Linux 4.2.2
[linux/fpc-iii.git] / arch / blackfin / kernel / cplb-mpu / cplbmgr.c
blobb56bd8514b7cbbf1d1162049c7c6fa31b5cf8799
1 /*
2 * Blackfin CPLB exception handling for when MPU in on
4 * Copyright 2008-2009 Analog Devices Inc.
6 * Licensed under the GPL-2 or later.
7 */
9 #include <linux/module.h>
10 #include <linux/mm.h>
12 #include <asm/blackfin.h>
13 #include <asm/cacheflush.h>
14 #include <asm/cplb.h>
15 #include <asm/cplbinit.h>
16 #include <asm/mmu_context.h>
19 * WARNING
21 * This file is compiled with certain -ffixed-reg options. We have to
22 * make sure not to call any functions here that could clobber these
23 * registers.
26 int page_mask_nelts;
27 int page_mask_order;
28 unsigned long *current_rwx_mask[NR_CPUS];
30 int nr_dcplb_miss[NR_CPUS], nr_icplb_miss[NR_CPUS];
31 int nr_icplb_supv_miss[NR_CPUS], nr_dcplb_prot[NR_CPUS];
32 int nr_cplb_flush[NR_CPUS];
34 #ifdef CONFIG_EXCPT_IRQ_SYSC_L1
35 #define MGR_ATTR __attribute__((l1_text))
36 #else
37 #define MGR_ATTR
38 #endif
41 * Given the contents of the status register, return the index of the
42 * CPLB that caused the fault.
44 static inline int faulting_cplb_index(int status)
46 int signbits = __builtin_bfin_norm_fr1x32(status & 0xFFFF);
47 return 30 - signbits;
51 * Given the contents of the status register and the DCPLB_DATA contents,
52 * return true if a write access should be permitted.
54 static inline int write_permitted(int status, unsigned long data)
56 if (status & FAULT_USERSUPV)
57 return !!(data & CPLB_SUPV_WR);
58 else
59 return !!(data & CPLB_USER_WR);
62 /* Counters to implement round-robin replacement. */
63 static int icplb_rr_index[NR_CPUS], dcplb_rr_index[NR_CPUS];
66 * Find an ICPLB entry to be evicted and return its index.
68 MGR_ATTR static int evict_one_icplb(unsigned int cpu)
70 int i;
71 for (i = first_switched_icplb; i < MAX_CPLBS; i++)
72 if ((icplb_tbl[cpu][i].data & CPLB_VALID) == 0)
73 return i;
74 i = first_switched_icplb + icplb_rr_index[cpu];
75 if (i >= MAX_CPLBS) {
76 i -= MAX_CPLBS - first_switched_icplb;
77 icplb_rr_index[cpu] -= MAX_CPLBS - first_switched_icplb;
79 icplb_rr_index[cpu]++;
80 return i;
83 MGR_ATTR static int evict_one_dcplb(unsigned int cpu)
85 int i;
86 for (i = first_switched_dcplb; i < MAX_CPLBS; i++)
87 if ((dcplb_tbl[cpu][i].data & CPLB_VALID) == 0)
88 return i;
89 i = first_switched_dcplb + dcplb_rr_index[cpu];
90 if (i >= MAX_CPLBS) {
91 i -= MAX_CPLBS - first_switched_dcplb;
92 dcplb_rr_index[cpu] -= MAX_CPLBS - first_switched_dcplb;
94 dcplb_rr_index[cpu]++;
95 return i;
98 MGR_ATTR static noinline int dcplb_miss(unsigned int cpu)
100 unsigned long addr = bfin_read_DCPLB_FAULT_ADDR();
101 int status = bfin_read_DCPLB_STATUS();
102 unsigned long *mask;
103 int idx;
104 unsigned long d_data;
106 nr_dcplb_miss[cpu]++;
108 d_data = CPLB_SUPV_WR | CPLB_VALID | CPLB_DIRTY | PAGE_SIZE_4KB;
109 #ifdef CONFIG_BFIN_EXTMEM_DCACHEABLE
110 if (bfin_addr_dcacheable(addr)) {
111 d_data |= CPLB_L1_CHBL | ANOMALY_05000158_WORKAROUND;
112 # ifdef CONFIG_BFIN_EXTMEM_WRITETHROUGH
113 d_data |= CPLB_L1_AOW | CPLB_WT;
114 # endif
116 #endif
118 if (L2_LENGTH && addr >= L2_START && addr < L2_START + L2_LENGTH) {
119 addr = L2_START;
120 d_data = L2_DMEMORY;
121 } else if (addr >= physical_mem_end) {
122 if (addr >= ASYNC_BANK0_BASE && addr < ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE) {
123 #if defined(CONFIG_ROMFS_ON_MTD) && defined(CONFIG_MTD_ROM)
124 mask = current_rwx_mask[cpu];
125 if (mask) {
126 int page = (addr - (ASYNC_BANK0_BASE - _ramend)) >> PAGE_SHIFT;
127 int idx = page >> 5;
128 int bit = 1 << (page & 31);
130 if (mask[idx] & bit)
131 d_data |= CPLB_USER_RD;
133 #endif
134 } else if (addr >= BOOT_ROM_START && addr < BOOT_ROM_START + BOOT_ROM_LENGTH
135 && (status & (FAULT_RW | FAULT_USERSUPV)) == FAULT_USERSUPV) {
136 addr &= ~(1 * 1024 * 1024 - 1);
137 d_data &= ~PAGE_SIZE_4KB;
138 d_data |= PAGE_SIZE_1MB;
139 } else
140 return CPLB_PROT_VIOL;
141 } else if (addr >= _ramend) {
142 d_data |= CPLB_USER_RD | CPLB_USER_WR;
143 if (reserved_mem_dcache_on)
144 d_data |= CPLB_L1_CHBL;
145 } else {
146 mask = current_rwx_mask[cpu];
147 if (mask) {
148 int page = addr >> PAGE_SHIFT;
149 int idx = page >> 5;
150 int bit = 1 << (page & 31);
152 if (mask[idx] & bit)
153 d_data |= CPLB_USER_RD;
155 mask += page_mask_nelts;
156 if (mask[idx] & bit)
157 d_data |= CPLB_USER_WR;
160 idx = evict_one_dcplb(cpu);
162 addr &= PAGE_MASK;
163 dcplb_tbl[cpu][idx].addr = addr;
164 dcplb_tbl[cpu][idx].data = d_data;
166 _disable_dcplb();
167 bfin_write32(DCPLB_DATA0 + idx * 4, d_data);
168 bfin_write32(DCPLB_ADDR0 + idx * 4, addr);
169 _enable_dcplb();
171 return 0;
174 MGR_ATTR static noinline int icplb_miss(unsigned int cpu)
176 unsigned long addr = bfin_read_ICPLB_FAULT_ADDR();
177 int status = bfin_read_ICPLB_STATUS();
178 int idx;
179 unsigned long i_data;
181 nr_icplb_miss[cpu]++;
183 /* If inside the uncached DMA region, fault. */
184 if (addr >= _ramend - DMA_UNCACHED_REGION && addr < _ramend)
185 return CPLB_PROT_VIOL;
187 if (status & FAULT_USERSUPV)
188 nr_icplb_supv_miss[cpu]++;
191 * First, try to find a CPLB that matches this address. If we
192 * find one, then the fact that we're in the miss handler means
193 * that the instruction crosses a page boundary.
195 for (idx = first_switched_icplb; idx < MAX_CPLBS; idx++) {
196 if (icplb_tbl[cpu][idx].data & CPLB_VALID) {
197 unsigned long this_addr = icplb_tbl[cpu][idx].addr;
198 if (this_addr <= addr && this_addr + PAGE_SIZE > addr) {
199 addr += PAGE_SIZE;
200 break;
205 i_data = CPLB_VALID | CPLB_PORTPRIO | PAGE_SIZE_4KB;
207 #ifdef CONFIG_BFIN_EXTMEM_ICACHEABLE
209 * Normal RAM, and possibly the reserved memory area, are
210 * cacheable.
212 if (addr < _ramend ||
213 (addr < physical_mem_end && reserved_mem_icache_on))
214 i_data |= CPLB_L1_CHBL | ANOMALY_05000158_WORKAROUND;
215 #endif
217 if (L2_LENGTH && addr >= L2_START && addr < L2_START + L2_LENGTH) {
218 addr = L2_START;
219 i_data = L2_IMEMORY;
220 } else if (addr >= physical_mem_end) {
221 if (addr >= ASYNC_BANK0_BASE && addr < ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE) {
222 if (!(status & FAULT_USERSUPV)) {
223 unsigned long *mask = current_rwx_mask[cpu];
225 if (mask) {
226 int page = (addr - (ASYNC_BANK0_BASE - _ramend)) >> PAGE_SHIFT;
227 int idx = page >> 5;
228 int bit = 1 << (page & 31);
230 mask += 2 * page_mask_nelts;
231 if (mask[idx] & bit)
232 i_data |= CPLB_USER_RD;
235 } else if (addr >= BOOT_ROM_START && addr < BOOT_ROM_START + BOOT_ROM_LENGTH
236 && (status & FAULT_USERSUPV)) {
237 addr &= ~(1 * 1024 * 1024 - 1);
238 i_data &= ~PAGE_SIZE_4KB;
239 i_data |= PAGE_SIZE_1MB;
240 } else
241 return CPLB_PROT_VIOL;
242 } else if (addr >= _ramend) {
243 i_data |= CPLB_USER_RD;
244 if (reserved_mem_icache_on)
245 i_data |= CPLB_L1_CHBL;
246 } else {
248 * Two cases to distinguish - a supervisor access must
249 * necessarily be for a module page; we grant it
250 * unconditionally (could do better here in the future).
251 * Otherwise, check the x bitmap of the current process.
253 if (!(status & FAULT_USERSUPV)) {
254 unsigned long *mask = current_rwx_mask[cpu];
256 if (mask) {
257 int page = addr >> PAGE_SHIFT;
258 int idx = page >> 5;
259 int bit = 1 << (page & 31);
261 mask += 2 * page_mask_nelts;
262 if (mask[idx] & bit)
263 i_data |= CPLB_USER_RD;
267 idx = evict_one_icplb(cpu);
268 addr &= PAGE_MASK;
269 icplb_tbl[cpu][idx].addr = addr;
270 icplb_tbl[cpu][idx].data = i_data;
272 _disable_icplb();
273 bfin_write32(ICPLB_DATA0 + idx * 4, i_data);
274 bfin_write32(ICPLB_ADDR0 + idx * 4, addr);
275 _enable_icplb();
277 return 0;
280 MGR_ATTR static noinline int dcplb_protection_fault(unsigned int cpu)
282 int status = bfin_read_DCPLB_STATUS();
284 nr_dcplb_prot[cpu]++;
286 if (status & FAULT_RW) {
287 int idx = faulting_cplb_index(status);
288 unsigned long data = dcplb_tbl[cpu][idx].data;
289 if (!(data & CPLB_WT) && !(data & CPLB_DIRTY) &&
290 write_permitted(status, data)) {
291 data |= CPLB_DIRTY;
292 dcplb_tbl[cpu][idx].data = data;
293 bfin_write32(DCPLB_DATA0 + idx * 4, data);
294 return 0;
297 return CPLB_PROT_VIOL;
300 MGR_ATTR int cplb_hdr(int seqstat, struct pt_regs *regs)
302 int cause = seqstat & 0x3f;
303 unsigned int cpu = raw_smp_processor_id();
304 switch (cause) {
305 case 0x23:
306 return dcplb_protection_fault(cpu);
307 case 0x2C:
308 return icplb_miss(cpu);
309 case 0x26:
310 return dcplb_miss(cpu);
311 default:
312 return 1;
316 void flush_switched_cplbs(unsigned int cpu)
318 int i;
319 unsigned long flags;
321 nr_cplb_flush[cpu]++;
323 flags = hard_local_irq_save();
324 _disable_icplb();
325 for (i = first_switched_icplb; i < MAX_CPLBS; i++) {
326 icplb_tbl[cpu][i].data = 0;
327 bfin_write32(ICPLB_DATA0 + i * 4, 0);
329 _enable_icplb();
331 _disable_dcplb();
332 for (i = first_switched_dcplb; i < MAX_CPLBS; i++) {
333 dcplb_tbl[cpu][i].data = 0;
334 bfin_write32(DCPLB_DATA0 + i * 4, 0);
336 _enable_dcplb();
337 hard_local_irq_restore(flags);
341 void set_mask_dcplbs(unsigned long *masks, unsigned int cpu)
343 int i;
344 unsigned long addr = (unsigned long)masks;
345 unsigned long d_data;
346 unsigned long flags;
348 if (!masks) {
349 current_rwx_mask[cpu] = masks;
350 return;
353 flags = hard_local_irq_save();
354 current_rwx_mask[cpu] = masks;
356 if (L2_LENGTH && addr >= L2_START && addr < L2_START + L2_LENGTH) {
357 addr = L2_START;
358 d_data = L2_DMEMORY;
359 } else {
360 d_data = CPLB_SUPV_WR | CPLB_VALID | CPLB_DIRTY | PAGE_SIZE_4KB;
361 #ifdef CONFIG_BFIN_EXTMEM_DCACHEABLE
362 d_data |= CPLB_L1_CHBL;
363 # ifdef CONFIG_BFIN_EXTMEM_WRITETHROUGH
364 d_data |= CPLB_L1_AOW | CPLB_WT;
365 # endif
366 #endif
369 _disable_dcplb();
370 for (i = first_mask_dcplb; i < first_switched_dcplb; i++) {
371 dcplb_tbl[cpu][i].addr = addr;
372 dcplb_tbl[cpu][i].data = d_data;
373 bfin_write32(DCPLB_DATA0 + i * 4, d_data);
374 bfin_write32(DCPLB_ADDR0 + i * 4, addr);
375 addr += PAGE_SIZE;
377 _enable_dcplb();
378 hard_local_irq_restore(flags);