2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * KVM/MIPS: MIPS specific KVM APIs
8 * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/kdebug.h>
15 #include <linux/module.h>
16 #include <linux/vmalloc.h>
18 #include <linux/bootmem.h>
21 #include <asm/cacheflush.h>
22 #include <asm/mmu_context.h>
23 #include <asm/pgtable.h>
25 #include <linux/kvm_host.h>
27 #include "interrupt.h"
30 #define CREATE_TRACE_POINTS
34 #define VECTORSPACING 0x100 /* for EI/VI mode */
37 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
38 struct kvm_stats_debugfs_item debugfs_entries
[] = {
39 { "wait", VCPU_STAT(wait_exits
), KVM_STAT_VCPU
},
40 { "cache", VCPU_STAT(cache_exits
), KVM_STAT_VCPU
},
41 { "signal", VCPU_STAT(signal_exits
), KVM_STAT_VCPU
},
42 { "interrupt", VCPU_STAT(int_exits
), KVM_STAT_VCPU
},
43 { "cop_unsuable", VCPU_STAT(cop_unusable_exits
), KVM_STAT_VCPU
},
44 { "tlbmod", VCPU_STAT(tlbmod_exits
), KVM_STAT_VCPU
},
45 { "tlbmiss_ld", VCPU_STAT(tlbmiss_ld_exits
), KVM_STAT_VCPU
},
46 { "tlbmiss_st", VCPU_STAT(tlbmiss_st_exits
), KVM_STAT_VCPU
},
47 { "addrerr_st", VCPU_STAT(addrerr_st_exits
), KVM_STAT_VCPU
},
48 { "addrerr_ld", VCPU_STAT(addrerr_ld_exits
), KVM_STAT_VCPU
},
49 { "syscall", VCPU_STAT(syscall_exits
), KVM_STAT_VCPU
},
50 { "resvd_inst", VCPU_STAT(resvd_inst_exits
), KVM_STAT_VCPU
},
51 { "break_inst", VCPU_STAT(break_inst_exits
), KVM_STAT_VCPU
},
52 { "trap_inst", VCPU_STAT(trap_inst_exits
), KVM_STAT_VCPU
},
53 { "msa_fpe", VCPU_STAT(msa_fpe_exits
), KVM_STAT_VCPU
},
54 { "fpe", VCPU_STAT(fpe_exits
), KVM_STAT_VCPU
},
55 { "msa_disabled", VCPU_STAT(msa_disabled_exits
), KVM_STAT_VCPU
},
56 { "flush_dcache", VCPU_STAT(flush_dcache_exits
), KVM_STAT_VCPU
},
57 { "halt_successful_poll", VCPU_STAT(halt_successful_poll
), KVM_STAT_VCPU
},
58 { "halt_wakeup", VCPU_STAT(halt_wakeup
), KVM_STAT_VCPU
},
62 static int kvm_mips_reset_vcpu(struct kvm_vcpu
*vcpu
)
66 for_each_possible_cpu(i
) {
67 vcpu
->arch
.guest_kernel_asid
[i
] = 0;
68 vcpu
->arch
.guest_user_asid
[i
] = 0;
75 * XXXKYMA: We are simulatoring a processor that has the WII bit set in
76 * Config7, so we are "runnable" if interrupts are pending
78 int kvm_arch_vcpu_runnable(struct kvm_vcpu
*vcpu
)
80 return !!(vcpu
->arch
.pending_exceptions
);
83 int kvm_arch_vcpu_should_kick(struct kvm_vcpu
*vcpu
)
88 int kvm_arch_hardware_enable(void)
93 int kvm_arch_hardware_setup(void)
98 void kvm_arch_check_processor_compat(void *rtn
)
103 static void kvm_mips_init_tlbs(struct kvm
*kvm
)
108 * Add a wired entry to the TLB, it is used to map the commpage to
111 wired
= read_c0_wired();
112 write_c0_wired(wired
+ 1);
114 kvm
->arch
.commpage_tlb
= wired
;
116 kvm_debug("[%d] commpage TLB: %d\n", smp_processor_id(),
117 kvm
->arch
.commpage_tlb
);
120 static void kvm_mips_init_vm_percpu(void *arg
)
122 struct kvm
*kvm
= (struct kvm
*)arg
;
124 kvm_mips_init_tlbs(kvm
);
125 kvm_mips_callbacks
->vm_init(kvm
);
129 int kvm_arch_init_vm(struct kvm
*kvm
, unsigned long type
)
131 if (atomic_inc_return(&kvm_mips_instance
) == 1) {
132 kvm_debug("%s: 1st KVM instance, setup host TLB parameters\n",
134 on_each_cpu(kvm_mips_init_vm_percpu
, kvm
, 1);
140 void kvm_mips_free_vcpus(struct kvm
*kvm
)
143 struct kvm_vcpu
*vcpu
;
145 /* Put the pages we reserved for the guest pmap */
146 for (i
= 0; i
< kvm
->arch
.guest_pmap_npages
; i
++) {
147 if (kvm
->arch
.guest_pmap
[i
] != KVM_INVALID_PAGE
)
148 kvm_mips_release_pfn_clean(kvm
->arch
.guest_pmap
[i
]);
150 kfree(kvm
->arch
.guest_pmap
);
152 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
153 kvm_arch_vcpu_free(vcpu
);
156 mutex_lock(&kvm
->lock
);
158 for (i
= 0; i
< atomic_read(&kvm
->online_vcpus
); i
++)
159 kvm
->vcpus
[i
] = NULL
;
161 atomic_set(&kvm
->online_vcpus
, 0);
163 mutex_unlock(&kvm
->lock
);
166 static void kvm_mips_uninit_tlbs(void *arg
)
168 /* Restore wired count */
171 /* Clear out all the TLBs */
172 kvm_local_flush_tlb_all();
175 void kvm_arch_destroy_vm(struct kvm
*kvm
)
177 kvm_mips_free_vcpus(kvm
);
179 /* If this is the last instance, restore wired count */
180 if (atomic_dec_return(&kvm_mips_instance
) == 0) {
181 kvm_debug("%s: last KVM instance, restoring TLB parameters\n",
183 on_each_cpu(kvm_mips_uninit_tlbs
, NULL
, 1);
187 long kvm_arch_dev_ioctl(struct file
*filp
, unsigned int ioctl
,
193 int kvm_arch_create_memslot(struct kvm
*kvm
, struct kvm_memory_slot
*slot
,
194 unsigned long npages
)
199 int kvm_arch_prepare_memory_region(struct kvm
*kvm
,
200 struct kvm_memory_slot
*memslot
,
201 const struct kvm_userspace_memory_region
*mem
,
202 enum kvm_mr_change change
)
207 void kvm_arch_commit_memory_region(struct kvm
*kvm
,
208 const struct kvm_userspace_memory_region
*mem
,
209 const struct kvm_memory_slot
*old
,
210 const struct kvm_memory_slot
*new,
211 enum kvm_mr_change change
)
213 unsigned long npages
= 0;
216 kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
217 __func__
, kvm
, mem
->slot
, mem
->guest_phys_addr
,
218 mem
->memory_size
, mem
->userspace_addr
);
220 /* Setup Guest PMAP table */
221 if (!kvm
->arch
.guest_pmap
) {
223 npages
= mem
->memory_size
>> PAGE_SHIFT
;
226 kvm
->arch
.guest_pmap_npages
= npages
;
227 kvm
->arch
.guest_pmap
=
228 kzalloc(npages
* sizeof(unsigned long), GFP_KERNEL
);
230 if (!kvm
->arch
.guest_pmap
) {
231 kvm_err("Failed to allocate guest PMAP");
235 kvm_debug("Allocated space for Guest PMAP Table (%ld pages) @ %p\n",
236 npages
, kvm
->arch
.guest_pmap
);
238 /* Now setup the page table */
239 for (i
= 0; i
< npages
; i
++)
240 kvm
->arch
.guest_pmap
[i
] = KVM_INVALID_PAGE
;
245 struct kvm_vcpu
*kvm_arch_vcpu_create(struct kvm
*kvm
, unsigned int id
)
247 int err
, size
, offset
;
251 struct kvm_vcpu
*vcpu
= kzalloc(sizeof(struct kvm_vcpu
), GFP_KERNEL
);
258 err
= kvm_vcpu_init(vcpu
, kvm
, id
);
263 kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm
, id
, vcpu
);
266 * Allocate space for host mode exception handlers that handle
269 if (cpu_has_veic
|| cpu_has_vint
)
270 size
= 0x200 + VECTORSPACING
* 64;
274 /* Save Linux EBASE */
275 vcpu
->arch
.host_ebase
= (void *)read_c0_ebase();
277 gebase
= kzalloc(ALIGN(size
, PAGE_SIZE
), GFP_KERNEL
);
283 kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
284 ALIGN(size
, PAGE_SIZE
), gebase
);
287 vcpu
->arch
.guest_ebase
= gebase
;
289 /* Copy L1 Guest Exception handler to correct offset */
291 /* TLB Refill, EXL = 0 */
292 memcpy(gebase
, mips32_exception
,
293 mips32_exceptionEnd
- mips32_exception
);
295 /* General Exception Entry point */
296 memcpy(gebase
+ 0x180, mips32_exception
,
297 mips32_exceptionEnd
- mips32_exception
);
299 /* For vectored interrupts poke the exception code @ all offsets 0-7 */
300 for (i
= 0; i
< 8; i
++) {
301 kvm_debug("L1 Vectored handler @ %p\n",
302 gebase
+ 0x200 + (i
* VECTORSPACING
));
303 memcpy(gebase
+ 0x200 + (i
* VECTORSPACING
), mips32_exception
,
304 mips32_exceptionEnd
- mips32_exception
);
307 /* General handler, relocate to unmapped space for sanity's sake */
309 kvm_debug("Installing KVM Exception handlers @ %p, %#x bytes\n",
311 mips32_GuestExceptionEnd
- mips32_GuestException
);
313 memcpy(gebase
+ offset
, mips32_GuestException
,
314 mips32_GuestExceptionEnd
- mips32_GuestException
);
316 /* Invalidate the icache for these ranges */
317 local_flush_icache_range((unsigned long)gebase
,
318 (unsigned long)gebase
+ ALIGN(size
, PAGE_SIZE
));
321 * Allocate comm page for guest kernel, a TLB will be reserved for
322 * mapping GVA @ 0xFFFF8000 to this page
324 vcpu
->arch
.kseg0_commpage
= kzalloc(PAGE_SIZE
<< 1, GFP_KERNEL
);
326 if (!vcpu
->arch
.kseg0_commpage
) {
328 goto out_free_gebase
;
331 kvm_debug("Allocated COMM page @ %p\n", vcpu
->arch
.kseg0_commpage
);
332 kvm_mips_commpage_init(vcpu
);
335 vcpu
->arch
.last_sched_cpu
= -1;
337 /* Start off the timer */
338 kvm_mips_init_count(vcpu
);
352 void kvm_arch_vcpu_free(struct kvm_vcpu
*vcpu
)
354 hrtimer_cancel(&vcpu
->arch
.comparecount_timer
);
356 kvm_vcpu_uninit(vcpu
);
358 kvm_mips_dump_stats(vcpu
);
360 kfree(vcpu
->arch
.guest_ebase
);
361 kfree(vcpu
->arch
.kseg0_commpage
);
365 void kvm_arch_vcpu_destroy(struct kvm_vcpu
*vcpu
)
367 kvm_arch_vcpu_free(vcpu
);
370 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu
*vcpu
,
371 struct kvm_guest_debug
*dbg
)
376 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
381 if (vcpu
->sigset_active
)
382 sigprocmask(SIG_SETMASK
, &vcpu
->sigset
, &sigsaved
);
384 if (vcpu
->mmio_needed
) {
385 if (!vcpu
->mmio_is_write
)
386 kvm_mips_complete_mmio_load(vcpu
, run
);
387 vcpu
->mmio_needed
= 0;
393 /* Check if we have any exceptions/interrupts pending */
394 kvm_mips_deliver_interrupts(vcpu
,
395 kvm_read_c0_guest_cause(vcpu
->arch
.cop0
));
399 /* Disable hardware page table walking while in guest */
402 r
= __kvm_mips_vcpu_run(run
, vcpu
);
404 /* Re-enable HTW before enabling interrupts */
410 if (vcpu
->sigset_active
)
411 sigprocmask(SIG_SETMASK
, &sigsaved
, NULL
);
416 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu
*vcpu
,
417 struct kvm_mips_interrupt
*irq
)
419 int intr
= (int)irq
->irq
;
420 struct kvm_vcpu
*dvcpu
= NULL
;
422 if (intr
== 3 || intr
== -3 || intr
== 4 || intr
== -4)
423 kvm_debug("%s: CPU: %d, INTR: %d\n", __func__
, irq
->cpu
,
429 dvcpu
= vcpu
->kvm
->vcpus
[irq
->cpu
];
431 if (intr
== 2 || intr
== 3 || intr
== 4) {
432 kvm_mips_callbacks
->queue_io_int(dvcpu
, irq
);
434 } else if (intr
== -2 || intr
== -3 || intr
== -4) {
435 kvm_mips_callbacks
->dequeue_io_int(dvcpu
, irq
);
437 kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__
,
442 dvcpu
->arch
.wait
= 0;
444 if (waitqueue_active(&dvcpu
->wq
))
445 wake_up_interruptible(&dvcpu
->wq
);
450 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu
*vcpu
,
451 struct kvm_mp_state
*mp_state
)
456 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu
*vcpu
,
457 struct kvm_mp_state
*mp_state
)
462 static u64 kvm_mips_get_one_regs
[] = {
500 KVM_REG_MIPS_CP0_INDEX
,
501 KVM_REG_MIPS_CP0_CONTEXT
,
502 KVM_REG_MIPS_CP0_USERLOCAL
,
503 KVM_REG_MIPS_CP0_PAGEMASK
,
504 KVM_REG_MIPS_CP0_WIRED
,
505 KVM_REG_MIPS_CP0_HWRENA
,
506 KVM_REG_MIPS_CP0_BADVADDR
,
507 KVM_REG_MIPS_CP0_COUNT
,
508 KVM_REG_MIPS_CP0_ENTRYHI
,
509 KVM_REG_MIPS_CP0_COMPARE
,
510 KVM_REG_MIPS_CP0_STATUS
,
511 KVM_REG_MIPS_CP0_CAUSE
,
512 KVM_REG_MIPS_CP0_EPC
,
513 KVM_REG_MIPS_CP0_PRID
,
514 KVM_REG_MIPS_CP0_CONFIG
,
515 KVM_REG_MIPS_CP0_CONFIG1
,
516 KVM_REG_MIPS_CP0_CONFIG2
,
517 KVM_REG_MIPS_CP0_CONFIG3
,
518 KVM_REG_MIPS_CP0_CONFIG4
,
519 KVM_REG_MIPS_CP0_CONFIG5
,
520 KVM_REG_MIPS_CP0_CONFIG7
,
521 KVM_REG_MIPS_CP0_ERROREPC
,
523 KVM_REG_MIPS_COUNT_CTL
,
524 KVM_REG_MIPS_COUNT_RESUME
,
525 KVM_REG_MIPS_COUNT_HZ
,
528 static int kvm_mips_get_reg(struct kvm_vcpu
*vcpu
,
529 const struct kvm_one_reg
*reg
)
531 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
532 struct mips_fpu_struct
*fpu
= &vcpu
->arch
.fpu
;
539 /* General purpose registers */
540 case KVM_REG_MIPS_R0
... KVM_REG_MIPS_R31
:
541 v
= (long)vcpu
->arch
.gprs
[reg
->id
- KVM_REG_MIPS_R0
];
543 case KVM_REG_MIPS_HI
:
544 v
= (long)vcpu
->arch
.hi
;
546 case KVM_REG_MIPS_LO
:
547 v
= (long)vcpu
->arch
.lo
;
549 case KVM_REG_MIPS_PC
:
550 v
= (long)vcpu
->arch
.pc
;
553 /* Floating point registers */
554 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
555 if (!kvm_mips_guest_has_fpu(&vcpu
->arch
))
557 idx
= reg
->id
- KVM_REG_MIPS_FPR_32(0);
558 /* Odd singles in top of even double when FR=0 */
559 if (kvm_read_c0_guest_status(cop0
) & ST0_FR
)
560 v
= get_fpr32(&fpu
->fpr
[idx
], 0);
562 v
= get_fpr32(&fpu
->fpr
[idx
& ~1], idx
& 1);
564 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
565 if (!kvm_mips_guest_has_fpu(&vcpu
->arch
))
567 idx
= reg
->id
- KVM_REG_MIPS_FPR_64(0);
568 /* Can't access odd doubles in FR=0 mode */
569 if (idx
& 1 && !(kvm_read_c0_guest_status(cop0
) & ST0_FR
))
571 v
= get_fpr64(&fpu
->fpr
[idx
], 0);
573 case KVM_REG_MIPS_FCR_IR
:
574 if (!kvm_mips_guest_has_fpu(&vcpu
->arch
))
576 v
= boot_cpu_data
.fpu_id
;
578 case KVM_REG_MIPS_FCR_CSR
:
579 if (!kvm_mips_guest_has_fpu(&vcpu
->arch
))
584 /* MIPS SIMD Architecture (MSA) registers */
585 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
586 if (!kvm_mips_guest_has_msa(&vcpu
->arch
))
588 /* Can't access MSA registers in FR=0 mode */
589 if (!(kvm_read_c0_guest_status(cop0
) & ST0_FR
))
591 idx
= reg
->id
- KVM_REG_MIPS_VEC_128(0);
592 #ifdef CONFIG_CPU_LITTLE_ENDIAN
593 /* least significant byte first */
594 vs
[0] = get_fpr64(&fpu
->fpr
[idx
], 0);
595 vs
[1] = get_fpr64(&fpu
->fpr
[idx
], 1);
597 /* most significant byte first */
598 vs
[0] = get_fpr64(&fpu
->fpr
[idx
], 1);
599 vs
[1] = get_fpr64(&fpu
->fpr
[idx
], 0);
602 case KVM_REG_MIPS_MSA_IR
:
603 if (!kvm_mips_guest_has_msa(&vcpu
->arch
))
605 v
= boot_cpu_data
.msa_id
;
607 case KVM_REG_MIPS_MSA_CSR
:
608 if (!kvm_mips_guest_has_msa(&vcpu
->arch
))
613 /* Co-processor 0 registers */
614 case KVM_REG_MIPS_CP0_INDEX
:
615 v
= (long)kvm_read_c0_guest_index(cop0
);
617 case KVM_REG_MIPS_CP0_CONTEXT
:
618 v
= (long)kvm_read_c0_guest_context(cop0
);
620 case KVM_REG_MIPS_CP0_USERLOCAL
:
621 v
= (long)kvm_read_c0_guest_userlocal(cop0
);
623 case KVM_REG_MIPS_CP0_PAGEMASK
:
624 v
= (long)kvm_read_c0_guest_pagemask(cop0
);
626 case KVM_REG_MIPS_CP0_WIRED
:
627 v
= (long)kvm_read_c0_guest_wired(cop0
);
629 case KVM_REG_MIPS_CP0_HWRENA
:
630 v
= (long)kvm_read_c0_guest_hwrena(cop0
);
632 case KVM_REG_MIPS_CP0_BADVADDR
:
633 v
= (long)kvm_read_c0_guest_badvaddr(cop0
);
635 case KVM_REG_MIPS_CP0_ENTRYHI
:
636 v
= (long)kvm_read_c0_guest_entryhi(cop0
);
638 case KVM_REG_MIPS_CP0_COMPARE
:
639 v
= (long)kvm_read_c0_guest_compare(cop0
);
641 case KVM_REG_MIPS_CP0_STATUS
:
642 v
= (long)kvm_read_c0_guest_status(cop0
);
644 case KVM_REG_MIPS_CP0_CAUSE
:
645 v
= (long)kvm_read_c0_guest_cause(cop0
);
647 case KVM_REG_MIPS_CP0_EPC
:
648 v
= (long)kvm_read_c0_guest_epc(cop0
);
650 case KVM_REG_MIPS_CP0_PRID
:
651 v
= (long)kvm_read_c0_guest_prid(cop0
);
653 case KVM_REG_MIPS_CP0_CONFIG
:
654 v
= (long)kvm_read_c0_guest_config(cop0
);
656 case KVM_REG_MIPS_CP0_CONFIG1
:
657 v
= (long)kvm_read_c0_guest_config1(cop0
);
659 case KVM_REG_MIPS_CP0_CONFIG2
:
660 v
= (long)kvm_read_c0_guest_config2(cop0
);
662 case KVM_REG_MIPS_CP0_CONFIG3
:
663 v
= (long)kvm_read_c0_guest_config3(cop0
);
665 case KVM_REG_MIPS_CP0_CONFIG4
:
666 v
= (long)kvm_read_c0_guest_config4(cop0
);
668 case KVM_REG_MIPS_CP0_CONFIG5
:
669 v
= (long)kvm_read_c0_guest_config5(cop0
);
671 case KVM_REG_MIPS_CP0_CONFIG7
:
672 v
= (long)kvm_read_c0_guest_config7(cop0
);
674 case KVM_REG_MIPS_CP0_ERROREPC
:
675 v
= (long)kvm_read_c0_guest_errorepc(cop0
);
677 /* registers to be handled specially */
678 case KVM_REG_MIPS_CP0_COUNT
:
679 case KVM_REG_MIPS_COUNT_CTL
:
680 case KVM_REG_MIPS_COUNT_RESUME
:
681 case KVM_REG_MIPS_COUNT_HZ
:
682 ret
= kvm_mips_callbacks
->get_one_reg(vcpu
, reg
, &v
);
689 if ((reg
->id
& KVM_REG_SIZE_MASK
) == KVM_REG_SIZE_U64
) {
690 u64 __user
*uaddr64
= (u64 __user
*)(long)reg
->addr
;
692 return put_user(v
, uaddr64
);
693 } else if ((reg
->id
& KVM_REG_SIZE_MASK
) == KVM_REG_SIZE_U32
) {
694 u32 __user
*uaddr32
= (u32 __user
*)(long)reg
->addr
;
697 return put_user(v32
, uaddr32
);
698 } else if ((reg
->id
& KVM_REG_SIZE_MASK
) == KVM_REG_SIZE_U128
) {
699 void __user
*uaddr
= (void __user
*)(long)reg
->addr
;
701 return copy_to_user(uaddr
, vs
, 16);
707 static int kvm_mips_set_reg(struct kvm_vcpu
*vcpu
,
708 const struct kvm_one_reg
*reg
)
710 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
711 struct mips_fpu_struct
*fpu
= &vcpu
->arch
.fpu
;
716 if ((reg
->id
& KVM_REG_SIZE_MASK
) == KVM_REG_SIZE_U64
) {
717 u64 __user
*uaddr64
= (u64 __user
*)(long)reg
->addr
;
719 if (get_user(v
, uaddr64
) != 0)
721 } else if ((reg
->id
& KVM_REG_SIZE_MASK
) == KVM_REG_SIZE_U32
) {
722 u32 __user
*uaddr32
= (u32 __user
*)(long)reg
->addr
;
725 if (get_user(v32
, uaddr32
) != 0)
728 } else if ((reg
->id
& KVM_REG_SIZE_MASK
) == KVM_REG_SIZE_U128
) {
729 void __user
*uaddr
= (void __user
*)(long)reg
->addr
;
731 return copy_from_user(vs
, uaddr
, 16);
737 /* General purpose registers */
738 case KVM_REG_MIPS_R0
:
739 /* Silently ignore requests to set $0 */
741 case KVM_REG_MIPS_R1
... KVM_REG_MIPS_R31
:
742 vcpu
->arch
.gprs
[reg
->id
- KVM_REG_MIPS_R0
] = v
;
744 case KVM_REG_MIPS_HI
:
747 case KVM_REG_MIPS_LO
:
750 case KVM_REG_MIPS_PC
:
754 /* Floating point registers */
755 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
756 if (!kvm_mips_guest_has_fpu(&vcpu
->arch
))
758 idx
= reg
->id
- KVM_REG_MIPS_FPR_32(0);
759 /* Odd singles in top of even double when FR=0 */
760 if (kvm_read_c0_guest_status(cop0
) & ST0_FR
)
761 set_fpr32(&fpu
->fpr
[idx
], 0, v
);
763 set_fpr32(&fpu
->fpr
[idx
& ~1], idx
& 1, v
);
765 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
766 if (!kvm_mips_guest_has_fpu(&vcpu
->arch
))
768 idx
= reg
->id
- KVM_REG_MIPS_FPR_64(0);
769 /* Can't access odd doubles in FR=0 mode */
770 if (idx
& 1 && !(kvm_read_c0_guest_status(cop0
) & ST0_FR
))
772 set_fpr64(&fpu
->fpr
[idx
], 0, v
);
774 case KVM_REG_MIPS_FCR_IR
:
775 if (!kvm_mips_guest_has_fpu(&vcpu
->arch
))
779 case KVM_REG_MIPS_FCR_CSR
:
780 if (!kvm_mips_guest_has_fpu(&vcpu
->arch
))
785 /* MIPS SIMD Architecture (MSA) registers */
786 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
787 if (!kvm_mips_guest_has_msa(&vcpu
->arch
))
789 idx
= reg
->id
- KVM_REG_MIPS_VEC_128(0);
790 #ifdef CONFIG_CPU_LITTLE_ENDIAN
791 /* least significant byte first */
792 set_fpr64(&fpu
->fpr
[idx
], 0, vs
[0]);
793 set_fpr64(&fpu
->fpr
[idx
], 1, vs
[1]);
795 /* most significant byte first */
796 set_fpr64(&fpu
->fpr
[idx
], 1, vs
[0]);
797 set_fpr64(&fpu
->fpr
[idx
], 0, vs
[1]);
800 case KVM_REG_MIPS_MSA_IR
:
801 if (!kvm_mips_guest_has_msa(&vcpu
->arch
))
805 case KVM_REG_MIPS_MSA_CSR
:
806 if (!kvm_mips_guest_has_msa(&vcpu
->arch
))
811 /* Co-processor 0 registers */
812 case KVM_REG_MIPS_CP0_INDEX
:
813 kvm_write_c0_guest_index(cop0
, v
);
815 case KVM_REG_MIPS_CP0_CONTEXT
:
816 kvm_write_c0_guest_context(cop0
, v
);
818 case KVM_REG_MIPS_CP0_USERLOCAL
:
819 kvm_write_c0_guest_userlocal(cop0
, v
);
821 case KVM_REG_MIPS_CP0_PAGEMASK
:
822 kvm_write_c0_guest_pagemask(cop0
, v
);
824 case KVM_REG_MIPS_CP0_WIRED
:
825 kvm_write_c0_guest_wired(cop0
, v
);
827 case KVM_REG_MIPS_CP0_HWRENA
:
828 kvm_write_c0_guest_hwrena(cop0
, v
);
830 case KVM_REG_MIPS_CP0_BADVADDR
:
831 kvm_write_c0_guest_badvaddr(cop0
, v
);
833 case KVM_REG_MIPS_CP0_ENTRYHI
:
834 kvm_write_c0_guest_entryhi(cop0
, v
);
836 case KVM_REG_MIPS_CP0_STATUS
:
837 kvm_write_c0_guest_status(cop0
, v
);
839 case KVM_REG_MIPS_CP0_EPC
:
840 kvm_write_c0_guest_epc(cop0
, v
);
842 case KVM_REG_MIPS_CP0_PRID
:
843 kvm_write_c0_guest_prid(cop0
, v
);
845 case KVM_REG_MIPS_CP0_ERROREPC
:
846 kvm_write_c0_guest_errorepc(cop0
, v
);
848 /* registers to be handled specially */
849 case KVM_REG_MIPS_CP0_COUNT
:
850 case KVM_REG_MIPS_CP0_COMPARE
:
851 case KVM_REG_MIPS_CP0_CAUSE
:
852 case KVM_REG_MIPS_CP0_CONFIG
:
853 case KVM_REG_MIPS_CP0_CONFIG1
:
854 case KVM_REG_MIPS_CP0_CONFIG2
:
855 case KVM_REG_MIPS_CP0_CONFIG3
:
856 case KVM_REG_MIPS_CP0_CONFIG4
:
857 case KVM_REG_MIPS_CP0_CONFIG5
:
858 case KVM_REG_MIPS_COUNT_CTL
:
859 case KVM_REG_MIPS_COUNT_RESUME
:
860 case KVM_REG_MIPS_COUNT_HZ
:
861 return kvm_mips_callbacks
->set_one_reg(vcpu
, reg
, v
);
868 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu
*vcpu
,
869 struct kvm_enable_cap
*cap
)
873 if (!kvm_vm_ioctl_check_extension(vcpu
->kvm
, cap
->cap
))
881 case KVM_CAP_MIPS_FPU
:
882 vcpu
->arch
.fpu_enabled
= true;
884 case KVM_CAP_MIPS_MSA
:
885 vcpu
->arch
.msa_enabled
= true;
895 long kvm_arch_vcpu_ioctl(struct file
*filp
, unsigned int ioctl
,
898 struct kvm_vcpu
*vcpu
= filp
->private_data
;
899 void __user
*argp
= (void __user
*)arg
;
903 case KVM_SET_ONE_REG
:
904 case KVM_GET_ONE_REG
: {
905 struct kvm_one_reg reg
;
907 if (copy_from_user(®
, argp
, sizeof(reg
)))
909 if (ioctl
== KVM_SET_ONE_REG
)
910 return kvm_mips_set_reg(vcpu
, ®
);
912 return kvm_mips_get_reg(vcpu
, ®
);
914 case KVM_GET_REG_LIST
: {
915 struct kvm_reg_list __user
*user_list
= argp
;
916 u64 __user
*reg_dest
;
917 struct kvm_reg_list reg_list
;
920 if (copy_from_user(®_list
, user_list
, sizeof(reg_list
)))
923 reg_list
.n
= ARRAY_SIZE(kvm_mips_get_one_regs
);
924 if (copy_to_user(user_list
, ®_list
, sizeof(reg_list
)))
928 reg_dest
= user_list
->reg
;
929 if (copy_to_user(reg_dest
, kvm_mips_get_one_regs
,
930 sizeof(kvm_mips_get_one_regs
)))
935 /* Treat the NMI as a CPU reset */
936 r
= kvm_mips_reset_vcpu(vcpu
);
940 struct kvm_mips_interrupt irq
;
943 if (copy_from_user(&irq
, argp
, sizeof(irq
)))
946 kvm_debug("[%d] %s: irq: %d\n", vcpu
->vcpu_id
, __func__
,
949 r
= kvm_vcpu_ioctl_interrupt(vcpu
, &irq
);
952 case KVM_ENABLE_CAP
: {
953 struct kvm_enable_cap cap
;
956 if (copy_from_user(&cap
, argp
, sizeof(cap
)))
958 r
= kvm_vcpu_ioctl_enable_cap(vcpu
, &cap
);
969 /* Get (and clear) the dirty memory log for a memory slot. */
970 int kvm_vm_ioctl_get_dirty_log(struct kvm
*kvm
, struct kvm_dirty_log
*log
)
972 struct kvm_memslots
*slots
;
973 struct kvm_memory_slot
*memslot
;
974 unsigned long ga
, ga_end
;
979 mutex_lock(&kvm
->slots_lock
);
981 r
= kvm_get_dirty_log(kvm
, log
, &is_dirty
);
985 /* If nothing is dirty, don't bother messing with page tables. */
987 slots
= kvm_memslots(kvm
);
988 memslot
= id_to_memslot(slots
, log
->slot
);
990 ga
= memslot
->base_gfn
<< PAGE_SHIFT
;
991 ga_end
= ga
+ (memslot
->npages
<< PAGE_SHIFT
);
993 kvm_info("%s: dirty, ga: %#lx, ga_end %#lx\n", __func__
, ga
,
996 n
= kvm_dirty_bitmap_bytes(memslot
);
997 memset(memslot
->dirty_bitmap
, 0, n
);
1002 mutex_unlock(&kvm
->slots_lock
);
1007 long kvm_arch_vm_ioctl(struct file
*filp
, unsigned int ioctl
, unsigned long arg
)
1019 int kvm_arch_init(void *opaque
)
1021 if (kvm_mips_callbacks
) {
1022 kvm_err("kvm: module already exists\n");
1026 return kvm_mips_emulation_init(&kvm_mips_callbacks
);
1029 void kvm_arch_exit(void)
1031 kvm_mips_callbacks
= NULL
;
1034 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu
*vcpu
,
1035 struct kvm_sregs
*sregs
)
1037 return -ENOIOCTLCMD
;
1040 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu
*vcpu
,
1041 struct kvm_sregs
*sregs
)
1043 return -ENOIOCTLCMD
;
1046 void kvm_arch_vcpu_postcreate(struct kvm_vcpu
*vcpu
)
1050 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
1052 return -ENOIOCTLCMD
;
1055 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
1057 return -ENOIOCTLCMD
;
1060 int kvm_arch_vcpu_fault(struct kvm_vcpu
*vcpu
, struct vm_fault
*vmf
)
1062 return VM_FAULT_SIGBUS
;
1065 int kvm_vm_ioctl_check_extension(struct kvm
*kvm
, long ext
)
1070 case KVM_CAP_ONE_REG
:
1071 case KVM_CAP_ENABLE_CAP
:
1074 case KVM_CAP_COALESCED_MMIO
:
1075 r
= KVM_COALESCED_MMIO_PAGE_OFFSET
;
1077 case KVM_CAP_MIPS_FPU
:
1080 case KVM_CAP_MIPS_MSA
:
1082 * We don't support MSA vector partitioning yet:
1083 * 1) It would require explicit support which can't be tested
1084 * yet due to lack of support in current hardware.
1085 * 2) It extends the state that would need to be saved/restored
1086 * by e.g. QEMU for migration.
1088 * When vector partitioning hardware becomes available, support
1089 * could be added by requiring a flag when enabling
1090 * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1091 * to save/restore the appropriate extra state.
1093 r
= cpu_has_msa
&& !(boot_cpu_data
.msa_id
& MSA_IR_WRPF
);
1102 int kvm_cpu_has_pending_timer(struct kvm_vcpu
*vcpu
)
1104 return kvm_mips_pending_timer(vcpu
);
1107 int kvm_arch_vcpu_dump_regs(struct kvm_vcpu
*vcpu
)
1110 struct mips_coproc
*cop0
;
1115 kvm_debug("VCPU Register Dump:\n");
1116 kvm_debug("\tpc = 0x%08lx\n", vcpu
->arch
.pc
);
1117 kvm_debug("\texceptions: %08lx\n", vcpu
->arch
.pending_exceptions
);
1119 for (i
= 0; i
< 32; i
+= 4) {
1120 kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i
,
1122 vcpu
->arch
.gprs
[i
+ 1],
1123 vcpu
->arch
.gprs
[i
+ 2], vcpu
->arch
.gprs
[i
+ 3]);
1125 kvm_debug("\thi: 0x%08lx\n", vcpu
->arch
.hi
);
1126 kvm_debug("\tlo: 0x%08lx\n", vcpu
->arch
.lo
);
1128 cop0
= vcpu
->arch
.cop0
;
1129 kvm_debug("\tStatus: 0x%08lx, Cause: 0x%08lx\n",
1130 kvm_read_c0_guest_status(cop0
),
1131 kvm_read_c0_guest_cause(cop0
));
1133 kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0
));
1138 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
1142 for (i
= 1; i
< ARRAY_SIZE(vcpu
->arch
.gprs
); i
++)
1143 vcpu
->arch
.gprs
[i
] = regs
->gpr
[i
];
1144 vcpu
->arch
.gprs
[0] = 0; /* zero is special, and cannot be set. */
1145 vcpu
->arch
.hi
= regs
->hi
;
1146 vcpu
->arch
.lo
= regs
->lo
;
1147 vcpu
->arch
.pc
= regs
->pc
;
1152 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
1156 for (i
= 0; i
< ARRAY_SIZE(vcpu
->arch
.gprs
); i
++)
1157 regs
->gpr
[i
] = vcpu
->arch
.gprs
[i
];
1159 regs
->hi
= vcpu
->arch
.hi
;
1160 regs
->lo
= vcpu
->arch
.lo
;
1161 regs
->pc
= vcpu
->arch
.pc
;
1166 static void kvm_mips_comparecount_func(unsigned long data
)
1168 struct kvm_vcpu
*vcpu
= (struct kvm_vcpu
*)data
;
1170 kvm_mips_callbacks
->queue_timer_int(vcpu
);
1172 vcpu
->arch
.wait
= 0;
1173 if (waitqueue_active(&vcpu
->wq
))
1174 wake_up_interruptible(&vcpu
->wq
);
1177 /* low level hrtimer wake routine */
1178 static enum hrtimer_restart
kvm_mips_comparecount_wakeup(struct hrtimer
*timer
)
1180 struct kvm_vcpu
*vcpu
;
1182 vcpu
= container_of(timer
, struct kvm_vcpu
, arch
.comparecount_timer
);
1183 kvm_mips_comparecount_func((unsigned long) vcpu
);
1184 return kvm_mips_count_timeout(vcpu
);
1187 int kvm_arch_vcpu_init(struct kvm_vcpu
*vcpu
)
1189 kvm_mips_callbacks
->vcpu_init(vcpu
);
1190 hrtimer_init(&vcpu
->arch
.comparecount_timer
, CLOCK_MONOTONIC
,
1192 vcpu
->arch
.comparecount_timer
.function
= kvm_mips_comparecount_wakeup
;
1196 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu
*vcpu
,
1197 struct kvm_translation
*tr
)
1202 /* Initial guest state */
1203 int kvm_arch_vcpu_setup(struct kvm_vcpu
*vcpu
)
1205 return kvm_mips_callbacks
->vcpu_setup(vcpu
);
1208 static void kvm_mips_set_c0_status(void)
1210 uint32_t status
= read_c0_status();
1215 write_c0_status(status
);
1220 * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1222 int kvm_mips_handle_exit(struct kvm_run
*run
, struct kvm_vcpu
*vcpu
)
1224 uint32_t cause
= vcpu
->arch
.host_cp0_cause
;
1225 uint32_t exccode
= (cause
>> CAUSEB_EXCCODE
) & 0x1f;
1226 uint32_t __user
*opc
= (uint32_t __user
*) vcpu
->arch
.pc
;
1227 unsigned long badvaddr
= vcpu
->arch
.host_cp0_badvaddr
;
1228 enum emulation_result er
= EMULATE_DONE
;
1229 int ret
= RESUME_GUEST
;
1231 /* re-enable HTW before enabling interrupts */
1234 /* Set a default exit reason */
1235 run
->exit_reason
= KVM_EXIT_UNKNOWN
;
1236 run
->ready_for_interrupt_injection
= 1;
1239 * Set the appropriate status bits based on host CPU features,
1240 * before we hit the scheduler
1242 kvm_mips_set_c0_status();
1246 kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1247 cause
, opc
, run
, vcpu
);
1250 * Do a privilege check, if in UM most of these exit conditions end up
1251 * causing an exception to be delivered to the Guest Kernel
1253 er
= kvm_mips_check_privilege(cause
, opc
, run
, vcpu
);
1254 if (er
== EMULATE_PRIV_FAIL
) {
1256 } else if (er
== EMULATE_FAIL
) {
1257 run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
1264 kvm_debug("[%d]T_INT @ %p\n", vcpu
->vcpu_id
, opc
);
1266 ++vcpu
->stat
.int_exits
;
1267 trace_kvm_exit(vcpu
, INT_EXITS
);
1275 case T_COP_UNUSABLE
:
1276 kvm_debug("T_COP_UNUSABLE: @ PC: %p\n", opc
);
1278 ++vcpu
->stat
.cop_unusable_exits
;
1279 trace_kvm_exit(vcpu
, COP_UNUSABLE_EXITS
);
1280 ret
= kvm_mips_callbacks
->handle_cop_unusable(vcpu
);
1281 /* XXXKYMA: Might need to return to user space */
1282 if (run
->exit_reason
== KVM_EXIT_IRQ_WINDOW_OPEN
)
1287 ++vcpu
->stat
.tlbmod_exits
;
1288 trace_kvm_exit(vcpu
, TLBMOD_EXITS
);
1289 ret
= kvm_mips_callbacks
->handle_tlb_mod(vcpu
);
1293 kvm_debug("TLB ST fault: cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n",
1294 cause
, kvm_read_c0_guest_status(vcpu
->arch
.cop0
), opc
,
1297 ++vcpu
->stat
.tlbmiss_st_exits
;
1298 trace_kvm_exit(vcpu
, TLBMISS_ST_EXITS
);
1299 ret
= kvm_mips_callbacks
->handle_tlb_st_miss(vcpu
);
1303 kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1304 cause
, opc
, badvaddr
);
1306 ++vcpu
->stat
.tlbmiss_ld_exits
;
1307 trace_kvm_exit(vcpu
, TLBMISS_LD_EXITS
);
1308 ret
= kvm_mips_callbacks
->handle_tlb_ld_miss(vcpu
);
1312 ++vcpu
->stat
.addrerr_st_exits
;
1313 trace_kvm_exit(vcpu
, ADDRERR_ST_EXITS
);
1314 ret
= kvm_mips_callbacks
->handle_addr_err_st(vcpu
);
1318 ++vcpu
->stat
.addrerr_ld_exits
;
1319 trace_kvm_exit(vcpu
, ADDRERR_LD_EXITS
);
1320 ret
= kvm_mips_callbacks
->handle_addr_err_ld(vcpu
);
1324 ++vcpu
->stat
.syscall_exits
;
1325 trace_kvm_exit(vcpu
, SYSCALL_EXITS
);
1326 ret
= kvm_mips_callbacks
->handle_syscall(vcpu
);
1330 ++vcpu
->stat
.resvd_inst_exits
;
1331 trace_kvm_exit(vcpu
, RESVD_INST_EXITS
);
1332 ret
= kvm_mips_callbacks
->handle_res_inst(vcpu
);
1336 ++vcpu
->stat
.break_inst_exits
;
1337 trace_kvm_exit(vcpu
, BREAK_INST_EXITS
);
1338 ret
= kvm_mips_callbacks
->handle_break(vcpu
);
1342 ++vcpu
->stat
.trap_inst_exits
;
1343 trace_kvm_exit(vcpu
, TRAP_INST_EXITS
);
1344 ret
= kvm_mips_callbacks
->handle_trap(vcpu
);
1348 ++vcpu
->stat
.msa_fpe_exits
;
1349 trace_kvm_exit(vcpu
, MSA_FPE_EXITS
);
1350 ret
= kvm_mips_callbacks
->handle_msa_fpe(vcpu
);
1354 ++vcpu
->stat
.fpe_exits
;
1355 trace_kvm_exit(vcpu
, FPE_EXITS
);
1356 ret
= kvm_mips_callbacks
->handle_fpe(vcpu
);
1360 ++vcpu
->stat
.msa_disabled_exits
;
1361 trace_kvm_exit(vcpu
, MSA_DISABLED_EXITS
);
1362 ret
= kvm_mips_callbacks
->handle_msa_disabled(vcpu
);
1366 kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#lx\n",
1367 exccode
, opc
, kvm_get_inst(opc
, vcpu
), badvaddr
,
1368 kvm_read_c0_guest_status(vcpu
->arch
.cop0
));
1369 kvm_arch_vcpu_dump_regs(vcpu
);
1370 run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
1377 local_irq_disable();
1379 if (er
== EMULATE_DONE
&& !(ret
& RESUME_HOST
))
1380 kvm_mips_deliver_interrupts(vcpu
, cause
);
1382 if (!(ret
& RESUME_HOST
)) {
1383 /* Only check for signals if not already exiting to userspace */
1384 if (signal_pending(current
)) {
1385 run
->exit_reason
= KVM_EXIT_INTR
;
1386 ret
= (-EINTR
<< 2) | RESUME_HOST
;
1387 ++vcpu
->stat
.signal_exits
;
1388 trace_kvm_exit(vcpu
, SIGNAL_EXITS
);
1392 if (ret
== RESUME_GUEST
) {
1394 * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1395 * is live), restore FCR31 / MSACSR.
1397 * This should be before returning to the guest exception
1398 * vector, as it may well cause an [MSA] FP exception if there
1399 * are pending exception bits unmasked. (see
1400 * kvm_mips_csr_die_notifier() for how that is handled).
1402 if (kvm_mips_guest_has_fpu(&vcpu
->arch
) &&
1403 read_c0_status() & ST0_CU1
)
1404 __kvm_restore_fcsr(&vcpu
->arch
);
1406 if (kvm_mips_guest_has_msa(&vcpu
->arch
) &&
1407 read_c0_config5() & MIPS_CONF5_MSAEN
)
1408 __kvm_restore_msacsr(&vcpu
->arch
);
1411 /* Disable HTW before returning to guest or host */
1417 /* Enable FPU for guest and restore context */
1418 void kvm_own_fpu(struct kvm_vcpu
*vcpu
)
1420 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
1421 unsigned int sr
, cfg5
;
1425 sr
= kvm_read_c0_guest_status(cop0
);
1428 * If MSA state is already live, it is undefined how it interacts with
1429 * FR=0 FPU state, and we don't want to hit reserved instruction
1430 * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1431 * play it safe and save it first.
1433 * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
1434 * get called when guest CU1 is set, however we can't trust the guest
1435 * not to clobber the status register directly via the commpage.
1437 if (cpu_has_msa
&& sr
& ST0_CU1
&& !(sr
& ST0_FR
) &&
1438 vcpu
->arch
.fpu_inuse
& KVM_MIPS_FPU_MSA
)
1442 * Enable FPU for guest
1443 * We set FR and FRE according to guest context
1445 change_c0_status(ST0_CU1
| ST0_FR
, sr
);
1447 cfg5
= kvm_read_c0_guest_config5(cop0
);
1448 change_c0_config5(MIPS_CONF5_FRE
, cfg5
);
1450 enable_fpu_hazard();
1452 /* If guest FPU state not active, restore it now */
1453 if (!(vcpu
->arch
.fpu_inuse
& KVM_MIPS_FPU_FPU
)) {
1454 __kvm_restore_fpu(&vcpu
->arch
);
1455 vcpu
->arch
.fpu_inuse
|= KVM_MIPS_FPU_FPU
;
1461 #ifdef CONFIG_CPU_HAS_MSA
1462 /* Enable MSA for guest and restore context */
1463 void kvm_own_msa(struct kvm_vcpu
*vcpu
)
1465 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
1466 unsigned int sr
, cfg5
;
1471 * Enable FPU if enabled in guest, since we're restoring FPU context
1472 * anyway. We set FR and FRE according to guest context.
1474 if (kvm_mips_guest_has_fpu(&vcpu
->arch
)) {
1475 sr
= kvm_read_c0_guest_status(cop0
);
1478 * If FR=0 FPU state is already live, it is undefined how it
1479 * interacts with MSA state, so play it safe and save it first.
1481 if (!(sr
& ST0_FR
) &&
1482 (vcpu
->arch
.fpu_inuse
& (KVM_MIPS_FPU_FPU
|
1483 KVM_MIPS_FPU_MSA
)) == KVM_MIPS_FPU_FPU
)
1486 change_c0_status(ST0_CU1
| ST0_FR
, sr
);
1487 if (sr
& ST0_CU1
&& cpu_has_fre
) {
1488 cfg5
= kvm_read_c0_guest_config5(cop0
);
1489 change_c0_config5(MIPS_CONF5_FRE
, cfg5
);
1493 /* Enable MSA for guest */
1494 set_c0_config5(MIPS_CONF5_MSAEN
);
1495 enable_fpu_hazard();
1497 switch (vcpu
->arch
.fpu_inuse
& (KVM_MIPS_FPU_FPU
| KVM_MIPS_FPU_MSA
)) {
1498 case KVM_MIPS_FPU_FPU
:
1500 * Guest FPU state already loaded, only restore upper MSA state
1502 __kvm_restore_msa_upper(&vcpu
->arch
);
1503 vcpu
->arch
.fpu_inuse
|= KVM_MIPS_FPU_MSA
;
1506 /* Neither FPU or MSA already active, restore full MSA state */
1507 __kvm_restore_msa(&vcpu
->arch
);
1508 vcpu
->arch
.fpu_inuse
|= KVM_MIPS_FPU_MSA
;
1509 if (kvm_mips_guest_has_fpu(&vcpu
->arch
))
1510 vcpu
->arch
.fpu_inuse
|= KVM_MIPS_FPU_FPU
;
1520 /* Drop FPU & MSA without saving it */
1521 void kvm_drop_fpu(struct kvm_vcpu
*vcpu
)
1524 if (cpu_has_msa
&& vcpu
->arch
.fpu_inuse
& KVM_MIPS_FPU_MSA
) {
1526 vcpu
->arch
.fpu_inuse
&= ~KVM_MIPS_FPU_MSA
;
1528 if (vcpu
->arch
.fpu_inuse
& KVM_MIPS_FPU_FPU
) {
1529 clear_c0_status(ST0_CU1
| ST0_FR
);
1530 vcpu
->arch
.fpu_inuse
&= ~KVM_MIPS_FPU_FPU
;
1535 /* Save and disable FPU & MSA */
1536 void kvm_lose_fpu(struct kvm_vcpu
*vcpu
)
1539 * FPU & MSA get disabled in root context (hardware) when it is disabled
1540 * in guest context (software), but the register state in the hardware
1541 * may still be in use. This is why we explicitly re-enable the hardware
1546 if (cpu_has_msa
&& vcpu
->arch
.fpu_inuse
& KVM_MIPS_FPU_MSA
) {
1547 set_c0_config5(MIPS_CONF5_MSAEN
);
1548 enable_fpu_hazard();
1550 __kvm_save_msa(&vcpu
->arch
);
1552 /* Disable MSA & FPU */
1554 if (vcpu
->arch
.fpu_inuse
& KVM_MIPS_FPU_FPU
)
1555 clear_c0_status(ST0_CU1
| ST0_FR
);
1556 vcpu
->arch
.fpu_inuse
&= ~(KVM_MIPS_FPU_FPU
| KVM_MIPS_FPU_MSA
);
1557 } else if (vcpu
->arch
.fpu_inuse
& KVM_MIPS_FPU_FPU
) {
1558 set_c0_status(ST0_CU1
);
1559 enable_fpu_hazard();
1561 __kvm_save_fpu(&vcpu
->arch
);
1562 vcpu
->arch
.fpu_inuse
&= ~KVM_MIPS_FPU_FPU
;
1565 clear_c0_status(ST0_CU1
| ST0_FR
);
1571 * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1572 * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1573 * exception if cause bits are set in the value being written.
1575 static int kvm_mips_csr_die_notify(struct notifier_block
*self
,
1576 unsigned long cmd
, void *ptr
)
1578 struct die_args
*args
= (struct die_args
*)ptr
;
1579 struct pt_regs
*regs
= args
->regs
;
1582 /* Only interested in FPE and MSAFPE */
1583 if (cmd
!= DIE_FP
&& cmd
!= DIE_MSAFP
)
1586 /* Return immediately if guest context isn't active */
1587 if (!(current
->flags
& PF_VCPU
))
1590 /* Should never get here from user mode */
1591 BUG_ON(user_mode(regs
));
1593 pc
= instruction_pointer(regs
);
1596 /* match 2nd instruction in __kvm_restore_fcsr */
1597 if (pc
!= (unsigned long)&__kvm_restore_fcsr
+ 4)
1601 /* match 2nd/3rd instruction in __kvm_restore_msacsr */
1603 pc
< (unsigned long)&__kvm_restore_msacsr
+ 4 ||
1604 pc
> (unsigned long)&__kvm_restore_msacsr
+ 8)
1609 /* Move PC forward a little and continue executing */
1610 instruction_pointer(regs
) += 4;
1615 static struct notifier_block kvm_mips_csr_die_notifier
= {
1616 .notifier_call
= kvm_mips_csr_die_notify
,
1619 int __init
kvm_mips_init(void)
1623 ret
= kvm_init(NULL
, sizeof(struct kvm_vcpu
), 0, THIS_MODULE
);
1628 register_die_notifier(&kvm_mips_csr_die_notifier
);
1631 * On MIPS, kernel modules are executed from "mapped space", which
1632 * requires TLBs. The TLB handling code is statically linked with
1633 * the rest of the kernel (tlb.c) to avoid the possibility of
1634 * double faulting. The issue is that the TLB code references
1635 * routines that are part of the the KVM module, which are only
1636 * available once the module is loaded.
1638 kvm_mips_gfn_to_pfn
= gfn_to_pfn
;
1639 kvm_mips_release_pfn_clean
= kvm_release_pfn_clean
;
1640 kvm_mips_is_error_pfn
= is_error_pfn
;
1645 void __exit
kvm_mips_exit(void)
1649 kvm_mips_gfn_to_pfn
= NULL
;
1650 kvm_mips_release_pfn_clean
= NULL
;
1651 kvm_mips_is_error_pfn
= NULL
;
1653 unregister_die_notifier(&kvm_mips_csr_die_notifier
);
1656 module_init(kvm_mips_init
);
1657 module_exit(kvm_mips_exit
);
1659 EXPORT_TRACEPOINT_SYMBOL(kvm_exit
);