4 * Copyright (C) 2012 ARM Limited
5 * Author: Will Deacon <will.deacon@arm.com>
7 * This code is based heavily on the ARMv7 perf event code.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
21 #define pr_fmt(fmt) "hw perfevents: " fmt
23 #include <linux/bitmap.h>
24 #include <linux/interrupt.h>
25 #include <linux/irq.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
29 #include <linux/perf_event.h>
30 #include <linux/platform_device.h>
31 #include <linux/slab.h>
32 #include <linux/spinlock.h>
33 #include <linux/uaccess.h>
35 #include <asm/cputype.h>
37 #include <asm/irq_regs.h>
39 #include <asm/stacktrace.h>
42 * ARMv8 supports a maximum of 32 events.
43 * The cycle counter is included in this total.
45 #define ARMPMU_MAX_HWEVENTS 32
47 static DEFINE_PER_CPU(struct perf_event
* [ARMPMU_MAX_HWEVENTS
], hw_events
);
48 static DEFINE_PER_CPU(unsigned long [BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS
)], used_mask
);
49 static DEFINE_PER_CPU(struct pmu_hw_events
, cpu_hw_events
);
51 #define to_arm_pmu(p) (container_of(p, struct arm_pmu, pmu))
53 /* Set at runtime when we know what CPU type we are. */
54 static struct arm_pmu
*cpu_pmu
;
57 armpmu_get_max_events(void)
62 max_events
= cpu_pmu
->num_events
;
66 EXPORT_SYMBOL_GPL(armpmu_get_max_events
);
68 int perf_num_counters(void)
70 return armpmu_get_max_events();
72 EXPORT_SYMBOL_GPL(perf_num_counters
);
74 #define HW_OP_UNSUPPORTED 0xFFFF
77 PERF_COUNT_HW_CACHE_##_x
79 #define CACHE_OP_UNSUPPORTED 0xFFFF
82 armpmu_map_cache_event(const unsigned (*cache_map
)
83 [PERF_COUNT_HW_CACHE_MAX
]
84 [PERF_COUNT_HW_CACHE_OP_MAX
]
85 [PERF_COUNT_HW_CACHE_RESULT_MAX
],
88 unsigned int cache_type
, cache_op
, cache_result
, ret
;
90 cache_type
= (config
>> 0) & 0xff;
91 if (cache_type
>= PERF_COUNT_HW_CACHE_MAX
)
94 cache_op
= (config
>> 8) & 0xff;
95 if (cache_op
>= PERF_COUNT_HW_CACHE_OP_MAX
)
98 cache_result
= (config
>> 16) & 0xff;
99 if (cache_result
>= PERF_COUNT_HW_CACHE_RESULT_MAX
)
102 ret
= (int)(*cache_map
)[cache_type
][cache_op
][cache_result
];
104 if (ret
== CACHE_OP_UNSUPPORTED
)
111 armpmu_map_event(const unsigned (*event_map
)[PERF_COUNT_HW_MAX
], u64 config
)
115 if (config
>= PERF_COUNT_HW_MAX
)
118 mapping
= (*event_map
)[config
];
119 return mapping
== HW_OP_UNSUPPORTED
? -ENOENT
: mapping
;
123 armpmu_map_raw_event(u32 raw_event_mask
, u64 config
)
125 return (int)(config
& raw_event_mask
);
128 static int map_cpu_event(struct perf_event
*event
,
129 const unsigned (*event_map
)[PERF_COUNT_HW_MAX
],
130 const unsigned (*cache_map
)
131 [PERF_COUNT_HW_CACHE_MAX
]
132 [PERF_COUNT_HW_CACHE_OP_MAX
]
133 [PERF_COUNT_HW_CACHE_RESULT_MAX
],
136 u64 config
= event
->attr
.config
;
138 switch (event
->attr
.type
) {
139 case PERF_TYPE_HARDWARE
:
140 return armpmu_map_event(event_map
, config
);
141 case PERF_TYPE_HW_CACHE
:
142 return armpmu_map_cache_event(cache_map
, config
);
144 return armpmu_map_raw_event(raw_event_mask
, config
);
151 armpmu_event_set_period(struct perf_event
*event
,
152 struct hw_perf_event
*hwc
,
155 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
156 s64 left
= local64_read(&hwc
->period_left
);
157 s64 period
= hwc
->sample_period
;
160 if (unlikely(left
<= -period
)) {
162 local64_set(&hwc
->period_left
, left
);
163 hwc
->last_period
= period
;
167 if (unlikely(left
<= 0)) {
169 local64_set(&hwc
->period_left
, left
);
170 hwc
->last_period
= period
;
175 * Limit the maximum period to prevent the counter value
176 * from overtaking the one we are about to program. In
177 * effect we are reducing max_period to account for
178 * interrupt latency (and we are being very conservative).
180 if (left
> (armpmu
->max_period
>> 1))
181 left
= armpmu
->max_period
>> 1;
183 local64_set(&hwc
->prev_count
, (u64
)-left
);
185 armpmu
->write_counter(idx
, (u64
)(-left
) & 0xffffffff);
187 perf_event_update_userpage(event
);
193 armpmu_event_update(struct perf_event
*event
,
194 struct hw_perf_event
*hwc
,
197 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
198 u64 delta
, prev_raw_count
, new_raw_count
;
201 prev_raw_count
= local64_read(&hwc
->prev_count
);
202 new_raw_count
= armpmu
->read_counter(idx
);
204 if (local64_cmpxchg(&hwc
->prev_count
, prev_raw_count
,
205 new_raw_count
) != prev_raw_count
)
208 delta
= (new_raw_count
- prev_raw_count
) & armpmu
->max_period
;
210 local64_add(delta
, &event
->count
);
211 local64_sub(delta
, &hwc
->period_left
);
213 return new_raw_count
;
217 armpmu_read(struct perf_event
*event
)
219 struct hw_perf_event
*hwc
= &event
->hw
;
221 /* Don't read disabled counters! */
225 armpmu_event_update(event
, hwc
, hwc
->idx
);
229 armpmu_stop(struct perf_event
*event
, int flags
)
231 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
232 struct hw_perf_event
*hwc
= &event
->hw
;
235 * ARM pmu always has to update the counter, so ignore
236 * PERF_EF_UPDATE, see comments in armpmu_start().
238 if (!(hwc
->state
& PERF_HES_STOPPED
)) {
239 armpmu
->disable(hwc
, hwc
->idx
);
240 barrier(); /* why? */
241 armpmu_event_update(event
, hwc
, hwc
->idx
);
242 hwc
->state
|= PERF_HES_STOPPED
| PERF_HES_UPTODATE
;
247 armpmu_start(struct perf_event
*event
, int flags
)
249 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
250 struct hw_perf_event
*hwc
= &event
->hw
;
253 * ARM pmu always has to reprogram the period, so ignore
254 * PERF_EF_RELOAD, see the comment below.
256 if (flags
& PERF_EF_RELOAD
)
257 WARN_ON_ONCE(!(hwc
->state
& PERF_HES_UPTODATE
));
261 * Set the period again. Some counters can't be stopped, so when we
262 * were stopped we simply disabled the IRQ source and the counter
263 * may have been left counting. If we don't do this step then we may
264 * get an interrupt too soon or *way* too late if the overflow has
265 * happened since disabling.
267 armpmu_event_set_period(event
, hwc
, hwc
->idx
);
268 armpmu
->enable(hwc
, hwc
->idx
);
272 armpmu_del(struct perf_event
*event
, int flags
)
274 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
275 struct pmu_hw_events
*hw_events
= armpmu
->get_hw_events();
276 struct hw_perf_event
*hwc
= &event
->hw
;
281 armpmu_stop(event
, PERF_EF_UPDATE
);
282 hw_events
->events
[idx
] = NULL
;
283 clear_bit(idx
, hw_events
->used_mask
);
285 perf_event_update_userpage(event
);
289 armpmu_add(struct perf_event
*event
, int flags
)
291 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
292 struct pmu_hw_events
*hw_events
= armpmu
->get_hw_events();
293 struct hw_perf_event
*hwc
= &event
->hw
;
297 perf_pmu_disable(event
->pmu
);
299 /* If we don't have a space for the counter then finish early. */
300 idx
= armpmu
->get_event_idx(hw_events
, hwc
);
307 * If there is an event in the counter we are going to use then make
308 * sure it is disabled.
311 armpmu
->disable(hwc
, idx
);
312 hw_events
->events
[idx
] = event
;
314 hwc
->state
= PERF_HES_STOPPED
| PERF_HES_UPTODATE
;
315 if (flags
& PERF_EF_START
)
316 armpmu_start(event
, PERF_EF_RELOAD
);
318 /* Propagate our changes to the userspace mapping. */
319 perf_event_update_userpage(event
);
322 perf_pmu_enable(event
->pmu
);
327 validate_event(struct pmu
*pmu
, struct pmu_hw_events
*hw_events
,
328 struct perf_event
*event
)
330 struct arm_pmu
*armpmu
;
331 struct hw_perf_event fake_event
= event
->hw
;
332 struct pmu
*leader_pmu
= event
->group_leader
->pmu
;
334 if (is_software_event(event
))
338 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
339 * core perf code won't check that the pmu->ctx == leader->ctx
340 * until after pmu->event_init(event).
342 if (event
->pmu
!= pmu
)
345 if (event
->pmu
!= leader_pmu
|| event
->state
< PERF_EVENT_STATE_OFF
)
348 if (event
->state
== PERF_EVENT_STATE_OFF
&& !event
->attr
.enable_on_exec
)
351 armpmu
= to_arm_pmu(event
->pmu
);
352 return armpmu
->get_event_idx(hw_events
, &fake_event
) >= 0;
356 validate_group(struct perf_event
*event
)
358 struct perf_event
*sibling
, *leader
= event
->group_leader
;
359 struct pmu_hw_events fake_pmu
;
360 DECLARE_BITMAP(fake_used_mask
, ARMPMU_MAX_HWEVENTS
);
363 * Initialise the fake PMU. We only need to populate the
364 * used_mask for the purposes of validation.
366 memset(fake_used_mask
, 0, sizeof(fake_used_mask
));
367 fake_pmu
.used_mask
= fake_used_mask
;
369 if (!validate_event(event
->pmu
, &fake_pmu
, leader
))
372 list_for_each_entry(sibling
, &leader
->sibling_list
, group_entry
) {
373 if (!validate_event(event
->pmu
, &fake_pmu
, sibling
))
377 if (!validate_event(event
->pmu
, &fake_pmu
, event
))
384 armpmu_disable_percpu_irq(void *data
)
386 unsigned int irq
= *(unsigned int *)data
;
387 disable_percpu_irq(irq
);
391 armpmu_release_hardware(struct arm_pmu
*armpmu
)
394 unsigned int i
, irqs
;
395 struct platform_device
*pmu_device
= armpmu
->plat_device
;
397 irqs
= min(pmu_device
->num_resources
, num_possible_cpus());
401 irq
= platform_get_irq(pmu_device
, 0);
405 if (irq_is_percpu(irq
)) {
406 on_each_cpu(armpmu_disable_percpu_irq
, &irq
, 1);
407 free_percpu_irq(irq
, &cpu_hw_events
);
409 for (i
= 0; i
< irqs
; ++i
) {
412 if (armpmu
->irq_affinity
)
413 cpu
= armpmu
->irq_affinity
[i
];
415 if (!cpumask_test_and_clear_cpu(cpu
, &armpmu
->active_irqs
))
417 irq
= platform_get_irq(pmu_device
, i
);
419 free_irq(irq
, armpmu
);
425 armpmu_enable_percpu_irq(void *data
)
427 unsigned int irq
= *(unsigned int *)data
;
428 enable_percpu_irq(irq
, IRQ_TYPE_NONE
);
432 armpmu_reserve_hardware(struct arm_pmu
*armpmu
)
435 unsigned int i
, irqs
;
436 struct platform_device
*pmu_device
= armpmu
->plat_device
;
439 pr_err("no PMU device registered\n");
443 irqs
= min(pmu_device
->num_resources
, num_possible_cpus());
445 pr_err("no irqs for PMUs defined\n");
449 irq
= platform_get_irq(pmu_device
, 0);
451 pr_err("failed to get valid irq for PMU device\n");
455 if (irq_is_percpu(irq
)) {
456 err
= request_percpu_irq(irq
, armpmu
->handle_irq
,
457 "arm-pmu", &cpu_hw_events
);
460 pr_err("unable to request percpu IRQ%d for ARM PMU counters\n",
462 armpmu_release_hardware(armpmu
);
466 on_each_cpu(armpmu_enable_percpu_irq
, &irq
, 1);
468 for (i
= 0; i
< irqs
; ++i
) {
472 irq
= platform_get_irq(pmu_device
, i
);
476 if (armpmu
->irq_affinity
)
477 cpu
= armpmu
->irq_affinity
[i
];
480 * If we have a single PMU interrupt that we can't shift,
481 * assume that we're running on a uniprocessor machine and
482 * continue. Otherwise, continue without this interrupt.
484 if (irq_set_affinity(irq
, cpumask_of(cpu
)) && irqs
> 1) {
485 pr_warning("unable to set irq affinity (irq=%d, cpu=%u)\n",
490 err
= request_irq(irq
, armpmu
->handle_irq
,
491 IRQF_NOBALANCING
| IRQF_NO_THREAD
,
494 pr_err("unable to request IRQ%d for ARM PMU counters\n",
496 armpmu_release_hardware(armpmu
);
500 cpumask_set_cpu(cpu
, &armpmu
->active_irqs
);
508 hw_perf_event_destroy(struct perf_event
*event
)
510 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
511 atomic_t
*active_events
= &armpmu
->active_events
;
512 struct mutex
*pmu_reserve_mutex
= &armpmu
->reserve_mutex
;
514 if (atomic_dec_and_mutex_lock(active_events
, pmu_reserve_mutex
)) {
515 armpmu_release_hardware(armpmu
);
516 mutex_unlock(pmu_reserve_mutex
);
521 event_requires_mode_exclusion(struct perf_event_attr
*attr
)
523 return attr
->exclude_idle
|| attr
->exclude_user
||
524 attr
->exclude_kernel
|| attr
->exclude_hv
;
528 __hw_perf_event_init(struct perf_event
*event
)
530 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
531 struct hw_perf_event
*hwc
= &event
->hw
;
534 mapping
= armpmu
->map_event(event
);
537 pr_debug("event %x:%llx not supported\n", event
->attr
.type
,
543 * We don't assign an index until we actually place the event onto
544 * hardware. Use -1 to signify that we haven't decided where to put it
545 * yet. For SMP systems, each core has it's own PMU so we can't do any
546 * clever allocation or constraints checking at this point.
549 hwc
->config_base
= 0;
554 * Check whether we need to exclude the counter from certain modes.
556 if ((!armpmu
->set_event_filter
||
557 armpmu
->set_event_filter(hwc
, &event
->attr
)) &&
558 event_requires_mode_exclusion(&event
->attr
)) {
559 pr_debug("ARM performance counters do not support mode exclusion\n");
564 * Store the event encoding into the config_base field.
566 hwc
->config_base
|= (unsigned long)mapping
;
568 if (!hwc
->sample_period
) {
570 * For non-sampling runs, limit the sample_period to half
571 * of the counter width. That way, the new counter value
572 * is far less likely to overtake the previous one unless
573 * you have some serious IRQ latency issues.
575 hwc
->sample_period
= armpmu
->max_period
>> 1;
576 hwc
->last_period
= hwc
->sample_period
;
577 local64_set(&hwc
->period_left
, hwc
->sample_period
);
581 if (event
->group_leader
!= event
) {
582 err
= validate_group(event
);
590 static int armpmu_event_init(struct perf_event
*event
)
592 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
594 atomic_t
*active_events
= &armpmu
->active_events
;
596 if (armpmu
->map_event(event
) == -ENOENT
)
599 event
->destroy
= hw_perf_event_destroy
;
601 if (!atomic_inc_not_zero(active_events
)) {
602 mutex_lock(&armpmu
->reserve_mutex
);
603 if (atomic_read(active_events
) == 0)
604 err
= armpmu_reserve_hardware(armpmu
);
607 atomic_inc(active_events
);
608 mutex_unlock(&armpmu
->reserve_mutex
);
614 err
= __hw_perf_event_init(event
);
616 hw_perf_event_destroy(event
);
621 static void armpmu_enable(struct pmu
*pmu
)
623 struct arm_pmu
*armpmu
= to_arm_pmu(pmu
);
624 struct pmu_hw_events
*hw_events
= armpmu
->get_hw_events();
625 int enabled
= bitmap_weight(hw_events
->used_mask
, armpmu
->num_events
);
631 static void armpmu_disable(struct pmu
*pmu
)
633 struct arm_pmu
*armpmu
= to_arm_pmu(pmu
);
637 static void __init
armpmu_init(struct arm_pmu
*armpmu
)
639 atomic_set(&armpmu
->active_events
, 0);
640 mutex_init(&armpmu
->reserve_mutex
);
642 armpmu
->pmu
= (struct pmu
) {
643 .pmu_enable
= armpmu_enable
,
644 .pmu_disable
= armpmu_disable
,
645 .event_init
= armpmu_event_init
,
648 .start
= armpmu_start
,
654 int __init
armpmu_register(struct arm_pmu
*armpmu
, char *name
, int type
)
657 return perf_pmu_register(&armpmu
->pmu
, name
, type
);
661 * ARMv8 PMUv3 Performance Events handling code.
662 * Common event types.
664 enum armv8_pmuv3_perf_types
{
665 /* Required events. */
666 ARMV8_PMUV3_PERFCTR_PMNC_SW_INCR
= 0x00,
667 ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL
= 0x03,
668 ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS
= 0x04,
669 ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED
= 0x10,
670 ARMV8_PMUV3_PERFCTR_CLOCK_CYCLES
= 0x11,
671 ARMV8_PMUV3_PERFCTR_PC_BRANCH_PRED
= 0x12,
673 /* At least one of the following is required. */
674 ARMV8_PMUV3_PERFCTR_INSTR_EXECUTED
= 0x08,
675 ARMV8_PMUV3_PERFCTR_OP_SPEC
= 0x1B,
677 /* Common architectural events. */
678 ARMV8_PMUV3_PERFCTR_MEM_READ
= 0x06,
679 ARMV8_PMUV3_PERFCTR_MEM_WRITE
= 0x07,
680 ARMV8_PMUV3_PERFCTR_EXC_TAKEN
= 0x09,
681 ARMV8_PMUV3_PERFCTR_EXC_EXECUTED
= 0x0A,
682 ARMV8_PMUV3_PERFCTR_CID_WRITE
= 0x0B,
683 ARMV8_PMUV3_PERFCTR_PC_WRITE
= 0x0C,
684 ARMV8_PMUV3_PERFCTR_PC_IMM_BRANCH
= 0x0D,
685 ARMV8_PMUV3_PERFCTR_PC_PROC_RETURN
= 0x0E,
686 ARMV8_PMUV3_PERFCTR_MEM_UNALIGNED_ACCESS
= 0x0F,
687 ARMV8_PMUV3_PERFCTR_TTBR_WRITE
= 0x1C,
689 /* Common microarchitectural events. */
690 ARMV8_PMUV3_PERFCTR_L1_ICACHE_REFILL
= 0x01,
691 ARMV8_PMUV3_PERFCTR_ITLB_REFILL
= 0x02,
692 ARMV8_PMUV3_PERFCTR_DTLB_REFILL
= 0x05,
693 ARMV8_PMUV3_PERFCTR_MEM_ACCESS
= 0x13,
694 ARMV8_PMUV3_PERFCTR_L1_ICACHE_ACCESS
= 0x14,
695 ARMV8_PMUV3_PERFCTR_L1_DCACHE_WB
= 0x15,
696 ARMV8_PMUV3_PERFCTR_L2_CACHE_ACCESS
= 0x16,
697 ARMV8_PMUV3_PERFCTR_L2_CACHE_REFILL
= 0x17,
698 ARMV8_PMUV3_PERFCTR_L2_CACHE_WB
= 0x18,
699 ARMV8_PMUV3_PERFCTR_BUS_ACCESS
= 0x19,
700 ARMV8_PMUV3_PERFCTR_MEM_ERROR
= 0x1A,
701 ARMV8_PMUV3_PERFCTR_BUS_CYCLES
= 0x1D,
704 /* PMUv3 HW events mapping. */
705 static const unsigned armv8_pmuv3_perf_map
[PERF_COUNT_HW_MAX
] = {
706 [PERF_COUNT_HW_CPU_CYCLES
] = ARMV8_PMUV3_PERFCTR_CLOCK_CYCLES
,
707 [PERF_COUNT_HW_INSTRUCTIONS
] = ARMV8_PMUV3_PERFCTR_INSTR_EXECUTED
,
708 [PERF_COUNT_HW_CACHE_REFERENCES
] = ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS
,
709 [PERF_COUNT_HW_CACHE_MISSES
] = ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL
,
710 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = HW_OP_UNSUPPORTED
,
711 [PERF_COUNT_HW_BRANCH_MISSES
] = ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED
,
712 [PERF_COUNT_HW_BUS_CYCLES
] = HW_OP_UNSUPPORTED
,
713 [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND
] = HW_OP_UNSUPPORTED
,
714 [PERF_COUNT_HW_STALLED_CYCLES_BACKEND
] = HW_OP_UNSUPPORTED
,
717 static const unsigned armv8_pmuv3_perf_cache_map
[PERF_COUNT_HW_CACHE_MAX
]
718 [PERF_COUNT_HW_CACHE_OP_MAX
]
719 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
722 [C(RESULT_ACCESS
)] = ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS
,
723 [C(RESULT_MISS
)] = ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL
,
726 [C(RESULT_ACCESS
)] = ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS
,
727 [C(RESULT_MISS
)] = ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL
,
730 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
731 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
736 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
737 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
740 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
741 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
744 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
745 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
750 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
751 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
754 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
755 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
758 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
759 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
764 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
765 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
768 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
769 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
772 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
773 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
778 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
779 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
782 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
783 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
786 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
787 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
792 [C(RESULT_ACCESS
)] = ARMV8_PMUV3_PERFCTR_PC_BRANCH_PRED
,
793 [C(RESULT_MISS
)] = ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED
,
796 [C(RESULT_ACCESS
)] = ARMV8_PMUV3_PERFCTR_PC_BRANCH_PRED
,
797 [C(RESULT_MISS
)] = ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED
,
800 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
801 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
806 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
807 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
810 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
811 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
814 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
815 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
821 * Perf Events' indices
823 #define ARMV8_IDX_CYCLE_COUNTER 0
824 #define ARMV8_IDX_COUNTER0 1
825 #define ARMV8_IDX_COUNTER_LAST (ARMV8_IDX_CYCLE_COUNTER + cpu_pmu->num_events - 1)
827 #define ARMV8_MAX_COUNTERS 32
828 #define ARMV8_COUNTER_MASK (ARMV8_MAX_COUNTERS - 1)
831 * ARMv8 low level PMU access
835 * Perf Event to low level counters mapping
837 #define ARMV8_IDX_TO_COUNTER(x) \
838 (((x) - ARMV8_IDX_COUNTER0) & ARMV8_COUNTER_MASK)
841 * Per-CPU PMCR: config reg
843 #define ARMV8_PMCR_E (1 << 0) /* Enable all counters */
844 #define ARMV8_PMCR_P (1 << 1) /* Reset all counters */
845 #define ARMV8_PMCR_C (1 << 2) /* Cycle counter reset */
846 #define ARMV8_PMCR_D (1 << 3) /* CCNT counts every 64th cpu cycle */
847 #define ARMV8_PMCR_X (1 << 4) /* Export to ETM */
848 #define ARMV8_PMCR_DP (1 << 5) /* Disable CCNT if non-invasive debug*/
849 #define ARMV8_PMCR_N_SHIFT 11 /* Number of counters supported */
850 #define ARMV8_PMCR_N_MASK 0x1f
851 #define ARMV8_PMCR_MASK 0x3f /* Mask for writable bits */
854 * PMOVSR: counters overflow flag status reg
856 #define ARMV8_OVSR_MASK 0xffffffff /* Mask for writable bits */
857 #define ARMV8_OVERFLOWED_MASK ARMV8_OVSR_MASK
860 * PMXEVTYPER: Event selection reg
862 #define ARMV8_EVTYPE_MASK 0xc80003ff /* Mask for writable bits */
863 #define ARMV8_EVTYPE_EVENT 0x3ff /* Mask for EVENT bits */
866 * Event filters for PMUv3
868 #define ARMV8_EXCLUDE_EL1 (1 << 31)
869 #define ARMV8_EXCLUDE_EL0 (1 << 30)
870 #define ARMV8_INCLUDE_EL2 (1 << 27)
872 static inline u32
armv8pmu_pmcr_read(void)
875 asm volatile("mrs %0, pmcr_el0" : "=r" (val
));
879 static inline void armv8pmu_pmcr_write(u32 val
)
881 val
&= ARMV8_PMCR_MASK
;
883 asm volatile("msr pmcr_el0, %0" :: "r" (val
));
886 static inline int armv8pmu_has_overflowed(u32 pmovsr
)
888 return pmovsr
& ARMV8_OVERFLOWED_MASK
;
891 static inline int armv8pmu_counter_valid(int idx
)
893 return idx
>= ARMV8_IDX_CYCLE_COUNTER
&& idx
<= ARMV8_IDX_COUNTER_LAST
;
896 static inline int armv8pmu_counter_has_overflowed(u32 pmnc
, int idx
)
901 if (!armv8pmu_counter_valid(idx
)) {
902 pr_err("CPU%u checking wrong counter %d overflow status\n",
903 smp_processor_id(), idx
);
905 counter
= ARMV8_IDX_TO_COUNTER(idx
);
906 ret
= pmnc
& BIT(counter
);
912 static inline int armv8pmu_select_counter(int idx
)
916 if (!armv8pmu_counter_valid(idx
)) {
917 pr_err("CPU%u selecting wrong PMNC counter %d\n",
918 smp_processor_id(), idx
);
922 counter
= ARMV8_IDX_TO_COUNTER(idx
);
923 asm volatile("msr pmselr_el0, %0" :: "r" (counter
));
929 static inline u32
armv8pmu_read_counter(int idx
)
933 if (!armv8pmu_counter_valid(idx
))
934 pr_err("CPU%u reading wrong counter %d\n",
935 smp_processor_id(), idx
);
936 else if (idx
== ARMV8_IDX_CYCLE_COUNTER
)
937 asm volatile("mrs %0, pmccntr_el0" : "=r" (value
));
938 else if (armv8pmu_select_counter(idx
) == idx
)
939 asm volatile("mrs %0, pmxevcntr_el0" : "=r" (value
));
944 static inline void armv8pmu_write_counter(int idx
, u32 value
)
946 if (!armv8pmu_counter_valid(idx
))
947 pr_err("CPU%u writing wrong counter %d\n",
948 smp_processor_id(), idx
);
949 else if (idx
== ARMV8_IDX_CYCLE_COUNTER
)
950 asm volatile("msr pmccntr_el0, %0" :: "r" (value
));
951 else if (armv8pmu_select_counter(idx
) == idx
)
952 asm volatile("msr pmxevcntr_el0, %0" :: "r" (value
));
955 static inline void armv8pmu_write_evtype(int idx
, u32 val
)
957 if (armv8pmu_select_counter(idx
) == idx
) {
958 val
&= ARMV8_EVTYPE_MASK
;
959 asm volatile("msr pmxevtyper_el0, %0" :: "r" (val
));
963 static inline int armv8pmu_enable_counter(int idx
)
967 if (!armv8pmu_counter_valid(idx
)) {
968 pr_err("CPU%u enabling wrong PMNC counter %d\n",
969 smp_processor_id(), idx
);
973 counter
= ARMV8_IDX_TO_COUNTER(idx
);
974 asm volatile("msr pmcntenset_el0, %0" :: "r" (BIT(counter
)));
978 static inline int armv8pmu_disable_counter(int idx
)
982 if (!armv8pmu_counter_valid(idx
)) {
983 pr_err("CPU%u disabling wrong PMNC counter %d\n",
984 smp_processor_id(), idx
);
988 counter
= ARMV8_IDX_TO_COUNTER(idx
);
989 asm volatile("msr pmcntenclr_el0, %0" :: "r" (BIT(counter
)));
993 static inline int armv8pmu_enable_intens(int idx
)
997 if (!armv8pmu_counter_valid(idx
)) {
998 pr_err("CPU%u enabling wrong PMNC counter IRQ enable %d\n",
999 smp_processor_id(), idx
);
1003 counter
= ARMV8_IDX_TO_COUNTER(idx
);
1004 asm volatile("msr pmintenset_el1, %0" :: "r" (BIT(counter
)));
1008 static inline int armv8pmu_disable_intens(int idx
)
1012 if (!armv8pmu_counter_valid(idx
)) {
1013 pr_err("CPU%u disabling wrong PMNC counter IRQ enable %d\n",
1014 smp_processor_id(), idx
);
1018 counter
= ARMV8_IDX_TO_COUNTER(idx
);
1019 asm volatile("msr pmintenclr_el1, %0" :: "r" (BIT(counter
)));
1021 /* Clear the overflow flag in case an interrupt is pending. */
1022 asm volatile("msr pmovsclr_el0, %0" :: "r" (BIT(counter
)));
1027 static inline u32
armv8pmu_getreset_flags(void)
1032 asm volatile("mrs %0, pmovsclr_el0" : "=r" (value
));
1034 /* Write to clear flags */
1035 value
&= ARMV8_OVSR_MASK
;
1036 asm volatile("msr pmovsclr_el0, %0" :: "r" (value
));
1041 static void armv8pmu_enable_event(struct hw_perf_event
*hwc
, int idx
)
1043 unsigned long flags
;
1044 struct pmu_hw_events
*events
= cpu_pmu
->get_hw_events();
1047 * Enable counter and interrupt, and set the counter to count
1048 * the event that we're interested in.
1050 raw_spin_lock_irqsave(&events
->pmu_lock
, flags
);
1055 armv8pmu_disable_counter(idx
);
1058 * Set event (if destined for PMNx counters).
1060 armv8pmu_write_evtype(idx
, hwc
->config_base
);
1063 * Enable interrupt for this counter
1065 armv8pmu_enable_intens(idx
);
1070 armv8pmu_enable_counter(idx
);
1072 raw_spin_unlock_irqrestore(&events
->pmu_lock
, flags
);
1075 static void armv8pmu_disable_event(struct hw_perf_event
*hwc
, int idx
)
1077 unsigned long flags
;
1078 struct pmu_hw_events
*events
= cpu_pmu
->get_hw_events();
1081 * Disable counter and interrupt
1083 raw_spin_lock_irqsave(&events
->pmu_lock
, flags
);
1088 armv8pmu_disable_counter(idx
);
1091 * Disable interrupt for this counter
1093 armv8pmu_disable_intens(idx
);
1095 raw_spin_unlock_irqrestore(&events
->pmu_lock
, flags
);
1098 static irqreturn_t
armv8pmu_handle_irq(int irq_num
, void *dev
)
1101 struct perf_sample_data data
;
1102 struct pmu_hw_events
*cpuc
;
1103 struct pt_regs
*regs
;
1107 * Get and reset the IRQ flags
1109 pmovsr
= armv8pmu_getreset_flags();
1112 * Did an overflow occur?
1114 if (!armv8pmu_has_overflowed(pmovsr
))
1118 * Handle the counter(s) overflow(s)
1120 regs
= get_irq_regs();
1122 cpuc
= this_cpu_ptr(&cpu_hw_events
);
1123 for (idx
= 0; idx
< cpu_pmu
->num_events
; ++idx
) {
1124 struct perf_event
*event
= cpuc
->events
[idx
];
1125 struct hw_perf_event
*hwc
;
1127 /* Ignore if we don't have an event. */
1132 * We have a single interrupt for all counters. Check that
1133 * each counter has overflowed before we process it.
1135 if (!armv8pmu_counter_has_overflowed(pmovsr
, idx
))
1139 armpmu_event_update(event
, hwc
, idx
);
1140 perf_sample_data_init(&data
, 0, hwc
->last_period
);
1141 if (!armpmu_event_set_period(event
, hwc
, idx
))
1144 if (perf_event_overflow(event
, &data
, regs
))
1145 cpu_pmu
->disable(hwc
, idx
);
1149 * Handle the pending perf events.
1151 * Note: this call *must* be run with interrupts disabled. For
1152 * platforms that can have the PMU interrupts raised as an NMI, this
1160 static void armv8pmu_start(void)
1162 unsigned long flags
;
1163 struct pmu_hw_events
*events
= cpu_pmu
->get_hw_events();
1165 raw_spin_lock_irqsave(&events
->pmu_lock
, flags
);
1166 /* Enable all counters */
1167 armv8pmu_pmcr_write(armv8pmu_pmcr_read() | ARMV8_PMCR_E
);
1168 raw_spin_unlock_irqrestore(&events
->pmu_lock
, flags
);
1171 static void armv8pmu_stop(void)
1173 unsigned long flags
;
1174 struct pmu_hw_events
*events
= cpu_pmu
->get_hw_events();
1176 raw_spin_lock_irqsave(&events
->pmu_lock
, flags
);
1177 /* Disable all counters */
1178 armv8pmu_pmcr_write(armv8pmu_pmcr_read() & ~ARMV8_PMCR_E
);
1179 raw_spin_unlock_irqrestore(&events
->pmu_lock
, flags
);
1182 static int armv8pmu_get_event_idx(struct pmu_hw_events
*cpuc
,
1183 struct hw_perf_event
*event
)
1186 unsigned long evtype
= event
->config_base
& ARMV8_EVTYPE_EVENT
;
1188 /* Always place a cycle counter into the cycle counter. */
1189 if (evtype
== ARMV8_PMUV3_PERFCTR_CLOCK_CYCLES
) {
1190 if (test_and_set_bit(ARMV8_IDX_CYCLE_COUNTER
, cpuc
->used_mask
))
1193 return ARMV8_IDX_CYCLE_COUNTER
;
1197 * For anything other than a cycle counter, try and use
1198 * the events counters
1200 for (idx
= ARMV8_IDX_COUNTER0
; idx
< cpu_pmu
->num_events
; ++idx
) {
1201 if (!test_and_set_bit(idx
, cpuc
->used_mask
))
1205 /* The counters are all in use. */
1210 * Add an event filter to a given event. This will only work for PMUv2 PMUs.
1212 static int armv8pmu_set_event_filter(struct hw_perf_event
*event
,
1213 struct perf_event_attr
*attr
)
1215 unsigned long config_base
= 0;
1217 if (attr
->exclude_idle
)
1219 if (attr
->exclude_user
)
1220 config_base
|= ARMV8_EXCLUDE_EL0
;
1221 if (attr
->exclude_kernel
)
1222 config_base
|= ARMV8_EXCLUDE_EL1
;
1223 if (!attr
->exclude_hv
)
1224 config_base
|= ARMV8_INCLUDE_EL2
;
1227 * Install the filter into config_base as this is used to
1228 * construct the event type.
1230 event
->config_base
= config_base
;
1235 static void armv8pmu_reset(void *info
)
1237 u32 idx
, nb_cnt
= cpu_pmu
->num_events
;
1239 /* The counter and interrupt enable registers are unknown at reset. */
1240 for (idx
= ARMV8_IDX_CYCLE_COUNTER
; idx
< nb_cnt
; ++idx
)
1241 armv8pmu_disable_event(NULL
, idx
);
1243 /* Initialize & Reset PMNC: C and P bits. */
1244 armv8pmu_pmcr_write(ARMV8_PMCR_P
| ARMV8_PMCR_C
);
1246 /* Disable access from userspace. */
1247 asm volatile("msr pmuserenr_el0, %0" :: "r" (0));
1250 static int armv8_pmuv3_map_event(struct perf_event
*event
)
1252 return map_cpu_event(event
, &armv8_pmuv3_perf_map
,
1253 &armv8_pmuv3_perf_cache_map
,
1254 ARMV8_EVTYPE_EVENT
);
1257 static struct arm_pmu armv8pmu
= {
1258 .handle_irq
= armv8pmu_handle_irq
,
1259 .enable
= armv8pmu_enable_event
,
1260 .disable
= armv8pmu_disable_event
,
1261 .read_counter
= armv8pmu_read_counter
,
1262 .write_counter
= armv8pmu_write_counter
,
1263 .get_event_idx
= armv8pmu_get_event_idx
,
1264 .start
= armv8pmu_start
,
1265 .stop
= armv8pmu_stop
,
1266 .reset
= armv8pmu_reset
,
1267 .max_period
= (1LLU << 32) - 1,
1270 static u32 __init
armv8pmu_read_num_pmnc_events(void)
1274 /* Read the nb of CNTx counters supported from PMNC */
1275 nb_cnt
= (armv8pmu_pmcr_read() >> ARMV8_PMCR_N_SHIFT
) & ARMV8_PMCR_N_MASK
;
1277 /* Add the CPU cycles counter and return */
1281 static struct arm_pmu
*__init
armv8_pmuv3_pmu_init(void)
1283 armv8pmu
.name
= "arm/armv8-pmuv3";
1284 armv8pmu
.map_event
= armv8_pmuv3_map_event
;
1285 armv8pmu
.num_events
= armv8pmu_read_num_pmnc_events();
1286 armv8pmu
.set_event_filter
= armv8pmu_set_event_filter
;
1291 * Ensure the PMU has sane values out of reset.
1292 * This requires SMP to be available, so exists as a separate initcall.
1297 if (cpu_pmu
&& cpu_pmu
->reset
)
1298 return on_each_cpu(cpu_pmu
->reset
, NULL
, 1);
1301 arch_initcall(cpu_pmu_reset
);
1304 * PMU platform driver and devicetree bindings.
1306 static const struct of_device_id armpmu_of_device_ids
[] = {
1307 {.compatible
= "arm,armv8-pmuv3"},
1311 static int armpmu_device_probe(struct platform_device
*pdev
)
1318 /* Don't bother with PPIs; they're already affine */
1319 irq
= platform_get_irq(pdev
, 0);
1320 if (irq
>= 0 && irq_is_percpu(irq
))
1323 irqs
= kcalloc(pdev
->num_resources
, sizeof(*irqs
), GFP_KERNEL
);
1327 for (i
= 0; i
< pdev
->num_resources
; ++i
) {
1328 struct device_node
*dn
;
1331 dn
= of_parse_phandle(pdev
->dev
.of_node
, "interrupt-affinity",
1334 pr_warn("Failed to parse %s/interrupt-affinity[%d]\n",
1335 of_node_full_name(pdev
->dev
.of_node
), i
);
1339 for_each_possible_cpu(cpu
)
1340 if (arch_find_n_match_cpu_physical_id(dn
, cpu
, NULL
))
1343 if (cpu
>= nr_cpu_ids
) {
1344 pr_warn("Failed to find logical CPU for %s\n",
1354 if (i
== pdev
->num_resources
)
1355 cpu_pmu
->irq_affinity
= irqs
;
1360 cpu_pmu
->plat_device
= pdev
;
1364 static struct platform_driver armpmu_driver
= {
1367 .of_match_table
= armpmu_of_device_ids
,
1369 .probe
= armpmu_device_probe
,
1372 static int __init
register_pmu_driver(void)
1374 return platform_driver_register(&armpmu_driver
);
1376 device_initcall(register_pmu_driver
);
1378 static struct pmu_hw_events
*armpmu_get_cpu_events(void)
1380 return this_cpu_ptr(&cpu_hw_events
);
1383 static void __init
cpu_pmu_init(struct arm_pmu
*armpmu
)
1386 for_each_possible_cpu(cpu
) {
1387 struct pmu_hw_events
*events
= &per_cpu(cpu_hw_events
, cpu
);
1388 events
->events
= per_cpu(hw_events
, cpu
);
1389 events
->used_mask
= per_cpu(used_mask
, cpu
);
1390 raw_spin_lock_init(&events
->pmu_lock
);
1392 armpmu
->get_hw_events
= armpmu_get_cpu_events
;
1395 static int __init
init_hw_perf_events(void)
1397 u64 dfr
= read_cpuid(ID_AA64DFR0_EL1
);
1399 switch ((dfr
>> 8) & 0xf) {
1400 case 0x1: /* PMUv3 */
1401 cpu_pmu
= armv8_pmuv3_pmu_init();
1406 pr_info("enabled with %s PMU driver, %d counters available\n",
1407 cpu_pmu
->name
, cpu_pmu
->num_events
);
1408 cpu_pmu_init(cpu_pmu
);
1409 armpmu_register(cpu_pmu
, "cpu", PERF_TYPE_RAW
);
1411 pr_info("no hardware support available\n");
1416 early_initcall(init_hw_perf_events
);
1419 * Callchain handling code.
1422 struct frame_tail __user
*fp
;
1424 } __attribute__((packed
));
1427 * Get the return address for a single stackframe and return a pointer to the
1430 static struct frame_tail __user
*
1431 user_backtrace(struct frame_tail __user
*tail
,
1432 struct perf_callchain_entry
*entry
)
1434 struct frame_tail buftail
;
1437 /* Also check accessibility of one struct frame_tail beyond */
1438 if (!access_ok(VERIFY_READ
, tail
, sizeof(buftail
)))
1441 pagefault_disable();
1442 err
= __copy_from_user_inatomic(&buftail
, tail
, sizeof(buftail
));
1448 perf_callchain_store(entry
, buftail
.lr
);
1451 * Frame pointers should strictly progress back up the stack
1452 * (towards higher addresses).
1454 if (tail
>= buftail
.fp
)
1460 #ifdef CONFIG_COMPAT
1462 * The registers we're interested in are at the end of the variable
1463 * length saved register structure. The fp points at the end of this
1464 * structure so the address of this struct is:
1465 * (struct compat_frame_tail *)(xxx->fp)-1
1467 * This code has been adapted from the ARM OProfile support.
1469 struct compat_frame_tail
{
1470 compat_uptr_t fp
; /* a (struct compat_frame_tail *) in compat mode */
1473 } __attribute__((packed
));
1475 static struct compat_frame_tail __user
*
1476 compat_user_backtrace(struct compat_frame_tail __user
*tail
,
1477 struct perf_callchain_entry
*entry
)
1479 struct compat_frame_tail buftail
;
1482 /* Also check accessibility of one struct frame_tail beyond */
1483 if (!access_ok(VERIFY_READ
, tail
, sizeof(buftail
)))
1486 pagefault_disable();
1487 err
= __copy_from_user_inatomic(&buftail
, tail
, sizeof(buftail
));
1493 perf_callchain_store(entry
, buftail
.lr
);
1496 * Frame pointers should strictly progress back up the stack
1497 * (towards higher addresses).
1499 if (tail
+ 1 >= (struct compat_frame_tail __user
*)
1500 compat_ptr(buftail
.fp
))
1503 return (struct compat_frame_tail __user
*)compat_ptr(buftail
.fp
) - 1;
1505 #endif /* CONFIG_COMPAT */
1507 void perf_callchain_user(struct perf_callchain_entry
*entry
,
1508 struct pt_regs
*regs
)
1510 if (perf_guest_cbs
&& perf_guest_cbs
->is_in_guest()) {
1511 /* We don't support guest os callchain now */
1515 perf_callchain_store(entry
, regs
->pc
);
1517 if (!compat_user_mode(regs
)) {
1519 struct frame_tail __user
*tail
;
1521 tail
= (struct frame_tail __user
*)regs
->regs
[29];
1523 while (entry
->nr
< PERF_MAX_STACK_DEPTH
&&
1524 tail
&& !((unsigned long)tail
& 0xf))
1525 tail
= user_backtrace(tail
, entry
);
1527 #ifdef CONFIG_COMPAT
1528 /* AARCH32 compat mode */
1529 struct compat_frame_tail __user
*tail
;
1531 tail
= (struct compat_frame_tail __user
*)regs
->compat_fp
- 1;
1533 while ((entry
->nr
< PERF_MAX_STACK_DEPTH
) &&
1534 tail
&& !((unsigned long)tail
& 0x3))
1535 tail
= compat_user_backtrace(tail
, entry
);
1541 * Gets called by walk_stackframe() for every stackframe. This will be called
1542 * whist unwinding the stackframe and is like a subroutine return so we use
1545 static int callchain_trace(struct stackframe
*frame
, void *data
)
1547 struct perf_callchain_entry
*entry
= data
;
1548 perf_callchain_store(entry
, frame
->pc
);
1552 void perf_callchain_kernel(struct perf_callchain_entry
*entry
,
1553 struct pt_regs
*regs
)
1555 struct stackframe frame
;
1557 if (perf_guest_cbs
&& perf_guest_cbs
->is_in_guest()) {
1558 /* We don't support guest os callchain now */
1562 frame
.fp
= regs
->regs
[29];
1563 frame
.sp
= regs
->sp
;
1564 frame
.pc
= regs
->pc
;
1566 walk_stackframe(&frame
, callchain_trace
, entry
);
1569 unsigned long perf_instruction_pointer(struct pt_regs
*regs
)
1571 if (perf_guest_cbs
&& perf_guest_cbs
->is_in_guest())
1572 return perf_guest_cbs
->get_guest_ip();
1574 return instruction_pointer(regs
);
1577 unsigned long perf_misc_flags(struct pt_regs
*regs
)
1581 if (perf_guest_cbs
&& perf_guest_cbs
->is_in_guest()) {
1582 if (perf_guest_cbs
->is_user_mode())
1583 misc
|= PERF_RECORD_MISC_GUEST_USER
;
1585 misc
|= PERF_RECORD_MISC_GUEST_KERNEL
;
1587 if (user_mode(regs
))
1588 misc
|= PERF_RECORD_MISC_USER
;
1590 misc
|= PERF_RECORD_MISC_KERNEL
;