Linux 4.2.2
[linux/fpc-iii.git] / arch / ia64 / kernel / ptrace.c
blob6f54d511cc509a03ac079871b6979f03e6b53bc8
1 /*
2 * Kernel support for the ptrace() and syscall tracing interfaces.
4 * Copyright (C) 1999-2005 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 * Copyright (C) 2006 Intel Co
7 * 2006-08-12 - IA64 Native Utrace implementation support added by
8 * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
10 * Derived from the x86 and Alpha versions.
12 #include <linux/kernel.h>
13 #include <linux/sched.h>
14 #include <linux/mm.h>
15 #include <linux/errno.h>
16 #include <linux/ptrace.h>
17 #include <linux/user.h>
18 #include <linux/security.h>
19 #include <linux/audit.h>
20 #include <linux/signal.h>
21 #include <linux/regset.h>
22 #include <linux/elf.h>
23 #include <linux/tracehook.h>
25 #include <asm/pgtable.h>
26 #include <asm/processor.h>
27 #include <asm/ptrace_offsets.h>
28 #include <asm/rse.h>
29 #include <asm/uaccess.h>
30 #include <asm/unwind.h>
31 #ifdef CONFIG_PERFMON
32 #include <asm/perfmon.h>
33 #endif
35 #include "entry.h"
38 * Bits in the PSR that we allow ptrace() to change:
39 * be, up, ac, mfl, mfh (the user mask; five bits total)
40 * db (debug breakpoint fault; one bit)
41 * id (instruction debug fault disable; one bit)
42 * dd (data debug fault disable; one bit)
43 * ri (restart instruction; two bits)
44 * is (instruction set; one bit)
46 #define IPSR_MASK (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS \
47 | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI)
49 #define MASK(nbits) ((1UL << (nbits)) - 1) /* mask with NBITS bits set */
50 #define PFM_MASK MASK(38)
52 #define PTRACE_DEBUG 0
54 #if PTRACE_DEBUG
55 # define dprintk(format...) printk(format)
56 # define inline
57 #else
58 # define dprintk(format...)
59 #endif
61 /* Return TRUE if PT was created due to kernel-entry via a system-call. */
63 static inline int
64 in_syscall (struct pt_regs *pt)
66 return (long) pt->cr_ifs >= 0;
70 * Collect the NaT bits for r1-r31 from scratch_unat and return a NaT
71 * bitset where bit i is set iff the NaT bit of register i is set.
73 unsigned long
74 ia64_get_scratch_nat_bits (struct pt_regs *pt, unsigned long scratch_unat)
76 # define GET_BITS(first, last, unat) \
77 ({ \
78 unsigned long bit = ia64_unat_pos(&pt->r##first); \
79 unsigned long nbits = (last - first + 1); \
80 unsigned long mask = MASK(nbits) << first; \
81 unsigned long dist; \
82 if (bit < first) \
83 dist = 64 + bit - first; \
84 else \
85 dist = bit - first; \
86 ia64_rotr(unat, dist) & mask; \
88 unsigned long val;
91 * Registers that are stored consecutively in struct pt_regs
92 * can be handled in parallel. If the register order in
93 * struct_pt_regs changes, this code MUST be updated.
95 val = GET_BITS( 1, 1, scratch_unat);
96 val |= GET_BITS( 2, 3, scratch_unat);
97 val |= GET_BITS(12, 13, scratch_unat);
98 val |= GET_BITS(14, 14, scratch_unat);
99 val |= GET_BITS(15, 15, scratch_unat);
100 val |= GET_BITS( 8, 11, scratch_unat);
101 val |= GET_BITS(16, 31, scratch_unat);
102 return val;
104 # undef GET_BITS
108 * Set the NaT bits for the scratch registers according to NAT and
109 * return the resulting unat (assuming the scratch registers are
110 * stored in PT).
112 unsigned long
113 ia64_put_scratch_nat_bits (struct pt_regs *pt, unsigned long nat)
115 # define PUT_BITS(first, last, nat) \
116 ({ \
117 unsigned long bit = ia64_unat_pos(&pt->r##first); \
118 unsigned long nbits = (last - first + 1); \
119 unsigned long mask = MASK(nbits) << first; \
120 long dist; \
121 if (bit < first) \
122 dist = 64 + bit - first; \
123 else \
124 dist = bit - first; \
125 ia64_rotl(nat & mask, dist); \
127 unsigned long scratch_unat;
130 * Registers that are stored consecutively in struct pt_regs
131 * can be handled in parallel. If the register order in
132 * struct_pt_regs changes, this code MUST be updated.
134 scratch_unat = PUT_BITS( 1, 1, nat);
135 scratch_unat |= PUT_BITS( 2, 3, nat);
136 scratch_unat |= PUT_BITS(12, 13, nat);
137 scratch_unat |= PUT_BITS(14, 14, nat);
138 scratch_unat |= PUT_BITS(15, 15, nat);
139 scratch_unat |= PUT_BITS( 8, 11, nat);
140 scratch_unat |= PUT_BITS(16, 31, nat);
142 return scratch_unat;
144 # undef PUT_BITS
147 #define IA64_MLX_TEMPLATE 0x2
148 #define IA64_MOVL_OPCODE 6
150 void
151 ia64_increment_ip (struct pt_regs *regs)
153 unsigned long w0, ri = ia64_psr(regs)->ri + 1;
155 if (ri > 2) {
156 ri = 0;
157 regs->cr_iip += 16;
158 } else if (ri == 2) {
159 get_user(w0, (char __user *) regs->cr_iip + 0);
160 if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
162 * rfi'ing to slot 2 of an MLX bundle causes
163 * an illegal operation fault. We don't want
164 * that to happen...
166 ri = 0;
167 regs->cr_iip += 16;
170 ia64_psr(regs)->ri = ri;
173 void
174 ia64_decrement_ip (struct pt_regs *regs)
176 unsigned long w0, ri = ia64_psr(regs)->ri - 1;
178 if (ia64_psr(regs)->ri == 0) {
179 regs->cr_iip -= 16;
180 ri = 2;
181 get_user(w0, (char __user *) regs->cr_iip + 0);
182 if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
184 * rfi'ing to slot 2 of an MLX bundle causes
185 * an illegal operation fault. We don't want
186 * that to happen...
188 ri = 1;
191 ia64_psr(regs)->ri = ri;
195 * This routine is used to read an rnat bits that are stored on the
196 * kernel backing store. Since, in general, the alignment of the user
197 * and kernel are different, this is not completely trivial. In
198 * essence, we need to construct the user RNAT based on up to two
199 * kernel RNAT values and/or the RNAT value saved in the child's
200 * pt_regs.
202 * user rbs
204 * +--------+ <-- lowest address
205 * | slot62 |
206 * +--------+
207 * | rnat | 0x....1f8
208 * +--------+
209 * | slot00 | \
210 * +--------+ |
211 * | slot01 | > child_regs->ar_rnat
212 * +--------+ |
213 * | slot02 | / kernel rbs
214 * +--------+ +--------+
215 * <- child_regs->ar_bspstore | slot61 | <-- krbs
216 * +- - - - + +--------+
217 * | slot62 |
218 * +- - - - + +--------+
219 * | rnat |
220 * +- - - - + +--------+
221 * vrnat | slot00 |
222 * +- - - - + +--------+
223 * = =
224 * +--------+
225 * | slot00 | \
226 * +--------+ |
227 * | slot01 | > child_stack->ar_rnat
228 * +--------+ |
229 * | slot02 | /
230 * +--------+
231 * <--- child_stack->ar_bspstore
233 * The way to think of this code is as follows: bit 0 in the user rnat
234 * corresponds to some bit N (0 <= N <= 62) in one of the kernel rnat
235 * value. The kernel rnat value holding this bit is stored in
236 * variable rnat0. rnat1 is loaded with the kernel rnat value that
237 * form the upper bits of the user rnat value.
239 * Boundary cases:
241 * o when reading the rnat "below" the first rnat slot on the kernel
242 * backing store, rnat0/rnat1 are set to 0 and the low order bits are
243 * merged in from pt->ar_rnat.
245 * o when reading the rnat "above" the last rnat slot on the kernel
246 * backing store, rnat0/rnat1 gets its value from sw->ar_rnat.
248 static unsigned long
249 get_rnat (struct task_struct *task, struct switch_stack *sw,
250 unsigned long *krbs, unsigned long *urnat_addr,
251 unsigned long *urbs_end)
253 unsigned long rnat0 = 0, rnat1 = 0, urnat = 0, *slot0_kaddr;
254 unsigned long umask = 0, mask, m;
255 unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
256 long num_regs, nbits;
257 struct pt_regs *pt;
259 pt = task_pt_regs(task);
260 kbsp = (unsigned long *) sw->ar_bspstore;
261 ubspstore = (unsigned long *) pt->ar_bspstore;
263 if (urbs_end < urnat_addr)
264 nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_end);
265 else
266 nbits = 63;
267 mask = MASK(nbits);
269 * First, figure out which bit number slot 0 in user-land maps
270 * to in the kernel rnat. Do this by figuring out how many
271 * register slots we're beyond the user's backingstore and
272 * then computing the equivalent address in kernel space.
274 num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
275 slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
276 shift = ia64_rse_slot_num(slot0_kaddr);
277 rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
278 rnat0_kaddr = rnat1_kaddr - 64;
280 if (ubspstore + 63 > urnat_addr) {
281 /* some bits need to be merged in from pt->ar_rnat */
282 umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
283 urnat = (pt->ar_rnat & umask);
284 mask &= ~umask;
285 if (!mask)
286 return urnat;
289 m = mask << shift;
290 if (rnat0_kaddr >= kbsp)
291 rnat0 = sw->ar_rnat;
292 else if (rnat0_kaddr > krbs)
293 rnat0 = *rnat0_kaddr;
294 urnat |= (rnat0 & m) >> shift;
296 m = mask >> (63 - shift);
297 if (rnat1_kaddr >= kbsp)
298 rnat1 = sw->ar_rnat;
299 else if (rnat1_kaddr > krbs)
300 rnat1 = *rnat1_kaddr;
301 urnat |= (rnat1 & m) << (63 - shift);
302 return urnat;
306 * The reverse of get_rnat.
308 static void
309 put_rnat (struct task_struct *task, struct switch_stack *sw,
310 unsigned long *krbs, unsigned long *urnat_addr, unsigned long urnat,
311 unsigned long *urbs_end)
313 unsigned long rnat0 = 0, rnat1 = 0, *slot0_kaddr, umask = 0, mask, m;
314 unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
315 long num_regs, nbits;
316 struct pt_regs *pt;
317 unsigned long cfm, *urbs_kargs;
319 pt = task_pt_regs(task);
320 kbsp = (unsigned long *) sw->ar_bspstore;
321 ubspstore = (unsigned long *) pt->ar_bspstore;
323 urbs_kargs = urbs_end;
324 if (in_syscall(pt)) {
326 * If entered via syscall, don't allow user to set rnat bits
327 * for syscall args.
329 cfm = pt->cr_ifs;
330 urbs_kargs = ia64_rse_skip_regs(urbs_end, -(cfm & 0x7f));
333 if (urbs_kargs >= urnat_addr)
334 nbits = 63;
335 else {
336 if ((urnat_addr - 63) >= urbs_kargs)
337 return;
338 nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_kargs);
340 mask = MASK(nbits);
343 * First, figure out which bit number slot 0 in user-land maps
344 * to in the kernel rnat. Do this by figuring out how many
345 * register slots we're beyond the user's backingstore and
346 * then computing the equivalent address in kernel space.
348 num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
349 slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
350 shift = ia64_rse_slot_num(slot0_kaddr);
351 rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
352 rnat0_kaddr = rnat1_kaddr - 64;
354 if (ubspstore + 63 > urnat_addr) {
355 /* some bits need to be place in pt->ar_rnat: */
356 umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
357 pt->ar_rnat = (pt->ar_rnat & ~umask) | (urnat & umask);
358 mask &= ~umask;
359 if (!mask)
360 return;
363 * Note: Section 11.1 of the EAS guarantees that bit 63 of an
364 * rnat slot is ignored. so we don't have to clear it here.
366 rnat0 = (urnat << shift);
367 m = mask << shift;
368 if (rnat0_kaddr >= kbsp)
369 sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat0 & m);
370 else if (rnat0_kaddr > krbs)
371 *rnat0_kaddr = ((*rnat0_kaddr & ~m) | (rnat0 & m));
373 rnat1 = (urnat >> (63 - shift));
374 m = mask >> (63 - shift);
375 if (rnat1_kaddr >= kbsp)
376 sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat1 & m);
377 else if (rnat1_kaddr > krbs)
378 *rnat1_kaddr = ((*rnat1_kaddr & ~m) | (rnat1 & m));
381 static inline int
382 on_kernel_rbs (unsigned long addr, unsigned long bspstore,
383 unsigned long urbs_end)
385 unsigned long *rnat_addr = ia64_rse_rnat_addr((unsigned long *)
386 urbs_end);
387 return (addr >= bspstore && addr <= (unsigned long) rnat_addr);
391 * Read a word from the user-level backing store of task CHILD. ADDR
392 * is the user-level address to read the word from, VAL a pointer to
393 * the return value, and USER_BSP gives the end of the user-level
394 * backing store (i.e., it's the address that would be in ar.bsp after
395 * the user executed a "cover" instruction).
397 * This routine takes care of accessing the kernel register backing
398 * store for those registers that got spilled there. It also takes
399 * care of calculating the appropriate RNaT collection words.
401 long
402 ia64_peek (struct task_struct *child, struct switch_stack *child_stack,
403 unsigned long user_rbs_end, unsigned long addr, long *val)
405 unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end, *rnat_addr;
406 struct pt_regs *child_regs;
407 size_t copied;
408 long ret;
410 urbs_end = (long *) user_rbs_end;
411 laddr = (unsigned long *) addr;
412 child_regs = task_pt_regs(child);
413 bspstore = (unsigned long *) child_regs->ar_bspstore;
414 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
415 if (on_kernel_rbs(addr, (unsigned long) bspstore,
416 (unsigned long) urbs_end))
419 * Attempt to read the RBS in an area that's actually
420 * on the kernel RBS => read the corresponding bits in
421 * the kernel RBS.
423 rnat_addr = ia64_rse_rnat_addr(laddr);
424 ret = get_rnat(child, child_stack, krbs, rnat_addr, urbs_end);
426 if (laddr == rnat_addr) {
427 /* return NaT collection word itself */
428 *val = ret;
429 return 0;
432 if (((1UL << ia64_rse_slot_num(laddr)) & ret) != 0) {
434 * It is implementation dependent whether the
435 * data portion of a NaT value gets saved on a
436 * st8.spill or RSE spill (e.g., see EAS 2.6,
437 * 4.4.4.6 Register Spill and Fill). To get
438 * consistent behavior across all possible
439 * IA-64 implementations, we return zero in
440 * this case.
442 *val = 0;
443 return 0;
446 if (laddr < urbs_end) {
448 * The desired word is on the kernel RBS and
449 * is not a NaT.
451 regnum = ia64_rse_num_regs(bspstore, laddr);
452 *val = *ia64_rse_skip_regs(krbs, regnum);
453 return 0;
456 copied = access_process_vm(child, addr, &ret, sizeof(ret), 0);
457 if (copied != sizeof(ret))
458 return -EIO;
459 *val = ret;
460 return 0;
463 long
464 ia64_poke (struct task_struct *child, struct switch_stack *child_stack,
465 unsigned long user_rbs_end, unsigned long addr, long val)
467 unsigned long *bspstore, *krbs, regnum, *laddr;
468 unsigned long *urbs_end = (long *) user_rbs_end;
469 struct pt_regs *child_regs;
471 laddr = (unsigned long *) addr;
472 child_regs = task_pt_regs(child);
473 bspstore = (unsigned long *) child_regs->ar_bspstore;
474 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
475 if (on_kernel_rbs(addr, (unsigned long) bspstore,
476 (unsigned long) urbs_end))
479 * Attempt to write the RBS in an area that's actually
480 * on the kernel RBS => write the corresponding bits
481 * in the kernel RBS.
483 if (ia64_rse_is_rnat_slot(laddr))
484 put_rnat(child, child_stack, krbs, laddr, val,
485 urbs_end);
486 else {
487 if (laddr < urbs_end) {
488 regnum = ia64_rse_num_regs(bspstore, laddr);
489 *ia64_rse_skip_regs(krbs, regnum) = val;
492 } else if (access_process_vm(child, addr, &val, sizeof(val), 1)
493 != sizeof(val))
494 return -EIO;
495 return 0;
499 * Calculate the address of the end of the user-level register backing
500 * store. This is the address that would have been stored in ar.bsp
501 * if the user had executed a "cover" instruction right before
502 * entering the kernel. If CFMP is not NULL, it is used to return the
503 * "current frame mask" that was active at the time the kernel was
504 * entered.
506 unsigned long
507 ia64_get_user_rbs_end (struct task_struct *child, struct pt_regs *pt,
508 unsigned long *cfmp)
510 unsigned long *krbs, *bspstore, cfm = pt->cr_ifs;
511 long ndirty;
513 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
514 bspstore = (unsigned long *) pt->ar_bspstore;
515 ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
517 if (in_syscall(pt))
518 ndirty += (cfm & 0x7f);
519 else
520 cfm &= ~(1UL << 63); /* clear valid bit */
522 if (cfmp)
523 *cfmp = cfm;
524 return (unsigned long) ia64_rse_skip_regs(bspstore, ndirty);
528 * Synchronize (i.e, write) the RSE backing store living in kernel
529 * space to the VM of the CHILD task. SW and PT are the pointers to
530 * the switch_stack and pt_regs structures, respectively.
531 * USER_RBS_END is the user-level address at which the backing store
532 * ends.
534 long
535 ia64_sync_user_rbs (struct task_struct *child, struct switch_stack *sw,
536 unsigned long user_rbs_start, unsigned long user_rbs_end)
538 unsigned long addr, val;
539 long ret;
541 /* now copy word for word from kernel rbs to user rbs: */
542 for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
543 ret = ia64_peek(child, sw, user_rbs_end, addr, &val);
544 if (ret < 0)
545 return ret;
546 if (access_process_vm(child, addr, &val, sizeof(val), 1)
547 != sizeof(val))
548 return -EIO;
550 return 0;
553 static long
554 ia64_sync_kernel_rbs (struct task_struct *child, struct switch_stack *sw,
555 unsigned long user_rbs_start, unsigned long user_rbs_end)
557 unsigned long addr, val;
558 long ret;
560 /* now copy word for word from user rbs to kernel rbs: */
561 for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
562 if (access_process_vm(child, addr, &val, sizeof(val), 0)
563 != sizeof(val))
564 return -EIO;
566 ret = ia64_poke(child, sw, user_rbs_end, addr, val);
567 if (ret < 0)
568 return ret;
570 return 0;
573 typedef long (*syncfunc_t)(struct task_struct *, struct switch_stack *,
574 unsigned long, unsigned long);
576 static void do_sync_rbs(struct unw_frame_info *info, void *arg)
578 struct pt_regs *pt;
579 unsigned long urbs_end;
580 syncfunc_t fn = arg;
582 if (unw_unwind_to_user(info) < 0)
583 return;
584 pt = task_pt_regs(info->task);
585 urbs_end = ia64_get_user_rbs_end(info->task, pt, NULL);
587 fn(info->task, info->sw, pt->ar_bspstore, urbs_end);
591 * when a thread is stopped (ptraced), debugger might change thread's user
592 * stack (change memory directly), and we must avoid the RSE stored in kernel
593 * to override user stack (user space's RSE is newer than kernel's in the
594 * case). To workaround the issue, we copy kernel RSE to user RSE before the
595 * task is stopped, so user RSE has updated data. we then copy user RSE to
596 * kernel after the task is resummed from traced stop and kernel will use the
597 * newer RSE to return to user. TIF_RESTORE_RSE is the flag to indicate we need
598 * synchronize user RSE to kernel.
600 void ia64_ptrace_stop(void)
602 if (test_and_set_tsk_thread_flag(current, TIF_RESTORE_RSE))
603 return;
604 set_notify_resume(current);
605 unw_init_running(do_sync_rbs, ia64_sync_user_rbs);
609 * This is called to read back the register backing store.
611 void ia64_sync_krbs(void)
613 clear_tsk_thread_flag(current, TIF_RESTORE_RSE);
615 unw_init_running(do_sync_rbs, ia64_sync_kernel_rbs);
619 * After PTRACE_ATTACH, a thread's register backing store area in user
620 * space is assumed to contain correct data whenever the thread is
621 * stopped. arch_ptrace_stop takes care of this on tracing stops.
622 * But if the child was already stopped for job control when we attach
623 * to it, then it might not ever get into ptrace_stop by the time we
624 * want to examine the user memory containing the RBS.
626 void
627 ptrace_attach_sync_user_rbs (struct task_struct *child)
629 int stopped = 0;
630 struct unw_frame_info info;
633 * If the child is in TASK_STOPPED, we need to change that to
634 * TASK_TRACED momentarily while we operate on it. This ensures
635 * that the child won't be woken up and return to user mode while
636 * we are doing the sync. (It can only be woken up for SIGKILL.)
639 read_lock(&tasklist_lock);
640 if (child->sighand) {
641 spin_lock_irq(&child->sighand->siglock);
642 if (child->state == TASK_STOPPED &&
643 !test_and_set_tsk_thread_flag(child, TIF_RESTORE_RSE)) {
644 set_notify_resume(child);
646 child->state = TASK_TRACED;
647 stopped = 1;
649 spin_unlock_irq(&child->sighand->siglock);
651 read_unlock(&tasklist_lock);
653 if (!stopped)
654 return;
656 unw_init_from_blocked_task(&info, child);
657 do_sync_rbs(&info, ia64_sync_user_rbs);
660 * Now move the child back into TASK_STOPPED if it should be in a
661 * job control stop, so that SIGCONT can be used to wake it up.
663 read_lock(&tasklist_lock);
664 if (child->sighand) {
665 spin_lock_irq(&child->sighand->siglock);
666 if (child->state == TASK_TRACED &&
667 (child->signal->flags & SIGNAL_STOP_STOPPED)) {
668 child->state = TASK_STOPPED;
670 spin_unlock_irq(&child->sighand->siglock);
672 read_unlock(&tasklist_lock);
676 * Write f32-f127 back to task->thread.fph if it has been modified.
678 inline void
679 ia64_flush_fph (struct task_struct *task)
681 struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
684 * Prevent migrating this task while
685 * we're fiddling with the FPU state
687 preempt_disable();
688 if (ia64_is_local_fpu_owner(task) && psr->mfh) {
689 psr->mfh = 0;
690 task->thread.flags |= IA64_THREAD_FPH_VALID;
691 ia64_save_fpu(&task->thread.fph[0]);
693 preempt_enable();
697 * Sync the fph state of the task so that it can be manipulated
698 * through thread.fph. If necessary, f32-f127 are written back to
699 * thread.fph or, if the fph state hasn't been used before, thread.fph
700 * is cleared to zeroes. Also, access to f32-f127 is disabled to
701 * ensure that the task picks up the state from thread.fph when it
702 * executes again.
704 void
705 ia64_sync_fph (struct task_struct *task)
707 struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
709 ia64_flush_fph(task);
710 if (!(task->thread.flags & IA64_THREAD_FPH_VALID)) {
711 task->thread.flags |= IA64_THREAD_FPH_VALID;
712 memset(&task->thread.fph, 0, sizeof(task->thread.fph));
714 ia64_drop_fpu(task);
715 psr->dfh = 1;
719 * Change the machine-state of CHILD such that it will return via the normal
720 * kernel exit-path, rather than the syscall-exit path.
722 static void
723 convert_to_non_syscall (struct task_struct *child, struct pt_regs *pt,
724 unsigned long cfm)
726 struct unw_frame_info info, prev_info;
727 unsigned long ip, sp, pr;
729 unw_init_from_blocked_task(&info, child);
730 while (1) {
731 prev_info = info;
732 if (unw_unwind(&info) < 0)
733 return;
735 unw_get_sp(&info, &sp);
736 if ((long)((unsigned long)child + IA64_STK_OFFSET - sp)
737 < IA64_PT_REGS_SIZE) {
738 dprintk("ptrace.%s: ran off the top of the kernel "
739 "stack\n", __func__);
740 return;
742 if (unw_get_pr (&prev_info, &pr) < 0) {
743 unw_get_rp(&prev_info, &ip);
744 dprintk("ptrace.%s: failed to read "
745 "predicate register (ip=0x%lx)\n",
746 __func__, ip);
747 return;
749 if (unw_is_intr_frame(&info)
750 && (pr & (1UL << PRED_USER_STACK)))
751 break;
755 * Note: at the time of this call, the target task is blocked
756 * in notify_resume_user() and by clearling PRED_LEAVE_SYSCALL
757 * (aka, "pLvSys") we redirect execution from
758 * .work_pending_syscall_end to .work_processed_kernel.
760 unw_get_pr(&prev_info, &pr);
761 pr &= ~((1UL << PRED_SYSCALL) | (1UL << PRED_LEAVE_SYSCALL));
762 pr |= (1UL << PRED_NON_SYSCALL);
763 unw_set_pr(&prev_info, pr);
765 pt->cr_ifs = (1UL << 63) | cfm;
767 * Clear the memory that is NOT written on syscall-entry to
768 * ensure we do not leak kernel-state to user when execution
769 * resumes.
771 pt->r2 = 0;
772 pt->r3 = 0;
773 pt->r14 = 0;
774 memset(&pt->r16, 0, 16*8); /* clear r16-r31 */
775 memset(&pt->f6, 0, 6*16); /* clear f6-f11 */
776 pt->b7 = 0;
777 pt->ar_ccv = 0;
778 pt->ar_csd = 0;
779 pt->ar_ssd = 0;
782 static int
783 access_nat_bits (struct task_struct *child, struct pt_regs *pt,
784 struct unw_frame_info *info,
785 unsigned long *data, int write_access)
787 unsigned long regnum, nat_bits, scratch_unat, dummy = 0;
788 char nat = 0;
790 if (write_access) {
791 nat_bits = *data;
792 scratch_unat = ia64_put_scratch_nat_bits(pt, nat_bits);
793 if (unw_set_ar(info, UNW_AR_UNAT, scratch_unat) < 0) {
794 dprintk("ptrace: failed to set ar.unat\n");
795 return -1;
797 for (regnum = 4; regnum <= 7; ++regnum) {
798 unw_get_gr(info, regnum, &dummy, &nat);
799 unw_set_gr(info, regnum, dummy,
800 (nat_bits >> regnum) & 1);
802 } else {
803 if (unw_get_ar(info, UNW_AR_UNAT, &scratch_unat) < 0) {
804 dprintk("ptrace: failed to read ar.unat\n");
805 return -1;
807 nat_bits = ia64_get_scratch_nat_bits(pt, scratch_unat);
808 for (regnum = 4; regnum <= 7; ++regnum) {
809 unw_get_gr(info, regnum, &dummy, &nat);
810 nat_bits |= (nat != 0) << regnum;
812 *data = nat_bits;
814 return 0;
817 static int
818 access_uarea (struct task_struct *child, unsigned long addr,
819 unsigned long *data, int write_access);
821 static long
822 ptrace_getregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
824 unsigned long psr, ec, lc, rnat, bsp, cfm, nat_bits, val;
825 struct unw_frame_info info;
826 struct ia64_fpreg fpval;
827 struct switch_stack *sw;
828 struct pt_regs *pt;
829 long ret, retval = 0;
830 char nat = 0;
831 int i;
833 if (!access_ok(VERIFY_WRITE, ppr, sizeof(struct pt_all_user_regs)))
834 return -EIO;
836 pt = task_pt_regs(child);
837 sw = (struct switch_stack *) (child->thread.ksp + 16);
838 unw_init_from_blocked_task(&info, child);
839 if (unw_unwind_to_user(&info) < 0) {
840 return -EIO;
843 if (((unsigned long) ppr & 0x7) != 0) {
844 dprintk("ptrace:unaligned register address %p\n", ppr);
845 return -EIO;
848 if (access_uarea(child, PT_CR_IPSR, &psr, 0) < 0
849 || access_uarea(child, PT_AR_EC, &ec, 0) < 0
850 || access_uarea(child, PT_AR_LC, &lc, 0) < 0
851 || access_uarea(child, PT_AR_RNAT, &rnat, 0) < 0
852 || access_uarea(child, PT_AR_BSP, &bsp, 0) < 0
853 || access_uarea(child, PT_CFM, &cfm, 0)
854 || access_uarea(child, PT_NAT_BITS, &nat_bits, 0))
855 return -EIO;
857 /* control regs */
859 retval |= __put_user(pt->cr_iip, &ppr->cr_iip);
860 retval |= __put_user(psr, &ppr->cr_ipsr);
862 /* app regs */
864 retval |= __put_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
865 retval |= __put_user(pt->ar_rsc, &ppr->ar[PT_AUR_RSC]);
866 retval |= __put_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
867 retval |= __put_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
868 retval |= __put_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
869 retval |= __put_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
871 retval |= __put_user(ec, &ppr->ar[PT_AUR_EC]);
872 retval |= __put_user(lc, &ppr->ar[PT_AUR_LC]);
873 retval |= __put_user(rnat, &ppr->ar[PT_AUR_RNAT]);
874 retval |= __put_user(bsp, &ppr->ar[PT_AUR_BSP]);
875 retval |= __put_user(cfm, &ppr->cfm);
877 /* gr1-gr3 */
879 retval |= __copy_to_user(&ppr->gr[1], &pt->r1, sizeof(long));
880 retval |= __copy_to_user(&ppr->gr[2], &pt->r2, sizeof(long) *2);
882 /* gr4-gr7 */
884 for (i = 4; i < 8; i++) {
885 if (unw_access_gr(&info, i, &val, &nat, 0) < 0)
886 return -EIO;
887 retval |= __put_user(val, &ppr->gr[i]);
890 /* gr8-gr11 */
892 retval |= __copy_to_user(&ppr->gr[8], &pt->r8, sizeof(long) * 4);
894 /* gr12-gr15 */
896 retval |= __copy_to_user(&ppr->gr[12], &pt->r12, sizeof(long) * 2);
897 retval |= __copy_to_user(&ppr->gr[14], &pt->r14, sizeof(long));
898 retval |= __copy_to_user(&ppr->gr[15], &pt->r15, sizeof(long));
900 /* gr16-gr31 */
902 retval |= __copy_to_user(&ppr->gr[16], &pt->r16, sizeof(long) * 16);
904 /* b0 */
906 retval |= __put_user(pt->b0, &ppr->br[0]);
908 /* b1-b5 */
910 for (i = 1; i < 6; i++) {
911 if (unw_access_br(&info, i, &val, 0) < 0)
912 return -EIO;
913 __put_user(val, &ppr->br[i]);
916 /* b6-b7 */
918 retval |= __put_user(pt->b6, &ppr->br[6]);
919 retval |= __put_user(pt->b7, &ppr->br[7]);
921 /* fr2-fr5 */
923 for (i = 2; i < 6; i++) {
924 if (unw_get_fr(&info, i, &fpval) < 0)
925 return -EIO;
926 retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
929 /* fr6-fr11 */
931 retval |= __copy_to_user(&ppr->fr[6], &pt->f6,
932 sizeof(struct ia64_fpreg) * 6);
934 /* fp scratch regs(12-15) */
936 retval |= __copy_to_user(&ppr->fr[12], &sw->f12,
937 sizeof(struct ia64_fpreg) * 4);
939 /* fr16-fr31 */
941 for (i = 16; i < 32; i++) {
942 if (unw_get_fr(&info, i, &fpval) < 0)
943 return -EIO;
944 retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
947 /* fph */
949 ia64_flush_fph(child);
950 retval |= __copy_to_user(&ppr->fr[32], &child->thread.fph,
951 sizeof(ppr->fr[32]) * 96);
953 /* preds */
955 retval |= __put_user(pt->pr, &ppr->pr);
957 /* nat bits */
959 retval |= __put_user(nat_bits, &ppr->nat);
961 ret = retval ? -EIO : 0;
962 return ret;
965 static long
966 ptrace_setregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
968 unsigned long psr, rsc, ec, lc, rnat, bsp, cfm, nat_bits, val = 0;
969 struct unw_frame_info info;
970 struct switch_stack *sw;
971 struct ia64_fpreg fpval;
972 struct pt_regs *pt;
973 long ret, retval = 0;
974 int i;
976 memset(&fpval, 0, sizeof(fpval));
978 if (!access_ok(VERIFY_READ, ppr, sizeof(struct pt_all_user_regs)))
979 return -EIO;
981 pt = task_pt_regs(child);
982 sw = (struct switch_stack *) (child->thread.ksp + 16);
983 unw_init_from_blocked_task(&info, child);
984 if (unw_unwind_to_user(&info) < 0) {
985 return -EIO;
988 if (((unsigned long) ppr & 0x7) != 0) {
989 dprintk("ptrace:unaligned register address %p\n", ppr);
990 return -EIO;
993 /* control regs */
995 retval |= __get_user(pt->cr_iip, &ppr->cr_iip);
996 retval |= __get_user(psr, &ppr->cr_ipsr);
998 /* app regs */
1000 retval |= __get_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
1001 retval |= __get_user(rsc, &ppr->ar[PT_AUR_RSC]);
1002 retval |= __get_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
1003 retval |= __get_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
1004 retval |= __get_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
1005 retval |= __get_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
1007 retval |= __get_user(ec, &ppr->ar[PT_AUR_EC]);
1008 retval |= __get_user(lc, &ppr->ar[PT_AUR_LC]);
1009 retval |= __get_user(rnat, &ppr->ar[PT_AUR_RNAT]);
1010 retval |= __get_user(bsp, &ppr->ar[PT_AUR_BSP]);
1011 retval |= __get_user(cfm, &ppr->cfm);
1013 /* gr1-gr3 */
1015 retval |= __copy_from_user(&pt->r1, &ppr->gr[1], sizeof(long));
1016 retval |= __copy_from_user(&pt->r2, &ppr->gr[2], sizeof(long) * 2);
1018 /* gr4-gr7 */
1020 for (i = 4; i < 8; i++) {
1021 retval |= __get_user(val, &ppr->gr[i]);
1022 /* NaT bit will be set via PT_NAT_BITS: */
1023 if (unw_set_gr(&info, i, val, 0) < 0)
1024 return -EIO;
1027 /* gr8-gr11 */
1029 retval |= __copy_from_user(&pt->r8, &ppr->gr[8], sizeof(long) * 4);
1031 /* gr12-gr15 */
1033 retval |= __copy_from_user(&pt->r12, &ppr->gr[12], sizeof(long) * 2);
1034 retval |= __copy_from_user(&pt->r14, &ppr->gr[14], sizeof(long));
1035 retval |= __copy_from_user(&pt->r15, &ppr->gr[15], sizeof(long));
1037 /* gr16-gr31 */
1039 retval |= __copy_from_user(&pt->r16, &ppr->gr[16], sizeof(long) * 16);
1041 /* b0 */
1043 retval |= __get_user(pt->b0, &ppr->br[0]);
1045 /* b1-b5 */
1047 for (i = 1; i < 6; i++) {
1048 retval |= __get_user(val, &ppr->br[i]);
1049 unw_set_br(&info, i, val);
1052 /* b6-b7 */
1054 retval |= __get_user(pt->b6, &ppr->br[6]);
1055 retval |= __get_user(pt->b7, &ppr->br[7]);
1057 /* fr2-fr5 */
1059 for (i = 2; i < 6; i++) {
1060 retval |= __copy_from_user(&fpval, &ppr->fr[i], sizeof(fpval));
1061 if (unw_set_fr(&info, i, fpval) < 0)
1062 return -EIO;
1065 /* fr6-fr11 */
1067 retval |= __copy_from_user(&pt->f6, &ppr->fr[6],
1068 sizeof(ppr->fr[6]) * 6);
1070 /* fp scratch regs(12-15) */
1072 retval |= __copy_from_user(&sw->f12, &ppr->fr[12],
1073 sizeof(ppr->fr[12]) * 4);
1075 /* fr16-fr31 */
1077 for (i = 16; i < 32; i++) {
1078 retval |= __copy_from_user(&fpval, &ppr->fr[i],
1079 sizeof(fpval));
1080 if (unw_set_fr(&info, i, fpval) < 0)
1081 return -EIO;
1084 /* fph */
1086 ia64_sync_fph(child);
1087 retval |= __copy_from_user(&child->thread.fph, &ppr->fr[32],
1088 sizeof(ppr->fr[32]) * 96);
1090 /* preds */
1092 retval |= __get_user(pt->pr, &ppr->pr);
1094 /* nat bits */
1096 retval |= __get_user(nat_bits, &ppr->nat);
1098 retval |= access_uarea(child, PT_CR_IPSR, &psr, 1);
1099 retval |= access_uarea(child, PT_AR_RSC, &rsc, 1);
1100 retval |= access_uarea(child, PT_AR_EC, &ec, 1);
1101 retval |= access_uarea(child, PT_AR_LC, &lc, 1);
1102 retval |= access_uarea(child, PT_AR_RNAT, &rnat, 1);
1103 retval |= access_uarea(child, PT_AR_BSP, &bsp, 1);
1104 retval |= access_uarea(child, PT_CFM, &cfm, 1);
1105 retval |= access_uarea(child, PT_NAT_BITS, &nat_bits, 1);
1107 ret = retval ? -EIO : 0;
1108 return ret;
1111 void
1112 user_enable_single_step (struct task_struct *child)
1114 struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1116 set_tsk_thread_flag(child, TIF_SINGLESTEP);
1117 child_psr->ss = 1;
1120 void
1121 user_enable_block_step (struct task_struct *child)
1123 struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1125 set_tsk_thread_flag(child, TIF_SINGLESTEP);
1126 child_psr->tb = 1;
1129 void
1130 user_disable_single_step (struct task_struct *child)
1132 struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1134 /* make sure the single step/taken-branch trap bits are not set: */
1135 clear_tsk_thread_flag(child, TIF_SINGLESTEP);
1136 child_psr->ss = 0;
1137 child_psr->tb = 0;
1141 * Called by kernel/ptrace.c when detaching..
1143 * Make sure the single step bit is not set.
1145 void
1146 ptrace_disable (struct task_struct *child)
1148 user_disable_single_step(child);
1151 long
1152 arch_ptrace (struct task_struct *child, long request,
1153 unsigned long addr, unsigned long data)
1155 switch (request) {
1156 case PTRACE_PEEKTEXT:
1157 case PTRACE_PEEKDATA:
1158 /* read word at location addr */
1159 if (access_process_vm(child, addr, &data, sizeof(data), 0)
1160 != sizeof(data))
1161 return -EIO;
1162 /* ensure return value is not mistaken for error code */
1163 force_successful_syscall_return();
1164 return data;
1166 /* PTRACE_POKETEXT and PTRACE_POKEDATA is handled
1167 * by the generic ptrace_request().
1170 case PTRACE_PEEKUSR:
1171 /* read the word at addr in the USER area */
1172 if (access_uarea(child, addr, &data, 0) < 0)
1173 return -EIO;
1174 /* ensure return value is not mistaken for error code */
1175 force_successful_syscall_return();
1176 return data;
1178 case PTRACE_POKEUSR:
1179 /* write the word at addr in the USER area */
1180 if (access_uarea(child, addr, &data, 1) < 0)
1181 return -EIO;
1182 return 0;
1184 case PTRACE_OLD_GETSIGINFO:
1185 /* for backwards-compatibility */
1186 return ptrace_request(child, PTRACE_GETSIGINFO, addr, data);
1188 case PTRACE_OLD_SETSIGINFO:
1189 /* for backwards-compatibility */
1190 return ptrace_request(child, PTRACE_SETSIGINFO, addr, data);
1192 case PTRACE_GETREGS:
1193 return ptrace_getregs(child,
1194 (struct pt_all_user_regs __user *) data);
1196 case PTRACE_SETREGS:
1197 return ptrace_setregs(child,
1198 (struct pt_all_user_regs __user *) data);
1200 default:
1201 return ptrace_request(child, request, addr, data);
1206 /* "asmlinkage" so the input arguments are preserved... */
1208 asmlinkage long
1209 syscall_trace_enter (long arg0, long arg1, long arg2, long arg3,
1210 long arg4, long arg5, long arg6, long arg7,
1211 struct pt_regs regs)
1213 if (test_thread_flag(TIF_SYSCALL_TRACE))
1214 if (tracehook_report_syscall_entry(&regs))
1215 return -ENOSYS;
1217 /* copy user rbs to kernel rbs */
1218 if (test_thread_flag(TIF_RESTORE_RSE))
1219 ia64_sync_krbs();
1222 audit_syscall_entry(regs.r15, arg0, arg1, arg2, arg3);
1224 return 0;
1227 /* "asmlinkage" so the input arguments are preserved... */
1229 asmlinkage void
1230 syscall_trace_leave (long arg0, long arg1, long arg2, long arg3,
1231 long arg4, long arg5, long arg6, long arg7,
1232 struct pt_regs regs)
1234 int step;
1236 audit_syscall_exit(&regs);
1238 step = test_thread_flag(TIF_SINGLESTEP);
1239 if (step || test_thread_flag(TIF_SYSCALL_TRACE))
1240 tracehook_report_syscall_exit(&regs, step);
1242 /* copy user rbs to kernel rbs */
1243 if (test_thread_flag(TIF_RESTORE_RSE))
1244 ia64_sync_krbs();
1247 /* Utrace implementation starts here */
1248 struct regset_get {
1249 void *kbuf;
1250 void __user *ubuf;
1253 struct regset_set {
1254 const void *kbuf;
1255 const void __user *ubuf;
1258 struct regset_getset {
1259 struct task_struct *target;
1260 const struct user_regset *regset;
1261 union {
1262 struct regset_get get;
1263 struct regset_set set;
1264 } u;
1265 unsigned int pos;
1266 unsigned int count;
1267 int ret;
1270 static int
1271 access_elf_gpreg(struct task_struct *target, struct unw_frame_info *info,
1272 unsigned long addr, unsigned long *data, int write_access)
1274 struct pt_regs *pt;
1275 unsigned long *ptr = NULL;
1276 int ret;
1277 char nat = 0;
1279 pt = task_pt_regs(target);
1280 switch (addr) {
1281 case ELF_GR_OFFSET(1):
1282 ptr = &pt->r1;
1283 break;
1284 case ELF_GR_OFFSET(2):
1285 case ELF_GR_OFFSET(3):
1286 ptr = (void *)&pt->r2 + (addr - ELF_GR_OFFSET(2));
1287 break;
1288 case ELF_GR_OFFSET(4) ... ELF_GR_OFFSET(7):
1289 if (write_access) {
1290 /* read NaT bit first: */
1291 unsigned long dummy;
1293 ret = unw_get_gr(info, addr/8, &dummy, &nat);
1294 if (ret < 0)
1295 return ret;
1297 return unw_access_gr(info, addr/8, data, &nat, write_access);
1298 case ELF_GR_OFFSET(8) ... ELF_GR_OFFSET(11):
1299 ptr = (void *)&pt->r8 + addr - ELF_GR_OFFSET(8);
1300 break;
1301 case ELF_GR_OFFSET(12):
1302 case ELF_GR_OFFSET(13):
1303 ptr = (void *)&pt->r12 + addr - ELF_GR_OFFSET(12);
1304 break;
1305 case ELF_GR_OFFSET(14):
1306 ptr = &pt->r14;
1307 break;
1308 case ELF_GR_OFFSET(15):
1309 ptr = &pt->r15;
1311 if (write_access)
1312 *ptr = *data;
1313 else
1314 *data = *ptr;
1315 return 0;
1318 static int
1319 access_elf_breg(struct task_struct *target, struct unw_frame_info *info,
1320 unsigned long addr, unsigned long *data, int write_access)
1322 struct pt_regs *pt;
1323 unsigned long *ptr = NULL;
1325 pt = task_pt_regs(target);
1326 switch (addr) {
1327 case ELF_BR_OFFSET(0):
1328 ptr = &pt->b0;
1329 break;
1330 case ELF_BR_OFFSET(1) ... ELF_BR_OFFSET(5):
1331 return unw_access_br(info, (addr - ELF_BR_OFFSET(0))/8,
1332 data, write_access);
1333 case ELF_BR_OFFSET(6):
1334 ptr = &pt->b6;
1335 break;
1336 case ELF_BR_OFFSET(7):
1337 ptr = &pt->b7;
1339 if (write_access)
1340 *ptr = *data;
1341 else
1342 *data = *ptr;
1343 return 0;
1346 static int
1347 access_elf_areg(struct task_struct *target, struct unw_frame_info *info,
1348 unsigned long addr, unsigned long *data, int write_access)
1350 struct pt_regs *pt;
1351 unsigned long cfm, urbs_end;
1352 unsigned long *ptr = NULL;
1354 pt = task_pt_regs(target);
1355 if (addr >= ELF_AR_RSC_OFFSET && addr <= ELF_AR_SSD_OFFSET) {
1356 switch (addr) {
1357 case ELF_AR_RSC_OFFSET:
1358 /* force PL3 */
1359 if (write_access)
1360 pt->ar_rsc = *data | (3 << 2);
1361 else
1362 *data = pt->ar_rsc;
1363 return 0;
1364 case ELF_AR_BSP_OFFSET:
1366 * By convention, we use PT_AR_BSP to refer to
1367 * the end of the user-level backing store.
1368 * Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof)
1369 * to get the real value of ar.bsp at the time
1370 * the kernel was entered.
1372 * Furthermore, when changing the contents of
1373 * PT_AR_BSP (or PT_CFM) while the task is
1374 * blocked in a system call, convert the state
1375 * so that the non-system-call exit
1376 * path is used. This ensures that the proper
1377 * state will be picked up when resuming
1378 * execution. However, it *also* means that
1379 * once we write PT_AR_BSP/PT_CFM, it won't be
1380 * possible to modify the syscall arguments of
1381 * the pending system call any longer. This
1382 * shouldn't be an issue because modifying
1383 * PT_AR_BSP/PT_CFM generally implies that
1384 * we're either abandoning the pending system
1385 * call or that we defer it's re-execution
1386 * (e.g., due to GDB doing an inferior
1387 * function call).
1389 urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
1390 if (write_access) {
1391 if (*data != urbs_end) {
1392 if (in_syscall(pt))
1393 convert_to_non_syscall(target,
1395 cfm);
1397 * Simulate user-level write
1398 * of ar.bsp:
1400 pt->loadrs = 0;
1401 pt->ar_bspstore = *data;
1403 } else
1404 *data = urbs_end;
1405 return 0;
1406 case ELF_AR_BSPSTORE_OFFSET:
1407 ptr = &pt->ar_bspstore;
1408 break;
1409 case ELF_AR_RNAT_OFFSET:
1410 ptr = &pt->ar_rnat;
1411 break;
1412 case ELF_AR_CCV_OFFSET:
1413 ptr = &pt->ar_ccv;
1414 break;
1415 case ELF_AR_UNAT_OFFSET:
1416 ptr = &pt->ar_unat;
1417 break;
1418 case ELF_AR_FPSR_OFFSET:
1419 ptr = &pt->ar_fpsr;
1420 break;
1421 case ELF_AR_PFS_OFFSET:
1422 ptr = &pt->ar_pfs;
1423 break;
1424 case ELF_AR_LC_OFFSET:
1425 return unw_access_ar(info, UNW_AR_LC, data,
1426 write_access);
1427 case ELF_AR_EC_OFFSET:
1428 return unw_access_ar(info, UNW_AR_EC, data,
1429 write_access);
1430 case ELF_AR_CSD_OFFSET:
1431 ptr = &pt->ar_csd;
1432 break;
1433 case ELF_AR_SSD_OFFSET:
1434 ptr = &pt->ar_ssd;
1436 } else if (addr >= ELF_CR_IIP_OFFSET && addr <= ELF_CR_IPSR_OFFSET) {
1437 switch (addr) {
1438 case ELF_CR_IIP_OFFSET:
1439 ptr = &pt->cr_iip;
1440 break;
1441 case ELF_CFM_OFFSET:
1442 urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
1443 if (write_access) {
1444 if (((cfm ^ *data) & PFM_MASK) != 0) {
1445 if (in_syscall(pt))
1446 convert_to_non_syscall(target,
1448 cfm);
1449 pt->cr_ifs = ((pt->cr_ifs & ~PFM_MASK)
1450 | (*data & PFM_MASK));
1452 } else
1453 *data = cfm;
1454 return 0;
1455 case ELF_CR_IPSR_OFFSET:
1456 if (write_access) {
1457 unsigned long tmp = *data;
1458 /* psr.ri==3 is a reserved value: SDM 2:25 */
1459 if ((tmp & IA64_PSR_RI) == IA64_PSR_RI)
1460 tmp &= ~IA64_PSR_RI;
1461 pt->cr_ipsr = ((tmp & IPSR_MASK)
1462 | (pt->cr_ipsr & ~IPSR_MASK));
1463 } else
1464 *data = (pt->cr_ipsr & IPSR_MASK);
1465 return 0;
1467 } else if (addr == ELF_NAT_OFFSET)
1468 return access_nat_bits(target, pt, info,
1469 data, write_access);
1470 else if (addr == ELF_PR_OFFSET)
1471 ptr = &pt->pr;
1472 else
1473 return -1;
1475 if (write_access)
1476 *ptr = *data;
1477 else
1478 *data = *ptr;
1480 return 0;
1483 static int
1484 access_elf_reg(struct task_struct *target, struct unw_frame_info *info,
1485 unsigned long addr, unsigned long *data, int write_access)
1487 if (addr >= ELF_GR_OFFSET(1) && addr <= ELF_GR_OFFSET(15))
1488 return access_elf_gpreg(target, info, addr, data, write_access);
1489 else if (addr >= ELF_BR_OFFSET(0) && addr <= ELF_BR_OFFSET(7))
1490 return access_elf_breg(target, info, addr, data, write_access);
1491 else
1492 return access_elf_areg(target, info, addr, data, write_access);
1495 void do_gpregs_get(struct unw_frame_info *info, void *arg)
1497 struct pt_regs *pt;
1498 struct regset_getset *dst = arg;
1499 elf_greg_t tmp[16];
1500 unsigned int i, index, min_copy;
1502 if (unw_unwind_to_user(info) < 0)
1503 return;
1506 * coredump format:
1507 * r0-r31
1508 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
1509 * predicate registers (p0-p63)
1510 * b0-b7
1511 * ip cfm user-mask
1512 * ar.rsc ar.bsp ar.bspstore ar.rnat
1513 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
1517 /* Skip r0 */
1518 if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(1)) {
1519 dst->ret = user_regset_copyout_zero(&dst->pos, &dst->count,
1520 &dst->u.get.kbuf,
1521 &dst->u.get.ubuf,
1522 0, ELF_GR_OFFSET(1));
1523 if (dst->ret || dst->count == 0)
1524 return;
1527 /* gr1 - gr15 */
1528 if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(16)) {
1529 index = (dst->pos - ELF_GR_OFFSET(1)) / sizeof(elf_greg_t);
1530 min_copy = ELF_GR_OFFSET(16) > (dst->pos + dst->count) ?
1531 (dst->pos + dst->count) : ELF_GR_OFFSET(16);
1532 for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
1533 index++)
1534 if (access_elf_reg(dst->target, info, i,
1535 &tmp[index], 0) < 0) {
1536 dst->ret = -EIO;
1537 return;
1539 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1540 &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1541 ELF_GR_OFFSET(1), ELF_GR_OFFSET(16));
1542 if (dst->ret || dst->count == 0)
1543 return;
1546 /* r16-r31 */
1547 if (dst->count > 0 && dst->pos < ELF_NAT_OFFSET) {
1548 pt = task_pt_regs(dst->target);
1549 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1550 &dst->u.get.kbuf, &dst->u.get.ubuf, &pt->r16,
1551 ELF_GR_OFFSET(16), ELF_NAT_OFFSET);
1552 if (dst->ret || dst->count == 0)
1553 return;
1556 /* nat, pr, b0 - b7 */
1557 if (dst->count > 0 && dst->pos < ELF_CR_IIP_OFFSET) {
1558 index = (dst->pos - ELF_NAT_OFFSET) / sizeof(elf_greg_t);
1559 min_copy = ELF_CR_IIP_OFFSET > (dst->pos + dst->count) ?
1560 (dst->pos + dst->count) : ELF_CR_IIP_OFFSET;
1561 for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
1562 index++)
1563 if (access_elf_reg(dst->target, info, i,
1564 &tmp[index], 0) < 0) {
1565 dst->ret = -EIO;
1566 return;
1568 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1569 &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1570 ELF_NAT_OFFSET, ELF_CR_IIP_OFFSET);
1571 if (dst->ret || dst->count == 0)
1572 return;
1575 /* ip cfm psr ar.rsc ar.bsp ar.bspstore ar.rnat
1576 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd
1578 if (dst->count > 0 && dst->pos < (ELF_AR_END_OFFSET)) {
1579 index = (dst->pos - ELF_CR_IIP_OFFSET) / sizeof(elf_greg_t);
1580 min_copy = ELF_AR_END_OFFSET > (dst->pos + dst->count) ?
1581 (dst->pos + dst->count) : ELF_AR_END_OFFSET;
1582 for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
1583 index++)
1584 if (access_elf_reg(dst->target, info, i,
1585 &tmp[index], 0) < 0) {
1586 dst->ret = -EIO;
1587 return;
1589 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1590 &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1591 ELF_CR_IIP_OFFSET, ELF_AR_END_OFFSET);
1595 void do_gpregs_set(struct unw_frame_info *info, void *arg)
1597 struct pt_regs *pt;
1598 struct regset_getset *dst = arg;
1599 elf_greg_t tmp[16];
1600 unsigned int i, index;
1602 if (unw_unwind_to_user(info) < 0)
1603 return;
1605 /* Skip r0 */
1606 if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(1)) {
1607 dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count,
1608 &dst->u.set.kbuf,
1609 &dst->u.set.ubuf,
1610 0, ELF_GR_OFFSET(1));
1611 if (dst->ret || dst->count == 0)
1612 return;
1615 /* gr1-gr15 */
1616 if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(16)) {
1617 i = dst->pos;
1618 index = (dst->pos - ELF_GR_OFFSET(1)) / sizeof(elf_greg_t);
1619 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1620 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1621 ELF_GR_OFFSET(1), ELF_GR_OFFSET(16));
1622 if (dst->ret)
1623 return;
1624 for ( ; i < dst->pos; i += sizeof(elf_greg_t), index++)
1625 if (access_elf_reg(dst->target, info, i,
1626 &tmp[index], 1) < 0) {
1627 dst->ret = -EIO;
1628 return;
1630 if (dst->count == 0)
1631 return;
1634 /* gr16-gr31 */
1635 if (dst->count > 0 && dst->pos < ELF_NAT_OFFSET) {
1636 pt = task_pt_regs(dst->target);
1637 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1638 &dst->u.set.kbuf, &dst->u.set.ubuf, &pt->r16,
1639 ELF_GR_OFFSET(16), ELF_NAT_OFFSET);
1640 if (dst->ret || dst->count == 0)
1641 return;
1644 /* nat, pr, b0 - b7 */
1645 if (dst->count > 0 && dst->pos < ELF_CR_IIP_OFFSET) {
1646 i = dst->pos;
1647 index = (dst->pos - ELF_NAT_OFFSET) / sizeof(elf_greg_t);
1648 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1649 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1650 ELF_NAT_OFFSET, ELF_CR_IIP_OFFSET);
1651 if (dst->ret)
1652 return;
1653 for (; i < dst->pos; i += sizeof(elf_greg_t), index++)
1654 if (access_elf_reg(dst->target, info, i,
1655 &tmp[index], 1) < 0) {
1656 dst->ret = -EIO;
1657 return;
1659 if (dst->count == 0)
1660 return;
1663 /* ip cfm psr ar.rsc ar.bsp ar.bspstore ar.rnat
1664 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd
1666 if (dst->count > 0 && dst->pos < (ELF_AR_END_OFFSET)) {
1667 i = dst->pos;
1668 index = (dst->pos - ELF_CR_IIP_OFFSET) / sizeof(elf_greg_t);
1669 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1670 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1671 ELF_CR_IIP_OFFSET, ELF_AR_END_OFFSET);
1672 if (dst->ret)
1673 return;
1674 for ( ; i < dst->pos; i += sizeof(elf_greg_t), index++)
1675 if (access_elf_reg(dst->target, info, i,
1676 &tmp[index], 1) < 0) {
1677 dst->ret = -EIO;
1678 return;
1683 #define ELF_FP_OFFSET(i) (i * sizeof(elf_fpreg_t))
1685 void do_fpregs_get(struct unw_frame_info *info, void *arg)
1687 struct regset_getset *dst = arg;
1688 struct task_struct *task = dst->target;
1689 elf_fpreg_t tmp[30];
1690 int index, min_copy, i;
1692 if (unw_unwind_to_user(info) < 0)
1693 return;
1695 /* Skip pos 0 and 1 */
1696 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) {
1697 dst->ret = user_regset_copyout_zero(&dst->pos, &dst->count,
1698 &dst->u.get.kbuf,
1699 &dst->u.get.ubuf,
1700 0, ELF_FP_OFFSET(2));
1701 if (dst->count == 0 || dst->ret)
1702 return;
1705 /* fr2-fr31 */
1706 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) {
1707 index = (dst->pos - ELF_FP_OFFSET(2)) / sizeof(elf_fpreg_t);
1709 min_copy = min(((unsigned int)ELF_FP_OFFSET(32)),
1710 dst->pos + dst->count);
1711 for (i = dst->pos; i < min_copy; i += sizeof(elf_fpreg_t),
1712 index++)
1713 if (unw_get_fr(info, i / sizeof(elf_fpreg_t),
1714 &tmp[index])) {
1715 dst->ret = -EIO;
1716 return;
1718 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1719 &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1720 ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
1721 if (dst->count == 0 || dst->ret)
1722 return;
1725 /* fph */
1726 if (dst->count > 0) {
1727 ia64_flush_fph(dst->target);
1728 if (task->thread.flags & IA64_THREAD_FPH_VALID)
1729 dst->ret = user_regset_copyout(
1730 &dst->pos, &dst->count,
1731 &dst->u.get.kbuf, &dst->u.get.ubuf,
1732 &dst->target->thread.fph,
1733 ELF_FP_OFFSET(32), -1);
1734 else
1735 /* Zero fill instead. */
1736 dst->ret = user_regset_copyout_zero(
1737 &dst->pos, &dst->count,
1738 &dst->u.get.kbuf, &dst->u.get.ubuf,
1739 ELF_FP_OFFSET(32), -1);
1743 void do_fpregs_set(struct unw_frame_info *info, void *arg)
1745 struct regset_getset *dst = arg;
1746 elf_fpreg_t fpreg, tmp[30];
1747 int index, start, end;
1749 if (unw_unwind_to_user(info) < 0)
1750 return;
1752 /* Skip pos 0 and 1 */
1753 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) {
1754 dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count,
1755 &dst->u.set.kbuf,
1756 &dst->u.set.ubuf,
1757 0, ELF_FP_OFFSET(2));
1758 if (dst->count == 0 || dst->ret)
1759 return;
1762 /* fr2-fr31 */
1763 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) {
1764 start = dst->pos;
1765 end = min(((unsigned int)ELF_FP_OFFSET(32)),
1766 dst->pos + dst->count);
1767 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1768 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1769 ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
1770 if (dst->ret)
1771 return;
1773 if (start & 0xF) { /* only write high part */
1774 if (unw_get_fr(info, start / sizeof(elf_fpreg_t),
1775 &fpreg)) {
1776 dst->ret = -EIO;
1777 return;
1779 tmp[start / sizeof(elf_fpreg_t) - 2].u.bits[0]
1780 = fpreg.u.bits[0];
1781 start &= ~0xFUL;
1783 if (end & 0xF) { /* only write low part */
1784 if (unw_get_fr(info, end / sizeof(elf_fpreg_t),
1785 &fpreg)) {
1786 dst->ret = -EIO;
1787 return;
1789 tmp[end / sizeof(elf_fpreg_t) - 2].u.bits[1]
1790 = fpreg.u.bits[1];
1791 end = (end + 0xF) & ~0xFUL;
1794 for ( ; start < end ; start += sizeof(elf_fpreg_t)) {
1795 index = start / sizeof(elf_fpreg_t);
1796 if (unw_set_fr(info, index, tmp[index - 2])) {
1797 dst->ret = -EIO;
1798 return;
1801 if (dst->ret || dst->count == 0)
1802 return;
1805 /* fph */
1806 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(128)) {
1807 ia64_sync_fph(dst->target);
1808 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1809 &dst->u.set.kbuf,
1810 &dst->u.set.ubuf,
1811 &dst->target->thread.fph,
1812 ELF_FP_OFFSET(32), -1);
1816 static int
1817 do_regset_call(void (*call)(struct unw_frame_info *, void *),
1818 struct task_struct *target,
1819 const struct user_regset *regset,
1820 unsigned int pos, unsigned int count,
1821 const void *kbuf, const void __user *ubuf)
1823 struct regset_getset info = { .target = target, .regset = regset,
1824 .pos = pos, .count = count,
1825 .u.set = { .kbuf = kbuf, .ubuf = ubuf },
1826 .ret = 0 };
1828 if (target == current)
1829 unw_init_running(call, &info);
1830 else {
1831 struct unw_frame_info ufi;
1832 memset(&ufi, 0, sizeof(ufi));
1833 unw_init_from_blocked_task(&ufi, target);
1834 (*call)(&ufi, &info);
1837 return info.ret;
1840 static int
1841 gpregs_get(struct task_struct *target,
1842 const struct user_regset *regset,
1843 unsigned int pos, unsigned int count,
1844 void *kbuf, void __user *ubuf)
1846 return do_regset_call(do_gpregs_get, target, regset, pos, count,
1847 kbuf, ubuf);
1850 static int gpregs_set(struct task_struct *target,
1851 const struct user_regset *regset,
1852 unsigned int pos, unsigned int count,
1853 const void *kbuf, const void __user *ubuf)
1855 return do_regset_call(do_gpregs_set, target, regset, pos, count,
1856 kbuf, ubuf);
1859 static void do_gpregs_writeback(struct unw_frame_info *info, void *arg)
1861 do_sync_rbs(info, ia64_sync_user_rbs);
1865 * This is called to write back the register backing store.
1866 * ptrace does this before it stops, so that a tracer reading the user
1867 * memory after the thread stops will get the current register data.
1869 static int
1870 gpregs_writeback(struct task_struct *target,
1871 const struct user_regset *regset,
1872 int now)
1874 if (test_and_set_tsk_thread_flag(target, TIF_RESTORE_RSE))
1875 return 0;
1876 set_notify_resume(target);
1877 return do_regset_call(do_gpregs_writeback, target, regset, 0, 0,
1878 NULL, NULL);
1881 static int
1882 fpregs_active(struct task_struct *target, const struct user_regset *regset)
1884 return (target->thread.flags & IA64_THREAD_FPH_VALID) ? 128 : 32;
1887 static int fpregs_get(struct task_struct *target,
1888 const struct user_regset *regset,
1889 unsigned int pos, unsigned int count,
1890 void *kbuf, void __user *ubuf)
1892 return do_regset_call(do_fpregs_get, target, regset, pos, count,
1893 kbuf, ubuf);
1896 static int fpregs_set(struct task_struct *target,
1897 const struct user_regset *regset,
1898 unsigned int pos, unsigned int count,
1899 const void *kbuf, const void __user *ubuf)
1901 return do_regset_call(do_fpregs_set, target, regset, pos, count,
1902 kbuf, ubuf);
1905 static int
1906 access_uarea(struct task_struct *child, unsigned long addr,
1907 unsigned long *data, int write_access)
1909 unsigned int pos = -1; /* an invalid value */
1910 int ret;
1911 unsigned long *ptr, regnum;
1913 if ((addr & 0x7) != 0) {
1914 dprintk("ptrace: unaligned register address 0x%lx\n", addr);
1915 return -1;
1917 if ((addr >= PT_NAT_BITS + 8 && addr < PT_F2) ||
1918 (addr >= PT_R7 + 8 && addr < PT_B1) ||
1919 (addr >= PT_AR_LC + 8 && addr < PT_CR_IPSR) ||
1920 (addr >= PT_AR_SSD + 8 && addr < PT_DBR)) {
1921 dprintk("ptrace: rejecting access to register "
1922 "address 0x%lx\n", addr);
1923 return -1;
1926 switch (addr) {
1927 case PT_F32 ... (PT_F127 + 15):
1928 pos = addr - PT_F32 + ELF_FP_OFFSET(32);
1929 break;
1930 case PT_F2 ... (PT_F5 + 15):
1931 pos = addr - PT_F2 + ELF_FP_OFFSET(2);
1932 break;
1933 case PT_F10 ... (PT_F31 + 15):
1934 pos = addr - PT_F10 + ELF_FP_OFFSET(10);
1935 break;
1936 case PT_F6 ... (PT_F9 + 15):
1937 pos = addr - PT_F6 + ELF_FP_OFFSET(6);
1938 break;
1941 if (pos != -1) {
1942 if (write_access)
1943 ret = fpregs_set(child, NULL, pos,
1944 sizeof(unsigned long), data, NULL);
1945 else
1946 ret = fpregs_get(child, NULL, pos,
1947 sizeof(unsigned long), data, NULL);
1948 if (ret != 0)
1949 return -1;
1950 return 0;
1953 switch (addr) {
1954 case PT_NAT_BITS:
1955 pos = ELF_NAT_OFFSET;
1956 break;
1957 case PT_R4 ... PT_R7:
1958 pos = addr - PT_R4 + ELF_GR_OFFSET(4);
1959 break;
1960 case PT_B1 ... PT_B5:
1961 pos = addr - PT_B1 + ELF_BR_OFFSET(1);
1962 break;
1963 case PT_AR_EC:
1964 pos = ELF_AR_EC_OFFSET;
1965 break;
1966 case PT_AR_LC:
1967 pos = ELF_AR_LC_OFFSET;
1968 break;
1969 case PT_CR_IPSR:
1970 pos = ELF_CR_IPSR_OFFSET;
1971 break;
1972 case PT_CR_IIP:
1973 pos = ELF_CR_IIP_OFFSET;
1974 break;
1975 case PT_CFM:
1976 pos = ELF_CFM_OFFSET;
1977 break;
1978 case PT_AR_UNAT:
1979 pos = ELF_AR_UNAT_OFFSET;
1980 break;
1981 case PT_AR_PFS:
1982 pos = ELF_AR_PFS_OFFSET;
1983 break;
1984 case PT_AR_RSC:
1985 pos = ELF_AR_RSC_OFFSET;
1986 break;
1987 case PT_AR_RNAT:
1988 pos = ELF_AR_RNAT_OFFSET;
1989 break;
1990 case PT_AR_BSPSTORE:
1991 pos = ELF_AR_BSPSTORE_OFFSET;
1992 break;
1993 case PT_PR:
1994 pos = ELF_PR_OFFSET;
1995 break;
1996 case PT_B6:
1997 pos = ELF_BR_OFFSET(6);
1998 break;
1999 case PT_AR_BSP:
2000 pos = ELF_AR_BSP_OFFSET;
2001 break;
2002 case PT_R1 ... PT_R3:
2003 pos = addr - PT_R1 + ELF_GR_OFFSET(1);
2004 break;
2005 case PT_R12 ... PT_R15:
2006 pos = addr - PT_R12 + ELF_GR_OFFSET(12);
2007 break;
2008 case PT_R8 ... PT_R11:
2009 pos = addr - PT_R8 + ELF_GR_OFFSET(8);
2010 break;
2011 case PT_R16 ... PT_R31:
2012 pos = addr - PT_R16 + ELF_GR_OFFSET(16);
2013 break;
2014 case PT_AR_CCV:
2015 pos = ELF_AR_CCV_OFFSET;
2016 break;
2017 case PT_AR_FPSR:
2018 pos = ELF_AR_FPSR_OFFSET;
2019 break;
2020 case PT_B0:
2021 pos = ELF_BR_OFFSET(0);
2022 break;
2023 case PT_B7:
2024 pos = ELF_BR_OFFSET(7);
2025 break;
2026 case PT_AR_CSD:
2027 pos = ELF_AR_CSD_OFFSET;
2028 break;
2029 case PT_AR_SSD:
2030 pos = ELF_AR_SSD_OFFSET;
2031 break;
2034 if (pos != -1) {
2035 if (write_access)
2036 ret = gpregs_set(child, NULL, pos,
2037 sizeof(unsigned long), data, NULL);
2038 else
2039 ret = gpregs_get(child, NULL, pos,
2040 sizeof(unsigned long), data, NULL);
2041 if (ret != 0)
2042 return -1;
2043 return 0;
2046 /* access debug registers */
2047 if (addr >= PT_IBR) {
2048 regnum = (addr - PT_IBR) >> 3;
2049 ptr = &child->thread.ibr[0];
2050 } else {
2051 regnum = (addr - PT_DBR) >> 3;
2052 ptr = &child->thread.dbr[0];
2055 if (regnum >= 8) {
2056 dprintk("ptrace: rejecting access to register "
2057 "address 0x%lx\n", addr);
2058 return -1;
2060 #ifdef CONFIG_PERFMON
2062 * Check if debug registers are used by perfmon. This
2063 * test must be done once we know that we can do the
2064 * operation, i.e. the arguments are all valid, but
2065 * before we start modifying the state.
2067 * Perfmon needs to keep a count of how many processes
2068 * are trying to modify the debug registers for system
2069 * wide monitoring sessions.
2071 * We also include read access here, because they may
2072 * cause the PMU-installed debug register state
2073 * (dbr[], ibr[]) to be reset. The two arrays are also
2074 * used by perfmon, but we do not use
2075 * IA64_THREAD_DBG_VALID. The registers are restored
2076 * by the PMU context switch code.
2078 if (pfm_use_debug_registers(child))
2079 return -1;
2080 #endif
2082 if (!(child->thread.flags & IA64_THREAD_DBG_VALID)) {
2083 child->thread.flags |= IA64_THREAD_DBG_VALID;
2084 memset(child->thread.dbr, 0,
2085 sizeof(child->thread.dbr));
2086 memset(child->thread.ibr, 0,
2087 sizeof(child->thread.ibr));
2090 ptr += regnum;
2092 if ((regnum & 1) && write_access) {
2093 /* don't let the user set kernel-level breakpoints: */
2094 *ptr = *data & ~(7UL << 56);
2095 return 0;
2097 if (write_access)
2098 *ptr = *data;
2099 else
2100 *data = *ptr;
2101 return 0;
2104 static const struct user_regset native_regsets[] = {
2106 .core_note_type = NT_PRSTATUS,
2107 .n = ELF_NGREG,
2108 .size = sizeof(elf_greg_t), .align = sizeof(elf_greg_t),
2109 .get = gpregs_get, .set = gpregs_set,
2110 .writeback = gpregs_writeback
2113 .core_note_type = NT_PRFPREG,
2114 .n = ELF_NFPREG,
2115 .size = sizeof(elf_fpreg_t), .align = sizeof(elf_fpreg_t),
2116 .get = fpregs_get, .set = fpregs_set, .active = fpregs_active
2120 static const struct user_regset_view user_ia64_view = {
2121 .name = "ia64",
2122 .e_machine = EM_IA_64,
2123 .regsets = native_regsets, .n = ARRAY_SIZE(native_regsets)
2126 const struct user_regset_view *task_user_regset_view(struct task_struct *tsk)
2128 return &user_ia64_view;
2131 struct syscall_get_set_args {
2132 unsigned int i;
2133 unsigned int n;
2134 unsigned long *args;
2135 struct pt_regs *regs;
2136 int rw;
2139 static void syscall_get_set_args_cb(struct unw_frame_info *info, void *data)
2141 struct syscall_get_set_args *args = data;
2142 struct pt_regs *pt = args->regs;
2143 unsigned long *krbs, cfm, ndirty;
2144 int i, count;
2146 if (unw_unwind_to_user(info) < 0)
2147 return;
2149 cfm = pt->cr_ifs;
2150 krbs = (unsigned long *)info->task + IA64_RBS_OFFSET/8;
2151 ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
2153 count = 0;
2154 if (in_syscall(pt))
2155 count = min_t(int, args->n, cfm & 0x7f);
2157 for (i = 0; i < count; i++) {
2158 if (args->rw)
2159 *ia64_rse_skip_regs(krbs, ndirty + i + args->i) =
2160 args->args[i];
2161 else
2162 args->args[i] = *ia64_rse_skip_regs(krbs,
2163 ndirty + i + args->i);
2166 if (!args->rw) {
2167 while (i < args->n) {
2168 args->args[i] = 0;
2169 i++;
2174 void ia64_syscall_get_set_arguments(struct task_struct *task,
2175 struct pt_regs *regs, unsigned int i, unsigned int n,
2176 unsigned long *args, int rw)
2178 struct syscall_get_set_args data = {
2179 .i = i,
2180 .n = n,
2181 .args = args,
2182 .regs = regs,
2183 .rw = rw,
2186 if (task == current)
2187 unw_init_running(syscall_get_set_args_cb, &data);
2188 else {
2189 struct unw_frame_info ufi;
2190 memset(&ufi, 0, sizeof(ufi));
2191 unw_init_from_blocked_task(&ufi, task);
2192 syscall_get_set_args_cb(&ufi, &data);