6 * Copyright (C) 2010 SUSE Linux Products GmbH
7 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
9 * This file is released under the GPLv2 and any later version.
11 #include <linux/completion.h>
12 #include <linux/cpu.h>
13 #include <linux/init.h>
14 #include <linux/kthread.h>
15 #include <linux/export.h>
16 #include <linux/percpu.h>
17 #include <linux/sched.h>
18 #include <linux/stop_machine.h>
19 #include <linux/interrupt.h>
20 #include <linux/kallsyms.h>
21 #include <linux/smpboot.h>
22 #include <linux/atomic.h>
23 #include <linux/lglock.h>
24 #include <linux/nmi.h>
27 * Structure to determine completion condition and record errors. May
28 * be shared by works on different cpus.
30 struct cpu_stop_done
{
31 atomic_t nr_todo
; /* nr left to execute */
32 int ret
; /* collected return value */
33 struct completion completion
; /* fired if nr_todo reaches 0 */
36 /* the actual stopper, one per every possible cpu, enabled on online cpus */
38 struct task_struct
*thread
;
41 bool enabled
; /* is this stopper enabled? */
42 struct list_head works
; /* list of pending works */
44 struct cpu_stop_work stop_work
; /* for stop_cpus */
47 static DEFINE_PER_CPU(struct cpu_stopper
, cpu_stopper
);
48 static bool stop_machine_initialized
= false;
51 * Avoids a race between stop_two_cpus and global stop_cpus, where
52 * the stoppers could get queued up in reverse order, leading to
53 * system deadlock. Using an lglock means stop_two_cpus remains
56 DEFINE_STATIC_LGLOCK(stop_cpus_lock
);
58 static void cpu_stop_init_done(struct cpu_stop_done
*done
, unsigned int nr_todo
)
60 memset(done
, 0, sizeof(*done
));
61 atomic_set(&done
->nr_todo
, nr_todo
);
62 init_completion(&done
->completion
);
65 /* signal completion unless @done is NULL */
66 static void cpu_stop_signal_done(struct cpu_stop_done
*done
)
68 if (atomic_dec_and_test(&done
->nr_todo
))
69 complete(&done
->completion
);
72 static void __cpu_stop_queue_work(struct cpu_stopper
*stopper
,
73 struct cpu_stop_work
*work
)
75 list_add_tail(&work
->list
, &stopper
->works
);
76 wake_up_process(stopper
->thread
);
79 /* queue @work to @stopper. if offline, @work is completed immediately */
80 static bool cpu_stop_queue_work(unsigned int cpu
, struct cpu_stop_work
*work
)
82 struct cpu_stopper
*stopper
= &per_cpu(cpu_stopper
, cpu
);
86 spin_lock_irqsave(&stopper
->lock
, flags
);
87 enabled
= stopper
->enabled
;
89 __cpu_stop_queue_work(stopper
, work
);
91 cpu_stop_signal_done(work
->done
);
92 spin_unlock_irqrestore(&stopper
->lock
, flags
);
98 * stop_one_cpu - stop a cpu
100 * @fn: function to execute
101 * @arg: argument to @fn
103 * Execute @fn(@arg) on @cpu. @fn is run in a process context with
104 * the highest priority preempting any task on the cpu and
105 * monopolizing it. This function returns after the execution is
108 * This function doesn't guarantee @cpu stays online till @fn
109 * completes. If @cpu goes down in the middle, execution may happen
110 * partially or fully on different cpus. @fn should either be ready
111 * for that or the caller should ensure that @cpu stays online until
112 * this function completes.
118 * -ENOENT if @fn(@arg) was not executed because @cpu was offline;
119 * otherwise, the return value of @fn.
121 int stop_one_cpu(unsigned int cpu
, cpu_stop_fn_t fn
, void *arg
)
123 struct cpu_stop_done done
;
124 struct cpu_stop_work work
= { .fn
= fn
, .arg
= arg
, .done
= &done
};
126 cpu_stop_init_done(&done
, 1);
127 if (!cpu_stop_queue_work(cpu
, &work
))
129 wait_for_completion(&done
.completion
);
133 /* This controls the threads on each CPU. */
134 enum multi_stop_state
{
135 /* Dummy starting state for thread. */
137 /* Awaiting everyone to be scheduled. */
139 /* Disable interrupts. */
140 MULTI_STOP_DISABLE_IRQ
,
141 /* Run the function */
147 struct multi_stop_data
{
150 /* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */
151 unsigned int num_threads
;
152 const struct cpumask
*active_cpus
;
154 enum multi_stop_state state
;
158 static void set_state(struct multi_stop_data
*msdata
,
159 enum multi_stop_state newstate
)
161 /* Reset ack counter. */
162 atomic_set(&msdata
->thread_ack
, msdata
->num_threads
);
164 msdata
->state
= newstate
;
167 /* Last one to ack a state moves to the next state. */
168 static void ack_state(struct multi_stop_data
*msdata
)
170 if (atomic_dec_and_test(&msdata
->thread_ack
))
171 set_state(msdata
, msdata
->state
+ 1);
174 /* This is the cpu_stop function which stops the CPU. */
175 static int multi_cpu_stop(void *data
)
177 struct multi_stop_data
*msdata
= data
;
178 enum multi_stop_state curstate
= MULTI_STOP_NONE
;
179 int cpu
= smp_processor_id(), err
= 0;
184 * When called from stop_machine_from_inactive_cpu(), irq might
185 * already be disabled. Save the state and restore it on exit.
187 local_save_flags(flags
);
189 if (!msdata
->active_cpus
)
190 is_active
= cpu
== cpumask_first(cpu_online_mask
);
192 is_active
= cpumask_test_cpu(cpu
, msdata
->active_cpus
);
194 /* Simple state machine */
196 /* Chill out and ensure we re-read multi_stop_state. */
198 if (msdata
->state
!= curstate
) {
199 curstate
= msdata
->state
;
201 case MULTI_STOP_DISABLE_IRQ
:
207 err
= msdata
->fn(msdata
->data
);
213 } else if (curstate
> MULTI_STOP_PREPARE
) {
215 * At this stage all other CPUs we depend on must spin
216 * in the same loop. Any reason for hard-lockup should
217 * be detected and reported on their side.
219 touch_nmi_watchdog();
221 } while (curstate
!= MULTI_STOP_EXIT
);
223 local_irq_restore(flags
);
227 static int cpu_stop_queue_two_works(int cpu1
, struct cpu_stop_work
*work1
,
228 int cpu2
, struct cpu_stop_work
*work2
)
230 struct cpu_stopper
*stopper1
= per_cpu_ptr(&cpu_stopper
, cpu1
);
231 struct cpu_stopper
*stopper2
= per_cpu_ptr(&cpu_stopper
, cpu2
);
234 lg_double_lock(&stop_cpus_lock
, cpu1
, cpu2
);
235 spin_lock_irq(&stopper1
->lock
);
236 spin_lock_nested(&stopper2
->lock
, SINGLE_DEPTH_NESTING
);
239 if (!stopper1
->enabled
|| !stopper2
->enabled
)
243 __cpu_stop_queue_work(stopper1
, work1
);
244 __cpu_stop_queue_work(stopper2
, work2
);
246 spin_unlock(&stopper2
->lock
);
247 spin_unlock_irq(&stopper1
->lock
);
248 lg_double_unlock(&stop_cpus_lock
, cpu1
, cpu2
);
253 * stop_two_cpus - stops two cpus
254 * @cpu1: the cpu to stop
255 * @cpu2: the other cpu to stop
256 * @fn: function to execute
257 * @arg: argument to @fn
259 * Stops both the current and specified CPU and runs @fn on one of them.
261 * returns when both are completed.
263 int stop_two_cpus(unsigned int cpu1
, unsigned int cpu2
, cpu_stop_fn_t fn
, void *arg
)
265 struct cpu_stop_done done
;
266 struct cpu_stop_work work1
, work2
;
267 struct multi_stop_data msdata
;
269 msdata
= (struct multi_stop_data
){
273 .active_cpus
= cpumask_of(cpu1
),
276 work1
= work2
= (struct cpu_stop_work
){
277 .fn
= multi_cpu_stop
,
282 cpu_stop_init_done(&done
, 2);
283 set_state(&msdata
, MULTI_STOP_PREPARE
);
287 if (cpu_stop_queue_two_works(cpu1
, &work1
, cpu2
, &work2
))
290 wait_for_completion(&done
.completion
);
295 * stop_one_cpu_nowait - stop a cpu but don't wait for completion
297 * @fn: function to execute
298 * @arg: argument to @fn
299 * @work_buf: pointer to cpu_stop_work structure
301 * Similar to stop_one_cpu() but doesn't wait for completion. The
302 * caller is responsible for ensuring @work_buf is currently unused
303 * and will remain untouched until stopper starts executing @fn.
309 * true if cpu_stop_work was queued successfully and @fn will be called,
312 bool stop_one_cpu_nowait(unsigned int cpu
, cpu_stop_fn_t fn
, void *arg
,
313 struct cpu_stop_work
*work_buf
)
315 *work_buf
= (struct cpu_stop_work
){ .fn
= fn
, .arg
= arg
, };
316 return cpu_stop_queue_work(cpu
, work_buf
);
319 /* static data for stop_cpus */
320 static DEFINE_MUTEX(stop_cpus_mutex
);
322 static bool queue_stop_cpus_work(const struct cpumask
*cpumask
,
323 cpu_stop_fn_t fn
, void *arg
,
324 struct cpu_stop_done
*done
)
326 struct cpu_stop_work
*work
;
331 * Disable preemption while queueing to avoid getting
332 * preempted by a stopper which might wait for other stoppers
333 * to enter @fn which can lead to deadlock.
335 lg_global_lock(&stop_cpus_lock
);
336 for_each_cpu(cpu
, cpumask
) {
337 work
= &per_cpu(cpu_stopper
.stop_work
, cpu
);
341 if (cpu_stop_queue_work(cpu
, work
))
344 lg_global_unlock(&stop_cpus_lock
);
349 static int __stop_cpus(const struct cpumask
*cpumask
,
350 cpu_stop_fn_t fn
, void *arg
)
352 struct cpu_stop_done done
;
354 cpu_stop_init_done(&done
, cpumask_weight(cpumask
));
355 if (!queue_stop_cpus_work(cpumask
, fn
, arg
, &done
))
357 wait_for_completion(&done
.completion
);
362 * stop_cpus - stop multiple cpus
363 * @cpumask: cpus to stop
364 * @fn: function to execute
365 * @arg: argument to @fn
367 * Execute @fn(@arg) on online cpus in @cpumask. On each target cpu,
368 * @fn is run in a process context with the highest priority
369 * preempting any task on the cpu and monopolizing it. This function
370 * returns after all executions are complete.
372 * This function doesn't guarantee the cpus in @cpumask stay online
373 * till @fn completes. If some cpus go down in the middle, execution
374 * on the cpu may happen partially or fully on different cpus. @fn
375 * should either be ready for that or the caller should ensure that
376 * the cpus stay online until this function completes.
378 * All stop_cpus() calls are serialized making it safe for @fn to wait
379 * for all cpus to start executing it.
385 * -ENOENT if @fn(@arg) was not executed at all because all cpus in
386 * @cpumask were offline; otherwise, 0 if all executions of @fn
387 * returned 0, any non zero return value if any returned non zero.
389 int stop_cpus(const struct cpumask
*cpumask
, cpu_stop_fn_t fn
, void *arg
)
393 /* static works are used, process one request at a time */
394 mutex_lock(&stop_cpus_mutex
);
395 ret
= __stop_cpus(cpumask
, fn
, arg
);
396 mutex_unlock(&stop_cpus_mutex
);
401 * try_stop_cpus - try to stop multiple cpus
402 * @cpumask: cpus to stop
403 * @fn: function to execute
404 * @arg: argument to @fn
406 * Identical to stop_cpus() except that it fails with -EAGAIN if
407 * someone else is already using the facility.
413 * -EAGAIN if someone else is already stopping cpus, -ENOENT if
414 * @fn(@arg) was not executed at all because all cpus in @cpumask were
415 * offline; otherwise, 0 if all executions of @fn returned 0, any non
416 * zero return value if any returned non zero.
418 int try_stop_cpus(const struct cpumask
*cpumask
, cpu_stop_fn_t fn
, void *arg
)
422 /* static works are used, process one request at a time */
423 if (!mutex_trylock(&stop_cpus_mutex
))
425 ret
= __stop_cpus(cpumask
, fn
, arg
);
426 mutex_unlock(&stop_cpus_mutex
);
430 static int cpu_stop_should_run(unsigned int cpu
)
432 struct cpu_stopper
*stopper
= &per_cpu(cpu_stopper
, cpu
);
436 spin_lock_irqsave(&stopper
->lock
, flags
);
437 run
= !list_empty(&stopper
->works
);
438 spin_unlock_irqrestore(&stopper
->lock
, flags
);
442 static void cpu_stopper_thread(unsigned int cpu
)
444 struct cpu_stopper
*stopper
= &per_cpu(cpu_stopper
, cpu
);
445 struct cpu_stop_work
*work
;
449 spin_lock_irq(&stopper
->lock
);
450 if (!list_empty(&stopper
->works
)) {
451 work
= list_first_entry(&stopper
->works
,
452 struct cpu_stop_work
, list
);
453 list_del_init(&work
->list
);
455 spin_unlock_irq(&stopper
->lock
);
458 cpu_stop_fn_t fn
= work
->fn
;
459 void *arg
= work
->arg
;
460 struct cpu_stop_done
*done
= work
->done
;
463 /* cpu stop callbacks must not sleep, make in_atomic() == T */
469 cpu_stop_signal_done(done
);
472 WARN_ONCE(preempt_count(),
473 "cpu_stop: %pf(%p) leaked preempt count\n", fn
, arg
);
478 void stop_machine_park(int cpu
)
480 struct cpu_stopper
*stopper
= &per_cpu(cpu_stopper
, cpu
);
482 * Lockless. cpu_stopper_thread() will take stopper->lock and flush
483 * the pending works before it parks, until then it is fine to queue
486 stopper
->enabled
= false;
487 kthread_park(stopper
->thread
);
490 extern void sched_set_stop_task(int cpu
, struct task_struct
*stop
);
492 static void cpu_stop_create(unsigned int cpu
)
494 sched_set_stop_task(cpu
, per_cpu(cpu_stopper
.thread
, cpu
));
497 static void cpu_stop_park(unsigned int cpu
)
499 struct cpu_stopper
*stopper
= &per_cpu(cpu_stopper
, cpu
);
501 WARN_ON(!list_empty(&stopper
->works
));
504 void stop_machine_unpark(int cpu
)
506 struct cpu_stopper
*stopper
= &per_cpu(cpu_stopper
, cpu
);
508 stopper
->enabled
= true;
509 kthread_unpark(stopper
->thread
);
512 static struct smp_hotplug_thread cpu_stop_threads
= {
513 .store
= &cpu_stopper
.thread
,
514 .thread_should_run
= cpu_stop_should_run
,
515 .thread_fn
= cpu_stopper_thread
,
516 .thread_comm
= "migration/%u",
517 .create
= cpu_stop_create
,
518 .park
= cpu_stop_park
,
522 static int __init
cpu_stop_init(void)
526 for_each_possible_cpu(cpu
) {
527 struct cpu_stopper
*stopper
= &per_cpu(cpu_stopper
, cpu
);
529 spin_lock_init(&stopper
->lock
);
530 INIT_LIST_HEAD(&stopper
->works
);
533 BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads
));
534 stop_machine_unpark(raw_smp_processor_id());
535 stop_machine_initialized
= true;
538 early_initcall(cpu_stop_init
);
540 static int __stop_machine(cpu_stop_fn_t fn
, void *data
, const struct cpumask
*cpus
)
542 struct multi_stop_data msdata
= {
545 .num_threads
= num_online_cpus(),
549 if (!stop_machine_initialized
) {
551 * Handle the case where stop_machine() is called
552 * early in boot before stop_machine() has been
558 WARN_ON_ONCE(msdata
.num_threads
!= 1);
560 local_irq_save(flags
);
563 local_irq_restore(flags
);
568 /* Set the initial state and stop all online cpus. */
569 set_state(&msdata
, MULTI_STOP_PREPARE
);
570 return stop_cpus(cpu_online_mask
, multi_cpu_stop
, &msdata
);
573 int stop_machine(cpu_stop_fn_t fn
, void *data
, const struct cpumask
*cpus
)
577 /* No CPUs can come up or down during this. */
579 ret
= __stop_machine(fn
, data
, cpus
);
583 EXPORT_SYMBOL_GPL(stop_machine
);
586 * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU
587 * @fn: the function to run
588 * @data: the data ptr for the @fn()
589 * @cpus: the cpus to run the @fn() on (NULL = any online cpu)
591 * This is identical to stop_machine() but can be called from a CPU which
592 * is not active. The local CPU is in the process of hotplug (so no other
593 * CPU hotplug can start) and not marked active and doesn't have enough
596 * This function provides stop_machine() functionality for such state by
597 * using busy-wait for synchronization and executing @fn directly for local
601 * Local CPU is inactive. Temporarily stops all active CPUs.
604 * 0 if all executions of @fn returned 0, any non zero return value if any
607 int stop_machine_from_inactive_cpu(cpu_stop_fn_t fn
, void *data
,
608 const struct cpumask
*cpus
)
610 struct multi_stop_data msdata
= { .fn
= fn
, .data
= data
,
611 .active_cpus
= cpus
};
612 struct cpu_stop_done done
;
615 /* Local CPU must be inactive and CPU hotplug in progress. */
616 BUG_ON(cpu_active(raw_smp_processor_id()));
617 msdata
.num_threads
= num_active_cpus() + 1; /* +1 for local */
619 /* No proper task established and can't sleep - busy wait for lock. */
620 while (!mutex_trylock(&stop_cpus_mutex
))
623 /* Schedule work on other CPUs and execute directly for local CPU */
624 set_state(&msdata
, MULTI_STOP_PREPARE
);
625 cpu_stop_init_done(&done
, num_active_cpus());
626 queue_stop_cpus_work(cpu_active_mask
, multi_cpu_stop
, &msdata
,
628 ret
= multi_cpu_stop(&msdata
);
630 /* Busy wait for completion. */
631 while (!completion_done(&done
.completion
))
634 mutex_unlock(&stop_cpus_mutex
);
635 return ret
?: done
.ret
;