Linux 4.2.2
[linux/fpc-iii.git] / arch / sparc / kernel / irq_32.c
bloba979e99f8751cd60393c1ee18c0a958ceddb34cf
1 /*
2 * Interrupt request handling routines. On the
3 * Sparc the IRQs are basically 'cast in stone'
4 * and you are supposed to probe the prom's device
5 * node trees to find out who's got which IRQ.
7 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
8 * Copyright (C) 1995 Miguel de Icaza (miguel@nuclecu.unam.mx)
9 * Copyright (C) 1995,2002 Pete A. Zaitcev (zaitcev@yahoo.com)
10 * Copyright (C) 1996 Dave Redman (djhr@tadpole.co.uk)
11 * Copyright (C) 1998-2000 Anton Blanchard (anton@samba.org)
14 #include <linux/kernel_stat.h>
15 #include <linux/seq_file.h>
16 #include <linux/export.h>
18 #include <asm/cacheflush.h>
19 #include <asm/cpudata.h>
20 #include <asm/setup.h>
21 #include <asm/pcic.h>
22 #include <asm/leon.h>
24 #include "kernel.h"
25 #include "irq.h"
27 /* platform specific irq setup */
28 struct sparc_config sparc_config;
30 unsigned long arch_local_irq_save(void)
32 unsigned long retval;
33 unsigned long tmp;
35 __asm__ __volatile__(
36 "rd %%psr, %0\n\t"
37 "or %0, %2, %1\n\t"
38 "wr %1, 0, %%psr\n\t"
39 "nop; nop; nop\n"
40 : "=&r" (retval), "=r" (tmp)
41 : "i" (PSR_PIL)
42 : "memory");
44 return retval;
46 EXPORT_SYMBOL(arch_local_irq_save);
48 void arch_local_irq_enable(void)
50 unsigned long tmp;
52 __asm__ __volatile__(
53 "rd %%psr, %0\n\t"
54 "andn %0, %1, %0\n\t"
55 "wr %0, 0, %%psr\n\t"
56 "nop; nop; nop\n"
57 : "=&r" (tmp)
58 : "i" (PSR_PIL)
59 : "memory");
61 EXPORT_SYMBOL(arch_local_irq_enable);
63 void arch_local_irq_restore(unsigned long old_psr)
65 unsigned long tmp;
67 __asm__ __volatile__(
68 "rd %%psr, %0\n\t"
69 "and %2, %1, %2\n\t"
70 "andn %0, %1, %0\n\t"
71 "wr %0, %2, %%psr\n\t"
72 "nop; nop; nop\n"
73 : "=&r" (tmp)
74 : "i" (PSR_PIL), "r" (old_psr)
75 : "memory");
77 EXPORT_SYMBOL(arch_local_irq_restore);
80 * Dave Redman (djhr@tadpole.co.uk)
82 * IRQ numbers.. These are no longer restricted to 15..
84 * this is done to enable SBUS cards and onboard IO to be masked
85 * correctly. using the interrupt level isn't good enough.
87 * For example:
88 * A device interrupting at sbus level6 and the Floppy both come in
89 * at IRQ11, but enabling and disabling them requires writing to
90 * different bits in the SLAVIO/SEC.
92 * As a result of these changes sun4m machines could now support
93 * directed CPU interrupts using the existing enable/disable irq code
94 * with tweaks.
96 * Sun4d complicates things even further. IRQ numbers are arbitrary
97 * 32-bit values in that case. Since this is similar to sparc64,
98 * we adopt a virtual IRQ numbering scheme as is done there.
99 * Virutal interrupt numbers are allocated by build_irq(). So NR_IRQS
100 * just becomes a limit of how many interrupt sources we can handle in
101 * a single system. Even fully loaded SS2000 machines top off at
102 * about 32 interrupt sources or so, therefore a NR_IRQS value of 64
103 * is more than enough.
105 * We keep a map of per-PIL enable interrupts. These get wired
106 * up via the irq_chip->startup() method which gets invoked by
107 * the generic IRQ layer during request_irq().
111 /* Table of allocated irqs. Unused entries has irq == 0 */
112 static struct irq_bucket irq_table[NR_IRQS];
113 /* Protect access to irq_table */
114 static DEFINE_SPINLOCK(irq_table_lock);
116 /* Map between the irq identifier used in hw to the irq_bucket. */
117 struct irq_bucket *irq_map[SUN4D_MAX_IRQ];
118 /* Protect access to irq_map */
119 static DEFINE_SPINLOCK(irq_map_lock);
121 /* Allocate a new irq from the irq_table */
122 unsigned int irq_alloc(unsigned int real_irq, unsigned int pil)
124 unsigned long flags;
125 unsigned int i;
127 spin_lock_irqsave(&irq_table_lock, flags);
128 for (i = 1; i < NR_IRQS; i++) {
129 if (irq_table[i].real_irq == real_irq && irq_table[i].pil == pil)
130 goto found;
133 for (i = 1; i < NR_IRQS; i++) {
134 if (!irq_table[i].irq)
135 break;
138 if (i < NR_IRQS) {
139 irq_table[i].real_irq = real_irq;
140 irq_table[i].irq = i;
141 irq_table[i].pil = pil;
142 } else {
143 printk(KERN_ERR "IRQ: Out of virtual IRQs.\n");
144 i = 0;
146 found:
147 spin_unlock_irqrestore(&irq_table_lock, flags);
149 return i;
152 /* Based on a single pil handler_irq may need to call several
153 * interrupt handlers. Use irq_map as entry to irq_table,
154 * and let each entry in irq_table point to the next entry.
156 void irq_link(unsigned int irq)
158 struct irq_bucket *p;
159 unsigned long flags;
160 unsigned int pil;
162 BUG_ON(irq >= NR_IRQS);
164 spin_lock_irqsave(&irq_map_lock, flags);
166 p = &irq_table[irq];
167 pil = p->pil;
168 BUG_ON(pil > SUN4D_MAX_IRQ);
169 p->next = irq_map[pil];
170 irq_map[pil] = p;
172 spin_unlock_irqrestore(&irq_map_lock, flags);
175 void irq_unlink(unsigned int irq)
177 struct irq_bucket *p, **pnext;
178 unsigned long flags;
180 BUG_ON(irq >= NR_IRQS);
182 spin_lock_irqsave(&irq_map_lock, flags);
184 p = &irq_table[irq];
185 BUG_ON(p->pil > SUN4D_MAX_IRQ);
186 pnext = &irq_map[p->pil];
187 while (*pnext != p)
188 pnext = &(*pnext)->next;
189 *pnext = p->next;
191 spin_unlock_irqrestore(&irq_map_lock, flags);
195 /* /proc/interrupts printing */
196 int arch_show_interrupts(struct seq_file *p, int prec)
198 int j;
200 #ifdef CONFIG_SMP
201 seq_printf(p, "RES: ");
202 for_each_online_cpu(j)
203 seq_printf(p, "%10u ", cpu_data(j).irq_resched_count);
204 seq_printf(p, " IPI rescheduling interrupts\n");
205 seq_printf(p, "CAL: ");
206 for_each_online_cpu(j)
207 seq_printf(p, "%10u ", cpu_data(j).irq_call_count);
208 seq_printf(p, " IPI function call interrupts\n");
209 #endif
210 seq_printf(p, "NMI: ");
211 for_each_online_cpu(j)
212 seq_printf(p, "%10u ", cpu_data(j).counter);
213 seq_printf(p, " Non-maskable interrupts\n");
214 return 0;
217 void handler_irq(unsigned int pil, struct pt_regs *regs)
219 struct pt_regs *old_regs;
220 struct irq_bucket *p;
222 BUG_ON(pil > 15);
223 old_regs = set_irq_regs(regs);
224 irq_enter();
226 p = irq_map[pil];
227 while (p) {
228 struct irq_bucket *next = p->next;
230 generic_handle_irq(p->irq);
231 p = next;
233 irq_exit();
234 set_irq_regs(old_regs);
237 #if defined(CONFIG_BLK_DEV_FD) || defined(CONFIG_BLK_DEV_FD_MODULE)
238 static unsigned int floppy_irq;
240 int sparc_floppy_request_irq(unsigned int irq, irq_handler_t irq_handler)
242 unsigned int cpu_irq;
243 int err;
246 err = request_irq(irq, irq_handler, 0, "floppy", NULL);
247 if (err)
248 return -1;
250 /* Save for later use in floppy interrupt handler */
251 floppy_irq = irq;
253 cpu_irq = (irq & (NR_IRQS - 1));
255 /* Dork with trap table if we get this far. */
256 #define INSTANTIATE(table) \
257 table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_one = SPARC_RD_PSR_L0; \
258 table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_two = \
259 SPARC_BRANCH((unsigned long) floppy_hardint, \
260 (unsigned long) &table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_two);\
261 table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_three = SPARC_RD_WIM_L3; \
262 table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_four = SPARC_NOP;
264 INSTANTIATE(sparc_ttable)
266 #if defined CONFIG_SMP
267 if (sparc_cpu_model != sparc_leon) {
268 struct tt_entry *trap_table;
270 trap_table = &trapbase_cpu1;
271 INSTANTIATE(trap_table)
272 trap_table = &trapbase_cpu2;
273 INSTANTIATE(trap_table)
274 trap_table = &trapbase_cpu3;
275 INSTANTIATE(trap_table)
277 #endif
278 #undef INSTANTIATE
280 * XXX Correct thing whould be to flush only I- and D-cache lines
281 * which contain the handler in question. But as of time of the
282 * writing we have no CPU-neutral interface to fine-grained flushes.
284 flush_cache_all();
285 return 0;
287 EXPORT_SYMBOL(sparc_floppy_request_irq);
290 * These variables are used to access state from the assembler
291 * interrupt handler, floppy_hardint, so we cannot put these in
292 * the floppy driver image because that would not work in the
293 * modular case.
295 volatile unsigned char *fdc_status;
296 EXPORT_SYMBOL(fdc_status);
298 char *pdma_vaddr;
299 EXPORT_SYMBOL(pdma_vaddr);
301 unsigned long pdma_size;
302 EXPORT_SYMBOL(pdma_size);
304 volatile int doing_pdma;
305 EXPORT_SYMBOL(doing_pdma);
307 char *pdma_base;
308 EXPORT_SYMBOL(pdma_base);
310 unsigned long pdma_areasize;
311 EXPORT_SYMBOL(pdma_areasize);
313 /* Use the generic irq support to call floppy_interrupt
314 * which was setup using request_irq() in sparc_floppy_request_irq().
315 * We only have one floppy interrupt so we do not need to check
316 * for additional handlers being wired up by irq_link()
318 void sparc_floppy_irq(int irq, void *dev_id, struct pt_regs *regs)
320 struct pt_regs *old_regs;
322 old_regs = set_irq_regs(regs);
323 irq_enter();
324 generic_handle_irq(floppy_irq);
325 irq_exit();
326 set_irq_regs(old_regs);
328 #endif
330 /* djhr
331 * This could probably be made indirect too and assigned in the CPU
332 * bits of the code. That would be much nicer I think and would also
333 * fit in with the idea of being able to tune your kernel for your machine
334 * by removing unrequired machine and device support.
338 void __init init_IRQ(void)
340 switch (sparc_cpu_model) {
341 case sun4m:
342 pcic_probe();
343 if (pcic_present())
344 sun4m_pci_init_IRQ();
345 else
346 sun4m_init_IRQ();
347 break;
349 case sun4d:
350 sun4d_init_IRQ();
351 break;
353 case sparc_leon:
354 leon_init_IRQ();
355 break;
357 default:
358 prom_printf("Cannot initialize IRQs on this Sun machine...");
359 break;