Linux 4.2.2
[linux/fpc-iii.git] / arch / powerpc / kernel / machine_kexec_64.c
blob1a74446fd9e5a38c0535e8ec77b057fe8e80fbd5
1 /*
2 * PPC64 code to handle Linux booting another kernel.
4 * Copyright (C) 2004-2005, IBM Corp.
6 * Created by: Milton D Miller II
8 * This source code is licensed under the GNU General Public License,
9 * Version 2. See the file COPYING for more details.
13 #include <linux/kexec.h>
14 #include <linux/smp.h>
15 #include <linux/thread_info.h>
16 #include <linux/init_task.h>
17 #include <linux/errno.h>
18 #include <linux/kernel.h>
19 #include <linux/cpu.h>
20 #include <linux/hardirq.h>
22 #include <asm/page.h>
23 #include <asm/current.h>
24 #include <asm/machdep.h>
25 #include <asm/cacheflush.h>
26 #include <asm/paca.h>
27 #include <asm/mmu.h>
28 #include <asm/sections.h> /* _end */
29 #include <asm/prom.h>
30 #include <asm/smp.h>
31 #include <asm/hw_breakpoint.h>
33 int default_machine_kexec_prepare(struct kimage *image)
35 int i;
36 unsigned long begin, end; /* limits of segment */
37 unsigned long low, high; /* limits of blocked memory range */
38 struct device_node *node;
39 const unsigned long *basep;
40 const unsigned int *sizep;
42 if (!ppc_md.hpte_clear_all)
43 return -ENOENT;
46 * Since we use the kernel fault handlers and paging code to
47 * handle the virtual mode, we must make sure no destination
48 * overlaps kernel static data or bss.
50 for (i = 0; i < image->nr_segments; i++)
51 if (image->segment[i].mem < __pa(_end))
52 return -ETXTBSY;
55 * For non-LPAR, we absolutely can not overwrite the mmu hash
56 * table, since we are still using the bolted entries in it to
57 * do the copy. Check that here.
59 * It is safe if the end is below the start of the blocked
60 * region (end <= low), or if the beginning is after the
61 * end of the blocked region (begin >= high). Use the
62 * boolean identity !(a || b) === (!a && !b).
64 if (htab_address) {
65 low = __pa(htab_address);
66 high = low + htab_size_bytes;
68 for (i = 0; i < image->nr_segments; i++) {
69 begin = image->segment[i].mem;
70 end = begin + image->segment[i].memsz;
72 if ((begin < high) && (end > low))
73 return -ETXTBSY;
77 /* We also should not overwrite the tce tables */
78 for_each_node_by_type(node, "pci") {
79 basep = of_get_property(node, "linux,tce-base", NULL);
80 sizep = of_get_property(node, "linux,tce-size", NULL);
81 if (basep == NULL || sizep == NULL)
82 continue;
84 low = *basep;
85 high = low + (*sizep);
87 for (i = 0; i < image->nr_segments; i++) {
88 begin = image->segment[i].mem;
89 end = begin + image->segment[i].memsz;
91 if ((begin < high) && (end > low))
92 return -ETXTBSY;
96 return 0;
99 static void copy_segments(unsigned long ind)
101 unsigned long entry;
102 unsigned long *ptr;
103 void *dest;
104 void *addr;
107 * We rely on kexec_load to create a lists that properly
108 * initializes these pointers before they are used.
109 * We will still crash if the list is wrong, but at least
110 * the compiler will be quiet.
112 ptr = NULL;
113 dest = NULL;
115 for (entry = ind; !(entry & IND_DONE); entry = *ptr++) {
116 addr = __va(entry & PAGE_MASK);
118 switch (entry & IND_FLAGS) {
119 case IND_DESTINATION:
120 dest = addr;
121 break;
122 case IND_INDIRECTION:
123 ptr = addr;
124 break;
125 case IND_SOURCE:
126 copy_page(dest, addr);
127 dest += PAGE_SIZE;
132 void kexec_copy_flush(struct kimage *image)
134 long i, nr_segments = image->nr_segments;
135 struct kexec_segment ranges[KEXEC_SEGMENT_MAX];
137 /* save the ranges on the stack to efficiently flush the icache */
138 memcpy(ranges, image->segment, sizeof(ranges));
141 * After this call we may not use anything allocated in dynamic
142 * memory, including *image.
144 * Only globals and the stack are allowed.
146 copy_segments(image->head);
149 * we need to clear the icache for all dest pages sometime,
150 * including ones that were in place on the original copy
152 for (i = 0; i < nr_segments; i++)
153 flush_icache_range((unsigned long)__va(ranges[i].mem),
154 (unsigned long)__va(ranges[i].mem + ranges[i].memsz));
157 #ifdef CONFIG_SMP
159 static int kexec_all_irq_disabled = 0;
161 static void kexec_smp_down(void *arg)
163 local_irq_disable();
164 hard_irq_disable();
166 mb(); /* make sure our irqs are disabled before we say they are */
167 get_paca()->kexec_state = KEXEC_STATE_IRQS_OFF;
168 while(kexec_all_irq_disabled == 0)
169 cpu_relax();
170 mb(); /* make sure all irqs are disabled before this */
171 hw_breakpoint_disable();
173 * Now every CPU has IRQs off, we can clear out any pending
174 * IPIs and be sure that no more will come in after this.
176 if (ppc_md.kexec_cpu_down)
177 ppc_md.kexec_cpu_down(0, 1);
179 kexec_smp_wait();
180 /* NOTREACHED */
183 static void kexec_prepare_cpus_wait(int wait_state)
185 int my_cpu, i, notified=-1;
187 hw_breakpoint_disable();
188 my_cpu = get_cpu();
189 /* Make sure each CPU has at least made it to the state we need.
191 * FIXME: There is a (slim) chance of a problem if not all of the CPUs
192 * are correctly onlined. If somehow we start a CPU on boot with RTAS
193 * start-cpu, but somehow that CPU doesn't write callin_cpu_map[] in
194 * time, the boot CPU will timeout. If it does eventually execute
195 * stuff, the secondary will start up (paca[].cpu_start was written) and
196 * get into a peculiar state. If the platform supports
197 * smp_ops->take_timebase(), the secondary CPU will probably be spinning
198 * in there. If not (i.e. pseries), the secondary will continue on and
199 * try to online itself/idle/etc. If it survives that, we need to find
200 * these possible-but-not-online-but-should-be CPUs and chaperone them
201 * into kexec_smp_wait().
203 for_each_online_cpu(i) {
204 if (i == my_cpu)
205 continue;
207 while (paca[i].kexec_state < wait_state) {
208 barrier();
209 if (i != notified) {
210 printk(KERN_INFO "kexec: waiting for cpu %d "
211 "(physical %d) to enter %i state\n",
212 i, paca[i].hw_cpu_id, wait_state);
213 notified = i;
217 mb();
221 * We need to make sure each present CPU is online. The next kernel will scan
222 * the device tree and assume primary threads are online and query secondary
223 * threads via RTAS to online them if required. If we don't online primary
224 * threads, they will be stuck. However, we also online secondary threads as we
225 * may be using 'cede offline'. In this case RTAS doesn't see the secondary
226 * threads as offline -- and again, these CPUs will be stuck.
228 * So, we online all CPUs that should be running, including secondary threads.
230 static void wake_offline_cpus(void)
232 int cpu = 0;
234 for_each_present_cpu(cpu) {
235 if (!cpu_online(cpu)) {
236 printk(KERN_INFO "kexec: Waking offline cpu %d.\n",
237 cpu);
238 WARN_ON(cpu_up(cpu));
243 static void kexec_prepare_cpus(void)
245 wake_offline_cpus();
246 smp_call_function(kexec_smp_down, NULL, /* wait */0);
247 local_irq_disable();
248 hard_irq_disable();
250 mb(); /* make sure IRQs are disabled before we say they are */
251 get_paca()->kexec_state = KEXEC_STATE_IRQS_OFF;
253 kexec_prepare_cpus_wait(KEXEC_STATE_IRQS_OFF);
254 /* we are sure every CPU has IRQs off at this point */
255 kexec_all_irq_disabled = 1;
257 /* after we tell the others to go down */
258 if (ppc_md.kexec_cpu_down)
259 ppc_md.kexec_cpu_down(0, 0);
262 * Before removing MMU mappings make sure all CPUs have entered real
263 * mode:
265 kexec_prepare_cpus_wait(KEXEC_STATE_REAL_MODE);
267 put_cpu();
270 #else /* ! SMP */
272 static void kexec_prepare_cpus(void)
275 * move the secondarys to us so that we can copy
276 * the new kernel 0-0x100 safely
278 * do this if kexec in setup.c ?
280 * We need to release the cpus if we are ever going from an
281 * UP to an SMP kernel.
283 smp_release_cpus();
284 if (ppc_md.kexec_cpu_down)
285 ppc_md.kexec_cpu_down(0, 0);
286 local_irq_disable();
287 hard_irq_disable();
290 #endif /* SMP */
293 * kexec thread structure and stack.
295 * We need to make sure that this is 16384-byte aligned due to the
296 * way process stacks are handled. It also must be statically allocated
297 * or allocated as part of the kimage, because everything else may be
298 * overwritten when we copy the kexec image. We piggyback on the
299 * "init_task" linker section here to statically allocate a stack.
301 * We could use a smaller stack if we don't care about anything using
302 * current, but that audit has not been performed.
304 static union thread_union kexec_stack __init_task_data =
305 { };
308 * For similar reasons to the stack above, the kexecing CPU needs to be on a
309 * static PACA; we switch to kexec_paca.
311 struct paca_struct kexec_paca;
313 /* Our assembly helper, in misc_64.S */
314 extern void kexec_sequence(void *newstack, unsigned long start,
315 void *image, void *control,
316 void (*clear_all)(void)) __noreturn;
318 /* too late to fail here */
319 void default_machine_kexec(struct kimage *image)
321 /* prepare control code if any */
324 * If the kexec boot is the normal one, need to shutdown other cpus
325 * into our wait loop and quiesce interrupts.
326 * Otherwise, in the case of crashed mode (crashing_cpu >= 0),
327 * stopping other CPUs and collecting their pt_regs is done before
328 * using debugger IPI.
331 if (!kdump_in_progress())
332 kexec_prepare_cpus();
334 pr_debug("kexec: Starting switchover sequence.\n");
336 /* switch to a staticly allocated stack. Based on irq stack code.
337 * We setup preempt_count to avoid using VMX in memcpy.
338 * XXX: the task struct will likely be invalid once we do the copy!
340 kexec_stack.thread_info.task = current_thread_info()->task;
341 kexec_stack.thread_info.flags = 0;
342 kexec_stack.thread_info.preempt_count = HARDIRQ_OFFSET;
343 kexec_stack.thread_info.cpu = current_thread_info()->cpu;
345 /* We need a static PACA, too; copy this CPU's PACA over and switch to
346 * it. Also poison per_cpu_offset to catch anyone using non-static
347 * data.
349 memcpy(&kexec_paca, get_paca(), sizeof(struct paca_struct));
350 kexec_paca.data_offset = 0xedeaddeadeeeeeeeUL;
351 paca = (struct paca_struct *)RELOC_HIDE(&kexec_paca, 0) -
352 kexec_paca.paca_index;
353 setup_paca(&kexec_paca);
355 /* XXX: If anyone does 'dynamic lppacas' this will also need to be
356 * switched to a static version!
359 /* Some things are best done in assembly. Finding globals with
360 * a toc is easier in C, so pass in what we can.
362 kexec_sequence(&kexec_stack, image->start, image,
363 page_address(image->control_code_page),
364 ppc_md.hpte_clear_all);
365 /* NOTREACHED */
368 /* Values we need to export to the second kernel via the device tree. */
369 static unsigned long htab_base;
370 static unsigned long htab_size;
372 static struct property htab_base_prop = {
373 .name = "linux,htab-base",
374 .length = sizeof(unsigned long),
375 .value = &htab_base,
378 static struct property htab_size_prop = {
379 .name = "linux,htab-size",
380 .length = sizeof(unsigned long),
381 .value = &htab_size,
384 static int __init export_htab_values(void)
386 struct device_node *node;
387 struct property *prop;
389 /* On machines with no htab htab_address is NULL */
390 if (!htab_address)
391 return -ENODEV;
393 node = of_find_node_by_path("/chosen");
394 if (!node)
395 return -ENODEV;
397 /* remove any stale propertys so ours can be found */
398 prop = of_find_property(node, htab_base_prop.name, NULL);
399 if (prop)
400 of_remove_property(node, prop);
401 prop = of_find_property(node, htab_size_prop.name, NULL);
402 if (prop)
403 of_remove_property(node, prop);
405 htab_base = cpu_to_be64(__pa(htab_address));
406 of_add_property(node, &htab_base_prop);
407 htab_size = cpu_to_be64(htab_size_bytes);
408 of_add_property(node, &htab_size_prop);
410 of_node_put(node);
411 return 0;
413 late_initcall(export_htab_values);