2 * The file intends to implement the platform dependent EEH operations on
3 * powernv platform. Actually, the powernv was created in order to fully
6 * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2013.
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
14 #include <linux/atomic.h>
15 #include <linux/debugfs.h>
16 #include <linux/delay.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/interrupt.h>
20 #include <linux/list.h>
21 #include <linux/msi.h>
23 #include <linux/pci.h>
24 #include <linux/proc_fs.h>
25 #include <linux/rbtree.h>
26 #include <linux/sched.h>
27 #include <linux/seq_file.h>
28 #include <linux/spinlock.h>
31 #include <asm/eeh_event.h>
32 #include <asm/firmware.h>
34 #include <asm/iommu.h>
35 #include <asm/machdep.h>
36 #include <asm/msi_bitmap.h>
38 #include <asm/ppc-pci.h>
43 static bool pnv_eeh_nb_init
= false;
44 static int eeh_event_irq
= -EINVAL
;
47 * pnv_eeh_init - EEH platform dependent initialization
49 * EEH platform dependent initialization on powernv
51 static int pnv_eeh_init(void)
53 struct pci_controller
*hose
;
56 /* We require OPALv3 */
57 if (!firmware_has_feature(FW_FEATURE_OPALv3
)) {
58 pr_warn("%s: OPALv3 is required !\n",
64 eeh_add_flag(EEH_PROBE_MODE_DEV
);
67 * P7IOC blocks PCI config access to frozen PE, but PHB3
68 * doesn't do that. So we have to selectively enable I/O
69 * prior to collecting error log.
71 list_for_each_entry(hose
, &hose_list
, list_node
) {
72 phb
= hose
->private_data
;
74 if (phb
->model
== PNV_PHB_MODEL_P7IOC
)
75 eeh_add_flag(EEH_ENABLE_IO_FOR_LOG
);
78 * PE#0 should be regarded as valid by EEH core
79 * if it's not the reserved one. Currently, we
80 * have the reserved PE#0 and PE#127 for PHB3
81 * and P7IOC separately. So we should regard
82 * PE#0 as valid for P7IOC.
84 if (phb
->ioda
.reserved_pe
!= 0)
85 eeh_add_flag(EEH_VALID_PE_ZERO
);
93 static irqreturn_t
pnv_eeh_event(int irq
, void *data
)
96 * We simply send a special EEH event if EEH has been
97 * enabled. We don't care about EEH events until we've
98 * finished processing the outstanding ones. Event processing
99 * gets unmasked in next_error() if EEH is enabled.
101 disable_irq_nosync(irq
);
104 eeh_send_failure_event(NULL
);
109 #ifdef CONFIG_DEBUG_FS
110 static ssize_t
pnv_eeh_ei_write(struct file
*filp
,
111 const char __user
*user_buf
,
112 size_t count
, loff_t
*ppos
)
114 struct pci_controller
*hose
= filp
->private_data
;
115 struct eeh_dev
*edev
;
117 int pe_no
, type
, func
;
118 unsigned long addr
, mask
;
122 if (!eeh_ops
|| !eeh_ops
->err_inject
)
125 /* Copy over argument buffer */
126 ret
= simple_write_to_buffer(buf
, sizeof(buf
), ppos
, user_buf
, count
);
130 /* Retrieve parameters */
131 ret
= sscanf(buf
, "%x:%x:%x:%lx:%lx",
132 &pe_no
, &type
, &func
, &addr
, &mask
);
137 edev
= kzalloc(sizeof(*edev
), GFP_KERNEL
);
141 edev
->pe_config_addr
= pe_no
;
142 pe
= eeh_pe_get(edev
);
147 /* Do error injection */
148 ret
= eeh_ops
->err_inject(pe
, type
, func
, addr
, mask
);
149 return ret
< 0 ? ret
: count
;
152 static const struct file_operations pnv_eeh_ei_fops
= {
155 .write
= pnv_eeh_ei_write
,
158 static int pnv_eeh_dbgfs_set(void *data
, int offset
, u64 val
)
160 struct pci_controller
*hose
= data
;
161 struct pnv_phb
*phb
= hose
->private_data
;
163 out_be64(phb
->regs
+ offset
, val
);
167 static int pnv_eeh_dbgfs_get(void *data
, int offset
, u64
*val
)
169 struct pci_controller
*hose
= data
;
170 struct pnv_phb
*phb
= hose
->private_data
;
172 *val
= in_be64(phb
->regs
+ offset
);
176 static int pnv_eeh_outb_dbgfs_set(void *data
, u64 val
)
178 return pnv_eeh_dbgfs_set(data
, 0xD10, val
);
181 static int pnv_eeh_outb_dbgfs_get(void *data
, u64
*val
)
183 return pnv_eeh_dbgfs_get(data
, 0xD10, val
);
186 static int pnv_eeh_inbA_dbgfs_set(void *data
, u64 val
)
188 return pnv_eeh_dbgfs_set(data
, 0xD90, val
);
191 static int pnv_eeh_inbA_dbgfs_get(void *data
, u64
*val
)
193 return pnv_eeh_dbgfs_get(data
, 0xD90, val
);
196 static int pnv_eeh_inbB_dbgfs_set(void *data
, u64 val
)
198 return pnv_eeh_dbgfs_set(data
, 0xE10, val
);
201 static int pnv_eeh_inbB_dbgfs_get(void *data
, u64
*val
)
203 return pnv_eeh_dbgfs_get(data
, 0xE10, val
);
206 DEFINE_SIMPLE_ATTRIBUTE(pnv_eeh_outb_dbgfs_ops
, pnv_eeh_outb_dbgfs_get
,
207 pnv_eeh_outb_dbgfs_set
, "0x%llx\n");
208 DEFINE_SIMPLE_ATTRIBUTE(pnv_eeh_inbA_dbgfs_ops
, pnv_eeh_inbA_dbgfs_get
,
209 pnv_eeh_inbA_dbgfs_set
, "0x%llx\n");
210 DEFINE_SIMPLE_ATTRIBUTE(pnv_eeh_inbB_dbgfs_ops
, pnv_eeh_inbB_dbgfs_get
,
211 pnv_eeh_inbB_dbgfs_set
, "0x%llx\n");
212 #endif /* CONFIG_DEBUG_FS */
215 * pnv_eeh_post_init - EEH platform dependent post initialization
217 * EEH platform dependent post initialization on powernv. When
218 * the function is called, the EEH PEs and devices should have
219 * been built. If the I/O cache staff has been built, EEH is
220 * ready to supply service.
222 static int pnv_eeh_post_init(void)
224 struct pci_controller
*hose
;
228 /* Register OPAL event notifier */
229 if (!pnv_eeh_nb_init
) {
230 eeh_event_irq
= opal_event_request(ilog2(OPAL_EVENT_PCI_ERROR
));
231 if (eeh_event_irq
< 0) {
232 pr_err("%s: Can't register OPAL event interrupt (%d)\n",
233 __func__
, eeh_event_irq
);
234 return eeh_event_irq
;
237 ret
= request_irq(eeh_event_irq
, pnv_eeh_event
,
238 IRQ_TYPE_LEVEL_HIGH
, "opal-eeh", NULL
);
240 irq_dispose_mapping(eeh_event_irq
);
241 pr_err("%s: Can't request OPAL event interrupt (%d)\n",
242 __func__
, eeh_event_irq
);
246 pnv_eeh_nb_init
= true;
250 disable_irq(eeh_event_irq
);
252 list_for_each_entry(hose
, &hose_list
, list_node
) {
253 phb
= hose
->private_data
;
256 * If EEH is enabled, we're going to rely on that.
257 * Otherwise, we restore to conventional mechanism
258 * to clear frozen PE during PCI config access.
261 phb
->flags
|= PNV_PHB_FLAG_EEH
;
263 phb
->flags
&= ~PNV_PHB_FLAG_EEH
;
265 /* Create debugfs entries */
266 #ifdef CONFIG_DEBUG_FS
267 if (phb
->has_dbgfs
|| !phb
->dbgfs
)
271 debugfs_create_file("err_injct", 0200,
275 debugfs_create_file("err_injct_outbound", 0600,
277 &pnv_eeh_outb_dbgfs_ops
);
278 debugfs_create_file("err_injct_inboundA", 0600,
280 &pnv_eeh_inbA_dbgfs_ops
);
281 debugfs_create_file("err_injct_inboundB", 0600,
283 &pnv_eeh_inbB_dbgfs_ops
);
284 #endif /* CONFIG_DEBUG_FS */
291 static int pnv_eeh_cap_start(struct pci_dn
*pdn
)
298 pnv_pci_cfg_read(pdn
, PCI_STATUS
, 2, &status
);
299 if (!(status
& PCI_STATUS_CAP_LIST
))
302 return PCI_CAPABILITY_LIST
;
305 static int pnv_eeh_find_cap(struct pci_dn
*pdn
, int cap
)
307 int pos
= pnv_eeh_cap_start(pdn
);
308 int cnt
= 48; /* Maximal number of capabilities */
315 pnv_pci_cfg_read(pdn
, pos
, 1, &pos
);
320 pnv_pci_cfg_read(pdn
, pos
+ PCI_CAP_LIST_ID
, 1, &id
);
329 pos
+= PCI_CAP_LIST_NEXT
;
335 static int pnv_eeh_find_ecap(struct pci_dn
*pdn
, int cap
)
337 struct eeh_dev
*edev
= pdn_to_eeh_dev(pdn
);
339 int pos
= 256, ttl
= (4096 - 256) / 8;
341 if (!edev
|| !edev
->pcie_cap
)
343 if (pnv_pci_cfg_read(pdn
, pos
, 4, &header
) != PCIBIOS_SUCCESSFUL
)
349 if (PCI_EXT_CAP_ID(header
) == cap
&& pos
)
352 pos
= PCI_EXT_CAP_NEXT(header
);
356 if (pnv_pci_cfg_read(pdn
, pos
, 4, &header
) != PCIBIOS_SUCCESSFUL
)
364 * pnv_eeh_probe - Do probe on PCI device
365 * @pdn: PCI device node
368 * When EEH module is installed during system boot, all PCI devices
369 * are checked one by one to see if it supports EEH. The function
370 * is introduced for the purpose. By default, EEH has been enabled
371 * on all PCI devices. That's to say, we only need do necessary
372 * initialization on the corresponding eeh device and create PE
375 * It's notable that's unsafe to retrieve the EEH device through
376 * the corresponding PCI device. During the PCI device hotplug, which
377 * was possiblly triggered by EEH core, the binding between EEH device
378 * and the PCI device isn't built yet.
380 static void *pnv_eeh_probe(struct pci_dn
*pdn
, void *data
)
382 struct pci_controller
*hose
= pdn
->phb
;
383 struct pnv_phb
*phb
= hose
->private_data
;
384 struct eeh_dev
*edev
= pdn_to_eeh_dev(pdn
);
389 * When probing the root bridge, which doesn't have any
390 * subordinate PCI devices. We don't have OF node for
391 * the root bridge. So it's not reasonable to continue
394 if (!edev
|| edev
->pe
)
397 /* Skip for PCI-ISA bridge */
398 if ((pdn
->class_code
>> 8) == PCI_CLASS_BRIDGE_ISA
)
401 /* Initialize eeh device */
402 edev
->class_code
= pdn
->class_code
;
403 edev
->mode
&= 0xFFFFFF00;
404 edev
->pcix_cap
= pnv_eeh_find_cap(pdn
, PCI_CAP_ID_PCIX
);
405 edev
->pcie_cap
= pnv_eeh_find_cap(pdn
, PCI_CAP_ID_EXP
);
406 edev
->aer_cap
= pnv_eeh_find_ecap(pdn
, PCI_EXT_CAP_ID_ERR
);
407 if ((edev
->class_code
>> 8) == PCI_CLASS_BRIDGE_PCI
) {
408 edev
->mode
|= EEH_DEV_BRIDGE
;
409 if (edev
->pcie_cap
) {
410 pnv_pci_cfg_read(pdn
, edev
->pcie_cap
+ PCI_EXP_FLAGS
,
412 pcie_flags
= (pcie_flags
& PCI_EXP_FLAGS_TYPE
) >> 4;
413 if (pcie_flags
== PCI_EXP_TYPE_ROOT_PORT
)
414 edev
->mode
|= EEH_DEV_ROOT_PORT
;
415 else if (pcie_flags
== PCI_EXP_TYPE_DOWNSTREAM
)
416 edev
->mode
|= EEH_DEV_DS_PORT
;
420 edev
->config_addr
= (pdn
->busno
<< 8) | (pdn
->devfn
);
421 edev
->pe_config_addr
= phb
->ioda
.pe_rmap
[edev
->config_addr
];
424 ret
= eeh_add_to_parent_pe(edev
);
426 pr_warn("%s: Can't add PCI dev %04x:%02x:%02x.%01x to parent PE (%d)\n",
427 __func__
, hose
->global_number
, pdn
->busno
,
428 PCI_SLOT(pdn
->devfn
), PCI_FUNC(pdn
->devfn
), ret
);
433 * If the PE contains any one of following adapters, the
434 * PCI config space can't be accessed when dumping EEH log.
435 * Otherwise, we will run into fenced PHB caused by shortage
436 * of outbound credits in the adapter. The PCI config access
437 * should be blocked until PE reset. MMIO access is dropped
438 * by hardware certainly. In order to drop PCI config requests,
439 * one more flag (EEH_PE_CFG_RESTRICTED) is introduced, which
440 * will be checked in the backend for PE state retrival. If
441 * the PE becomes frozen for the first time and the flag has
442 * been set for the PE, we will set EEH_PE_CFG_BLOCKED for
443 * that PE to block its config space.
445 * Broadcom Austin 4-ports NICs (14e4:1657)
446 * Broadcom Shiner 2-ports 10G NICs (14e4:168e)
448 if ((pdn
->vendor_id
== PCI_VENDOR_ID_BROADCOM
&&
449 pdn
->device_id
== 0x1657) ||
450 (pdn
->vendor_id
== PCI_VENDOR_ID_BROADCOM
&&
451 pdn
->device_id
== 0x168e))
452 edev
->pe
->state
|= EEH_PE_CFG_RESTRICTED
;
455 * Cache the PE primary bus, which can't be fetched when
456 * full hotplug is in progress. In that case, all child
457 * PCI devices of the PE are expected to be removed prior
461 edev
->pe
->bus
= pci_find_bus(hose
->global_number
,
465 * Enable EEH explicitly so that we will do EEH check
466 * while accessing I/O stuff
468 eeh_add_flag(EEH_ENABLED
);
470 /* Save memory bars */
477 * pnv_eeh_set_option - Initialize EEH or MMIO/DMA reenable
479 * @option: operation to be issued
481 * The function is used to control the EEH functionality globally.
482 * Currently, following options are support according to PAPR:
483 * Enable EEH, Disable EEH, Enable MMIO and Enable DMA
485 static int pnv_eeh_set_option(struct eeh_pe
*pe
, int option
)
487 struct pci_controller
*hose
= pe
->phb
;
488 struct pnv_phb
*phb
= hose
->private_data
;
489 bool freeze_pe
= false;
493 /* Sanity check on option */
495 case EEH_OPT_DISABLE
:
499 case EEH_OPT_THAW_MMIO
:
500 opt
= OPAL_EEH_ACTION_CLEAR_FREEZE_MMIO
;
502 case EEH_OPT_THAW_DMA
:
503 opt
= OPAL_EEH_ACTION_CLEAR_FREEZE_DMA
;
505 case EEH_OPT_FREEZE_PE
:
507 opt
= OPAL_EEH_ACTION_SET_FREEZE_ALL
;
510 pr_warn("%s: Invalid option %d\n", __func__
, option
);
514 /* If PHB supports compound PE, to handle it */
516 if (phb
->freeze_pe
) {
517 phb
->freeze_pe(phb
, pe
->addr
);
519 rc
= opal_pci_eeh_freeze_set(phb
->opal_id
,
521 if (rc
!= OPAL_SUCCESS
) {
522 pr_warn("%s: Failure %lld freezing "
525 phb
->hose
->global_number
, pe
->addr
);
530 if (phb
->unfreeze_pe
) {
531 ret
= phb
->unfreeze_pe(phb
, pe
->addr
, opt
);
533 rc
= opal_pci_eeh_freeze_clear(phb
->opal_id
,
535 if (rc
!= OPAL_SUCCESS
) {
536 pr_warn("%s: Failure %lld enable %d "
537 "for PHB#%x-PE#%x\n",
538 __func__
, rc
, option
,
539 phb
->hose
->global_number
, pe
->addr
);
549 * pnv_eeh_get_pe_addr - Retrieve PE address
552 * Retrieve the PE address according to the given tranditional
553 * PCI BDF (Bus/Device/Function) address.
555 static int pnv_eeh_get_pe_addr(struct eeh_pe
*pe
)
560 static void pnv_eeh_get_phb_diag(struct eeh_pe
*pe
)
562 struct pnv_phb
*phb
= pe
->phb
->private_data
;
565 rc
= opal_pci_get_phb_diag_data2(phb
->opal_id
, pe
->data
,
566 PNV_PCI_DIAG_BUF_SIZE
);
567 if (rc
!= OPAL_SUCCESS
)
568 pr_warn("%s: Failure %lld getting PHB#%x diag-data\n",
569 __func__
, rc
, pe
->phb
->global_number
);
572 static int pnv_eeh_get_phb_state(struct eeh_pe
*pe
)
574 struct pnv_phb
*phb
= pe
->phb
->private_data
;
580 rc
= opal_pci_eeh_freeze_status(phb
->opal_id
,
585 if (rc
!= OPAL_SUCCESS
) {
586 pr_warn("%s: Failure %lld getting PHB#%x state\n",
587 __func__
, rc
, phb
->hose
->global_number
);
588 return EEH_STATE_NOT_SUPPORT
;
592 * Check PHB state. If the PHB is frozen for the
593 * first time, to dump the PHB diag-data.
595 if (be16_to_cpu(pcierr
) != OPAL_EEH_PHB_ERROR
) {
596 result
= (EEH_STATE_MMIO_ACTIVE
|
597 EEH_STATE_DMA_ACTIVE
|
598 EEH_STATE_MMIO_ENABLED
|
599 EEH_STATE_DMA_ENABLED
);
600 } else if (!(pe
->state
& EEH_PE_ISOLATED
)) {
601 eeh_pe_state_mark(pe
, EEH_PE_ISOLATED
);
602 pnv_eeh_get_phb_diag(pe
);
604 if (eeh_has_flag(EEH_EARLY_DUMP_LOG
))
605 pnv_pci_dump_phb_diag_data(pe
->phb
, pe
->data
);
611 static int pnv_eeh_get_pe_state(struct eeh_pe
*pe
)
613 struct pnv_phb
*phb
= pe
->phb
->private_data
;
620 * We don't clobber hardware frozen state until PE
621 * reset is completed. In order to keep EEH core
622 * moving forward, we have to return operational
623 * state during PE reset.
625 if (pe
->state
& EEH_PE_RESET
) {
626 result
= (EEH_STATE_MMIO_ACTIVE
|
627 EEH_STATE_DMA_ACTIVE
|
628 EEH_STATE_MMIO_ENABLED
|
629 EEH_STATE_DMA_ENABLED
);
634 * Fetch PE state from hardware. If the PHB
635 * supports compound PE, let it handle that.
637 if (phb
->get_pe_state
) {
638 fstate
= phb
->get_pe_state(phb
, pe
->addr
);
640 rc
= opal_pci_eeh_freeze_status(phb
->opal_id
,
645 if (rc
!= OPAL_SUCCESS
) {
646 pr_warn("%s: Failure %lld getting PHB#%x-PE%x state\n",
647 __func__
, rc
, phb
->hose
->global_number
,
649 return EEH_STATE_NOT_SUPPORT
;
653 /* Figure out state */
655 case OPAL_EEH_STOPPED_NOT_FROZEN
:
656 result
= (EEH_STATE_MMIO_ACTIVE
|
657 EEH_STATE_DMA_ACTIVE
|
658 EEH_STATE_MMIO_ENABLED
|
659 EEH_STATE_DMA_ENABLED
);
661 case OPAL_EEH_STOPPED_MMIO_FREEZE
:
662 result
= (EEH_STATE_DMA_ACTIVE
|
663 EEH_STATE_DMA_ENABLED
);
665 case OPAL_EEH_STOPPED_DMA_FREEZE
:
666 result
= (EEH_STATE_MMIO_ACTIVE
|
667 EEH_STATE_MMIO_ENABLED
);
669 case OPAL_EEH_STOPPED_MMIO_DMA_FREEZE
:
672 case OPAL_EEH_STOPPED_RESET
:
673 result
= EEH_STATE_RESET_ACTIVE
;
675 case OPAL_EEH_STOPPED_TEMP_UNAVAIL
:
676 result
= EEH_STATE_UNAVAILABLE
;
678 case OPAL_EEH_STOPPED_PERM_UNAVAIL
:
679 result
= EEH_STATE_NOT_SUPPORT
;
682 result
= EEH_STATE_NOT_SUPPORT
;
683 pr_warn("%s: Invalid PHB#%x-PE#%x state %x\n",
684 __func__
, phb
->hose
->global_number
,
689 * If PHB supports compound PE, to freeze all
690 * slave PEs for consistency.
692 * If the PE is switching to frozen state for the
693 * first time, to dump the PHB diag-data.
695 if (!(result
& EEH_STATE_NOT_SUPPORT
) &&
696 !(result
& EEH_STATE_UNAVAILABLE
) &&
697 !(result
& EEH_STATE_MMIO_ACTIVE
) &&
698 !(result
& EEH_STATE_DMA_ACTIVE
) &&
699 !(pe
->state
& EEH_PE_ISOLATED
)) {
701 phb
->freeze_pe(phb
, pe
->addr
);
703 eeh_pe_state_mark(pe
, EEH_PE_ISOLATED
);
704 pnv_eeh_get_phb_diag(pe
);
706 if (eeh_has_flag(EEH_EARLY_DUMP_LOG
))
707 pnv_pci_dump_phb_diag_data(pe
->phb
, pe
->data
);
714 * pnv_eeh_get_state - Retrieve PE state
716 * @delay: delay while PE state is temporarily unavailable
718 * Retrieve the state of the specified PE. For IODA-compitable
719 * platform, it should be retrieved from IODA table. Therefore,
720 * we prefer passing down to hardware implementation to handle
723 static int pnv_eeh_get_state(struct eeh_pe
*pe
, int *delay
)
727 if (pe
->type
& EEH_PE_PHB
)
728 ret
= pnv_eeh_get_phb_state(pe
);
730 ret
= pnv_eeh_get_pe_state(pe
);
736 * If the PE state is temporarily unavailable,
737 * to inform the EEH core delay for default
741 if (ret
& EEH_STATE_UNAVAILABLE
)
747 static s64
pnv_eeh_phb_poll(struct pnv_phb
*phb
)
749 s64 rc
= OPAL_HARDWARE
;
752 rc
= opal_pci_poll(phb
->opal_id
);
756 if (system_state
< SYSTEM_RUNNING
)
765 int pnv_eeh_phb_reset(struct pci_controller
*hose
, int option
)
767 struct pnv_phb
*phb
= hose
->private_data
;
768 s64 rc
= OPAL_HARDWARE
;
770 pr_debug("%s: Reset PHB#%x, option=%d\n",
771 __func__
, hose
->global_number
, option
);
773 /* Issue PHB complete reset request */
774 if (option
== EEH_RESET_FUNDAMENTAL
||
775 option
== EEH_RESET_HOT
)
776 rc
= opal_pci_reset(phb
->opal_id
,
777 OPAL_RESET_PHB_COMPLETE
,
779 else if (option
== EEH_RESET_DEACTIVATE
)
780 rc
= opal_pci_reset(phb
->opal_id
,
781 OPAL_RESET_PHB_COMPLETE
,
782 OPAL_DEASSERT_RESET
);
787 * Poll state of the PHB until the request is done
788 * successfully. The PHB reset is usually PHB complete
789 * reset followed by hot reset on root bus. So we also
790 * need the PCI bus settlement delay.
792 rc
= pnv_eeh_phb_poll(phb
);
793 if (option
== EEH_RESET_DEACTIVATE
) {
794 if (system_state
< SYSTEM_RUNNING
)
795 udelay(1000 * EEH_PE_RST_SETTLE_TIME
);
797 msleep(EEH_PE_RST_SETTLE_TIME
);
800 if (rc
!= OPAL_SUCCESS
)
806 static int pnv_eeh_root_reset(struct pci_controller
*hose
, int option
)
808 struct pnv_phb
*phb
= hose
->private_data
;
809 s64 rc
= OPAL_HARDWARE
;
811 pr_debug("%s: Reset PHB#%x, option=%d\n",
812 __func__
, hose
->global_number
, option
);
815 * During the reset deassert time, we needn't care
816 * the reset scope because the firmware does nothing
817 * for fundamental or hot reset during deassert phase.
819 if (option
== EEH_RESET_FUNDAMENTAL
)
820 rc
= opal_pci_reset(phb
->opal_id
,
821 OPAL_RESET_PCI_FUNDAMENTAL
,
823 else if (option
== EEH_RESET_HOT
)
824 rc
= opal_pci_reset(phb
->opal_id
,
827 else if (option
== EEH_RESET_DEACTIVATE
)
828 rc
= opal_pci_reset(phb
->opal_id
,
830 OPAL_DEASSERT_RESET
);
834 /* Poll state of the PHB until the request is done */
835 rc
= pnv_eeh_phb_poll(phb
);
836 if (option
== EEH_RESET_DEACTIVATE
)
837 msleep(EEH_PE_RST_SETTLE_TIME
);
839 if (rc
!= OPAL_SUCCESS
)
845 static int pnv_eeh_bridge_reset(struct pci_dev
*dev
, int option
)
847 struct pci_dn
*pdn
= pci_get_pdn_by_devfn(dev
->bus
, dev
->devfn
);
848 struct eeh_dev
*edev
= pdn_to_eeh_dev(pdn
);
849 int aer
= edev
? edev
->aer_cap
: 0;
852 pr_debug("%s: Reset PCI bus %04x:%02x with option %d\n",
853 __func__
, pci_domain_nr(dev
->bus
),
854 dev
->bus
->number
, option
);
857 case EEH_RESET_FUNDAMENTAL
:
859 /* Don't report linkDown event */
861 eeh_ops
->read_config(pdn
, aer
+ PCI_ERR_UNCOR_MASK
,
863 ctrl
|= PCI_ERR_UNC_SURPDN
;
864 eeh_ops
->write_config(pdn
, aer
+ PCI_ERR_UNCOR_MASK
,
868 eeh_ops
->read_config(pdn
, PCI_BRIDGE_CONTROL
, 2, &ctrl
);
869 ctrl
|= PCI_BRIDGE_CTL_BUS_RESET
;
870 eeh_ops
->write_config(pdn
, PCI_BRIDGE_CONTROL
, 2, ctrl
);
872 msleep(EEH_PE_RST_HOLD_TIME
);
874 case EEH_RESET_DEACTIVATE
:
875 eeh_ops
->read_config(pdn
, PCI_BRIDGE_CONTROL
, 2, &ctrl
);
876 ctrl
&= ~PCI_BRIDGE_CTL_BUS_RESET
;
877 eeh_ops
->write_config(pdn
, PCI_BRIDGE_CONTROL
, 2, ctrl
);
879 msleep(EEH_PE_RST_SETTLE_TIME
);
881 /* Continue reporting linkDown event */
883 eeh_ops
->read_config(pdn
, aer
+ PCI_ERR_UNCOR_MASK
,
885 ctrl
&= ~PCI_ERR_UNC_SURPDN
;
886 eeh_ops
->write_config(pdn
, aer
+ PCI_ERR_UNCOR_MASK
,
896 void pnv_pci_reset_secondary_bus(struct pci_dev
*dev
)
898 struct pci_controller
*hose
;
900 if (pci_is_root_bus(dev
->bus
)) {
901 hose
= pci_bus_to_host(dev
->bus
);
902 pnv_eeh_root_reset(hose
, EEH_RESET_HOT
);
903 pnv_eeh_root_reset(hose
, EEH_RESET_DEACTIVATE
);
905 pnv_eeh_bridge_reset(dev
, EEH_RESET_HOT
);
906 pnv_eeh_bridge_reset(dev
, EEH_RESET_DEACTIVATE
);
911 * pnv_eeh_reset - Reset the specified PE
913 * @option: reset option
915 * Do reset on the indicated PE. For PCI bus sensitive PE,
916 * we need to reset the parent p2p bridge. The PHB has to
917 * be reinitialized if the p2p bridge is root bridge. For
918 * PCI device sensitive PE, we will try to reset the device
919 * through FLR. For now, we don't have OPAL APIs to do HARD
920 * reset yet, so all reset would be SOFT (HOT) reset.
922 static int pnv_eeh_reset(struct eeh_pe
*pe
, int option
)
924 struct pci_controller
*hose
= pe
->phb
;
929 * For PHB reset, we always have complete reset. For those PEs whose
930 * primary bus derived from root complex (root bus) or root port
931 * (usually bus#1), we apply hot or fundamental reset on the root port.
932 * For other PEs, we always have hot reset on the PE primary bus.
934 * Here, we have different design to pHyp, which always clear the
935 * frozen state during PE reset. However, the good idea here from
936 * benh is to keep frozen state before we get PE reset done completely
937 * (until BAR restore). With the frozen state, HW drops illegal IO
938 * or MMIO access, which can incur recrusive frozen PE during PE
939 * reset. The side effect is that EEH core has to clear the frozen
940 * state explicitly after BAR restore.
942 if (pe
->type
& EEH_PE_PHB
) {
943 ret
= pnv_eeh_phb_reset(hose
, option
);
949 * The frozen PE might be caused by PAPR error injection
950 * registers, which are expected to be cleared after hitting
951 * frozen PE as stated in the hardware spec. Unfortunately,
952 * that's not true on P7IOC. So we have to clear it manually
953 * to avoid recursive EEH errors during recovery.
955 phb
= hose
->private_data
;
956 if (phb
->model
== PNV_PHB_MODEL_P7IOC
&&
957 (option
== EEH_RESET_HOT
||
958 option
== EEH_RESET_FUNDAMENTAL
)) {
959 rc
= opal_pci_reset(phb
->opal_id
,
960 OPAL_RESET_PHB_ERROR
,
962 if (rc
!= OPAL_SUCCESS
) {
963 pr_warn("%s: Failure %lld clearing "
964 "error injection registers\n",
970 bus
= eeh_pe_bus_get(pe
);
971 if (pci_is_root_bus(bus
) ||
972 pci_is_root_bus(bus
->parent
))
973 ret
= pnv_eeh_root_reset(hose
, option
);
975 ret
= pnv_eeh_bridge_reset(bus
->self
, option
);
982 * pnv_eeh_wait_state - Wait for PE state
984 * @max_wait: maximal period in millisecond
986 * Wait for the state of associated PE. It might take some time
987 * to retrieve the PE's state.
989 static int pnv_eeh_wait_state(struct eeh_pe
*pe
, int max_wait
)
995 ret
= pnv_eeh_get_state(pe
, &mwait
);
998 * If the PE's state is temporarily unavailable,
999 * we have to wait for the specified time. Otherwise,
1000 * the PE's state will be returned immediately.
1002 if (ret
!= EEH_STATE_UNAVAILABLE
)
1005 if (max_wait
<= 0) {
1006 pr_warn("%s: Timeout getting PE#%x's state (%d)\n",
1007 __func__
, pe
->addr
, max_wait
);
1008 return EEH_STATE_NOT_SUPPORT
;
1015 return EEH_STATE_NOT_SUPPORT
;
1019 * pnv_eeh_get_log - Retrieve error log
1021 * @severity: temporary or permanent error log
1022 * @drv_log: driver log to be combined with retrieved error log
1023 * @len: length of driver log
1025 * Retrieve the temporary or permanent error from the PE.
1027 static int pnv_eeh_get_log(struct eeh_pe
*pe
, int severity
,
1028 char *drv_log
, unsigned long len
)
1030 if (!eeh_has_flag(EEH_EARLY_DUMP_LOG
))
1031 pnv_pci_dump_phb_diag_data(pe
->phb
, pe
->data
);
1037 * pnv_eeh_configure_bridge - Configure PCI bridges in the indicated PE
1040 * The function will be called to reconfigure the bridges included
1041 * in the specified PE so that the mulfunctional PE would be recovered
1044 static int pnv_eeh_configure_bridge(struct eeh_pe
*pe
)
1050 * pnv_pe_err_inject - Inject specified error to the indicated PE
1051 * @pe: the indicated PE
1053 * @func: specific error type
1055 * @mask: address mask
1057 * The routine is called to inject specified error, which is
1058 * determined by @type and @func, to the indicated PE for
1061 static int pnv_eeh_err_inject(struct eeh_pe
*pe
, int type
, int func
,
1062 unsigned long addr
, unsigned long mask
)
1064 struct pci_controller
*hose
= pe
->phb
;
1065 struct pnv_phb
*phb
= hose
->private_data
;
1068 /* Sanity check on error type */
1069 if (type
!= OPAL_ERR_INJECT_TYPE_IOA_BUS_ERR
&&
1070 type
!= OPAL_ERR_INJECT_TYPE_IOA_BUS_ERR64
) {
1071 pr_warn("%s: Invalid error type %d\n",
1076 if (func
< OPAL_ERR_INJECT_FUNC_IOA_LD_MEM_ADDR
||
1077 func
> OPAL_ERR_INJECT_FUNC_IOA_DMA_WR_TARGET
) {
1078 pr_warn("%s: Invalid error function %d\n",
1083 /* Firmware supports error injection ? */
1084 if (!opal_check_token(OPAL_PCI_ERR_INJECT
)) {
1085 pr_warn("%s: Firmware doesn't support error injection\n",
1090 /* Do error injection */
1091 rc
= opal_pci_err_inject(phb
->opal_id
, pe
->addr
,
1092 type
, func
, addr
, mask
);
1093 if (rc
!= OPAL_SUCCESS
) {
1094 pr_warn("%s: Failure %lld injecting error "
1095 "%d-%d to PHB#%x-PE#%x\n",
1096 __func__
, rc
, type
, func
,
1097 hose
->global_number
, pe
->addr
);
1104 static inline bool pnv_eeh_cfg_blocked(struct pci_dn
*pdn
)
1106 struct eeh_dev
*edev
= pdn_to_eeh_dev(pdn
);
1108 if (!edev
|| !edev
->pe
)
1111 if (edev
->pe
->state
& EEH_PE_CFG_BLOCKED
)
1117 static int pnv_eeh_read_config(struct pci_dn
*pdn
,
1118 int where
, int size
, u32
*val
)
1121 return PCIBIOS_DEVICE_NOT_FOUND
;
1123 if (pnv_eeh_cfg_blocked(pdn
)) {
1125 return PCIBIOS_SET_FAILED
;
1128 return pnv_pci_cfg_read(pdn
, where
, size
, val
);
1131 static int pnv_eeh_write_config(struct pci_dn
*pdn
,
1132 int where
, int size
, u32 val
)
1135 return PCIBIOS_DEVICE_NOT_FOUND
;
1137 if (pnv_eeh_cfg_blocked(pdn
))
1138 return PCIBIOS_SET_FAILED
;
1140 return pnv_pci_cfg_write(pdn
, where
, size
, val
);
1143 static void pnv_eeh_dump_hub_diag_common(struct OpalIoP7IOCErrorData
*data
)
1146 if (data
->gemXfir
|| data
->gemRfir
||
1147 data
->gemRirqfir
|| data
->gemMask
|| data
->gemRwof
)
1148 pr_info(" GEM: %016llx %016llx %016llx %016llx %016llx\n",
1149 be64_to_cpu(data
->gemXfir
),
1150 be64_to_cpu(data
->gemRfir
),
1151 be64_to_cpu(data
->gemRirqfir
),
1152 be64_to_cpu(data
->gemMask
),
1153 be64_to_cpu(data
->gemRwof
));
1156 if (data
->lemFir
|| data
->lemErrMask
||
1157 data
->lemAction0
|| data
->lemAction1
|| data
->lemWof
)
1158 pr_info(" LEM: %016llx %016llx %016llx %016llx %016llx\n",
1159 be64_to_cpu(data
->lemFir
),
1160 be64_to_cpu(data
->lemErrMask
),
1161 be64_to_cpu(data
->lemAction0
),
1162 be64_to_cpu(data
->lemAction1
),
1163 be64_to_cpu(data
->lemWof
));
1166 static void pnv_eeh_get_and_dump_hub_diag(struct pci_controller
*hose
)
1168 struct pnv_phb
*phb
= hose
->private_data
;
1169 struct OpalIoP7IOCErrorData
*data
= &phb
->diag
.hub_diag
;
1172 rc
= opal_pci_get_hub_diag_data(phb
->hub_id
, data
, sizeof(*data
));
1173 if (rc
!= OPAL_SUCCESS
) {
1174 pr_warn("%s: Failed to get HUB#%llx diag-data (%ld)\n",
1175 __func__
, phb
->hub_id
, rc
);
1179 switch (data
->type
) {
1180 case OPAL_P7IOC_DIAG_TYPE_RGC
:
1181 pr_info("P7IOC diag-data for RGC\n\n");
1182 pnv_eeh_dump_hub_diag_common(data
);
1183 if (data
->rgc
.rgcStatus
|| data
->rgc
.rgcLdcp
)
1184 pr_info(" RGC: %016llx %016llx\n",
1185 be64_to_cpu(data
->rgc
.rgcStatus
),
1186 be64_to_cpu(data
->rgc
.rgcLdcp
));
1188 case OPAL_P7IOC_DIAG_TYPE_BI
:
1189 pr_info("P7IOC diag-data for BI %s\n\n",
1190 data
->bi
.biDownbound
? "Downbound" : "Upbound");
1191 pnv_eeh_dump_hub_diag_common(data
);
1192 if (data
->bi
.biLdcp0
|| data
->bi
.biLdcp1
||
1193 data
->bi
.biLdcp2
|| data
->bi
.biFenceStatus
)
1194 pr_info(" BI: %016llx %016llx %016llx %016llx\n",
1195 be64_to_cpu(data
->bi
.biLdcp0
),
1196 be64_to_cpu(data
->bi
.biLdcp1
),
1197 be64_to_cpu(data
->bi
.biLdcp2
),
1198 be64_to_cpu(data
->bi
.biFenceStatus
));
1200 case OPAL_P7IOC_DIAG_TYPE_CI
:
1201 pr_info("P7IOC diag-data for CI Port %d\n\n",
1203 pnv_eeh_dump_hub_diag_common(data
);
1204 if (data
->ci
.ciPortStatus
|| data
->ci
.ciPortLdcp
)
1205 pr_info(" CI: %016llx %016llx\n",
1206 be64_to_cpu(data
->ci
.ciPortStatus
),
1207 be64_to_cpu(data
->ci
.ciPortLdcp
));
1209 case OPAL_P7IOC_DIAG_TYPE_MISC
:
1210 pr_info("P7IOC diag-data for MISC\n\n");
1211 pnv_eeh_dump_hub_diag_common(data
);
1213 case OPAL_P7IOC_DIAG_TYPE_I2C
:
1214 pr_info("P7IOC diag-data for I2C\n\n");
1215 pnv_eeh_dump_hub_diag_common(data
);
1218 pr_warn("%s: Invalid type of HUB#%llx diag-data (%d)\n",
1219 __func__
, phb
->hub_id
, data
->type
);
1223 static int pnv_eeh_get_pe(struct pci_controller
*hose
,
1224 u16 pe_no
, struct eeh_pe
**pe
)
1226 struct pnv_phb
*phb
= hose
->private_data
;
1227 struct pnv_ioda_pe
*pnv_pe
;
1228 struct eeh_pe
*dev_pe
;
1229 struct eeh_dev edev
;
1232 * If PHB supports compound PE, to fetch
1233 * the master PE because slave PE is invisible
1236 pnv_pe
= &phb
->ioda
.pe_array
[pe_no
];
1237 if (pnv_pe
->flags
& PNV_IODA_PE_SLAVE
) {
1238 pnv_pe
= pnv_pe
->master
;
1240 !(pnv_pe
->flags
& PNV_IODA_PE_MASTER
));
1241 pe_no
= pnv_pe
->pe_number
;
1244 /* Find the PE according to PE# */
1245 memset(&edev
, 0, sizeof(struct eeh_dev
));
1247 edev
.pe_config_addr
= pe_no
;
1248 dev_pe
= eeh_pe_get(&edev
);
1252 /* Freeze the (compound) PE */
1254 if (!(dev_pe
->state
& EEH_PE_ISOLATED
))
1255 phb
->freeze_pe(phb
, pe_no
);
1258 * At this point, we're sure the (compound) PE should
1259 * have been frozen. However, we still need poke until
1260 * hitting the frozen PE on top level.
1262 dev_pe
= dev_pe
->parent
;
1263 while (dev_pe
&& !(dev_pe
->type
& EEH_PE_PHB
)) {
1265 int active_flags
= (EEH_STATE_MMIO_ACTIVE
|
1266 EEH_STATE_DMA_ACTIVE
);
1268 ret
= eeh_ops
->get_state(dev_pe
, NULL
);
1269 if (ret
<= 0 || (ret
& active_flags
) == active_flags
) {
1270 dev_pe
= dev_pe
->parent
;
1274 /* Frozen parent PE */
1276 if (!(dev_pe
->state
& EEH_PE_ISOLATED
))
1277 phb
->freeze_pe(phb
, dev_pe
->addr
);
1280 dev_pe
= dev_pe
->parent
;
1287 * pnv_eeh_next_error - Retrieve next EEH error to handle
1290 * The function is expected to be called by EEH core while it gets
1291 * special EEH event (without binding PE). The function calls to
1292 * OPAL APIs for next error to handle. The informational error is
1293 * handled internally by platform. However, the dead IOC, dead PHB,
1294 * fenced PHB and frozen PE should be handled by EEH core eventually.
1296 static int pnv_eeh_next_error(struct eeh_pe
**pe
)
1298 struct pci_controller
*hose
;
1299 struct pnv_phb
*phb
;
1300 struct eeh_pe
*phb_pe
, *parent_pe
;
1301 __be64 frozen_pe_no
;
1302 __be16 err_type
, severity
;
1303 int active_flags
= (EEH_STATE_MMIO_ACTIVE
| EEH_STATE_DMA_ACTIVE
);
1305 int state
, ret
= EEH_NEXT_ERR_NONE
;
1308 * While running here, it's safe to purge the event queue. The
1309 * event should still be masked.
1311 eeh_remove_event(NULL
, false);
1313 list_for_each_entry(hose
, &hose_list
, list_node
) {
1315 * If the subordinate PCI buses of the PHB has been
1316 * removed or is exactly under error recovery, we
1317 * needn't take care of it any more.
1319 phb
= hose
->private_data
;
1320 phb_pe
= eeh_phb_pe_get(hose
);
1321 if (!phb_pe
|| (phb_pe
->state
& EEH_PE_ISOLATED
))
1324 rc
= opal_pci_next_error(phb
->opal_id
,
1325 &frozen_pe_no
, &err_type
, &severity
);
1326 if (rc
!= OPAL_SUCCESS
) {
1327 pr_devel("%s: Invalid return value on "
1328 "PHB#%x (0x%lx) from opal_pci_next_error",
1329 __func__
, hose
->global_number
, rc
);
1333 /* If the PHB doesn't have error, stop processing */
1334 if (be16_to_cpu(err_type
) == OPAL_EEH_NO_ERROR
||
1335 be16_to_cpu(severity
) == OPAL_EEH_SEV_NO_ERROR
) {
1336 pr_devel("%s: No error found on PHB#%x\n",
1337 __func__
, hose
->global_number
);
1342 * Processing the error. We're expecting the error with
1343 * highest priority reported upon multiple errors on the
1346 pr_devel("%s: Error (%d, %d, %llu) on PHB#%x\n",
1347 __func__
, be16_to_cpu(err_type
),
1348 be16_to_cpu(severity
), be64_to_cpu(frozen_pe_no
),
1349 hose
->global_number
);
1350 switch (be16_to_cpu(err_type
)) {
1351 case OPAL_EEH_IOC_ERROR
:
1352 if (be16_to_cpu(severity
) == OPAL_EEH_SEV_IOC_DEAD
) {
1353 pr_err("EEH: dead IOC detected\n");
1354 ret
= EEH_NEXT_ERR_DEAD_IOC
;
1355 } else if (be16_to_cpu(severity
) == OPAL_EEH_SEV_INF
) {
1356 pr_info("EEH: IOC informative error "
1358 pnv_eeh_get_and_dump_hub_diag(hose
);
1359 ret
= EEH_NEXT_ERR_NONE
;
1363 case OPAL_EEH_PHB_ERROR
:
1364 if (be16_to_cpu(severity
) == OPAL_EEH_SEV_PHB_DEAD
) {
1366 pr_err("EEH: dead PHB#%x detected, "
1368 hose
->global_number
,
1369 eeh_pe_loc_get(phb_pe
));
1370 ret
= EEH_NEXT_ERR_DEAD_PHB
;
1371 } else if (be16_to_cpu(severity
) ==
1372 OPAL_EEH_SEV_PHB_FENCED
) {
1374 pr_err("EEH: Fenced PHB#%x detected, "
1376 hose
->global_number
,
1377 eeh_pe_loc_get(phb_pe
));
1378 ret
= EEH_NEXT_ERR_FENCED_PHB
;
1379 } else if (be16_to_cpu(severity
) == OPAL_EEH_SEV_INF
) {
1380 pr_info("EEH: PHB#%x informative error "
1381 "detected, location: %s\n",
1382 hose
->global_number
,
1383 eeh_pe_loc_get(phb_pe
));
1384 pnv_eeh_get_phb_diag(phb_pe
);
1385 pnv_pci_dump_phb_diag_data(hose
, phb_pe
->data
);
1386 ret
= EEH_NEXT_ERR_NONE
;
1390 case OPAL_EEH_PE_ERROR
:
1392 * If we can't find the corresponding PE, we
1393 * just try to unfreeze.
1395 if (pnv_eeh_get_pe(hose
,
1396 be64_to_cpu(frozen_pe_no
), pe
)) {
1397 /* Try best to clear it */
1398 pr_info("EEH: Clear non-existing PHB#%x-PE#%llx\n",
1399 hose
->global_number
, frozen_pe_no
);
1400 pr_info("EEH: PHB location: %s\n",
1401 eeh_pe_loc_get(phb_pe
));
1402 opal_pci_eeh_freeze_clear(phb
->opal_id
,
1404 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL
);
1405 ret
= EEH_NEXT_ERR_NONE
;
1406 } else if ((*pe
)->state
& EEH_PE_ISOLATED
||
1407 eeh_pe_passed(*pe
)) {
1408 ret
= EEH_NEXT_ERR_NONE
;
1410 pr_err("EEH: Frozen PE#%x "
1411 "on PHB#%x detected\n",
1413 (*pe
)->phb
->global_number
);
1414 pr_err("EEH: PE location: %s, "
1415 "PHB location: %s\n",
1416 eeh_pe_loc_get(*pe
),
1417 eeh_pe_loc_get(phb_pe
));
1418 ret
= EEH_NEXT_ERR_FROZEN_PE
;
1423 pr_warn("%s: Unexpected error type %d\n",
1424 __func__
, be16_to_cpu(err_type
));
1428 * EEH core will try recover from fenced PHB or
1429 * frozen PE. In the time for frozen PE, EEH core
1430 * enable IO path for that before collecting logs,
1431 * but it ruins the site. So we have to dump the
1432 * log in advance here.
1434 if ((ret
== EEH_NEXT_ERR_FROZEN_PE
||
1435 ret
== EEH_NEXT_ERR_FENCED_PHB
) &&
1436 !((*pe
)->state
& EEH_PE_ISOLATED
)) {
1437 eeh_pe_state_mark(*pe
, EEH_PE_ISOLATED
);
1438 pnv_eeh_get_phb_diag(*pe
);
1440 if (eeh_has_flag(EEH_EARLY_DUMP_LOG
))
1441 pnv_pci_dump_phb_diag_data((*pe
)->phb
,
1446 * We probably have the frozen parent PE out there and
1447 * we need have to handle frozen parent PE firstly.
1449 if (ret
== EEH_NEXT_ERR_FROZEN_PE
) {
1450 parent_pe
= (*pe
)->parent
;
1452 /* Hit the ceiling ? */
1453 if (parent_pe
->type
& EEH_PE_PHB
)
1456 /* Frozen parent PE ? */
1457 state
= eeh_ops
->get_state(parent_pe
, NULL
);
1459 (state
& active_flags
) != active_flags
)
1462 /* Next parent level */
1463 parent_pe
= parent_pe
->parent
;
1466 /* We possibly migrate to another PE */
1467 eeh_pe_state_mark(*pe
, EEH_PE_ISOLATED
);
1471 * If we have no errors on the specific PHB or only
1472 * informative error there, we continue poking it.
1473 * Otherwise, we need actions to be taken by upper
1476 if (ret
> EEH_NEXT_ERR_INF
)
1480 /* Unmask the event */
1481 if (ret
== EEH_NEXT_ERR_NONE
&& eeh_enabled())
1482 enable_irq(eeh_event_irq
);
1487 static int pnv_eeh_restore_config(struct pci_dn
*pdn
)
1489 struct eeh_dev
*edev
= pdn_to_eeh_dev(pdn
);
1490 struct pnv_phb
*phb
;
1496 phb
= edev
->phb
->private_data
;
1497 ret
= opal_pci_reinit(phb
->opal_id
,
1498 OPAL_REINIT_PCI_DEV
, edev
->config_addr
);
1500 pr_warn("%s: Can't reinit PCI dev 0x%x (%lld)\n",
1501 __func__
, edev
->config_addr
, ret
);
1508 static struct eeh_ops pnv_eeh_ops
= {
1510 .init
= pnv_eeh_init
,
1511 .post_init
= pnv_eeh_post_init
,
1512 .probe
= pnv_eeh_probe
,
1513 .set_option
= pnv_eeh_set_option
,
1514 .get_pe_addr
= pnv_eeh_get_pe_addr
,
1515 .get_state
= pnv_eeh_get_state
,
1516 .reset
= pnv_eeh_reset
,
1517 .wait_state
= pnv_eeh_wait_state
,
1518 .get_log
= pnv_eeh_get_log
,
1519 .configure_bridge
= pnv_eeh_configure_bridge
,
1520 .err_inject
= pnv_eeh_err_inject
,
1521 .read_config
= pnv_eeh_read_config
,
1522 .write_config
= pnv_eeh_write_config
,
1523 .next_error
= pnv_eeh_next_error
,
1524 .restore_config
= pnv_eeh_restore_config
1528 * eeh_powernv_init - Register platform dependent EEH operations
1530 * EEH initialization on powernv platform. This function should be
1531 * called before any EEH related functions.
1533 static int __init
eeh_powernv_init(void)
1537 eeh_set_pe_aux_size(PNV_PCI_DIAG_BUF_SIZE
);
1538 ret
= eeh_ops_register(&pnv_eeh_ops
);
1540 pr_info("EEH: PowerNV platform initialized\n");
1542 pr_info("EEH: Failed to initialize PowerNV platform (%d)\n", ret
);
1546 machine_early_initcall(powernv
, eeh_powernv_init
);