Linux 4.2.2
[linux/fpc-iii.git] / arch / s390 / mm / vmem.c
blobef7d6c8fea66ea62eeddbe43420081d837c44274
1 /*
2 * Copyright IBM Corp. 2006
3 * Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
4 */
6 #include <linux/bootmem.h>
7 #include <linux/pfn.h>
8 #include <linux/mm.h>
9 #include <linux/module.h>
10 #include <linux/list.h>
11 #include <linux/hugetlb.h>
12 #include <linux/slab.h>
13 #include <linux/memblock.h>
14 #include <asm/pgalloc.h>
15 #include <asm/pgtable.h>
16 #include <asm/setup.h>
17 #include <asm/tlbflush.h>
18 #include <asm/sections.h>
20 static DEFINE_MUTEX(vmem_mutex);
22 struct memory_segment {
23 struct list_head list;
24 unsigned long start;
25 unsigned long size;
28 static LIST_HEAD(mem_segs);
30 static void __ref *vmem_alloc_pages(unsigned int order)
32 if (slab_is_available())
33 return (void *)__get_free_pages(GFP_KERNEL, order);
34 return alloc_bootmem_pages((1 << order) * PAGE_SIZE);
37 static inline pud_t *vmem_pud_alloc(void)
39 pud_t *pud = NULL;
41 pud = vmem_alloc_pages(2);
42 if (!pud)
43 return NULL;
44 clear_table((unsigned long *) pud, _REGION3_ENTRY_EMPTY, PAGE_SIZE * 4);
45 return pud;
48 static inline pmd_t *vmem_pmd_alloc(void)
50 pmd_t *pmd = NULL;
52 pmd = vmem_alloc_pages(2);
53 if (!pmd)
54 return NULL;
55 clear_table((unsigned long *) pmd, _SEGMENT_ENTRY_EMPTY, PAGE_SIZE * 4);
56 return pmd;
59 static pte_t __ref *vmem_pte_alloc(unsigned long address)
61 pte_t *pte;
63 if (slab_is_available())
64 pte = (pte_t *) page_table_alloc(&init_mm);
65 else
66 pte = alloc_bootmem_align(PTRS_PER_PTE * sizeof(pte_t),
67 PTRS_PER_PTE * sizeof(pte_t));
68 if (!pte)
69 return NULL;
70 clear_table((unsigned long *) pte, _PAGE_INVALID,
71 PTRS_PER_PTE * sizeof(pte_t));
72 return pte;
76 * Add a physical memory range to the 1:1 mapping.
78 static int vmem_add_mem(unsigned long start, unsigned long size, int ro)
80 unsigned long end = start + size;
81 unsigned long address = start;
82 pgd_t *pg_dir;
83 pud_t *pu_dir;
84 pmd_t *pm_dir;
85 pte_t *pt_dir;
86 int ret = -ENOMEM;
88 while (address < end) {
89 pg_dir = pgd_offset_k(address);
90 if (pgd_none(*pg_dir)) {
91 pu_dir = vmem_pud_alloc();
92 if (!pu_dir)
93 goto out;
94 pgd_populate(&init_mm, pg_dir, pu_dir);
96 pu_dir = pud_offset(pg_dir, address);
97 #ifndef CONFIG_DEBUG_PAGEALLOC
98 if (MACHINE_HAS_EDAT2 && pud_none(*pu_dir) && address &&
99 !(address & ~PUD_MASK) && (address + PUD_SIZE <= end)) {
100 pud_val(*pu_dir) = __pa(address) |
101 _REGION_ENTRY_TYPE_R3 | _REGION3_ENTRY_LARGE |
102 (ro ? _REGION_ENTRY_PROTECT : 0);
103 address += PUD_SIZE;
104 continue;
106 #endif
107 if (pud_none(*pu_dir)) {
108 pm_dir = vmem_pmd_alloc();
109 if (!pm_dir)
110 goto out;
111 pud_populate(&init_mm, pu_dir, pm_dir);
113 pm_dir = pmd_offset(pu_dir, address);
114 #ifndef CONFIG_DEBUG_PAGEALLOC
115 if (MACHINE_HAS_EDAT1 && pmd_none(*pm_dir) && address &&
116 !(address & ~PMD_MASK) && (address + PMD_SIZE <= end)) {
117 pmd_val(*pm_dir) = __pa(address) |
118 _SEGMENT_ENTRY | _SEGMENT_ENTRY_LARGE |
119 _SEGMENT_ENTRY_YOUNG |
120 (ro ? _SEGMENT_ENTRY_PROTECT : 0);
121 address += PMD_SIZE;
122 continue;
124 #endif
125 if (pmd_none(*pm_dir)) {
126 pt_dir = vmem_pte_alloc(address);
127 if (!pt_dir)
128 goto out;
129 pmd_populate(&init_mm, pm_dir, pt_dir);
132 pt_dir = pte_offset_kernel(pm_dir, address);
133 pte_val(*pt_dir) = __pa(address) |
134 pgprot_val(ro ? PAGE_KERNEL_RO : PAGE_KERNEL);
135 address += PAGE_SIZE;
137 ret = 0;
138 out:
139 return ret;
143 * Remove a physical memory range from the 1:1 mapping.
144 * Currently only invalidates page table entries.
146 static void vmem_remove_range(unsigned long start, unsigned long size)
148 unsigned long end = start + size;
149 unsigned long address = start;
150 pgd_t *pg_dir;
151 pud_t *pu_dir;
152 pmd_t *pm_dir;
153 pte_t *pt_dir;
154 pte_t pte;
156 pte_val(pte) = _PAGE_INVALID;
157 while (address < end) {
158 pg_dir = pgd_offset_k(address);
159 if (pgd_none(*pg_dir)) {
160 address += PGDIR_SIZE;
161 continue;
163 pu_dir = pud_offset(pg_dir, address);
164 if (pud_none(*pu_dir)) {
165 address += PUD_SIZE;
166 continue;
168 if (pud_large(*pu_dir)) {
169 pud_clear(pu_dir);
170 address += PUD_SIZE;
171 continue;
173 pm_dir = pmd_offset(pu_dir, address);
174 if (pmd_none(*pm_dir)) {
175 address += PMD_SIZE;
176 continue;
178 if (pmd_large(*pm_dir)) {
179 pmd_clear(pm_dir);
180 address += PMD_SIZE;
181 continue;
183 pt_dir = pte_offset_kernel(pm_dir, address);
184 *pt_dir = pte;
185 address += PAGE_SIZE;
187 flush_tlb_kernel_range(start, end);
191 * Add a backed mem_map array to the virtual mem_map array.
193 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
195 unsigned long address = start;
196 pgd_t *pg_dir;
197 pud_t *pu_dir;
198 pmd_t *pm_dir;
199 pte_t *pt_dir;
200 int ret = -ENOMEM;
202 for (address = start; address < end;) {
203 pg_dir = pgd_offset_k(address);
204 if (pgd_none(*pg_dir)) {
205 pu_dir = vmem_pud_alloc();
206 if (!pu_dir)
207 goto out;
208 pgd_populate(&init_mm, pg_dir, pu_dir);
211 pu_dir = pud_offset(pg_dir, address);
212 if (pud_none(*pu_dir)) {
213 pm_dir = vmem_pmd_alloc();
214 if (!pm_dir)
215 goto out;
216 pud_populate(&init_mm, pu_dir, pm_dir);
219 pm_dir = pmd_offset(pu_dir, address);
220 if (pmd_none(*pm_dir)) {
221 /* Use 1MB frames for vmemmap if available. We always
222 * use large frames even if they are only partially
223 * used.
224 * Otherwise we would have also page tables since
225 * vmemmap_populate gets called for each section
226 * separately. */
227 if (MACHINE_HAS_EDAT1) {
228 void *new_page;
230 new_page = vmemmap_alloc_block(PMD_SIZE, node);
231 if (!new_page)
232 goto out;
233 pmd_val(*pm_dir) = __pa(new_page) |
234 _SEGMENT_ENTRY | _SEGMENT_ENTRY_LARGE;
235 address = (address + PMD_SIZE) & PMD_MASK;
236 continue;
238 pt_dir = vmem_pte_alloc(address);
239 if (!pt_dir)
240 goto out;
241 pmd_populate(&init_mm, pm_dir, pt_dir);
242 } else if (pmd_large(*pm_dir)) {
243 address = (address + PMD_SIZE) & PMD_MASK;
244 continue;
247 pt_dir = pte_offset_kernel(pm_dir, address);
248 if (pte_none(*pt_dir)) {
249 void *new_page;
251 new_page = vmemmap_alloc_block(PAGE_SIZE, node);
252 if (!new_page)
253 goto out;
254 pte_val(*pt_dir) =
255 __pa(new_page) | pgprot_val(PAGE_KERNEL);
257 address += PAGE_SIZE;
259 ret = 0;
260 out:
261 return ret;
264 void vmemmap_free(unsigned long start, unsigned long end)
269 * Add memory segment to the segment list if it doesn't overlap with
270 * an already present segment.
272 static int insert_memory_segment(struct memory_segment *seg)
274 struct memory_segment *tmp;
276 if (seg->start + seg->size > VMEM_MAX_PHYS ||
277 seg->start + seg->size < seg->start)
278 return -ERANGE;
280 list_for_each_entry(tmp, &mem_segs, list) {
281 if (seg->start >= tmp->start + tmp->size)
282 continue;
283 if (seg->start + seg->size <= tmp->start)
284 continue;
285 return -ENOSPC;
287 list_add(&seg->list, &mem_segs);
288 return 0;
292 * Remove memory segment from the segment list.
294 static void remove_memory_segment(struct memory_segment *seg)
296 list_del(&seg->list);
299 static void __remove_shared_memory(struct memory_segment *seg)
301 remove_memory_segment(seg);
302 vmem_remove_range(seg->start, seg->size);
305 int vmem_remove_mapping(unsigned long start, unsigned long size)
307 struct memory_segment *seg;
308 int ret;
310 mutex_lock(&vmem_mutex);
312 ret = -ENOENT;
313 list_for_each_entry(seg, &mem_segs, list) {
314 if (seg->start == start && seg->size == size)
315 break;
318 if (seg->start != start || seg->size != size)
319 goto out;
321 ret = 0;
322 __remove_shared_memory(seg);
323 kfree(seg);
324 out:
325 mutex_unlock(&vmem_mutex);
326 return ret;
329 int vmem_add_mapping(unsigned long start, unsigned long size)
331 struct memory_segment *seg;
332 int ret;
334 mutex_lock(&vmem_mutex);
335 ret = -ENOMEM;
336 seg = kzalloc(sizeof(*seg), GFP_KERNEL);
337 if (!seg)
338 goto out;
339 seg->start = start;
340 seg->size = size;
342 ret = insert_memory_segment(seg);
343 if (ret)
344 goto out_free;
346 ret = vmem_add_mem(start, size, 0);
347 if (ret)
348 goto out_remove;
349 goto out;
351 out_remove:
352 __remove_shared_memory(seg);
353 out_free:
354 kfree(seg);
355 out:
356 mutex_unlock(&vmem_mutex);
357 return ret;
361 * map whole physical memory to virtual memory (identity mapping)
362 * we reserve enough space in the vmalloc area for vmemmap to hotplug
363 * additional memory segments.
365 void __init vmem_map_init(void)
367 unsigned long ro_start, ro_end;
368 struct memblock_region *reg;
369 phys_addr_t start, end;
371 ro_start = PFN_ALIGN((unsigned long)&_stext);
372 ro_end = (unsigned long)&_eshared & PAGE_MASK;
373 for_each_memblock(memory, reg) {
374 start = reg->base;
375 end = reg->base + reg->size - 1;
376 if (start >= ro_end || end <= ro_start)
377 vmem_add_mem(start, end - start, 0);
378 else if (start >= ro_start && end <= ro_end)
379 vmem_add_mem(start, end - start, 1);
380 else if (start >= ro_start) {
381 vmem_add_mem(start, ro_end - start, 1);
382 vmem_add_mem(ro_end, end - ro_end, 0);
383 } else if (end < ro_end) {
384 vmem_add_mem(start, ro_start - start, 0);
385 vmem_add_mem(ro_start, end - ro_start, 1);
386 } else {
387 vmem_add_mem(start, ro_start - start, 0);
388 vmem_add_mem(ro_start, ro_end - ro_start, 1);
389 vmem_add_mem(ro_end, end - ro_end, 0);
395 * Convert memblock.memory to a memory segment list so there is a single
396 * list that contains all memory segments.
398 static int __init vmem_convert_memory_chunk(void)
400 struct memblock_region *reg;
401 struct memory_segment *seg;
403 mutex_lock(&vmem_mutex);
404 for_each_memblock(memory, reg) {
405 seg = kzalloc(sizeof(*seg), GFP_KERNEL);
406 if (!seg)
407 panic("Out of memory...\n");
408 seg->start = reg->base;
409 seg->size = reg->size;
410 insert_memory_segment(seg);
412 mutex_unlock(&vmem_mutex);
413 return 0;
416 core_initcall(vmem_convert_memory_chunk);