Linux 4.2.2
[linux/fpc-iii.git] / arch / sparc / kernel / perf_event.c
blob689db65f85294a95051d08e4f7846151ccc002de
1 /* Performance event support for sparc64.
3 * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
5 * This code is based almost entirely upon the x86 perf event
6 * code, which is:
8 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
9 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
10 * Copyright (C) 2009 Jaswinder Singh Rajput
11 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
12 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
15 #include <linux/perf_event.h>
16 #include <linux/kprobes.h>
17 #include <linux/ftrace.h>
18 #include <linux/kernel.h>
19 #include <linux/kdebug.h>
20 #include <linux/mutex.h>
22 #include <asm/stacktrace.h>
23 #include <asm/cpudata.h>
24 #include <linux/uaccess.h>
25 #include <linux/atomic.h>
26 #include <asm/nmi.h>
27 #include <asm/pcr.h>
28 #include <asm/cacheflush.h>
30 #include "kernel.h"
31 #include "kstack.h"
33 /* Two classes of sparc64 chips currently exist. All of which have
34 * 32-bit counters which can generate overflow interrupts on the
35 * transition from 0xffffffff to 0.
37 * All chips upto and including SPARC-T3 have two performance
38 * counters. The two 32-bit counters are accessed in one go using a
39 * single 64-bit register.
41 * On these older chips both counters are controlled using a single
42 * control register. The only way to stop all sampling is to clear
43 * all of the context (user, supervisor, hypervisor) sampling enable
44 * bits. But these bits apply to both counters, thus the two counters
45 * can't be enabled/disabled individually.
47 * Furthermore, the control register on these older chips have two
48 * event fields, one for each of the two counters. It's thus nearly
49 * impossible to have one counter going while keeping the other one
50 * stopped. Therefore it is possible to get overflow interrupts for
51 * counters not currently "in use" and that condition must be checked
52 * in the overflow interrupt handler.
54 * So we use a hack, in that we program inactive counters with the
55 * "sw_count0" and "sw_count1" events. These count how many times
56 * the instruction "sethi %hi(0xfc000), %g0" is executed. It's an
57 * unusual way to encode a NOP and therefore will not trigger in
58 * normal code.
60 * Starting with SPARC-T4 we have one control register per counter.
61 * And the counters are stored in individual registers. The registers
62 * for the counters are 64-bit but only a 32-bit counter is
63 * implemented. The event selections on SPARC-T4 lack any
64 * restrictions, therefore we can elide all of the complicated
65 * conflict resolution code we have for SPARC-T3 and earlier chips.
68 #define MAX_HWEVENTS 4
69 #define MAX_PCRS 4
70 #define MAX_PERIOD ((1UL << 32) - 1)
72 #define PIC_UPPER_INDEX 0
73 #define PIC_LOWER_INDEX 1
74 #define PIC_NO_INDEX -1
76 struct cpu_hw_events {
77 /* Number of events currently scheduled onto this cpu.
78 * This tells how many entries in the arrays below
79 * are valid.
81 int n_events;
83 /* Number of new events added since the last hw_perf_disable().
84 * This works because the perf event layer always adds new
85 * events inside of a perf_{disable,enable}() sequence.
87 int n_added;
89 /* Array of events current scheduled on this cpu. */
90 struct perf_event *event[MAX_HWEVENTS];
92 /* Array of encoded longs, specifying the %pcr register
93 * encoding and the mask of PIC counters this even can
94 * be scheduled on. See perf_event_encode() et al.
96 unsigned long events[MAX_HWEVENTS];
98 /* The current counter index assigned to an event. When the
99 * event hasn't been programmed into the cpu yet, this will
100 * hold PIC_NO_INDEX. The event->hw.idx value tells us where
101 * we ought to schedule the event.
103 int current_idx[MAX_HWEVENTS];
105 /* Software copy of %pcr register(s) on this cpu. */
106 u64 pcr[MAX_HWEVENTS];
108 /* Enabled/disable state. */
109 int enabled;
111 unsigned int group_flag;
113 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
115 /* An event map describes the characteristics of a performance
116 * counter event. In particular it gives the encoding as well as
117 * a mask telling which counters the event can be measured on.
119 * The mask is unused on SPARC-T4 and later.
121 struct perf_event_map {
122 u16 encoding;
123 u8 pic_mask;
124 #define PIC_NONE 0x00
125 #define PIC_UPPER 0x01
126 #define PIC_LOWER 0x02
129 /* Encode a perf_event_map entry into a long. */
130 static unsigned long perf_event_encode(const struct perf_event_map *pmap)
132 return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
135 static u8 perf_event_get_msk(unsigned long val)
137 return val & 0xff;
140 static u64 perf_event_get_enc(unsigned long val)
142 return val >> 16;
145 #define C(x) PERF_COUNT_HW_CACHE_##x
147 #define CACHE_OP_UNSUPPORTED 0xfffe
148 #define CACHE_OP_NONSENSE 0xffff
150 typedef struct perf_event_map cache_map_t
151 [PERF_COUNT_HW_CACHE_MAX]
152 [PERF_COUNT_HW_CACHE_OP_MAX]
153 [PERF_COUNT_HW_CACHE_RESULT_MAX];
155 struct sparc_pmu {
156 const struct perf_event_map *(*event_map)(int);
157 const cache_map_t *cache_map;
158 int max_events;
159 u32 (*read_pmc)(int);
160 void (*write_pmc)(int, u64);
161 int upper_shift;
162 int lower_shift;
163 int event_mask;
164 int user_bit;
165 int priv_bit;
166 int hv_bit;
167 int irq_bit;
168 int upper_nop;
169 int lower_nop;
170 unsigned int flags;
171 #define SPARC_PMU_ALL_EXCLUDES_SAME 0x00000001
172 #define SPARC_PMU_HAS_CONFLICTS 0x00000002
173 int max_hw_events;
174 int num_pcrs;
175 int num_pic_regs;
178 static u32 sparc_default_read_pmc(int idx)
180 u64 val;
182 val = pcr_ops->read_pic(0);
183 if (idx == PIC_UPPER_INDEX)
184 val >>= 32;
186 return val & 0xffffffff;
189 static void sparc_default_write_pmc(int idx, u64 val)
191 u64 shift, mask, pic;
193 shift = 0;
194 if (idx == PIC_UPPER_INDEX)
195 shift = 32;
197 mask = ((u64) 0xffffffff) << shift;
198 val <<= shift;
200 pic = pcr_ops->read_pic(0);
201 pic &= ~mask;
202 pic |= val;
203 pcr_ops->write_pic(0, pic);
206 static const struct perf_event_map ultra3_perfmon_event_map[] = {
207 [PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
208 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
209 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
210 [PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
213 static const struct perf_event_map *ultra3_event_map(int event_id)
215 return &ultra3_perfmon_event_map[event_id];
218 static const cache_map_t ultra3_cache_map = {
219 [C(L1D)] = {
220 [C(OP_READ)] = {
221 [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
222 [C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
224 [C(OP_WRITE)] = {
225 [C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
226 [C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
228 [C(OP_PREFETCH)] = {
229 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
230 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
233 [C(L1I)] = {
234 [C(OP_READ)] = {
235 [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
236 [C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
238 [ C(OP_WRITE) ] = {
239 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
240 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
242 [ C(OP_PREFETCH) ] = {
243 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
244 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
247 [C(LL)] = {
248 [C(OP_READ)] = {
249 [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
250 [C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
252 [C(OP_WRITE)] = {
253 [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
254 [C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
256 [C(OP_PREFETCH)] = {
257 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
258 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
261 [C(DTLB)] = {
262 [C(OP_READ)] = {
263 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
264 [C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
266 [ C(OP_WRITE) ] = {
267 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
268 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
270 [ C(OP_PREFETCH) ] = {
271 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
272 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
275 [C(ITLB)] = {
276 [C(OP_READ)] = {
277 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
278 [C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
280 [ C(OP_WRITE) ] = {
281 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
282 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
284 [ C(OP_PREFETCH) ] = {
285 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
286 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
289 [C(BPU)] = {
290 [C(OP_READ)] = {
291 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
292 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
294 [ C(OP_WRITE) ] = {
295 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
296 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
298 [ C(OP_PREFETCH) ] = {
299 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
300 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
303 [C(NODE)] = {
304 [C(OP_READ)] = {
305 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
306 [C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
308 [ C(OP_WRITE) ] = {
309 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
310 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
312 [ C(OP_PREFETCH) ] = {
313 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
314 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
319 static const struct sparc_pmu ultra3_pmu = {
320 .event_map = ultra3_event_map,
321 .cache_map = &ultra3_cache_map,
322 .max_events = ARRAY_SIZE(ultra3_perfmon_event_map),
323 .read_pmc = sparc_default_read_pmc,
324 .write_pmc = sparc_default_write_pmc,
325 .upper_shift = 11,
326 .lower_shift = 4,
327 .event_mask = 0x3f,
328 .user_bit = PCR_UTRACE,
329 .priv_bit = PCR_STRACE,
330 .upper_nop = 0x1c,
331 .lower_nop = 0x14,
332 .flags = (SPARC_PMU_ALL_EXCLUDES_SAME |
333 SPARC_PMU_HAS_CONFLICTS),
334 .max_hw_events = 2,
335 .num_pcrs = 1,
336 .num_pic_regs = 1,
339 /* Niagara1 is very limited. The upper PIC is hard-locked to count
340 * only instructions, so it is free running which creates all kinds of
341 * problems. Some hardware designs make one wonder if the creator
342 * even looked at how this stuff gets used by software.
344 static const struct perf_event_map niagara1_perfmon_event_map[] = {
345 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
346 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
347 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
348 [PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
351 static const struct perf_event_map *niagara1_event_map(int event_id)
353 return &niagara1_perfmon_event_map[event_id];
356 static const cache_map_t niagara1_cache_map = {
357 [C(L1D)] = {
358 [C(OP_READ)] = {
359 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
360 [C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
362 [C(OP_WRITE)] = {
363 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
364 [C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
366 [C(OP_PREFETCH)] = {
367 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
368 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
371 [C(L1I)] = {
372 [C(OP_READ)] = {
373 [C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
374 [C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
376 [ C(OP_WRITE) ] = {
377 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
378 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
380 [ C(OP_PREFETCH) ] = {
381 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
382 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
385 [C(LL)] = {
386 [C(OP_READ)] = {
387 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
388 [C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
390 [C(OP_WRITE)] = {
391 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
392 [C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
394 [C(OP_PREFETCH)] = {
395 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
396 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
399 [C(DTLB)] = {
400 [C(OP_READ)] = {
401 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
402 [C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
404 [ C(OP_WRITE) ] = {
405 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
406 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
408 [ C(OP_PREFETCH) ] = {
409 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
410 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
413 [C(ITLB)] = {
414 [C(OP_READ)] = {
415 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
416 [C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
418 [ C(OP_WRITE) ] = {
419 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
420 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
422 [ C(OP_PREFETCH) ] = {
423 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
424 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
427 [C(BPU)] = {
428 [C(OP_READ)] = {
429 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
430 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
432 [ C(OP_WRITE) ] = {
433 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
434 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
436 [ C(OP_PREFETCH) ] = {
437 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
438 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
441 [C(NODE)] = {
442 [C(OP_READ)] = {
443 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
444 [C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
446 [ C(OP_WRITE) ] = {
447 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
448 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
450 [ C(OP_PREFETCH) ] = {
451 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
452 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
457 static const struct sparc_pmu niagara1_pmu = {
458 .event_map = niagara1_event_map,
459 .cache_map = &niagara1_cache_map,
460 .max_events = ARRAY_SIZE(niagara1_perfmon_event_map),
461 .read_pmc = sparc_default_read_pmc,
462 .write_pmc = sparc_default_write_pmc,
463 .upper_shift = 0,
464 .lower_shift = 4,
465 .event_mask = 0x7,
466 .user_bit = PCR_UTRACE,
467 .priv_bit = PCR_STRACE,
468 .upper_nop = 0x0,
469 .lower_nop = 0x0,
470 .flags = (SPARC_PMU_ALL_EXCLUDES_SAME |
471 SPARC_PMU_HAS_CONFLICTS),
472 .max_hw_events = 2,
473 .num_pcrs = 1,
474 .num_pic_regs = 1,
477 static const struct perf_event_map niagara2_perfmon_event_map[] = {
478 [PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
479 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
480 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
481 [PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
482 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
483 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
486 static const struct perf_event_map *niagara2_event_map(int event_id)
488 return &niagara2_perfmon_event_map[event_id];
491 static const cache_map_t niagara2_cache_map = {
492 [C(L1D)] = {
493 [C(OP_READ)] = {
494 [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
495 [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
497 [C(OP_WRITE)] = {
498 [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
499 [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
501 [C(OP_PREFETCH)] = {
502 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
503 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
506 [C(L1I)] = {
507 [C(OP_READ)] = {
508 [C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
509 [C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
511 [ C(OP_WRITE) ] = {
512 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
513 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
515 [ C(OP_PREFETCH) ] = {
516 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
517 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
520 [C(LL)] = {
521 [C(OP_READ)] = {
522 [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
523 [C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
525 [C(OP_WRITE)] = {
526 [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
527 [C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
529 [C(OP_PREFETCH)] = {
530 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
531 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
534 [C(DTLB)] = {
535 [C(OP_READ)] = {
536 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
537 [C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
539 [ C(OP_WRITE) ] = {
540 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
541 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
543 [ C(OP_PREFETCH) ] = {
544 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
545 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
548 [C(ITLB)] = {
549 [C(OP_READ)] = {
550 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
551 [C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
553 [ C(OP_WRITE) ] = {
554 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
555 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
557 [ C(OP_PREFETCH) ] = {
558 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
559 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
562 [C(BPU)] = {
563 [C(OP_READ)] = {
564 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
565 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
567 [ C(OP_WRITE) ] = {
568 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
569 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
571 [ C(OP_PREFETCH) ] = {
572 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
573 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
576 [C(NODE)] = {
577 [C(OP_READ)] = {
578 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
579 [C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
581 [ C(OP_WRITE) ] = {
582 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
583 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
585 [ C(OP_PREFETCH) ] = {
586 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
587 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
592 static const struct sparc_pmu niagara2_pmu = {
593 .event_map = niagara2_event_map,
594 .cache_map = &niagara2_cache_map,
595 .max_events = ARRAY_SIZE(niagara2_perfmon_event_map),
596 .read_pmc = sparc_default_read_pmc,
597 .write_pmc = sparc_default_write_pmc,
598 .upper_shift = 19,
599 .lower_shift = 6,
600 .event_mask = 0xfff,
601 .user_bit = PCR_UTRACE,
602 .priv_bit = PCR_STRACE,
603 .hv_bit = PCR_N2_HTRACE,
604 .irq_bit = 0x30,
605 .upper_nop = 0x220,
606 .lower_nop = 0x220,
607 .flags = (SPARC_PMU_ALL_EXCLUDES_SAME |
608 SPARC_PMU_HAS_CONFLICTS),
609 .max_hw_events = 2,
610 .num_pcrs = 1,
611 .num_pic_regs = 1,
614 static const struct perf_event_map niagara4_perfmon_event_map[] = {
615 [PERF_COUNT_HW_CPU_CYCLES] = { (26 << 6) },
616 [PERF_COUNT_HW_INSTRUCTIONS] = { (3 << 6) | 0x3f },
617 [PERF_COUNT_HW_CACHE_REFERENCES] = { (3 << 6) | 0x04 },
618 [PERF_COUNT_HW_CACHE_MISSES] = { (16 << 6) | 0x07 },
619 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { (4 << 6) | 0x01 },
620 [PERF_COUNT_HW_BRANCH_MISSES] = { (25 << 6) | 0x0f },
623 static const struct perf_event_map *niagara4_event_map(int event_id)
625 return &niagara4_perfmon_event_map[event_id];
628 static const cache_map_t niagara4_cache_map = {
629 [C(L1D)] = {
630 [C(OP_READ)] = {
631 [C(RESULT_ACCESS)] = { (3 << 6) | 0x04 },
632 [C(RESULT_MISS)] = { (16 << 6) | 0x07 },
634 [C(OP_WRITE)] = {
635 [C(RESULT_ACCESS)] = { (3 << 6) | 0x08 },
636 [C(RESULT_MISS)] = { (16 << 6) | 0x07 },
638 [C(OP_PREFETCH)] = {
639 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
640 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
643 [C(L1I)] = {
644 [C(OP_READ)] = {
645 [C(RESULT_ACCESS)] = { (3 << 6) | 0x3f },
646 [C(RESULT_MISS)] = { (11 << 6) | 0x03 },
648 [ C(OP_WRITE) ] = {
649 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
650 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
652 [ C(OP_PREFETCH) ] = {
653 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
654 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
657 [C(LL)] = {
658 [C(OP_READ)] = {
659 [C(RESULT_ACCESS)] = { (3 << 6) | 0x04 },
660 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
662 [C(OP_WRITE)] = {
663 [C(RESULT_ACCESS)] = { (3 << 6) | 0x08 },
664 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
666 [C(OP_PREFETCH)] = {
667 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
668 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
671 [C(DTLB)] = {
672 [C(OP_READ)] = {
673 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
674 [C(RESULT_MISS)] = { (17 << 6) | 0x3f },
676 [ C(OP_WRITE) ] = {
677 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
678 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
680 [ C(OP_PREFETCH) ] = {
681 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
682 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
685 [C(ITLB)] = {
686 [C(OP_READ)] = {
687 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
688 [C(RESULT_MISS)] = { (6 << 6) | 0x3f },
690 [ C(OP_WRITE) ] = {
691 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
692 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
694 [ C(OP_PREFETCH) ] = {
695 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
696 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
699 [C(BPU)] = {
700 [C(OP_READ)] = {
701 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
702 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
704 [ C(OP_WRITE) ] = {
705 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
706 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
708 [ C(OP_PREFETCH) ] = {
709 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
710 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
713 [C(NODE)] = {
714 [C(OP_READ)] = {
715 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
716 [C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
718 [ C(OP_WRITE) ] = {
719 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
720 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
722 [ C(OP_PREFETCH) ] = {
723 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
724 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
729 static u32 sparc_vt_read_pmc(int idx)
731 u64 val = pcr_ops->read_pic(idx);
733 return val & 0xffffffff;
736 static void sparc_vt_write_pmc(int idx, u64 val)
738 u64 pcr;
740 pcr = pcr_ops->read_pcr(idx);
741 /* ensure ov and ntc are reset */
742 pcr &= ~(PCR_N4_OV | PCR_N4_NTC);
744 pcr_ops->write_pic(idx, val & 0xffffffff);
746 pcr_ops->write_pcr(idx, pcr);
749 static const struct sparc_pmu niagara4_pmu = {
750 .event_map = niagara4_event_map,
751 .cache_map = &niagara4_cache_map,
752 .max_events = ARRAY_SIZE(niagara4_perfmon_event_map),
753 .read_pmc = sparc_vt_read_pmc,
754 .write_pmc = sparc_vt_write_pmc,
755 .upper_shift = 5,
756 .lower_shift = 5,
757 .event_mask = 0x7ff,
758 .user_bit = PCR_N4_UTRACE,
759 .priv_bit = PCR_N4_STRACE,
761 /* We explicitly don't support hypervisor tracing. The T4
762 * generates the overflow event for precise events via a trap
763 * which will not be generated (ie. it's completely lost) if
764 * we happen to be in the hypervisor when the event triggers.
765 * Essentially, the overflow event reporting is completely
766 * unusable when you have hypervisor mode tracing enabled.
768 .hv_bit = 0,
770 .irq_bit = PCR_N4_TOE,
771 .upper_nop = 0,
772 .lower_nop = 0,
773 .flags = 0,
774 .max_hw_events = 4,
775 .num_pcrs = 4,
776 .num_pic_regs = 4,
779 static const struct sparc_pmu sparc_m7_pmu = {
780 .event_map = niagara4_event_map,
781 .cache_map = &niagara4_cache_map,
782 .max_events = ARRAY_SIZE(niagara4_perfmon_event_map),
783 .read_pmc = sparc_vt_read_pmc,
784 .write_pmc = sparc_vt_write_pmc,
785 .upper_shift = 5,
786 .lower_shift = 5,
787 .event_mask = 0x7ff,
788 .user_bit = PCR_N4_UTRACE,
789 .priv_bit = PCR_N4_STRACE,
791 /* We explicitly don't support hypervisor tracing. */
792 .hv_bit = 0,
794 .irq_bit = PCR_N4_TOE,
795 .upper_nop = 0,
796 .lower_nop = 0,
797 .flags = 0,
798 .max_hw_events = 4,
799 .num_pcrs = 4,
800 .num_pic_regs = 4,
802 static const struct sparc_pmu *sparc_pmu __read_mostly;
804 static u64 event_encoding(u64 event_id, int idx)
806 if (idx == PIC_UPPER_INDEX)
807 event_id <<= sparc_pmu->upper_shift;
808 else
809 event_id <<= sparc_pmu->lower_shift;
810 return event_id;
813 static u64 mask_for_index(int idx)
815 return event_encoding(sparc_pmu->event_mask, idx);
818 static u64 nop_for_index(int idx)
820 return event_encoding(idx == PIC_UPPER_INDEX ?
821 sparc_pmu->upper_nop :
822 sparc_pmu->lower_nop, idx);
825 static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
827 u64 enc, val, mask = mask_for_index(idx);
828 int pcr_index = 0;
830 if (sparc_pmu->num_pcrs > 1)
831 pcr_index = idx;
833 enc = perf_event_get_enc(cpuc->events[idx]);
835 val = cpuc->pcr[pcr_index];
836 val &= ~mask;
837 val |= event_encoding(enc, idx);
838 cpuc->pcr[pcr_index] = val;
840 pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
843 static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
845 u64 mask = mask_for_index(idx);
846 u64 nop = nop_for_index(idx);
847 int pcr_index = 0;
848 u64 val;
850 if (sparc_pmu->num_pcrs > 1)
851 pcr_index = idx;
853 val = cpuc->pcr[pcr_index];
854 val &= ~mask;
855 val |= nop;
856 cpuc->pcr[pcr_index] = val;
858 pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
861 static u64 sparc_perf_event_update(struct perf_event *event,
862 struct hw_perf_event *hwc, int idx)
864 int shift = 64 - 32;
865 u64 prev_raw_count, new_raw_count;
866 s64 delta;
868 again:
869 prev_raw_count = local64_read(&hwc->prev_count);
870 new_raw_count = sparc_pmu->read_pmc(idx);
872 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
873 new_raw_count) != prev_raw_count)
874 goto again;
876 delta = (new_raw_count << shift) - (prev_raw_count << shift);
877 delta >>= shift;
879 local64_add(delta, &event->count);
880 local64_sub(delta, &hwc->period_left);
882 return new_raw_count;
885 static int sparc_perf_event_set_period(struct perf_event *event,
886 struct hw_perf_event *hwc, int idx)
888 s64 left = local64_read(&hwc->period_left);
889 s64 period = hwc->sample_period;
890 int ret = 0;
892 if (unlikely(left <= -period)) {
893 left = period;
894 local64_set(&hwc->period_left, left);
895 hwc->last_period = period;
896 ret = 1;
899 if (unlikely(left <= 0)) {
900 left += period;
901 local64_set(&hwc->period_left, left);
902 hwc->last_period = period;
903 ret = 1;
905 if (left > MAX_PERIOD)
906 left = MAX_PERIOD;
908 local64_set(&hwc->prev_count, (u64)-left);
910 sparc_pmu->write_pmc(idx, (u64)(-left) & 0xffffffff);
912 perf_event_update_userpage(event);
914 return ret;
917 static void read_in_all_counters(struct cpu_hw_events *cpuc)
919 int i;
921 for (i = 0; i < cpuc->n_events; i++) {
922 struct perf_event *cp = cpuc->event[i];
924 if (cpuc->current_idx[i] != PIC_NO_INDEX &&
925 cpuc->current_idx[i] != cp->hw.idx) {
926 sparc_perf_event_update(cp, &cp->hw,
927 cpuc->current_idx[i]);
928 cpuc->current_idx[i] = PIC_NO_INDEX;
933 /* On this PMU all PICs are programmed using a single PCR. Calculate
934 * the combined control register value.
936 * For such chips we require that all of the events have the same
937 * configuration, so just fetch the settings from the first entry.
939 static void calculate_single_pcr(struct cpu_hw_events *cpuc)
941 int i;
943 if (!cpuc->n_added)
944 goto out;
946 /* Assign to counters all unassigned events. */
947 for (i = 0; i < cpuc->n_events; i++) {
948 struct perf_event *cp = cpuc->event[i];
949 struct hw_perf_event *hwc = &cp->hw;
950 int idx = hwc->idx;
951 u64 enc;
953 if (cpuc->current_idx[i] != PIC_NO_INDEX)
954 continue;
956 sparc_perf_event_set_period(cp, hwc, idx);
957 cpuc->current_idx[i] = idx;
959 enc = perf_event_get_enc(cpuc->events[i]);
960 cpuc->pcr[0] &= ~mask_for_index(idx);
961 if (hwc->state & PERF_HES_STOPPED)
962 cpuc->pcr[0] |= nop_for_index(idx);
963 else
964 cpuc->pcr[0] |= event_encoding(enc, idx);
966 out:
967 cpuc->pcr[0] |= cpuc->event[0]->hw.config_base;
970 static void sparc_pmu_start(struct perf_event *event, int flags);
972 /* On this PMU each PIC has it's own PCR control register. */
973 static void calculate_multiple_pcrs(struct cpu_hw_events *cpuc)
975 int i;
977 if (!cpuc->n_added)
978 goto out;
980 for (i = 0; i < cpuc->n_events; i++) {
981 struct perf_event *cp = cpuc->event[i];
982 struct hw_perf_event *hwc = &cp->hw;
983 int idx = hwc->idx;
985 if (cpuc->current_idx[i] != PIC_NO_INDEX)
986 continue;
988 cpuc->current_idx[i] = idx;
990 sparc_pmu_start(cp, PERF_EF_RELOAD);
992 out:
993 for (i = 0; i < cpuc->n_events; i++) {
994 struct perf_event *cp = cpuc->event[i];
995 int idx = cp->hw.idx;
997 cpuc->pcr[idx] |= cp->hw.config_base;
1001 /* If performance event entries have been added, move existing events
1002 * around (if necessary) and then assign new entries to counters.
1004 static void update_pcrs_for_enable(struct cpu_hw_events *cpuc)
1006 if (cpuc->n_added)
1007 read_in_all_counters(cpuc);
1009 if (sparc_pmu->num_pcrs == 1) {
1010 calculate_single_pcr(cpuc);
1011 } else {
1012 calculate_multiple_pcrs(cpuc);
1016 static void sparc_pmu_enable(struct pmu *pmu)
1018 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1019 int i;
1021 if (cpuc->enabled)
1022 return;
1024 cpuc->enabled = 1;
1025 barrier();
1027 if (cpuc->n_events)
1028 update_pcrs_for_enable(cpuc);
1030 for (i = 0; i < sparc_pmu->num_pcrs; i++)
1031 pcr_ops->write_pcr(i, cpuc->pcr[i]);
1034 static void sparc_pmu_disable(struct pmu *pmu)
1036 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1037 int i;
1039 if (!cpuc->enabled)
1040 return;
1042 cpuc->enabled = 0;
1043 cpuc->n_added = 0;
1045 for (i = 0; i < sparc_pmu->num_pcrs; i++) {
1046 u64 val = cpuc->pcr[i];
1048 val &= ~(sparc_pmu->user_bit | sparc_pmu->priv_bit |
1049 sparc_pmu->hv_bit | sparc_pmu->irq_bit);
1050 cpuc->pcr[i] = val;
1051 pcr_ops->write_pcr(i, cpuc->pcr[i]);
1055 static int active_event_index(struct cpu_hw_events *cpuc,
1056 struct perf_event *event)
1058 int i;
1060 for (i = 0; i < cpuc->n_events; i++) {
1061 if (cpuc->event[i] == event)
1062 break;
1064 BUG_ON(i == cpuc->n_events);
1065 return cpuc->current_idx[i];
1068 static void sparc_pmu_start(struct perf_event *event, int flags)
1070 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1071 int idx = active_event_index(cpuc, event);
1073 if (flags & PERF_EF_RELOAD) {
1074 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1075 sparc_perf_event_set_period(event, &event->hw, idx);
1078 event->hw.state = 0;
1080 sparc_pmu_enable_event(cpuc, &event->hw, idx);
1083 static void sparc_pmu_stop(struct perf_event *event, int flags)
1085 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1086 int idx = active_event_index(cpuc, event);
1088 if (!(event->hw.state & PERF_HES_STOPPED)) {
1089 sparc_pmu_disable_event(cpuc, &event->hw, idx);
1090 event->hw.state |= PERF_HES_STOPPED;
1093 if (!(event->hw.state & PERF_HES_UPTODATE) && (flags & PERF_EF_UPDATE)) {
1094 sparc_perf_event_update(event, &event->hw, idx);
1095 event->hw.state |= PERF_HES_UPTODATE;
1099 static void sparc_pmu_del(struct perf_event *event, int _flags)
1101 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1102 unsigned long flags;
1103 int i;
1105 local_irq_save(flags);
1107 for (i = 0; i < cpuc->n_events; i++) {
1108 if (event == cpuc->event[i]) {
1109 /* Absorb the final count and turn off the
1110 * event.
1112 sparc_pmu_stop(event, PERF_EF_UPDATE);
1114 /* Shift remaining entries down into
1115 * the existing slot.
1117 while (++i < cpuc->n_events) {
1118 cpuc->event[i - 1] = cpuc->event[i];
1119 cpuc->events[i - 1] = cpuc->events[i];
1120 cpuc->current_idx[i - 1] =
1121 cpuc->current_idx[i];
1124 perf_event_update_userpage(event);
1126 cpuc->n_events--;
1127 break;
1131 local_irq_restore(flags);
1134 static void sparc_pmu_read(struct perf_event *event)
1136 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1137 int idx = active_event_index(cpuc, event);
1138 struct hw_perf_event *hwc = &event->hw;
1140 sparc_perf_event_update(event, hwc, idx);
1143 static atomic_t active_events = ATOMIC_INIT(0);
1144 static DEFINE_MUTEX(pmc_grab_mutex);
1146 static void perf_stop_nmi_watchdog(void *unused)
1148 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1149 int i;
1151 stop_nmi_watchdog(NULL);
1152 for (i = 0; i < sparc_pmu->num_pcrs; i++)
1153 cpuc->pcr[i] = pcr_ops->read_pcr(i);
1156 static void perf_event_grab_pmc(void)
1158 if (atomic_inc_not_zero(&active_events))
1159 return;
1161 mutex_lock(&pmc_grab_mutex);
1162 if (atomic_read(&active_events) == 0) {
1163 if (atomic_read(&nmi_active) > 0) {
1164 on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
1165 BUG_ON(atomic_read(&nmi_active) != 0);
1167 atomic_inc(&active_events);
1169 mutex_unlock(&pmc_grab_mutex);
1172 static void perf_event_release_pmc(void)
1174 if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
1175 if (atomic_read(&nmi_active) == 0)
1176 on_each_cpu(start_nmi_watchdog, NULL, 1);
1177 mutex_unlock(&pmc_grab_mutex);
1181 static const struct perf_event_map *sparc_map_cache_event(u64 config)
1183 unsigned int cache_type, cache_op, cache_result;
1184 const struct perf_event_map *pmap;
1186 if (!sparc_pmu->cache_map)
1187 return ERR_PTR(-ENOENT);
1189 cache_type = (config >> 0) & 0xff;
1190 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
1191 return ERR_PTR(-EINVAL);
1193 cache_op = (config >> 8) & 0xff;
1194 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
1195 return ERR_PTR(-EINVAL);
1197 cache_result = (config >> 16) & 0xff;
1198 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1199 return ERR_PTR(-EINVAL);
1201 pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);
1203 if (pmap->encoding == CACHE_OP_UNSUPPORTED)
1204 return ERR_PTR(-ENOENT);
1206 if (pmap->encoding == CACHE_OP_NONSENSE)
1207 return ERR_PTR(-EINVAL);
1209 return pmap;
1212 static void hw_perf_event_destroy(struct perf_event *event)
1214 perf_event_release_pmc();
1217 /* Make sure all events can be scheduled into the hardware at
1218 * the same time. This is simplified by the fact that we only
1219 * need to support 2 simultaneous HW events.
1221 * As a side effect, the evts[]->hw.idx values will be assigned
1222 * on success. These are pending indexes. When the events are
1223 * actually programmed into the chip, these values will propagate
1224 * to the per-cpu cpuc->current_idx[] slots, see the code in
1225 * maybe_change_configuration() for details.
1227 static int sparc_check_constraints(struct perf_event **evts,
1228 unsigned long *events, int n_ev)
1230 u8 msk0 = 0, msk1 = 0;
1231 int idx0 = 0;
1233 /* This case is possible when we are invoked from
1234 * hw_perf_group_sched_in().
1236 if (!n_ev)
1237 return 0;
1239 if (n_ev > sparc_pmu->max_hw_events)
1240 return -1;
1242 if (!(sparc_pmu->flags & SPARC_PMU_HAS_CONFLICTS)) {
1243 int i;
1245 for (i = 0; i < n_ev; i++)
1246 evts[i]->hw.idx = i;
1247 return 0;
1250 msk0 = perf_event_get_msk(events[0]);
1251 if (n_ev == 1) {
1252 if (msk0 & PIC_LOWER)
1253 idx0 = 1;
1254 goto success;
1256 BUG_ON(n_ev != 2);
1257 msk1 = perf_event_get_msk(events[1]);
1259 /* If both events can go on any counter, OK. */
1260 if (msk0 == (PIC_UPPER | PIC_LOWER) &&
1261 msk1 == (PIC_UPPER | PIC_LOWER))
1262 goto success;
1264 /* If one event is limited to a specific counter,
1265 * and the other can go on both, OK.
1267 if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) &&
1268 msk1 == (PIC_UPPER | PIC_LOWER)) {
1269 if (msk0 & PIC_LOWER)
1270 idx0 = 1;
1271 goto success;
1274 if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
1275 msk0 == (PIC_UPPER | PIC_LOWER)) {
1276 if (msk1 & PIC_UPPER)
1277 idx0 = 1;
1278 goto success;
1281 /* If the events are fixed to different counters, OK. */
1282 if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) ||
1283 (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) {
1284 if (msk0 & PIC_LOWER)
1285 idx0 = 1;
1286 goto success;
1289 /* Otherwise, there is a conflict. */
1290 return -1;
1292 success:
1293 evts[0]->hw.idx = idx0;
1294 if (n_ev == 2)
1295 evts[1]->hw.idx = idx0 ^ 1;
1296 return 0;
1299 static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
1301 int eu = 0, ek = 0, eh = 0;
1302 struct perf_event *event;
1303 int i, n, first;
1305 if (!(sparc_pmu->flags & SPARC_PMU_ALL_EXCLUDES_SAME))
1306 return 0;
1308 n = n_prev + n_new;
1309 if (n <= 1)
1310 return 0;
1312 first = 1;
1313 for (i = 0; i < n; i++) {
1314 event = evts[i];
1315 if (first) {
1316 eu = event->attr.exclude_user;
1317 ek = event->attr.exclude_kernel;
1318 eh = event->attr.exclude_hv;
1319 first = 0;
1320 } else if (event->attr.exclude_user != eu ||
1321 event->attr.exclude_kernel != ek ||
1322 event->attr.exclude_hv != eh) {
1323 return -EAGAIN;
1327 return 0;
1330 static int collect_events(struct perf_event *group, int max_count,
1331 struct perf_event *evts[], unsigned long *events,
1332 int *current_idx)
1334 struct perf_event *event;
1335 int n = 0;
1337 if (!is_software_event(group)) {
1338 if (n >= max_count)
1339 return -1;
1340 evts[n] = group;
1341 events[n] = group->hw.event_base;
1342 current_idx[n++] = PIC_NO_INDEX;
1344 list_for_each_entry(event, &group->sibling_list, group_entry) {
1345 if (!is_software_event(event) &&
1346 event->state != PERF_EVENT_STATE_OFF) {
1347 if (n >= max_count)
1348 return -1;
1349 evts[n] = event;
1350 events[n] = event->hw.event_base;
1351 current_idx[n++] = PIC_NO_INDEX;
1354 return n;
1357 static int sparc_pmu_add(struct perf_event *event, int ef_flags)
1359 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1360 int n0, ret = -EAGAIN;
1361 unsigned long flags;
1363 local_irq_save(flags);
1365 n0 = cpuc->n_events;
1366 if (n0 >= sparc_pmu->max_hw_events)
1367 goto out;
1369 cpuc->event[n0] = event;
1370 cpuc->events[n0] = event->hw.event_base;
1371 cpuc->current_idx[n0] = PIC_NO_INDEX;
1373 event->hw.state = PERF_HES_UPTODATE;
1374 if (!(ef_flags & PERF_EF_START))
1375 event->hw.state |= PERF_HES_STOPPED;
1378 * If group events scheduling transaction was started,
1379 * skip the schedulability test here, it will be performed
1380 * at commit time(->commit_txn) as a whole
1382 if (cpuc->group_flag & PERF_EVENT_TXN)
1383 goto nocheck;
1385 if (check_excludes(cpuc->event, n0, 1))
1386 goto out;
1387 if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1))
1388 goto out;
1390 nocheck:
1391 cpuc->n_events++;
1392 cpuc->n_added++;
1394 ret = 0;
1395 out:
1396 local_irq_restore(flags);
1397 return ret;
1400 static int sparc_pmu_event_init(struct perf_event *event)
1402 struct perf_event_attr *attr = &event->attr;
1403 struct perf_event *evts[MAX_HWEVENTS];
1404 struct hw_perf_event *hwc = &event->hw;
1405 unsigned long events[MAX_HWEVENTS];
1406 int current_idx_dmy[MAX_HWEVENTS];
1407 const struct perf_event_map *pmap;
1408 int n;
1410 if (atomic_read(&nmi_active) < 0)
1411 return -ENODEV;
1413 /* does not support taken branch sampling */
1414 if (has_branch_stack(event))
1415 return -EOPNOTSUPP;
1417 switch (attr->type) {
1418 case PERF_TYPE_HARDWARE:
1419 if (attr->config >= sparc_pmu->max_events)
1420 return -EINVAL;
1421 pmap = sparc_pmu->event_map(attr->config);
1422 break;
1424 case PERF_TYPE_HW_CACHE:
1425 pmap = sparc_map_cache_event(attr->config);
1426 if (IS_ERR(pmap))
1427 return PTR_ERR(pmap);
1428 break;
1430 case PERF_TYPE_RAW:
1431 pmap = NULL;
1432 break;
1434 default:
1435 return -ENOENT;
1439 if (pmap) {
1440 hwc->event_base = perf_event_encode(pmap);
1441 } else {
1443 * User gives us "(encoding << 16) | pic_mask" for
1444 * PERF_TYPE_RAW events.
1446 hwc->event_base = attr->config;
1449 /* We save the enable bits in the config_base. */
1450 hwc->config_base = sparc_pmu->irq_bit;
1451 if (!attr->exclude_user)
1452 hwc->config_base |= sparc_pmu->user_bit;
1453 if (!attr->exclude_kernel)
1454 hwc->config_base |= sparc_pmu->priv_bit;
1455 if (!attr->exclude_hv)
1456 hwc->config_base |= sparc_pmu->hv_bit;
1458 n = 0;
1459 if (event->group_leader != event) {
1460 n = collect_events(event->group_leader,
1461 sparc_pmu->max_hw_events - 1,
1462 evts, events, current_idx_dmy);
1463 if (n < 0)
1464 return -EINVAL;
1466 events[n] = hwc->event_base;
1467 evts[n] = event;
1469 if (check_excludes(evts, n, 1))
1470 return -EINVAL;
1472 if (sparc_check_constraints(evts, events, n + 1))
1473 return -EINVAL;
1475 hwc->idx = PIC_NO_INDEX;
1477 /* Try to do all error checking before this point, as unwinding
1478 * state after grabbing the PMC is difficult.
1480 perf_event_grab_pmc();
1481 event->destroy = hw_perf_event_destroy;
1483 if (!hwc->sample_period) {
1484 hwc->sample_period = MAX_PERIOD;
1485 hwc->last_period = hwc->sample_period;
1486 local64_set(&hwc->period_left, hwc->sample_period);
1489 return 0;
1493 * Start group events scheduling transaction
1494 * Set the flag to make pmu::enable() not perform the
1495 * schedulability test, it will be performed at commit time
1497 static void sparc_pmu_start_txn(struct pmu *pmu)
1499 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1501 perf_pmu_disable(pmu);
1502 cpuhw->group_flag |= PERF_EVENT_TXN;
1506 * Stop group events scheduling transaction
1507 * Clear the flag and pmu::enable() will perform the
1508 * schedulability test.
1510 static void sparc_pmu_cancel_txn(struct pmu *pmu)
1512 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1514 cpuhw->group_flag &= ~PERF_EVENT_TXN;
1515 perf_pmu_enable(pmu);
1519 * Commit group events scheduling transaction
1520 * Perform the group schedulability test as a whole
1521 * Return 0 if success
1523 static int sparc_pmu_commit_txn(struct pmu *pmu)
1525 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1526 int n;
1528 if (!sparc_pmu)
1529 return -EINVAL;
1531 cpuc = this_cpu_ptr(&cpu_hw_events);
1532 n = cpuc->n_events;
1533 if (check_excludes(cpuc->event, 0, n))
1534 return -EINVAL;
1535 if (sparc_check_constraints(cpuc->event, cpuc->events, n))
1536 return -EAGAIN;
1538 cpuc->group_flag &= ~PERF_EVENT_TXN;
1539 perf_pmu_enable(pmu);
1540 return 0;
1543 static struct pmu pmu = {
1544 .pmu_enable = sparc_pmu_enable,
1545 .pmu_disable = sparc_pmu_disable,
1546 .event_init = sparc_pmu_event_init,
1547 .add = sparc_pmu_add,
1548 .del = sparc_pmu_del,
1549 .start = sparc_pmu_start,
1550 .stop = sparc_pmu_stop,
1551 .read = sparc_pmu_read,
1552 .start_txn = sparc_pmu_start_txn,
1553 .cancel_txn = sparc_pmu_cancel_txn,
1554 .commit_txn = sparc_pmu_commit_txn,
1557 void perf_event_print_debug(void)
1559 unsigned long flags;
1560 int cpu, i;
1562 if (!sparc_pmu)
1563 return;
1565 local_irq_save(flags);
1567 cpu = smp_processor_id();
1569 pr_info("\n");
1570 for (i = 0; i < sparc_pmu->num_pcrs; i++)
1571 pr_info("CPU#%d: PCR%d[%016llx]\n",
1572 cpu, i, pcr_ops->read_pcr(i));
1573 for (i = 0; i < sparc_pmu->num_pic_regs; i++)
1574 pr_info("CPU#%d: PIC%d[%016llx]\n",
1575 cpu, i, pcr_ops->read_pic(i));
1577 local_irq_restore(flags);
1580 static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
1581 unsigned long cmd, void *__args)
1583 struct die_args *args = __args;
1584 struct perf_sample_data data;
1585 struct cpu_hw_events *cpuc;
1586 struct pt_regs *regs;
1587 int i;
1589 if (!atomic_read(&active_events))
1590 return NOTIFY_DONE;
1592 switch (cmd) {
1593 case DIE_NMI:
1594 break;
1596 default:
1597 return NOTIFY_DONE;
1600 regs = args->regs;
1602 cpuc = this_cpu_ptr(&cpu_hw_events);
1604 /* If the PMU has the TOE IRQ enable bits, we need to do a
1605 * dummy write to the %pcr to clear the overflow bits and thus
1606 * the interrupt.
1608 * Do this before we peek at the counters to determine
1609 * overflow so we don't lose any events.
1611 if (sparc_pmu->irq_bit &&
1612 sparc_pmu->num_pcrs == 1)
1613 pcr_ops->write_pcr(0, cpuc->pcr[0]);
1615 for (i = 0; i < cpuc->n_events; i++) {
1616 struct perf_event *event = cpuc->event[i];
1617 int idx = cpuc->current_idx[i];
1618 struct hw_perf_event *hwc;
1619 u64 val;
1621 if (sparc_pmu->irq_bit &&
1622 sparc_pmu->num_pcrs > 1)
1623 pcr_ops->write_pcr(idx, cpuc->pcr[idx]);
1625 hwc = &event->hw;
1626 val = sparc_perf_event_update(event, hwc, idx);
1627 if (val & (1ULL << 31))
1628 continue;
1630 perf_sample_data_init(&data, 0, hwc->last_period);
1631 if (!sparc_perf_event_set_period(event, hwc, idx))
1632 continue;
1634 if (perf_event_overflow(event, &data, regs))
1635 sparc_pmu_stop(event, 0);
1638 return NOTIFY_STOP;
1641 static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1642 .notifier_call = perf_event_nmi_handler,
1645 static bool __init supported_pmu(void)
1647 if (!strcmp(sparc_pmu_type, "ultra3") ||
1648 !strcmp(sparc_pmu_type, "ultra3+") ||
1649 !strcmp(sparc_pmu_type, "ultra3i") ||
1650 !strcmp(sparc_pmu_type, "ultra4+")) {
1651 sparc_pmu = &ultra3_pmu;
1652 return true;
1654 if (!strcmp(sparc_pmu_type, "niagara")) {
1655 sparc_pmu = &niagara1_pmu;
1656 return true;
1658 if (!strcmp(sparc_pmu_type, "niagara2") ||
1659 !strcmp(sparc_pmu_type, "niagara3")) {
1660 sparc_pmu = &niagara2_pmu;
1661 return true;
1663 if (!strcmp(sparc_pmu_type, "niagara4") ||
1664 !strcmp(sparc_pmu_type, "niagara5")) {
1665 sparc_pmu = &niagara4_pmu;
1666 return true;
1668 if (!strcmp(sparc_pmu_type, "sparc-m7")) {
1669 sparc_pmu = &sparc_m7_pmu;
1670 return true;
1672 return false;
1675 static int __init init_hw_perf_events(void)
1677 int err;
1679 pr_info("Performance events: ");
1681 err = pcr_arch_init();
1682 if (err || !supported_pmu()) {
1683 pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
1684 return 0;
1687 pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);
1689 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1690 register_die_notifier(&perf_event_nmi_notifier);
1692 return 0;
1694 pure_initcall(init_hw_perf_events);
1696 void perf_callchain_kernel(struct perf_callchain_entry *entry,
1697 struct pt_regs *regs)
1699 unsigned long ksp, fp;
1700 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1701 int graph = 0;
1702 #endif
1704 stack_trace_flush();
1706 perf_callchain_store(entry, regs->tpc);
1708 ksp = regs->u_regs[UREG_I6];
1709 fp = ksp + STACK_BIAS;
1710 do {
1711 struct sparc_stackf *sf;
1712 struct pt_regs *regs;
1713 unsigned long pc;
1715 if (!kstack_valid(current_thread_info(), fp))
1716 break;
1718 sf = (struct sparc_stackf *) fp;
1719 regs = (struct pt_regs *) (sf + 1);
1721 if (kstack_is_trap_frame(current_thread_info(), regs)) {
1722 if (user_mode(regs))
1723 break;
1724 pc = regs->tpc;
1725 fp = regs->u_regs[UREG_I6] + STACK_BIAS;
1726 } else {
1727 pc = sf->callers_pc;
1728 fp = (unsigned long)sf->fp + STACK_BIAS;
1730 perf_callchain_store(entry, pc);
1731 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1732 if ((pc + 8UL) == (unsigned long) &return_to_handler) {
1733 int index = current->curr_ret_stack;
1734 if (current->ret_stack && index >= graph) {
1735 pc = current->ret_stack[index - graph].ret;
1736 perf_callchain_store(entry, pc);
1737 graph++;
1740 #endif
1741 } while (entry->nr < PERF_MAX_STACK_DEPTH);
1744 static inline int
1745 valid_user_frame(const void __user *fp, unsigned long size)
1747 /* addresses should be at least 4-byte aligned */
1748 if (((unsigned long) fp) & 3)
1749 return 0;
1751 return (__range_not_ok(fp, size, TASK_SIZE) == 0);
1754 static void perf_callchain_user_64(struct perf_callchain_entry *entry,
1755 struct pt_regs *regs)
1757 unsigned long ufp;
1759 ufp = regs->u_regs[UREG_FP] + STACK_BIAS;
1760 do {
1761 struct sparc_stackf __user *usf;
1762 struct sparc_stackf sf;
1763 unsigned long pc;
1765 usf = (struct sparc_stackf __user *)ufp;
1766 if (!valid_user_frame(usf, sizeof(sf)))
1767 break;
1769 if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1770 break;
1772 pc = sf.callers_pc;
1773 ufp = (unsigned long)sf.fp + STACK_BIAS;
1774 perf_callchain_store(entry, pc);
1775 } while (entry->nr < PERF_MAX_STACK_DEPTH);
1778 static void perf_callchain_user_32(struct perf_callchain_entry *entry,
1779 struct pt_regs *regs)
1781 unsigned long ufp;
1783 ufp = regs->u_regs[UREG_FP] & 0xffffffffUL;
1784 do {
1785 unsigned long pc;
1787 if (thread32_stack_is_64bit(ufp)) {
1788 struct sparc_stackf __user *usf;
1789 struct sparc_stackf sf;
1791 ufp += STACK_BIAS;
1792 usf = (struct sparc_stackf __user *)ufp;
1793 if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1794 break;
1795 pc = sf.callers_pc & 0xffffffff;
1796 ufp = ((unsigned long) sf.fp) & 0xffffffff;
1797 } else {
1798 struct sparc_stackf32 __user *usf;
1799 struct sparc_stackf32 sf;
1800 usf = (struct sparc_stackf32 __user *)ufp;
1801 if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1802 break;
1803 pc = sf.callers_pc;
1804 ufp = (unsigned long)sf.fp;
1806 perf_callchain_store(entry, pc);
1807 } while (entry->nr < PERF_MAX_STACK_DEPTH);
1810 void
1811 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
1813 perf_callchain_store(entry, regs->tpc);
1815 if (!current->mm)
1816 return;
1818 flushw_user();
1820 pagefault_disable();
1822 if (test_thread_flag(TIF_32BIT))
1823 perf_callchain_user_32(entry, regs);
1824 else
1825 perf_callchain_user_64(entry, regs);
1827 pagefault_enable();