Linux 4.2.2
[linux/fpc-iii.git] / arch / mips / kernel / traps.c
blob8ea28e6ab37dead56439dc37871b6b18e8ec02d5
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved.
13 * Copyright (C) 2014, Imagination Technologies Ltd.
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/compiler.h>
18 #include <linux/context_tracking.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/kexec.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/mm.h>
25 #include <linux/sched.h>
26 #include <linux/smp.h>
27 #include <linux/spinlock.h>
28 #include <linux/kallsyms.h>
29 #include <linux/bootmem.h>
30 #include <linux/interrupt.h>
31 #include <linux/ptrace.h>
32 #include <linux/kgdb.h>
33 #include <linux/kdebug.h>
34 #include <linux/kprobes.h>
35 #include <linux/notifier.h>
36 #include <linux/kdb.h>
37 #include <linux/irq.h>
38 #include <linux/perf_event.h>
40 #include <asm/bootinfo.h>
41 #include <asm/branch.h>
42 #include <asm/break.h>
43 #include <asm/cop2.h>
44 #include <asm/cpu.h>
45 #include <asm/cpu-type.h>
46 #include <asm/dsp.h>
47 #include <asm/fpu.h>
48 #include <asm/fpu_emulator.h>
49 #include <asm/idle.h>
50 #include <asm/mips-r2-to-r6-emul.h>
51 #include <asm/mipsregs.h>
52 #include <asm/mipsmtregs.h>
53 #include <asm/module.h>
54 #include <asm/msa.h>
55 #include <asm/pgtable.h>
56 #include <asm/ptrace.h>
57 #include <asm/sections.h>
58 #include <asm/tlbdebug.h>
59 #include <asm/traps.h>
60 #include <asm/uaccess.h>
61 #include <asm/watch.h>
62 #include <asm/mmu_context.h>
63 #include <asm/types.h>
64 #include <asm/stacktrace.h>
65 #include <asm/uasm.h>
67 extern void check_wait(void);
68 extern asmlinkage void rollback_handle_int(void);
69 extern asmlinkage void handle_int(void);
70 extern u32 handle_tlbl[];
71 extern u32 handle_tlbs[];
72 extern u32 handle_tlbm[];
73 extern asmlinkage void handle_adel(void);
74 extern asmlinkage void handle_ades(void);
75 extern asmlinkage void handle_ibe(void);
76 extern asmlinkage void handle_dbe(void);
77 extern asmlinkage void handle_sys(void);
78 extern asmlinkage void handle_bp(void);
79 extern asmlinkage void handle_ri(void);
80 extern asmlinkage void handle_ri_rdhwr_vivt(void);
81 extern asmlinkage void handle_ri_rdhwr(void);
82 extern asmlinkage void handle_cpu(void);
83 extern asmlinkage void handle_ov(void);
84 extern asmlinkage void handle_tr(void);
85 extern asmlinkage void handle_msa_fpe(void);
86 extern asmlinkage void handle_fpe(void);
87 extern asmlinkage void handle_ftlb(void);
88 extern asmlinkage void handle_msa(void);
89 extern asmlinkage void handle_mdmx(void);
90 extern asmlinkage void handle_watch(void);
91 extern asmlinkage void handle_mt(void);
92 extern asmlinkage void handle_dsp(void);
93 extern asmlinkage void handle_mcheck(void);
94 extern asmlinkage void handle_reserved(void);
95 extern void tlb_do_page_fault_0(void);
97 void (*board_be_init)(void);
98 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
99 void (*board_nmi_handler_setup)(void);
100 void (*board_ejtag_handler_setup)(void);
101 void (*board_bind_eic_interrupt)(int irq, int regset);
102 void (*board_ebase_setup)(void);
103 void(*board_cache_error_setup)(void);
105 static void show_raw_backtrace(unsigned long reg29)
107 unsigned long *sp = (unsigned long *)(reg29 & ~3);
108 unsigned long addr;
110 printk("Call Trace:");
111 #ifdef CONFIG_KALLSYMS
112 printk("\n");
113 #endif
114 while (!kstack_end(sp)) {
115 unsigned long __user *p =
116 (unsigned long __user *)(unsigned long)sp++;
117 if (__get_user(addr, p)) {
118 printk(" (Bad stack address)");
119 break;
121 if (__kernel_text_address(addr))
122 print_ip_sym(addr);
124 printk("\n");
127 #ifdef CONFIG_KALLSYMS
128 int raw_show_trace;
129 static int __init set_raw_show_trace(char *str)
131 raw_show_trace = 1;
132 return 1;
134 __setup("raw_show_trace", set_raw_show_trace);
135 #endif
137 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
139 unsigned long sp = regs->regs[29];
140 unsigned long ra = regs->regs[31];
141 unsigned long pc = regs->cp0_epc;
143 if (!task)
144 task = current;
146 if (raw_show_trace || !__kernel_text_address(pc)) {
147 show_raw_backtrace(sp);
148 return;
150 printk("Call Trace:\n");
151 do {
152 print_ip_sym(pc);
153 pc = unwind_stack(task, &sp, pc, &ra);
154 } while (pc);
155 printk("\n");
159 * This routine abuses get_user()/put_user() to reference pointers
160 * with at least a bit of error checking ...
162 static void show_stacktrace(struct task_struct *task,
163 const struct pt_regs *regs)
165 const int field = 2 * sizeof(unsigned long);
166 long stackdata;
167 int i;
168 unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
170 printk("Stack :");
171 i = 0;
172 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
173 if (i && ((i % (64 / field)) == 0))
174 printk("\n ");
175 if (i > 39) {
176 printk(" ...");
177 break;
180 if (__get_user(stackdata, sp++)) {
181 printk(" (Bad stack address)");
182 break;
185 printk(" %0*lx", field, stackdata);
186 i++;
188 printk("\n");
189 show_backtrace(task, regs);
192 void show_stack(struct task_struct *task, unsigned long *sp)
194 struct pt_regs regs;
195 mm_segment_t old_fs = get_fs();
196 if (sp) {
197 regs.regs[29] = (unsigned long)sp;
198 regs.regs[31] = 0;
199 regs.cp0_epc = 0;
200 } else {
201 if (task && task != current) {
202 regs.regs[29] = task->thread.reg29;
203 regs.regs[31] = 0;
204 regs.cp0_epc = task->thread.reg31;
205 #ifdef CONFIG_KGDB_KDB
206 } else if (atomic_read(&kgdb_active) != -1 &&
207 kdb_current_regs) {
208 memcpy(&regs, kdb_current_regs, sizeof(regs));
209 #endif /* CONFIG_KGDB_KDB */
210 } else {
211 prepare_frametrace(&regs);
215 * show_stack() deals exclusively with kernel mode, so be sure to access
216 * the stack in the kernel (not user) address space.
218 set_fs(KERNEL_DS);
219 show_stacktrace(task, &regs);
220 set_fs(old_fs);
223 static void show_code(unsigned int __user *pc)
225 long i;
226 unsigned short __user *pc16 = NULL;
228 printk("\nCode:");
230 if ((unsigned long)pc & 1)
231 pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
232 for(i = -3 ; i < 6 ; i++) {
233 unsigned int insn;
234 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
235 printk(" (Bad address in epc)\n");
236 break;
238 printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
242 static void __show_regs(const struct pt_regs *regs)
244 const int field = 2 * sizeof(unsigned long);
245 unsigned int cause = regs->cp0_cause;
246 unsigned int exccode;
247 int i;
249 show_regs_print_info(KERN_DEFAULT);
252 * Saved main processor registers
254 for (i = 0; i < 32; ) {
255 if ((i % 4) == 0)
256 printk("$%2d :", i);
257 if (i == 0)
258 printk(" %0*lx", field, 0UL);
259 else if (i == 26 || i == 27)
260 printk(" %*s", field, "");
261 else
262 printk(" %0*lx", field, regs->regs[i]);
264 i++;
265 if ((i % 4) == 0)
266 printk("\n");
269 #ifdef CONFIG_CPU_HAS_SMARTMIPS
270 printk("Acx : %0*lx\n", field, regs->acx);
271 #endif
272 printk("Hi : %0*lx\n", field, regs->hi);
273 printk("Lo : %0*lx\n", field, regs->lo);
276 * Saved cp0 registers
278 printk("epc : %0*lx %pS\n", field, regs->cp0_epc,
279 (void *) regs->cp0_epc);
280 printk("ra : %0*lx %pS\n", field, regs->regs[31],
281 (void *) regs->regs[31]);
283 printk("Status: %08x ", (uint32_t) regs->cp0_status);
285 if (cpu_has_3kex) {
286 if (regs->cp0_status & ST0_KUO)
287 printk("KUo ");
288 if (regs->cp0_status & ST0_IEO)
289 printk("IEo ");
290 if (regs->cp0_status & ST0_KUP)
291 printk("KUp ");
292 if (regs->cp0_status & ST0_IEP)
293 printk("IEp ");
294 if (regs->cp0_status & ST0_KUC)
295 printk("KUc ");
296 if (regs->cp0_status & ST0_IEC)
297 printk("IEc ");
298 } else if (cpu_has_4kex) {
299 if (regs->cp0_status & ST0_KX)
300 printk("KX ");
301 if (regs->cp0_status & ST0_SX)
302 printk("SX ");
303 if (regs->cp0_status & ST0_UX)
304 printk("UX ");
305 switch (regs->cp0_status & ST0_KSU) {
306 case KSU_USER:
307 printk("USER ");
308 break;
309 case KSU_SUPERVISOR:
310 printk("SUPERVISOR ");
311 break;
312 case KSU_KERNEL:
313 printk("KERNEL ");
314 break;
315 default:
316 printk("BAD_MODE ");
317 break;
319 if (regs->cp0_status & ST0_ERL)
320 printk("ERL ");
321 if (regs->cp0_status & ST0_EXL)
322 printk("EXL ");
323 if (regs->cp0_status & ST0_IE)
324 printk("IE ");
326 printk("\n");
328 exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
329 printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
331 if (1 <= exccode && exccode <= 5)
332 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
334 printk("PrId : %08x (%s)\n", read_c0_prid(),
335 cpu_name_string());
339 * FIXME: really the generic show_regs should take a const pointer argument.
341 void show_regs(struct pt_regs *regs)
343 __show_regs((struct pt_regs *)regs);
346 void show_registers(struct pt_regs *regs)
348 const int field = 2 * sizeof(unsigned long);
349 mm_segment_t old_fs = get_fs();
351 __show_regs(regs);
352 print_modules();
353 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
354 current->comm, current->pid, current_thread_info(), current,
355 field, current_thread_info()->tp_value);
356 if (cpu_has_userlocal) {
357 unsigned long tls;
359 tls = read_c0_userlocal();
360 if (tls != current_thread_info()->tp_value)
361 printk("*HwTLS: %0*lx\n", field, tls);
364 if (!user_mode(regs))
365 /* Necessary for getting the correct stack content */
366 set_fs(KERNEL_DS);
367 show_stacktrace(current, regs);
368 show_code((unsigned int __user *) regs->cp0_epc);
369 printk("\n");
370 set_fs(old_fs);
373 static int regs_to_trapnr(struct pt_regs *regs)
375 return (regs->cp0_cause >> 2) & 0x1f;
378 static DEFINE_RAW_SPINLOCK(die_lock);
380 void __noreturn die(const char *str, struct pt_regs *regs)
382 static int die_counter;
383 int sig = SIGSEGV;
385 oops_enter();
387 if (notify_die(DIE_OOPS, str, regs, 0, regs_to_trapnr(regs),
388 SIGSEGV) == NOTIFY_STOP)
389 sig = 0;
391 console_verbose();
392 raw_spin_lock_irq(&die_lock);
393 bust_spinlocks(1);
395 printk("%s[#%d]:\n", str, ++die_counter);
396 show_registers(regs);
397 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
398 raw_spin_unlock_irq(&die_lock);
400 oops_exit();
402 if (in_interrupt())
403 panic("Fatal exception in interrupt");
405 if (panic_on_oops) {
406 printk(KERN_EMERG "Fatal exception: panic in 5 seconds");
407 ssleep(5);
408 panic("Fatal exception");
411 if (regs && kexec_should_crash(current))
412 crash_kexec(regs);
414 do_exit(sig);
417 extern struct exception_table_entry __start___dbe_table[];
418 extern struct exception_table_entry __stop___dbe_table[];
420 __asm__(
421 " .section __dbe_table, \"a\"\n"
422 " .previous \n");
424 /* Given an address, look for it in the exception tables. */
425 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
427 const struct exception_table_entry *e;
429 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
430 if (!e)
431 e = search_module_dbetables(addr);
432 return e;
435 asmlinkage void do_be(struct pt_regs *regs)
437 const int field = 2 * sizeof(unsigned long);
438 const struct exception_table_entry *fixup = NULL;
439 int data = regs->cp0_cause & 4;
440 int action = MIPS_BE_FATAL;
441 enum ctx_state prev_state;
443 prev_state = exception_enter();
444 /* XXX For now. Fixme, this searches the wrong table ... */
445 if (data && !user_mode(regs))
446 fixup = search_dbe_tables(exception_epc(regs));
448 if (fixup)
449 action = MIPS_BE_FIXUP;
451 if (board_be_handler)
452 action = board_be_handler(regs, fixup != NULL);
454 switch (action) {
455 case MIPS_BE_DISCARD:
456 goto out;
457 case MIPS_BE_FIXUP:
458 if (fixup) {
459 regs->cp0_epc = fixup->nextinsn;
460 goto out;
462 break;
463 default:
464 break;
468 * Assume it would be too dangerous to continue ...
470 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
471 data ? "Data" : "Instruction",
472 field, regs->cp0_epc, field, regs->regs[31]);
473 if (notify_die(DIE_OOPS, "bus error", regs, 0, regs_to_trapnr(regs),
474 SIGBUS) == NOTIFY_STOP)
475 goto out;
477 die_if_kernel("Oops", regs);
478 force_sig(SIGBUS, current);
480 out:
481 exception_exit(prev_state);
485 * ll/sc, rdhwr, sync emulation
488 #define OPCODE 0xfc000000
489 #define BASE 0x03e00000
490 #define RT 0x001f0000
491 #define OFFSET 0x0000ffff
492 #define LL 0xc0000000
493 #define SC 0xe0000000
494 #define SPEC0 0x00000000
495 #define SPEC3 0x7c000000
496 #define RD 0x0000f800
497 #define FUNC 0x0000003f
498 #define SYNC 0x0000000f
499 #define RDHWR 0x0000003b
501 /* microMIPS definitions */
502 #define MM_POOL32A_FUNC 0xfc00ffff
503 #define MM_RDHWR 0x00006b3c
504 #define MM_RS 0x001f0000
505 #define MM_RT 0x03e00000
508 * The ll_bit is cleared by r*_switch.S
511 unsigned int ll_bit;
512 struct task_struct *ll_task;
514 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
516 unsigned long value, __user *vaddr;
517 long offset;
520 * analyse the ll instruction that just caused a ri exception
521 * and put the referenced address to addr.
524 /* sign extend offset */
525 offset = opcode & OFFSET;
526 offset <<= 16;
527 offset >>= 16;
529 vaddr = (unsigned long __user *)
530 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
532 if ((unsigned long)vaddr & 3)
533 return SIGBUS;
534 if (get_user(value, vaddr))
535 return SIGSEGV;
537 preempt_disable();
539 if (ll_task == NULL || ll_task == current) {
540 ll_bit = 1;
541 } else {
542 ll_bit = 0;
544 ll_task = current;
546 preempt_enable();
548 regs->regs[(opcode & RT) >> 16] = value;
550 return 0;
553 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
555 unsigned long __user *vaddr;
556 unsigned long reg;
557 long offset;
560 * analyse the sc instruction that just caused a ri exception
561 * and put the referenced address to addr.
564 /* sign extend offset */
565 offset = opcode & OFFSET;
566 offset <<= 16;
567 offset >>= 16;
569 vaddr = (unsigned long __user *)
570 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
571 reg = (opcode & RT) >> 16;
573 if ((unsigned long)vaddr & 3)
574 return SIGBUS;
576 preempt_disable();
578 if (ll_bit == 0 || ll_task != current) {
579 regs->regs[reg] = 0;
580 preempt_enable();
581 return 0;
584 preempt_enable();
586 if (put_user(regs->regs[reg], vaddr))
587 return SIGSEGV;
589 regs->regs[reg] = 1;
591 return 0;
595 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
596 * opcodes are supposed to result in coprocessor unusable exceptions if
597 * executed on ll/sc-less processors. That's the theory. In practice a
598 * few processors such as NEC's VR4100 throw reserved instruction exceptions
599 * instead, so we're doing the emulation thing in both exception handlers.
601 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
603 if ((opcode & OPCODE) == LL) {
604 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
605 1, regs, 0);
606 return simulate_ll(regs, opcode);
608 if ((opcode & OPCODE) == SC) {
609 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
610 1, regs, 0);
611 return simulate_sc(regs, opcode);
614 return -1; /* Must be something else ... */
618 * Simulate trapping 'rdhwr' instructions to provide user accessible
619 * registers not implemented in hardware.
621 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
623 struct thread_info *ti = task_thread_info(current);
625 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
626 1, regs, 0);
627 switch (rd) {
628 case 0: /* CPU number */
629 regs->regs[rt] = smp_processor_id();
630 return 0;
631 case 1: /* SYNCI length */
632 regs->regs[rt] = min(current_cpu_data.dcache.linesz,
633 current_cpu_data.icache.linesz);
634 return 0;
635 case 2: /* Read count register */
636 regs->regs[rt] = read_c0_count();
637 return 0;
638 case 3: /* Count register resolution */
639 switch (current_cpu_type()) {
640 case CPU_20KC:
641 case CPU_25KF:
642 regs->regs[rt] = 1;
643 break;
644 default:
645 regs->regs[rt] = 2;
647 return 0;
648 case 29:
649 regs->regs[rt] = ti->tp_value;
650 return 0;
651 default:
652 return -1;
656 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
658 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
659 int rd = (opcode & RD) >> 11;
660 int rt = (opcode & RT) >> 16;
662 simulate_rdhwr(regs, rd, rt);
663 return 0;
666 /* Not ours. */
667 return -1;
670 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned short opcode)
672 if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
673 int rd = (opcode & MM_RS) >> 16;
674 int rt = (opcode & MM_RT) >> 21;
675 simulate_rdhwr(regs, rd, rt);
676 return 0;
679 /* Not ours. */
680 return -1;
683 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
685 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
686 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
687 1, regs, 0);
688 return 0;
691 return -1; /* Must be something else ... */
694 asmlinkage void do_ov(struct pt_regs *regs)
696 enum ctx_state prev_state;
697 siginfo_t info;
699 prev_state = exception_enter();
700 die_if_kernel("Integer overflow", regs);
702 info.si_code = FPE_INTOVF;
703 info.si_signo = SIGFPE;
704 info.si_errno = 0;
705 info.si_addr = (void __user *) regs->cp0_epc;
706 force_sig_info(SIGFPE, &info, current);
707 exception_exit(prev_state);
710 int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
712 struct siginfo si = { 0 };
714 switch (sig) {
715 case 0:
716 return 0;
718 case SIGFPE:
719 si.si_addr = fault_addr;
720 si.si_signo = sig;
722 * Inexact can happen together with Overflow or Underflow.
723 * Respect the mask to deliver the correct exception.
725 fcr31 &= (fcr31 & FPU_CSR_ALL_E) <<
726 (ffs(FPU_CSR_ALL_X) - ffs(FPU_CSR_ALL_E));
727 if (fcr31 & FPU_CSR_INV_X)
728 si.si_code = FPE_FLTINV;
729 else if (fcr31 & FPU_CSR_DIV_X)
730 si.si_code = FPE_FLTDIV;
731 else if (fcr31 & FPU_CSR_OVF_X)
732 si.si_code = FPE_FLTOVF;
733 else if (fcr31 & FPU_CSR_UDF_X)
734 si.si_code = FPE_FLTUND;
735 else if (fcr31 & FPU_CSR_INE_X)
736 si.si_code = FPE_FLTRES;
737 else
738 si.si_code = __SI_FAULT;
739 force_sig_info(sig, &si, current);
740 return 1;
742 case SIGBUS:
743 si.si_addr = fault_addr;
744 si.si_signo = sig;
745 si.si_code = BUS_ADRERR;
746 force_sig_info(sig, &si, current);
747 return 1;
749 case SIGSEGV:
750 si.si_addr = fault_addr;
751 si.si_signo = sig;
752 down_read(&current->mm->mmap_sem);
753 if (find_vma(current->mm, (unsigned long)fault_addr))
754 si.si_code = SEGV_ACCERR;
755 else
756 si.si_code = SEGV_MAPERR;
757 up_read(&current->mm->mmap_sem);
758 force_sig_info(sig, &si, current);
759 return 1;
761 default:
762 force_sig(sig, current);
763 return 1;
767 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
768 unsigned long old_epc, unsigned long old_ra)
770 union mips_instruction inst = { .word = opcode };
771 void __user *fault_addr;
772 unsigned long fcr31;
773 int sig;
775 /* If it's obviously not an FP instruction, skip it */
776 switch (inst.i_format.opcode) {
777 case cop1_op:
778 case cop1x_op:
779 case lwc1_op:
780 case ldc1_op:
781 case swc1_op:
782 case sdc1_op:
783 break;
785 default:
786 return -1;
790 * do_ri skipped over the instruction via compute_return_epc, undo
791 * that for the FPU emulator.
793 regs->cp0_epc = old_epc;
794 regs->regs[31] = old_ra;
796 /* Save the FP context to struct thread_struct */
797 lose_fpu(1);
799 /* Run the emulator */
800 sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
801 &fault_addr);
802 fcr31 = current->thread.fpu.fcr31;
805 * We can't allow the emulated instruction to leave any of
806 * the cause bits set in $fcr31.
808 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
810 /* Restore the hardware register state */
811 own_fpu(1);
813 /* Send a signal if required. */
814 process_fpemu_return(sig, fault_addr, fcr31);
816 return 0;
820 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
822 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
824 enum ctx_state prev_state;
825 void __user *fault_addr;
826 int sig;
828 prev_state = exception_enter();
829 if (notify_die(DIE_FP, "FP exception", regs, 0, regs_to_trapnr(regs),
830 SIGFPE) == NOTIFY_STOP)
831 goto out;
833 /* Clear FCSR.Cause before enabling interrupts */
834 write_32bit_cp1_register(CP1_STATUS, fcr31 & ~FPU_CSR_ALL_X);
835 local_irq_enable();
837 die_if_kernel("FP exception in kernel code", regs);
839 if (fcr31 & FPU_CSR_UNI_X) {
841 * Unimplemented operation exception. If we've got the full
842 * software emulator on-board, let's use it...
844 * Force FPU to dump state into task/thread context. We're
845 * moving a lot of data here for what is probably a single
846 * instruction, but the alternative is to pre-decode the FP
847 * register operands before invoking the emulator, which seems
848 * a bit extreme for what should be an infrequent event.
850 /* Ensure 'resume' not overwrite saved fp context again. */
851 lose_fpu(1);
853 /* Run the emulator */
854 sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
855 &fault_addr);
856 fcr31 = current->thread.fpu.fcr31;
859 * We can't allow the emulated instruction to leave any of
860 * the cause bits set in $fcr31.
862 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
864 /* Restore the hardware register state */
865 own_fpu(1); /* Using the FPU again. */
866 } else {
867 sig = SIGFPE;
868 fault_addr = (void __user *) regs->cp0_epc;
871 /* Send a signal if required. */
872 process_fpemu_return(sig, fault_addr, fcr31);
874 out:
875 exception_exit(prev_state);
878 void do_trap_or_bp(struct pt_regs *regs, unsigned int code,
879 const char *str)
881 siginfo_t info;
882 char b[40];
884 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
885 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
886 return;
887 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
889 if (notify_die(DIE_TRAP, str, regs, code, regs_to_trapnr(regs),
890 SIGTRAP) == NOTIFY_STOP)
891 return;
894 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
895 * insns, even for trap and break codes that indicate arithmetic
896 * failures. Weird ...
897 * But should we continue the brokenness??? --macro
899 switch (code) {
900 case BRK_OVERFLOW:
901 case BRK_DIVZERO:
902 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
903 die_if_kernel(b, regs);
904 if (code == BRK_DIVZERO)
905 info.si_code = FPE_INTDIV;
906 else
907 info.si_code = FPE_INTOVF;
908 info.si_signo = SIGFPE;
909 info.si_errno = 0;
910 info.si_addr = (void __user *) regs->cp0_epc;
911 force_sig_info(SIGFPE, &info, current);
912 break;
913 case BRK_BUG:
914 die_if_kernel("Kernel bug detected", regs);
915 force_sig(SIGTRAP, current);
916 break;
917 case BRK_MEMU:
919 * This breakpoint code is used by the FPU emulator to retake
920 * control of the CPU after executing the instruction from the
921 * delay slot of an emulated branch.
923 * Terminate if exception was recognized as a delay slot return
924 * otherwise handle as normal.
926 if (do_dsemulret(regs))
927 return;
929 die_if_kernel("Math emu break/trap", regs);
930 force_sig(SIGTRAP, current);
931 break;
932 default:
933 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
934 die_if_kernel(b, regs);
935 force_sig(SIGTRAP, current);
939 asmlinkage void do_bp(struct pt_regs *regs)
941 unsigned long epc = msk_isa16_mode(exception_epc(regs));
942 unsigned int opcode, bcode;
943 enum ctx_state prev_state;
944 mm_segment_t seg;
946 seg = get_fs();
947 if (!user_mode(regs))
948 set_fs(KERNEL_DS);
950 prev_state = exception_enter();
951 if (get_isa16_mode(regs->cp0_epc)) {
952 u16 instr[2];
954 if (__get_user(instr[0], (u16 __user *)epc))
955 goto out_sigsegv;
957 if (!cpu_has_mmips) {
958 /* MIPS16e mode */
959 bcode = (instr[0] >> 5) & 0x3f;
960 } else if (mm_insn_16bit(instr[0])) {
961 /* 16-bit microMIPS BREAK */
962 bcode = instr[0] & 0xf;
963 } else {
964 /* 32-bit microMIPS BREAK */
965 if (__get_user(instr[1], (u16 __user *)(epc + 2)))
966 goto out_sigsegv;
967 opcode = (instr[0] << 16) | instr[1];
968 bcode = (opcode >> 6) & ((1 << 20) - 1);
970 } else {
971 if (__get_user(opcode, (unsigned int __user *)epc))
972 goto out_sigsegv;
973 bcode = (opcode >> 6) & ((1 << 20) - 1);
977 * There is the ancient bug in the MIPS assemblers that the break
978 * code starts left to bit 16 instead to bit 6 in the opcode.
979 * Gas is bug-compatible, but not always, grrr...
980 * We handle both cases with a simple heuristics. --macro
982 if (bcode >= (1 << 10))
983 bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
986 * notify the kprobe handlers, if instruction is likely to
987 * pertain to them.
989 switch (bcode) {
990 case BRK_KPROBE_BP:
991 if (notify_die(DIE_BREAK, "debug", regs, bcode,
992 regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
993 goto out;
994 else
995 break;
996 case BRK_KPROBE_SSTEPBP:
997 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
998 regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
999 goto out;
1000 else
1001 break;
1002 default:
1003 break;
1006 do_trap_or_bp(regs, bcode, "Break");
1008 out:
1009 set_fs(seg);
1010 exception_exit(prev_state);
1011 return;
1013 out_sigsegv:
1014 force_sig(SIGSEGV, current);
1015 goto out;
1018 asmlinkage void do_tr(struct pt_regs *regs)
1020 u32 opcode, tcode = 0;
1021 enum ctx_state prev_state;
1022 u16 instr[2];
1023 mm_segment_t seg;
1024 unsigned long epc = msk_isa16_mode(exception_epc(regs));
1026 seg = get_fs();
1027 if (!user_mode(regs))
1028 set_fs(get_ds());
1030 prev_state = exception_enter();
1031 if (get_isa16_mode(regs->cp0_epc)) {
1032 if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
1033 __get_user(instr[1], (u16 __user *)(epc + 2)))
1034 goto out_sigsegv;
1035 opcode = (instr[0] << 16) | instr[1];
1036 /* Immediate versions don't provide a code. */
1037 if (!(opcode & OPCODE))
1038 tcode = (opcode >> 12) & ((1 << 4) - 1);
1039 } else {
1040 if (__get_user(opcode, (u32 __user *)epc))
1041 goto out_sigsegv;
1042 /* Immediate versions don't provide a code. */
1043 if (!(opcode & OPCODE))
1044 tcode = (opcode >> 6) & ((1 << 10) - 1);
1047 do_trap_or_bp(regs, tcode, "Trap");
1049 out:
1050 set_fs(seg);
1051 exception_exit(prev_state);
1052 return;
1054 out_sigsegv:
1055 force_sig(SIGSEGV, current);
1056 goto out;
1059 asmlinkage void do_ri(struct pt_regs *regs)
1061 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1062 unsigned long old_epc = regs->cp0_epc;
1063 unsigned long old31 = regs->regs[31];
1064 enum ctx_state prev_state;
1065 unsigned int opcode = 0;
1066 int status = -1;
1069 * Avoid any kernel code. Just emulate the R2 instruction
1070 * as quickly as possible.
1072 if (mipsr2_emulation && cpu_has_mips_r6 &&
1073 likely(user_mode(regs)) &&
1074 likely(get_user(opcode, epc) >= 0)) {
1075 unsigned long fcr31 = 0;
1077 status = mipsr2_decoder(regs, opcode, &fcr31);
1078 switch (status) {
1079 case 0:
1080 case SIGEMT:
1081 task_thread_info(current)->r2_emul_return = 1;
1082 return;
1083 case SIGILL:
1084 goto no_r2_instr;
1085 default:
1086 process_fpemu_return(status,
1087 &current->thread.cp0_baduaddr,
1088 fcr31);
1089 task_thread_info(current)->r2_emul_return = 1;
1090 return;
1094 no_r2_instr:
1096 prev_state = exception_enter();
1098 if (notify_die(DIE_RI, "RI Fault", regs, 0, regs_to_trapnr(regs),
1099 SIGILL) == NOTIFY_STOP)
1100 goto out;
1102 die_if_kernel("Reserved instruction in kernel code", regs);
1104 if (unlikely(compute_return_epc(regs) < 0))
1105 goto out;
1107 if (get_isa16_mode(regs->cp0_epc)) {
1108 unsigned short mmop[2] = { 0 };
1110 if (unlikely(get_user(mmop[0], epc) < 0))
1111 status = SIGSEGV;
1112 if (unlikely(get_user(mmop[1], epc) < 0))
1113 status = SIGSEGV;
1114 opcode = (mmop[0] << 16) | mmop[1];
1116 if (status < 0)
1117 status = simulate_rdhwr_mm(regs, opcode);
1118 } else {
1119 if (unlikely(get_user(opcode, epc) < 0))
1120 status = SIGSEGV;
1122 if (!cpu_has_llsc && status < 0)
1123 status = simulate_llsc(regs, opcode);
1125 if (status < 0)
1126 status = simulate_rdhwr_normal(regs, opcode);
1128 if (status < 0)
1129 status = simulate_sync(regs, opcode);
1131 if (status < 0)
1132 status = simulate_fp(regs, opcode, old_epc, old31);
1135 if (status < 0)
1136 status = SIGILL;
1138 if (unlikely(status > 0)) {
1139 regs->cp0_epc = old_epc; /* Undo skip-over. */
1140 regs->regs[31] = old31;
1141 force_sig(status, current);
1144 out:
1145 exception_exit(prev_state);
1149 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
1150 * emulated more than some threshold number of instructions, force migration to
1151 * a "CPU" that has FP support.
1153 static void mt_ase_fp_affinity(void)
1155 #ifdef CONFIG_MIPS_MT_FPAFF
1156 if (mt_fpemul_threshold > 0 &&
1157 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
1159 * If there's no FPU present, or if the application has already
1160 * restricted the allowed set to exclude any CPUs with FPUs,
1161 * we'll skip the procedure.
1163 if (cpumask_intersects(&current->cpus_allowed, &mt_fpu_cpumask)) {
1164 cpumask_t tmask;
1166 current->thread.user_cpus_allowed
1167 = current->cpus_allowed;
1168 cpumask_and(&tmask, &current->cpus_allowed,
1169 &mt_fpu_cpumask);
1170 set_cpus_allowed_ptr(current, &tmask);
1171 set_thread_flag(TIF_FPUBOUND);
1174 #endif /* CONFIG_MIPS_MT_FPAFF */
1178 * No lock; only written during early bootup by CPU 0.
1180 static RAW_NOTIFIER_HEAD(cu2_chain);
1182 int __ref register_cu2_notifier(struct notifier_block *nb)
1184 return raw_notifier_chain_register(&cu2_chain, nb);
1187 int cu2_notifier_call_chain(unsigned long val, void *v)
1189 return raw_notifier_call_chain(&cu2_chain, val, v);
1192 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1193 void *data)
1195 struct pt_regs *regs = data;
1197 die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1198 "instruction", regs);
1199 force_sig(SIGILL, current);
1201 return NOTIFY_OK;
1204 static int wait_on_fp_mode_switch(atomic_t *p)
1207 * The FP mode for this task is currently being switched. That may
1208 * involve modifications to the format of this tasks FP context which
1209 * make it unsafe to proceed with execution for the moment. Instead,
1210 * schedule some other task.
1212 schedule();
1213 return 0;
1216 static int enable_restore_fp_context(int msa)
1218 int err, was_fpu_owner, prior_msa;
1221 * If an FP mode switch is currently underway, wait for it to
1222 * complete before proceeding.
1224 wait_on_atomic_t(&current->mm->context.fp_mode_switching,
1225 wait_on_fp_mode_switch, TASK_KILLABLE);
1227 if (!used_math()) {
1228 /* First time FP context user. */
1229 preempt_disable();
1230 err = init_fpu();
1231 if (msa && !err) {
1232 enable_msa();
1233 _init_msa_upper();
1234 set_thread_flag(TIF_USEDMSA);
1235 set_thread_flag(TIF_MSA_CTX_LIVE);
1237 preempt_enable();
1238 if (!err)
1239 set_used_math();
1240 return err;
1244 * This task has formerly used the FP context.
1246 * If this thread has no live MSA vector context then we can simply
1247 * restore the scalar FP context. If it has live MSA vector context
1248 * (that is, it has or may have used MSA since last performing a
1249 * function call) then we'll need to restore the vector context. This
1250 * applies even if we're currently only executing a scalar FP
1251 * instruction. This is because if we were to later execute an MSA
1252 * instruction then we'd either have to:
1254 * - Restore the vector context & clobber any registers modified by
1255 * scalar FP instructions between now & then.
1257 * or
1259 * - Not restore the vector context & lose the most significant bits
1260 * of all vector registers.
1262 * Neither of those options is acceptable. We cannot restore the least
1263 * significant bits of the registers now & only restore the most
1264 * significant bits later because the most significant bits of any
1265 * vector registers whose aliased FP register is modified now will have
1266 * been zeroed. We'd have no way to know that when restoring the vector
1267 * context & thus may load an outdated value for the most significant
1268 * bits of a vector register.
1270 if (!msa && !thread_msa_context_live())
1271 return own_fpu(1);
1274 * This task is using or has previously used MSA. Thus we require
1275 * that Status.FR == 1.
1277 preempt_disable();
1278 was_fpu_owner = is_fpu_owner();
1279 err = own_fpu_inatomic(0);
1280 if (err)
1281 goto out;
1283 enable_msa();
1284 write_msa_csr(current->thread.fpu.msacsr);
1285 set_thread_flag(TIF_USEDMSA);
1288 * If this is the first time that the task is using MSA and it has
1289 * previously used scalar FP in this time slice then we already nave
1290 * FP context which we shouldn't clobber. We do however need to clear
1291 * the upper 64b of each vector register so that this task has no
1292 * opportunity to see data left behind by another.
1294 prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1295 if (!prior_msa && was_fpu_owner) {
1296 _init_msa_upper();
1298 goto out;
1301 if (!prior_msa) {
1303 * Restore the least significant 64b of each vector register
1304 * from the existing scalar FP context.
1306 _restore_fp(current);
1309 * The task has not formerly used MSA, so clear the upper 64b
1310 * of each vector register such that it cannot see data left
1311 * behind by another task.
1313 _init_msa_upper();
1314 } else {
1315 /* We need to restore the vector context. */
1316 restore_msa(current);
1318 /* Restore the scalar FP control & status register */
1319 if (!was_fpu_owner)
1320 write_32bit_cp1_register(CP1_STATUS,
1321 current->thread.fpu.fcr31);
1324 out:
1325 preempt_enable();
1327 return 0;
1330 asmlinkage void do_cpu(struct pt_regs *regs)
1332 enum ctx_state prev_state;
1333 unsigned int __user *epc;
1334 unsigned long old_epc, old31;
1335 void __user *fault_addr;
1336 unsigned int opcode;
1337 unsigned long fcr31;
1338 unsigned int cpid;
1339 int status, err;
1340 unsigned long __maybe_unused flags;
1341 int sig;
1343 prev_state = exception_enter();
1344 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1346 if (cpid != 2)
1347 die_if_kernel("do_cpu invoked from kernel context!", regs);
1349 switch (cpid) {
1350 case 0:
1351 epc = (unsigned int __user *)exception_epc(regs);
1352 old_epc = regs->cp0_epc;
1353 old31 = regs->regs[31];
1354 opcode = 0;
1355 status = -1;
1357 if (unlikely(compute_return_epc(regs) < 0))
1358 break;
1360 if (get_isa16_mode(regs->cp0_epc)) {
1361 unsigned short mmop[2] = { 0 };
1363 if (unlikely(get_user(mmop[0], epc) < 0))
1364 status = SIGSEGV;
1365 if (unlikely(get_user(mmop[1], epc) < 0))
1366 status = SIGSEGV;
1367 opcode = (mmop[0] << 16) | mmop[1];
1369 if (status < 0)
1370 status = simulate_rdhwr_mm(regs, opcode);
1371 } else {
1372 if (unlikely(get_user(opcode, epc) < 0))
1373 status = SIGSEGV;
1375 if (!cpu_has_llsc && status < 0)
1376 status = simulate_llsc(regs, opcode);
1378 if (status < 0)
1379 status = simulate_rdhwr_normal(regs, opcode);
1382 if (status < 0)
1383 status = SIGILL;
1385 if (unlikely(status > 0)) {
1386 regs->cp0_epc = old_epc; /* Undo skip-over. */
1387 regs->regs[31] = old31;
1388 force_sig(status, current);
1391 break;
1393 case 3:
1395 * The COP3 opcode space and consequently the CP0.Status.CU3
1396 * bit and the CP0.Cause.CE=3 encoding have been removed as
1397 * of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs
1398 * up the space has been reused for COP1X instructions, that
1399 * are enabled by the CP0.Status.CU1 bit and consequently
1400 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1401 * exceptions. Some FPU-less processors that implement one
1402 * of these ISAs however use this code erroneously for COP1X
1403 * instructions. Therefore we redirect this trap to the FP
1404 * emulator too.
1406 if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1407 force_sig(SIGILL, current);
1408 break;
1410 /* Fall through. */
1412 case 1:
1413 err = enable_restore_fp_context(0);
1415 if (raw_cpu_has_fpu && !err)
1416 break;
1418 sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0,
1419 &fault_addr);
1420 fcr31 = current->thread.fpu.fcr31;
1423 * We can't allow the emulated instruction to leave
1424 * any of the cause bits set in $fcr31.
1426 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
1428 /* Send a signal if required. */
1429 if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1430 mt_ase_fp_affinity();
1432 break;
1434 case 2:
1435 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1436 break;
1439 exception_exit(prev_state);
1442 asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1444 enum ctx_state prev_state;
1446 prev_state = exception_enter();
1447 if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1448 regs_to_trapnr(regs), SIGFPE) == NOTIFY_STOP)
1449 goto out;
1451 /* Clear MSACSR.Cause before enabling interrupts */
1452 write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1453 local_irq_enable();
1455 die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1456 force_sig(SIGFPE, current);
1457 out:
1458 exception_exit(prev_state);
1461 asmlinkage void do_msa(struct pt_regs *regs)
1463 enum ctx_state prev_state;
1464 int err;
1466 prev_state = exception_enter();
1468 if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1469 force_sig(SIGILL, current);
1470 goto out;
1473 die_if_kernel("do_msa invoked from kernel context!", regs);
1475 err = enable_restore_fp_context(1);
1476 if (err)
1477 force_sig(SIGILL, current);
1478 out:
1479 exception_exit(prev_state);
1482 asmlinkage void do_mdmx(struct pt_regs *regs)
1484 enum ctx_state prev_state;
1486 prev_state = exception_enter();
1487 force_sig(SIGILL, current);
1488 exception_exit(prev_state);
1492 * Called with interrupts disabled.
1494 asmlinkage void do_watch(struct pt_regs *regs)
1496 enum ctx_state prev_state;
1497 u32 cause;
1499 prev_state = exception_enter();
1501 * Clear WP (bit 22) bit of cause register so we don't loop
1502 * forever.
1504 cause = read_c0_cause();
1505 cause &= ~(1 << 22);
1506 write_c0_cause(cause);
1509 * If the current thread has the watch registers loaded, save
1510 * their values and send SIGTRAP. Otherwise another thread
1511 * left the registers set, clear them and continue.
1513 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1514 mips_read_watch_registers();
1515 local_irq_enable();
1516 force_sig(SIGTRAP, current);
1517 } else {
1518 mips_clear_watch_registers();
1519 local_irq_enable();
1521 exception_exit(prev_state);
1524 asmlinkage void do_mcheck(struct pt_regs *regs)
1526 const int field = 2 * sizeof(unsigned long);
1527 int multi_match = regs->cp0_status & ST0_TS;
1528 enum ctx_state prev_state;
1529 mm_segment_t old_fs = get_fs();
1531 prev_state = exception_enter();
1532 show_regs(regs);
1534 if (multi_match) {
1535 pr_err("Index : %0x\n", read_c0_index());
1536 pr_err("Pagemask: %0x\n", read_c0_pagemask());
1537 pr_err("EntryHi : %0*lx\n", field, read_c0_entryhi());
1538 pr_err("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
1539 pr_err("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
1540 pr_err("Wired : %0x\n", read_c0_wired());
1541 pr_err("Pagegrain: %0x\n", read_c0_pagegrain());
1542 if (cpu_has_htw) {
1543 pr_err("PWField : %0*lx\n", field, read_c0_pwfield());
1544 pr_err("PWSize : %0*lx\n", field, read_c0_pwsize());
1545 pr_err("PWCtl : %0x\n", read_c0_pwctl());
1547 pr_err("\n");
1548 dump_tlb_all();
1551 if (!user_mode(regs))
1552 set_fs(KERNEL_DS);
1554 show_code((unsigned int __user *) regs->cp0_epc);
1556 set_fs(old_fs);
1559 * Some chips may have other causes of machine check (e.g. SB1
1560 * graduation timer)
1562 panic("Caught Machine Check exception - %scaused by multiple "
1563 "matching entries in the TLB.",
1564 (multi_match) ? "" : "not ");
1567 asmlinkage void do_mt(struct pt_regs *regs)
1569 int subcode;
1571 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1572 >> VPECONTROL_EXCPT_SHIFT;
1573 switch (subcode) {
1574 case 0:
1575 printk(KERN_DEBUG "Thread Underflow\n");
1576 break;
1577 case 1:
1578 printk(KERN_DEBUG "Thread Overflow\n");
1579 break;
1580 case 2:
1581 printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1582 break;
1583 case 3:
1584 printk(KERN_DEBUG "Gating Storage Exception\n");
1585 break;
1586 case 4:
1587 printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1588 break;
1589 case 5:
1590 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1591 break;
1592 default:
1593 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1594 subcode);
1595 break;
1597 die_if_kernel("MIPS MT Thread exception in kernel", regs);
1599 force_sig(SIGILL, current);
1603 asmlinkage void do_dsp(struct pt_regs *regs)
1605 if (cpu_has_dsp)
1606 panic("Unexpected DSP exception");
1608 force_sig(SIGILL, current);
1611 asmlinkage void do_reserved(struct pt_regs *regs)
1614 * Game over - no way to handle this if it ever occurs. Most probably
1615 * caused by a new unknown cpu type or after another deadly
1616 * hard/software error.
1618 show_regs(regs);
1619 panic("Caught reserved exception %ld - should not happen.",
1620 (regs->cp0_cause & 0x7f) >> 2);
1623 static int __initdata l1parity = 1;
1624 static int __init nol1parity(char *s)
1626 l1parity = 0;
1627 return 1;
1629 __setup("nol1par", nol1parity);
1630 static int __initdata l2parity = 1;
1631 static int __init nol2parity(char *s)
1633 l2parity = 0;
1634 return 1;
1636 __setup("nol2par", nol2parity);
1639 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1640 * it different ways.
1642 static inline void parity_protection_init(void)
1644 switch (current_cpu_type()) {
1645 case CPU_24K:
1646 case CPU_34K:
1647 case CPU_74K:
1648 case CPU_1004K:
1649 case CPU_1074K:
1650 case CPU_INTERAPTIV:
1651 case CPU_PROAPTIV:
1652 case CPU_P5600:
1653 case CPU_QEMU_GENERIC:
1655 #define ERRCTL_PE 0x80000000
1656 #define ERRCTL_L2P 0x00800000
1657 unsigned long errctl;
1658 unsigned int l1parity_present, l2parity_present;
1660 errctl = read_c0_ecc();
1661 errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1663 /* probe L1 parity support */
1664 write_c0_ecc(errctl | ERRCTL_PE);
1665 back_to_back_c0_hazard();
1666 l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1668 /* probe L2 parity support */
1669 write_c0_ecc(errctl|ERRCTL_L2P);
1670 back_to_back_c0_hazard();
1671 l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1673 if (l1parity_present && l2parity_present) {
1674 if (l1parity)
1675 errctl |= ERRCTL_PE;
1676 if (l1parity ^ l2parity)
1677 errctl |= ERRCTL_L2P;
1678 } else if (l1parity_present) {
1679 if (l1parity)
1680 errctl |= ERRCTL_PE;
1681 } else if (l2parity_present) {
1682 if (l2parity)
1683 errctl |= ERRCTL_L2P;
1684 } else {
1685 /* No parity available */
1688 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1690 write_c0_ecc(errctl);
1691 back_to_back_c0_hazard();
1692 errctl = read_c0_ecc();
1693 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1695 if (l1parity_present)
1696 printk(KERN_INFO "Cache parity protection %sabled\n",
1697 (errctl & ERRCTL_PE) ? "en" : "dis");
1699 if (l2parity_present) {
1700 if (l1parity_present && l1parity)
1701 errctl ^= ERRCTL_L2P;
1702 printk(KERN_INFO "L2 cache parity protection %sabled\n",
1703 (errctl & ERRCTL_L2P) ? "en" : "dis");
1706 break;
1708 case CPU_5KC:
1709 case CPU_5KE:
1710 case CPU_LOONGSON1:
1711 write_c0_ecc(0x80000000);
1712 back_to_back_c0_hazard();
1713 /* Set the PE bit (bit 31) in the c0_errctl register. */
1714 printk(KERN_INFO "Cache parity protection %sabled\n",
1715 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1716 break;
1717 case CPU_20KC:
1718 case CPU_25KF:
1719 /* Clear the DE bit (bit 16) in the c0_status register. */
1720 printk(KERN_INFO "Enable cache parity protection for "
1721 "MIPS 20KC/25KF CPUs.\n");
1722 clear_c0_status(ST0_DE);
1723 break;
1724 default:
1725 break;
1729 asmlinkage void cache_parity_error(void)
1731 const int field = 2 * sizeof(unsigned long);
1732 unsigned int reg_val;
1734 /* For the moment, report the problem and hang. */
1735 printk("Cache error exception:\n");
1736 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1737 reg_val = read_c0_cacheerr();
1738 printk("c0_cacheerr == %08x\n", reg_val);
1740 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1741 reg_val & (1<<30) ? "secondary" : "primary",
1742 reg_val & (1<<31) ? "data" : "insn");
1743 if ((cpu_has_mips_r2_r6) &&
1744 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1745 pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1746 reg_val & (1<<29) ? "ED " : "",
1747 reg_val & (1<<28) ? "ET " : "",
1748 reg_val & (1<<27) ? "ES " : "",
1749 reg_val & (1<<26) ? "EE " : "",
1750 reg_val & (1<<25) ? "EB " : "",
1751 reg_val & (1<<24) ? "EI " : "",
1752 reg_val & (1<<23) ? "E1 " : "",
1753 reg_val & (1<<22) ? "E0 " : "");
1754 } else {
1755 pr_err("Error bits: %s%s%s%s%s%s%s\n",
1756 reg_val & (1<<29) ? "ED " : "",
1757 reg_val & (1<<28) ? "ET " : "",
1758 reg_val & (1<<26) ? "EE " : "",
1759 reg_val & (1<<25) ? "EB " : "",
1760 reg_val & (1<<24) ? "EI " : "",
1761 reg_val & (1<<23) ? "E1 " : "",
1762 reg_val & (1<<22) ? "E0 " : "");
1764 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1766 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1767 if (reg_val & (1<<22))
1768 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1770 if (reg_val & (1<<23))
1771 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1772 #endif
1774 panic("Can't handle the cache error!");
1777 asmlinkage void do_ftlb(void)
1779 const int field = 2 * sizeof(unsigned long);
1780 unsigned int reg_val;
1782 /* For the moment, report the problem and hang. */
1783 if ((cpu_has_mips_r2_r6) &&
1784 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1785 pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1786 read_c0_ecc());
1787 pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1788 reg_val = read_c0_cacheerr();
1789 pr_err("c0_cacheerr == %08x\n", reg_val);
1791 if ((reg_val & 0xc0000000) == 0xc0000000) {
1792 pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1793 } else {
1794 pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1795 reg_val & (1<<30) ? "secondary" : "primary",
1796 reg_val & (1<<31) ? "data" : "insn");
1798 } else {
1799 pr_err("FTLB error exception\n");
1801 /* Just print the cacheerr bits for now */
1802 cache_parity_error();
1806 * SDBBP EJTAG debug exception handler.
1807 * We skip the instruction and return to the next instruction.
1809 void ejtag_exception_handler(struct pt_regs *regs)
1811 const int field = 2 * sizeof(unsigned long);
1812 unsigned long depc, old_epc, old_ra;
1813 unsigned int debug;
1815 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1816 depc = read_c0_depc();
1817 debug = read_c0_debug();
1818 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1819 if (debug & 0x80000000) {
1821 * In branch delay slot.
1822 * We cheat a little bit here and use EPC to calculate the
1823 * debug return address (DEPC). EPC is restored after the
1824 * calculation.
1826 old_epc = regs->cp0_epc;
1827 old_ra = regs->regs[31];
1828 regs->cp0_epc = depc;
1829 compute_return_epc(regs);
1830 depc = regs->cp0_epc;
1831 regs->cp0_epc = old_epc;
1832 regs->regs[31] = old_ra;
1833 } else
1834 depc += 4;
1835 write_c0_depc(depc);
1837 #if 0
1838 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1839 write_c0_debug(debug | 0x100);
1840 #endif
1844 * NMI exception handler.
1845 * No lock; only written during early bootup by CPU 0.
1847 static RAW_NOTIFIER_HEAD(nmi_chain);
1849 int register_nmi_notifier(struct notifier_block *nb)
1851 return raw_notifier_chain_register(&nmi_chain, nb);
1854 void __noreturn nmi_exception_handler(struct pt_regs *regs)
1856 char str[100];
1858 raw_notifier_call_chain(&nmi_chain, 0, regs);
1859 bust_spinlocks(1);
1860 snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1861 smp_processor_id(), regs->cp0_epc);
1862 regs->cp0_epc = read_c0_errorepc();
1863 die(str, regs);
1866 #define VECTORSPACING 0x100 /* for EI/VI mode */
1868 unsigned long ebase;
1869 unsigned long exception_handlers[32];
1870 unsigned long vi_handlers[64];
1872 void __init *set_except_vector(int n, void *addr)
1874 unsigned long handler = (unsigned long) addr;
1875 unsigned long old_handler;
1877 #ifdef CONFIG_CPU_MICROMIPS
1879 * Only the TLB handlers are cache aligned with an even
1880 * address. All other handlers are on an odd address and
1881 * require no modification. Otherwise, MIPS32 mode will
1882 * be entered when handling any TLB exceptions. That
1883 * would be bad...since we must stay in microMIPS mode.
1885 if (!(handler & 0x1))
1886 handler |= 1;
1887 #endif
1888 old_handler = xchg(&exception_handlers[n], handler);
1890 if (n == 0 && cpu_has_divec) {
1891 #ifdef CONFIG_CPU_MICROMIPS
1892 unsigned long jump_mask = ~((1 << 27) - 1);
1893 #else
1894 unsigned long jump_mask = ~((1 << 28) - 1);
1895 #endif
1896 u32 *buf = (u32 *)(ebase + 0x200);
1897 unsigned int k0 = 26;
1898 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1899 uasm_i_j(&buf, handler & ~jump_mask);
1900 uasm_i_nop(&buf);
1901 } else {
1902 UASM_i_LA(&buf, k0, handler);
1903 uasm_i_jr(&buf, k0);
1904 uasm_i_nop(&buf);
1906 local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1908 return (void *)old_handler;
1911 static void do_default_vi(void)
1913 show_regs(get_irq_regs());
1914 panic("Caught unexpected vectored interrupt.");
1917 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1919 unsigned long handler;
1920 unsigned long old_handler = vi_handlers[n];
1921 int srssets = current_cpu_data.srsets;
1922 u16 *h;
1923 unsigned char *b;
1925 BUG_ON(!cpu_has_veic && !cpu_has_vint);
1927 if (addr == NULL) {
1928 handler = (unsigned long) do_default_vi;
1929 srs = 0;
1930 } else
1931 handler = (unsigned long) addr;
1932 vi_handlers[n] = handler;
1934 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1936 if (srs >= srssets)
1937 panic("Shadow register set %d not supported", srs);
1939 if (cpu_has_veic) {
1940 if (board_bind_eic_interrupt)
1941 board_bind_eic_interrupt(n, srs);
1942 } else if (cpu_has_vint) {
1943 /* SRSMap is only defined if shadow sets are implemented */
1944 if (srssets > 1)
1945 change_c0_srsmap(0xf << n*4, srs << n*4);
1948 if (srs == 0) {
1950 * If no shadow set is selected then use the default handler
1951 * that does normal register saving and standard interrupt exit
1953 extern char except_vec_vi, except_vec_vi_lui;
1954 extern char except_vec_vi_ori, except_vec_vi_end;
1955 extern char rollback_except_vec_vi;
1956 char *vec_start = using_rollback_handler() ?
1957 &rollback_except_vec_vi : &except_vec_vi;
1958 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
1959 const int lui_offset = &except_vec_vi_lui - vec_start + 2;
1960 const int ori_offset = &except_vec_vi_ori - vec_start + 2;
1961 #else
1962 const int lui_offset = &except_vec_vi_lui - vec_start;
1963 const int ori_offset = &except_vec_vi_ori - vec_start;
1964 #endif
1965 const int handler_len = &except_vec_vi_end - vec_start;
1967 if (handler_len > VECTORSPACING) {
1969 * Sigh... panicing won't help as the console
1970 * is probably not configured :(
1972 panic("VECTORSPACING too small");
1975 set_handler(((unsigned long)b - ebase), vec_start,
1976 #ifdef CONFIG_CPU_MICROMIPS
1977 (handler_len - 1));
1978 #else
1979 handler_len);
1980 #endif
1981 h = (u16 *)(b + lui_offset);
1982 *h = (handler >> 16) & 0xffff;
1983 h = (u16 *)(b + ori_offset);
1984 *h = (handler & 0xffff);
1985 local_flush_icache_range((unsigned long)b,
1986 (unsigned long)(b+handler_len));
1988 else {
1990 * In other cases jump directly to the interrupt handler. It
1991 * is the handler's responsibility to save registers if required
1992 * (eg hi/lo) and return from the exception using "eret".
1994 u32 insn;
1996 h = (u16 *)b;
1997 /* j handler */
1998 #ifdef CONFIG_CPU_MICROMIPS
1999 insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
2000 #else
2001 insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
2002 #endif
2003 h[0] = (insn >> 16) & 0xffff;
2004 h[1] = insn & 0xffff;
2005 h[2] = 0;
2006 h[3] = 0;
2007 local_flush_icache_range((unsigned long)b,
2008 (unsigned long)(b+8));
2011 return (void *)old_handler;
2014 void *set_vi_handler(int n, vi_handler_t addr)
2016 return set_vi_srs_handler(n, addr, 0);
2019 extern void tlb_init(void);
2022 * Timer interrupt
2024 int cp0_compare_irq;
2025 EXPORT_SYMBOL_GPL(cp0_compare_irq);
2026 int cp0_compare_irq_shift;
2029 * Performance counter IRQ or -1 if shared with timer
2031 int cp0_perfcount_irq;
2032 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2035 * Fast debug channel IRQ or -1 if not present
2037 int cp0_fdc_irq;
2038 EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2040 static int noulri;
2042 static int __init ulri_disable(char *s)
2044 pr_info("Disabling ulri\n");
2045 noulri = 1;
2047 return 1;
2049 __setup("noulri", ulri_disable);
2051 /* configure STATUS register */
2052 static void configure_status(void)
2055 * Disable coprocessors and select 32-bit or 64-bit addressing
2056 * and the 16/32 or 32/32 FPR register model. Reset the BEV
2057 * flag that some firmware may have left set and the TS bit (for
2058 * IP27). Set XX for ISA IV code to work.
2060 unsigned int status_set = ST0_CU0;
2061 #ifdef CONFIG_64BIT
2062 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2063 #endif
2064 if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2065 status_set |= ST0_XX;
2066 if (cpu_has_dsp)
2067 status_set |= ST0_MX;
2069 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2070 status_set);
2073 /* configure HWRENA register */
2074 static void configure_hwrena(void)
2076 unsigned int hwrena = cpu_hwrena_impl_bits;
2078 if (cpu_has_mips_r2_r6)
2079 hwrena |= 0x0000000f;
2081 if (!noulri && cpu_has_userlocal)
2082 hwrena |= (1 << 29);
2084 if (hwrena)
2085 write_c0_hwrena(hwrena);
2088 static void configure_exception_vector(void)
2090 if (cpu_has_veic || cpu_has_vint) {
2091 unsigned long sr = set_c0_status(ST0_BEV);
2092 write_c0_ebase(ebase);
2093 write_c0_status(sr);
2094 /* Setting vector spacing enables EI/VI mode */
2095 change_c0_intctl(0x3e0, VECTORSPACING);
2097 if (cpu_has_divec) {
2098 if (cpu_has_mipsmt) {
2099 unsigned int vpflags = dvpe();
2100 set_c0_cause(CAUSEF_IV);
2101 evpe(vpflags);
2102 } else
2103 set_c0_cause(CAUSEF_IV);
2107 void per_cpu_trap_init(bool is_boot_cpu)
2109 unsigned int cpu = smp_processor_id();
2111 configure_status();
2112 configure_hwrena();
2114 configure_exception_vector();
2117 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2119 * o read IntCtl.IPTI to determine the timer interrupt
2120 * o read IntCtl.IPPCI to determine the performance counter interrupt
2121 * o read IntCtl.IPFDC to determine the fast debug channel interrupt
2123 if (cpu_has_mips_r2_r6) {
2124 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2125 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2126 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2127 cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2128 if (!cp0_fdc_irq)
2129 cp0_fdc_irq = -1;
2131 } else {
2132 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2133 cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2134 cp0_perfcount_irq = -1;
2135 cp0_fdc_irq = -1;
2138 if (!cpu_data[cpu].asid_cache)
2139 cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
2141 atomic_inc(&init_mm.mm_count);
2142 current->active_mm = &init_mm;
2143 BUG_ON(current->mm);
2144 enter_lazy_tlb(&init_mm, current);
2146 /* Boot CPU's cache setup in setup_arch(). */
2147 if (!is_boot_cpu)
2148 cpu_cache_init();
2149 tlb_init();
2150 TLBMISS_HANDLER_SETUP();
2153 /* Install CPU exception handler */
2154 void set_handler(unsigned long offset, void *addr, unsigned long size)
2156 #ifdef CONFIG_CPU_MICROMIPS
2157 memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2158 #else
2159 memcpy((void *)(ebase + offset), addr, size);
2160 #endif
2161 local_flush_icache_range(ebase + offset, ebase + offset + size);
2164 static char panic_null_cerr[] =
2165 "Trying to set NULL cache error exception handler";
2168 * Install uncached CPU exception handler.
2169 * This is suitable only for the cache error exception which is the only
2170 * exception handler that is being run uncached.
2172 void set_uncached_handler(unsigned long offset, void *addr,
2173 unsigned long size)
2175 unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2177 if (!addr)
2178 panic(panic_null_cerr);
2180 memcpy((void *)(uncached_ebase + offset), addr, size);
2183 static int __initdata rdhwr_noopt;
2184 static int __init set_rdhwr_noopt(char *str)
2186 rdhwr_noopt = 1;
2187 return 1;
2190 __setup("rdhwr_noopt", set_rdhwr_noopt);
2192 void __init trap_init(void)
2194 extern char except_vec3_generic;
2195 extern char except_vec4;
2196 extern char except_vec3_r4000;
2197 unsigned long i;
2199 check_wait();
2201 if (cpu_has_veic || cpu_has_vint) {
2202 unsigned long size = 0x200 + VECTORSPACING*64;
2203 ebase = (unsigned long)
2204 __alloc_bootmem(size, 1 << fls(size), 0);
2205 } else {
2206 #ifdef CONFIG_KVM_GUEST
2207 #define KVM_GUEST_KSEG0 0x40000000
2208 ebase = KVM_GUEST_KSEG0;
2209 #else
2210 ebase = CKSEG0;
2211 #endif
2212 if (cpu_has_mips_r2_r6)
2213 ebase += (read_c0_ebase() & 0x3ffff000);
2216 if (cpu_has_mmips) {
2217 unsigned int config3 = read_c0_config3();
2219 if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2220 write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2221 else
2222 write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2225 if (board_ebase_setup)
2226 board_ebase_setup();
2227 per_cpu_trap_init(true);
2230 * Copy the generic exception handlers to their final destination.
2231 * This will be overriden later as suitable for a particular
2232 * configuration.
2234 set_handler(0x180, &except_vec3_generic, 0x80);
2237 * Setup default vectors
2239 for (i = 0; i <= 31; i++)
2240 set_except_vector(i, handle_reserved);
2243 * Copy the EJTAG debug exception vector handler code to it's final
2244 * destination.
2246 if (cpu_has_ejtag && board_ejtag_handler_setup)
2247 board_ejtag_handler_setup();
2250 * Only some CPUs have the watch exceptions.
2252 if (cpu_has_watch)
2253 set_except_vector(23, handle_watch);
2256 * Initialise interrupt handlers
2258 if (cpu_has_veic || cpu_has_vint) {
2259 int nvec = cpu_has_veic ? 64 : 8;
2260 for (i = 0; i < nvec; i++)
2261 set_vi_handler(i, NULL);
2263 else if (cpu_has_divec)
2264 set_handler(0x200, &except_vec4, 0x8);
2267 * Some CPUs can enable/disable for cache parity detection, but does
2268 * it different ways.
2270 parity_protection_init();
2273 * The Data Bus Errors / Instruction Bus Errors are signaled
2274 * by external hardware. Therefore these two exceptions
2275 * may have board specific handlers.
2277 if (board_be_init)
2278 board_be_init();
2280 set_except_vector(0, using_rollback_handler() ? rollback_handle_int
2281 : handle_int);
2282 set_except_vector(1, handle_tlbm);
2283 set_except_vector(2, handle_tlbl);
2284 set_except_vector(3, handle_tlbs);
2286 set_except_vector(4, handle_adel);
2287 set_except_vector(5, handle_ades);
2289 set_except_vector(6, handle_ibe);
2290 set_except_vector(7, handle_dbe);
2292 set_except_vector(8, handle_sys);
2293 set_except_vector(9, handle_bp);
2294 set_except_vector(10, rdhwr_noopt ? handle_ri :
2295 (cpu_has_vtag_icache ?
2296 handle_ri_rdhwr_vivt : handle_ri_rdhwr));
2297 set_except_vector(11, handle_cpu);
2298 set_except_vector(12, handle_ov);
2299 set_except_vector(13, handle_tr);
2300 set_except_vector(14, handle_msa_fpe);
2302 if (current_cpu_type() == CPU_R6000 ||
2303 current_cpu_type() == CPU_R6000A) {
2305 * The R6000 is the only R-series CPU that features a machine
2306 * check exception (similar to the R4000 cache error) and
2307 * unaligned ldc1/sdc1 exception. The handlers have not been
2308 * written yet. Well, anyway there is no R6000 machine on the
2309 * current list of targets for Linux/MIPS.
2310 * (Duh, crap, there is someone with a triple R6k machine)
2312 //set_except_vector(14, handle_mc);
2313 //set_except_vector(15, handle_ndc);
2317 if (board_nmi_handler_setup)
2318 board_nmi_handler_setup();
2320 if (cpu_has_fpu && !cpu_has_nofpuex)
2321 set_except_vector(15, handle_fpe);
2323 set_except_vector(16, handle_ftlb);
2325 if (cpu_has_rixiex) {
2326 set_except_vector(19, tlb_do_page_fault_0);
2327 set_except_vector(20, tlb_do_page_fault_0);
2330 set_except_vector(21, handle_msa);
2331 set_except_vector(22, handle_mdmx);
2333 if (cpu_has_mcheck)
2334 set_except_vector(24, handle_mcheck);
2336 if (cpu_has_mipsmt)
2337 set_except_vector(25, handle_mt);
2339 set_except_vector(26, handle_dsp);
2341 if (board_cache_error_setup)
2342 board_cache_error_setup();
2344 if (cpu_has_vce)
2345 /* Special exception: R4[04]00 uses also the divec space. */
2346 set_handler(0x180, &except_vec3_r4000, 0x100);
2347 else if (cpu_has_4kex)
2348 set_handler(0x180, &except_vec3_generic, 0x80);
2349 else
2350 set_handler(0x080, &except_vec3_generic, 0x80);
2352 local_flush_icache_range(ebase, ebase + 0x400);
2354 sort_extable(__start___dbe_table, __stop___dbe_table);
2356 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */
2359 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2360 void *v)
2362 switch (cmd) {
2363 case CPU_PM_ENTER_FAILED:
2364 case CPU_PM_EXIT:
2365 configure_status();
2366 configure_hwrena();
2367 configure_exception_vector();
2369 /* Restore register with CPU number for TLB handlers */
2370 TLBMISS_HANDLER_RESTORE();
2372 break;
2375 return NOTIFY_OK;
2378 static struct notifier_block trap_pm_notifier_block = {
2379 .notifier_call = trap_pm_notifier,
2382 static int __init trap_pm_init(void)
2384 return cpu_pm_register_notifier(&trap_pm_notifier_block);
2386 arch_initcall(trap_pm_init);