2 * Copyright 2013, Michael (Ellerman|Neuling), IBM Corporation.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
10 #define pr_fmt(fmt) "powernv: " fmt
12 #include <linux/kernel.h>
13 #include <linux/cpu.h>
14 #include <linux/cpumask.h>
15 #include <linux/device.h>
16 #include <linux/gfp.h>
17 #include <linux/smp.h>
18 #include <linux/stop_machine.h>
20 #include <asm/cputhreads.h>
21 #include <asm/kvm_ppc.h>
22 #include <asm/machdep.h>
31 * Split/unsplit procedure:
33 * A core can be in one of three states, unsplit, 2-way split, and 4-way split.
35 * The mapping to subcores_per_core is simple:
37 * State | subcores_per_core
38 * ------------|------------------
43 * The core is split along thread boundaries, the mapping between subcores and
44 * threads is as follows:
47 * ----------------------------
49 * ----------------------------
50 * Thread | 0 1 2 3 4 5 6 7 |
51 * ----------------------------
54 * -------------------------------------
56 * -------------------------------------
57 * Thread | 0 1 2 3 | 4 5 6 7 |
58 * -------------------------------------
61 * -----------------------------------------
62 * Subcore | 0 | 1 | 2 | 3 |
63 * -----------------------------------------
64 * Thread | 0 1 | 2 3 | 4 5 | 6 7 |
65 * -----------------------------------------
71 * It is not possible to transition between either of the split states, the
72 * core must first be unsplit. The legal transitions are:
74 * ----------- ---------------
75 * | | <----> | 2-way split |
79 * | | <----> | 4-way split |
80 * ----------- ---------------
85 * Unsplitting is the simpler procedure. It requires thread 0 to request the
86 * unsplit while all other threads NAP.
88 * Thread 0 clears HID0_POWER8_DYNLPARDIS (Dynamic LPAR Disable). This tells
89 * the hardware that if all threads except 0 are napping, the hardware should
92 * Non-zero threads are sent to a NAP loop, they don't exit the loop until they
93 * see the core unsplit.
95 * Core 0 spins waiting for the hardware to see all the other threads napping
96 * and perform the unsplit.
98 * Once thread 0 sees the unsplit, it IPIs the secondary threads to wake them
99 * out of NAP. They will then see the core unsplit and exit the NAP loop.
104 * The basic splitting procedure is fairly straight forward. However it is
105 * complicated by the fact that after the split occurs, the newly created
106 * subcores are not in a fully initialised state.
108 * Most notably the subcores do not have the correct value for SDR1, which
109 * means they must not be running in virtual mode when the split occurs. The
110 * subcores have separate timebases SPRs but these are pre-synchronised by
113 * To begin with secondary threads are sent to an assembly routine. There they
114 * switch to real mode, so they are immune to the uninitialised SDR1 value.
115 * Once in real mode they indicate that they are in real mode, and spin waiting
116 * to see the core split.
118 * Thread 0 waits to see that all secondaries are in real mode, and then begins
119 * the splitting procedure. It firstly sets HID0_POWER8_DYNLPARDIS, which
120 * prevents the hardware from unsplitting. Then it sets the appropriate HID bit
121 * to request the split, and spins waiting to see that the split has happened.
123 * Concurrently the secondaries will notice the split. When they do they set up
124 * their SPRs, notably SDR1, and then they can return to virtual mode and exit
128 /* Initialised at boot by subcore_init() */
129 static int subcores_per_core
;
132 * Used to communicate to offline cpus that we want them to pop out of the
133 * offline loop and do a split or unsplit.
135 * 0 - no split happening
136 * 1 - unsplit in progress
137 * 2 - split to 2 in progress
138 * 4 - split to 4 in progress
140 static int new_split_mode
;
142 static cpumask_var_t cpu_offline_mask
;
149 static DEFINE_PER_CPU(struct split_state
, split_state
);
151 static void wait_for_sync_step(int step
)
153 int i
, cpu
= smp_processor_id();
155 for (i
= cpu
+ 1; i
< cpu
+ threads_per_core
; i
++)
156 while(per_cpu(split_state
, i
).step
< step
)
159 /* Order the wait loop vs any subsequent loads/stores. */
163 static void update_hid_in_slw(u64 hid0
)
165 u64 idle_states
= pnv_get_supported_cpuidle_states();
167 if (idle_states
& OPAL_PM_WINKLE_ENABLED
) {
168 /* OPAL call to patch slw with the new HID0 value */
169 u64 cpu_pir
= hard_smp_processor_id();
171 opal_slw_set_reg(cpu_pir
, SPRN_HID0
, hid0
);
175 static void unsplit_core(void)
180 mask
= HID0_POWER8_2LPARMODE
| HID0_POWER8_4LPARMODE
;
182 cpu
= smp_processor_id();
183 if (cpu_thread_in_core(cpu
) != 0) {
184 while (mfspr(SPRN_HID0
) & mask
)
187 per_cpu(split_state
, cpu
).step
= SYNC_STEP_UNSPLIT
;
191 hid0
= mfspr(SPRN_HID0
);
192 hid0
&= ~HID0_POWER8_DYNLPARDIS
;
193 mtspr(SPRN_HID0
, hid0
);
194 update_hid_in_slw(hid0
);
196 while (mfspr(SPRN_HID0
) & mask
)
199 /* Wake secondaries out of NAP */
200 for (i
= cpu
+ 1; i
< cpu
+ threads_per_core
; i
++)
201 smp_send_reschedule(i
);
203 wait_for_sync_step(SYNC_STEP_UNSPLIT
);
206 static void split_core(int new_mode
)
208 struct { u64 value
; u64 mask
; } split_parms
[2] = {
209 { HID0_POWER8_1TO2LPAR
, HID0_POWER8_2LPARMODE
},
210 { HID0_POWER8_1TO4LPAR
, HID0_POWER8_4LPARMODE
}
215 /* Convert new_mode (2 or 4) into an index into our parms array */
216 i
= (new_mode
>> 1) - 1;
217 BUG_ON(i
< 0 || i
> 1);
219 cpu
= smp_processor_id();
220 if (cpu_thread_in_core(cpu
) != 0) {
221 split_core_secondary_loop(&per_cpu(split_state
, cpu
).step
);
225 wait_for_sync_step(SYNC_STEP_REAL_MODE
);
228 hid0
= mfspr(SPRN_HID0
);
229 hid0
|= HID0_POWER8_DYNLPARDIS
| split_parms
[i
].value
;
230 mtspr(SPRN_HID0
, hid0
);
231 update_hid_in_slw(hid0
);
233 /* Wait for it to happen */
234 while (!(mfspr(SPRN_HID0
) & split_parms
[i
].mask
))
238 static void cpu_do_split(int new_mode
)
241 * At boot subcores_per_core will be 0, so we will always unsplit at
242 * boot. In the usual case where the core is already unsplit it's a
243 * nop, and this just ensures the kernel's notion of the mode is
244 * consistent with the hardware.
246 if (subcores_per_core
!= 1)
250 split_core(new_mode
);
253 per_cpu(split_state
, smp_processor_id()).step
= SYNC_STEP_FINISHED
;
256 bool cpu_core_split_required(void)
263 cpu_do_split(new_split_mode
);
268 void update_subcore_sibling_mask(void)
272 * sibling mask for the first cpu. Left shift this by required bits
273 * to get sibling mask for the rest of the cpus.
275 int sibling_mask_first_cpu
= (1 << threads_per_subcore
) - 1;
277 for_each_possible_cpu(cpu
) {
278 int tid
= cpu_thread_in_core(cpu
);
279 int offset
= (tid
/ threads_per_subcore
) * threads_per_subcore
;
280 int mask
= sibling_mask_first_cpu
<< offset
;
282 paca
[cpu
].subcore_sibling_mask
= mask
;
287 static int cpu_update_split_mode(void *data
)
289 int cpu
, new_mode
= *(int *)data
;
291 if (this_cpu_ptr(&split_state
)->master
) {
292 new_split_mode
= new_mode
;
295 cpumask_andnot(cpu_offline_mask
, cpu_present_mask
,
298 /* This should work even though the cpu is offline */
299 for_each_cpu(cpu
, cpu_offline_mask
)
300 smp_send_reschedule(cpu
);
303 cpu_do_split(new_mode
);
305 if (this_cpu_ptr(&split_state
)->master
) {
306 /* Wait for all cpus to finish before we touch subcores_per_core */
307 for_each_present_cpu(cpu
) {
308 if (cpu
>= setup_max_cpus
)
311 while(per_cpu(split_state
, cpu
).step
< SYNC_STEP_FINISHED
)
317 /* Make the new mode public */
318 subcores_per_core
= new_mode
;
319 threads_per_subcore
= threads_per_core
/ subcores_per_core
;
320 update_subcore_sibling_mask();
322 /* Make sure the new mode is written before we exit */
329 static int set_subcores_per_core(int new_mode
)
331 struct split_state
*state
;
334 if (kvm_hv_mode_active()) {
335 pr_err("Unable to change split core mode while KVM active.\n");
340 * We are only called at boot, or from the sysfs write. If that ever
341 * changes we'll need a lock here.
343 BUG_ON(new_mode
< 1 || new_mode
> 4 || new_mode
== 3);
345 for_each_present_cpu(cpu
) {
346 state
= &per_cpu(split_state
, cpu
);
347 state
->step
= SYNC_STEP_INITIAL
;
353 /* This cpu will update the globals before exiting stop machine */
354 this_cpu_ptr(&split_state
)->master
= 1;
356 /* Ensure state is consistent before we call the other cpus */
359 stop_machine(cpu_update_split_mode
, &new_mode
, cpu_online_mask
);
366 static ssize_t __used
store_subcores_per_core(struct device
*dev
,
367 struct device_attribute
*attr
, const char *buf
,
373 /* We are serialised by the attribute lock */
375 rc
= sscanf(buf
, "%lx", &val
);
383 if (subcores_per_core
== val
)
391 rc
= set_subcores_per_core(val
);
399 static ssize_t
show_subcores_per_core(struct device
*dev
,
400 struct device_attribute
*attr
, char *buf
)
402 return sprintf(buf
, "%x\n", subcores_per_core
);
405 static DEVICE_ATTR(subcores_per_core
, 0644,
406 show_subcores_per_core
, store_subcores_per_core
);
408 static int subcore_init(void)
410 if (!cpu_has_feature(CPU_FTR_ARCH_207S
))
414 * We need all threads in a core to be present to split/unsplit so
415 * continue only if max_cpus are aligned to threads_per_core.
417 if (setup_max_cpus
% threads_per_core
)
420 BUG_ON(!alloc_cpumask_var(&cpu_offline_mask
, GFP_KERNEL
));
422 set_subcores_per_core(1);
424 return device_create_file(cpu_subsys
.dev_root
,
425 &dev_attr_subcores_per_core
);
427 machine_device_initcall(powernv
, subcore_init
);