Linux 4.2.2
[linux/fpc-iii.git] / arch / arm64 / crypto / crc32-arm64.c
blob6a37c3c6b11d39acc0db9d142652abcb18d21b9c
1 /*
2 * crc32-arm64.c - CRC32 and CRC32C using optional ARMv8 instructions
4 * Module based on crypto/crc32c_generic.c
6 * CRC32 loop taken from Ed Nevill's Hadoop CRC patch
7 * http://mail-archives.apache.org/mod_mbox/hadoop-common-dev/201406.mbox/%3C1403687030.3355.19.camel%40localhost.localdomain%3E
9 * Using inline assembly instead of intrinsics in order to be backwards
10 * compatible with older compilers.
12 * Copyright (C) 2014 Linaro Ltd <yazen.ghannam@linaro.org>
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License version 2 as
16 * published by the Free Software Foundation.
19 #include <linux/unaligned/access_ok.h>
20 #include <linux/cpufeature.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/string.h>
26 #include <crypto/internal/hash.h>
28 MODULE_AUTHOR("Yazen Ghannam <yazen.ghannam@linaro.org>");
29 MODULE_DESCRIPTION("CRC32 and CRC32C using optional ARMv8 instructions");
30 MODULE_LICENSE("GPL v2");
32 #define CRC32X(crc, value) __asm__("crc32x %w[c], %w[c], %x[v]":[c]"+r"(crc):[v]"r"(value))
33 #define CRC32W(crc, value) __asm__("crc32w %w[c], %w[c], %w[v]":[c]"+r"(crc):[v]"r"(value))
34 #define CRC32H(crc, value) __asm__("crc32h %w[c], %w[c], %w[v]":[c]"+r"(crc):[v]"r"(value))
35 #define CRC32B(crc, value) __asm__("crc32b %w[c], %w[c], %w[v]":[c]"+r"(crc):[v]"r"(value))
36 #define CRC32CX(crc, value) __asm__("crc32cx %w[c], %w[c], %x[v]":[c]"+r"(crc):[v]"r"(value))
37 #define CRC32CW(crc, value) __asm__("crc32cw %w[c], %w[c], %w[v]":[c]"+r"(crc):[v]"r"(value))
38 #define CRC32CH(crc, value) __asm__("crc32ch %w[c], %w[c], %w[v]":[c]"+r"(crc):[v]"r"(value))
39 #define CRC32CB(crc, value) __asm__("crc32cb %w[c], %w[c], %w[v]":[c]"+r"(crc):[v]"r"(value))
41 static u32 crc32_arm64_le_hw(u32 crc, const u8 *p, unsigned int len)
43 s64 length = len;
45 while ((length -= sizeof(u64)) >= 0) {
46 CRC32X(crc, get_unaligned_le64(p));
47 p += sizeof(u64);
50 /* The following is more efficient than the straight loop */
51 if (length & sizeof(u32)) {
52 CRC32W(crc, get_unaligned_le32(p));
53 p += sizeof(u32);
55 if (length & sizeof(u16)) {
56 CRC32H(crc, get_unaligned_le16(p));
57 p += sizeof(u16);
59 if (length & sizeof(u8))
60 CRC32B(crc, *p);
62 return crc;
65 static u32 crc32c_arm64_le_hw(u32 crc, const u8 *p, unsigned int len)
67 s64 length = len;
69 while ((length -= sizeof(u64)) >= 0) {
70 CRC32CX(crc, get_unaligned_le64(p));
71 p += sizeof(u64);
74 /* The following is more efficient than the straight loop */
75 if (length & sizeof(u32)) {
76 CRC32CW(crc, get_unaligned_le32(p));
77 p += sizeof(u32);
79 if (length & sizeof(u16)) {
80 CRC32CH(crc, get_unaligned_le16(p));
81 p += sizeof(u16);
83 if (length & sizeof(u8))
84 CRC32CB(crc, *p);
86 return crc;
89 #define CHKSUM_BLOCK_SIZE 1
90 #define CHKSUM_DIGEST_SIZE 4
92 struct chksum_ctx {
93 u32 key;
96 struct chksum_desc_ctx {
97 u32 crc;
100 static int chksum_init(struct shash_desc *desc)
102 struct chksum_ctx *mctx = crypto_shash_ctx(desc->tfm);
103 struct chksum_desc_ctx *ctx = shash_desc_ctx(desc);
105 ctx->crc = mctx->key;
107 return 0;
111 * Setting the seed allows arbitrary accumulators and flexible XOR policy
112 * If your algorithm starts with ~0, then XOR with ~0 before you set
113 * the seed.
115 static int chksum_setkey(struct crypto_shash *tfm, const u8 *key,
116 unsigned int keylen)
118 struct chksum_ctx *mctx = crypto_shash_ctx(tfm);
120 if (keylen != sizeof(mctx->key)) {
121 crypto_shash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
122 return -EINVAL;
124 mctx->key = get_unaligned_le32(key);
125 return 0;
128 static int chksum_update(struct shash_desc *desc, const u8 *data,
129 unsigned int length)
131 struct chksum_desc_ctx *ctx = shash_desc_ctx(desc);
133 ctx->crc = crc32_arm64_le_hw(ctx->crc, data, length);
134 return 0;
137 static int chksumc_update(struct shash_desc *desc, const u8 *data,
138 unsigned int length)
140 struct chksum_desc_ctx *ctx = shash_desc_ctx(desc);
142 ctx->crc = crc32c_arm64_le_hw(ctx->crc, data, length);
143 return 0;
146 static int chksum_final(struct shash_desc *desc, u8 *out)
148 struct chksum_desc_ctx *ctx = shash_desc_ctx(desc);
150 put_unaligned_le32(ctx->crc, out);
151 return 0;
154 static int chksumc_final(struct shash_desc *desc, u8 *out)
156 struct chksum_desc_ctx *ctx = shash_desc_ctx(desc);
158 put_unaligned_le32(~ctx->crc, out);
159 return 0;
162 static int __chksum_finup(u32 crc, const u8 *data, unsigned int len, u8 *out)
164 put_unaligned_le32(crc32_arm64_le_hw(crc, data, len), out);
165 return 0;
168 static int __chksumc_finup(u32 crc, const u8 *data, unsigned int len, u8 *out)
170 put_unaligned_le32(~crc32c_arm64_le_hw(crc, data, len), out);
171 return 0;
174 static int chksum_finup(struct shash_desc *desc, const u8 *data,
175 unsigned int len, u8 *out)
177 struct chksum_desc_ctx *ctx = shash_desc_ctx(desc);
179 return __chksum_finup(ctx->crc, data, len, out);
182 static int chksumc_finup(struct shash_desc *desc, const u8 *data,
183 unsigned int len, u8 *out)
185 struct chksum_desc_ctx *ctx = shash_desc_ctx(desc);
187 return __chksumc_finup(ctx->crc, data, len, out);
190 static int chksum_digest(struct shash_desc *desc, const u8 *data,
191 unsigned int length, u8 *out)
193 struct chksum_ctx *mctx = crypto_shash_ctx(desc->tfm);
195 return __chksum_finup(mctx->key, data, length, out);
198 static int chksumc_digest(struct shash_desc *desc, const u8 *data,
199 unsigned int length, u8 *out)
201 struct chksum_ctx *mctx = crypto_shash_ctx(desc->tfm);
203 return __chksumc_finup(mctx->key, data, length, out);
206 static int crc32_cra_init(struct crypto_tfm *tfm)
208 struct chksum_ctx *mctx = crypto_tfm_ctx(tfm);
210 mctx->key = 0;
211 return 0;
214 static int crc32c_cra_init(struct crypto_tfm *tfm)
216 struct chksum_ctx *mctx = crypto_tfm_ctx(tfm);
218 mctx->key = ~0;
219 return 0;
222 static struct shash_alg crc32_alg = {
223 .digestsize = CHKSUM_DIGEST_SIZE,
224 .setkey = chksum_setkey,
225 .init = chksum_init,
226 .update = chksum_update,
227 .final = chksum_final,
228 .finup = chksum_finup,
229 .digest = chksum_digest,
230 .descsize = sizeof(struct chksum_desc_ctx),
231 .base = {
232 .cra_name = "crc32",
233 .cra_driver_name = "crc32-arm64-hw",
234 .cra_priority = 300,
235 .cra_blocksize = CHKSUM_BLOCK_SIZE,
236 .cra_alignmask = 0,
237 .cra_ctxsize = sizeof(struct chksum_ctx),
238 .cra_module = THIS_MODULE,
239 .cra_init = crc32_cra_init,
243 static struct shash_alg crc32c_alg = {
244 .digestsize = CHKSUM_DIGEST_SIZE,
245 .setkey = chksum_setkey,
246 .init = chksum_init,
247 .update = chksumc_update,
248 .final = chksumc_final,
249 .finup = chksumc_finup,
250 .digest = chksumc_digest,
251 .descsize = sizeof(struct chksum_desc_ctx),
252 .base = {
253 .cra_name = "crc32c",
254 .cra_driver_name = "crc32c-arm64-hw",
255 .cra_priority = 300,
256 .cra_blocksize = CHKSUM_BLOCK_SIZE,
257 .cra_alignmask = 0,
258 .cra_ctxsize = sizeof(struct chksum_ctx),
259 .cra_module = THIS_MODULE,
260 .cra_init = crc32c_cra_init,
264 static int __init crc32_mod_init(void)
266 int err;
268 err = crypto_register_shash(&crc32_alg);
270 if (err)
271 return err;
273 err = crypto_register_shash(&crc32c_alg);
275 if (err) {
276 crypto_unregister_shash(&crc32_alg);
277 return err;
280 return 0;
283 static void __exit crc32_mod_exit(void)
285 crypto_unregister_shash(&crc32_alg);
286 crypto_unregister_shash(&crc32c_alg);
289 module_cpu_feature_match(CRC32, crc32_mod_init);
290 module_exit(crc32_mod_exit);