2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
15 #include <linux/highmem.h>
16 #include <linux/module.h>
17 #include <linux/pagemap.h>
18 #include <asm/homecache.h>
20 #define kmap_get_pte(vaddr) \
21 pte_offset_kernel(pmd_offset(pud_offset(pgd_offset_k(vaddr), (vaddr)),\
25 void *kmap(struct page
*page
)
32 if (!PageHighMem(page
))
33 return page_address(page
);
34 kva
= kmap_high(page
);
37 * Rewrite the PTE under the lock. This ensures that the page
38 * is not currently migrating.
40 ptep
= kmap_get_pte((unsigned long)kva
);
41 flags
= homecache_kpte_lock();
42 set_pte_at(&init_mm
, kva
, ptep
, mk_pte(page
, page_to_kpgprot(page
)));
43 homecache_kpte_unlock(flags
);
49 void kunmap(struct page
*page
)
53 if (!PageHighMem(page
))
57 EXPORT_SYMBOL(kunmap
);
60 * Describe a single atomic mapping of a page on a given cpu at a
61 * given address, and allow it to be linked into a list.
63 struct atomic_mapped_page
{
64 struct list_head list
;
70 static spinlock_t amp_lock
= __SPIN_LOCK_UNLOCKED(&_lock
);
71 static struct list_head amp_list
= LIST_HEAD_INIT(amp_list
);
74 * Combining this structure with a per-cpu declaration lets us give
75 * each cpu an atomic_mapped_page structure per type.
78 struct atomic_mapped_page per_type
[KM_TYPE_NR
];
80 static DEFINE_PER_CPU(struct kmap_amps
, amps
);
83 * Add a page and va, on this cpu, to the list of kmap_atomic pages,
84 * and write the new pte to memory. Writing the new PTE under the
85 * lock guarantees that it is either on the list before migration starts
86 * (if we won the race), or set_pte() sets the migrating bit in the PTE
87 * (if we lost the race). And doing it under the lock guarantees
88 * that when kmap_atomic_fix_one_pte() comes along, it finds a valid
89 * PTE in memory, iff the mapping is still on the amp_list.
91 * Finally, doing it under the lock lets us safely examine the page
92 * to see if it is immutable or not, for the generic kmap_atomic() case.
93 * If we examine it earlier we are exposed to a race where it looks
94 * writable earlier, but becomes immutable before we write the PTE.
96 static void kmap_atomic_register(struct page
*page
, int type
,
97 unsigned long va
, pte_t
*ptep
, pte_t pteval
)
100 struct atomic_mapped_page
*amp
;
102 flags
= homecache_kpte_lock();
103 spin_lock(&_lock
);
105 /* With interrupts disabled, now fill in the per-cpu info. */
106 amp
= this_cpu_ptr(&s
.per_type
[type
]);
108 amp
->cpu
= smp_processor_id();
111 /* For generic kmap_atomic(), choose the PTE writability now. */
112 if (!pte_read(pteval
))
113 pteval
= mk_pte(page
, page_to_kpgprot(page
));
115 list_add(&
->list
, &_list
);
116 set_pte(ptep
, pteval
);
118 spin_unlock(&_lock
);
119 homecache_kpte_unlock(flags
);
123 * Remove a page and va, on this cpu, from the list of kmap_atomic pages.
124 * Linear-time search, but we count on the lists being short.
125 * We don't need to adjust the PTE under the lock (as opposed to the
126 * kmap_atomic_register() case), since we're just unconditionally
127 * zeroing the PTE after it's off the list.
129 static void kmap_atomic_unregister(struct page
*page
, unsigned long va
)
132 struct atomic_mapped_page
*amp
;
133 int cpu
= smp_processor_id();
134 spin_lock_irqsave(&_lock
, flags
);
135 list_for_each_entry(amp
, &_list
, list
) {
136 if (amp
->page
== page
&& amp
->cpu
== cpu
&& amp
->va
== va
)
139 BUG_ON(&
->list
== &_list
);
140 list_del(&
->list
);
141 spin_unlock_irqrestore(&_lock
, flags
);
144 /* Helper routine for kmap_atomic_fix_kpte(), below. */
145 static void kmap_atomic_fix_one_kpte(struct atomic_mapped_page
*amp
,
148 pte_t
*ptep
= kmap_get_pte(amp
->va
);
150 set_pte(ptep
, pte_mkmigrate(*ptep
));
151 flush_remote(0, 0, NULL
, amp
->va
, PAGE_SIZE
, PAGE_SIZE
,
152 cpumask_of(amp
->cpu
), NULL
, 0);
155 * Rewrite a default kernel PTE for this page.
156 * We rely on the fact that set_pte() writes the
157 * present+migrating bits last.
159 pte_t pte
= mk_pte(amp
->page
, page_to_kpgprot(amp
->page
));
165 * This routine is a helper function for homecache_fix_kpte(); see
166 * its comments for more information on the "finished" argument here.
168 * Note that we hold the lock while doing the remote flushes, which
169 * will stall any unrelated cpus trying to do kmap_atomic operations.
170 * We could just update the PTEs under the lock, and save away copies
171 * of the structs (or just the va+cpu), then flush them after we
172 * release the lock, but it seems easier just to do it all under the lock.
174 void kmap_atomic_fix_kpte(struct page
*page
, int finished
)
176 struct atomic_mapped_page
*amp
;
178 spin_lock_irqsave(&_lock
, flags
);
179 list_for_each_entry(amp
, &_list
, list
) {
180 if (amp
->page
== page
)
181 kmap_atomic_fix_one_kpte(amp
, finished
);
183 spin_unlock_irqrestore(&_lock
, flags
);
187 * kmap_atomic/kunmap_atomic is significantly faster than kmap/kunmap
188 * because the kmap code must perform a global TLB invalidation when
189 * the kmap pool wraps.
191 * Note that they may be slower than on x86 (etc.) because unlike on
192 * those platforms, we do have to take a global lock to map and unmap
193 * pages on Tile (see above).
195 * When holding an atomic kmap is is not legal to sleep, so atomic
196 * kmaps are appropriate for short, tight code paths only.
198 void *kmap_atomic_prot(struct page
*page
, pgprot_t prot
)
207 /* Avoid icache flushes by disallowing atomic executable mappings. */
208 BUG_ON(pte_exec(prot
));
210 if (!PageHighMem(page
))
211 return page_address(page
);
213 type
= kmap_atomic_idx_push();
214 idx
= type
+ KM_TYPE_NR
*smp_processor_id();
215 vaddr
= __fix_to_virt(FIX_KMAP_BEGIN
+ idx
);
216 pte
= kmap_get_pte(vaddr
);
217 BUG_ON(!pte_none(*pte
));
219 /* Register that this page is mapped atomically on this cpu. */
220 kmap_atomic_register(page
, type
, vaddr
, pte
, mk_pte(page
, prot
));
222 return (void *)vaddr
;
224 EXPORT_SYMBOL(kmap_atomic_prot
);
226 void *kmap_atomic(struct page
*page
)
228 /* PAGE_NONE is a magic value that tells us to check immutability. */
229 return kmap_atomic_prot(page
, PAGE_NONE
);
231 EXPORT_SYMBOL(kmap_atomic
);
233 void __kunmap_atomic(void *kvaddr
)
235 unsigned long vaddr
= (unsigned long) kvaddr
& PAGE_MASK
;
237 if (vaddr
>= __fix_to_virt(FIX_KMAP_END
) &&
238 vaddr
<= __fix_to_virt(FIX_KMAP_BEGIN
)) {
239 pte_t
*pte
= kmap_get_pte(vaddr
);
243 type
= kmap_atomic_idx();
244 idx
= type
+ KM_TYPE_NR
*smp_processor_id();
247 * Force other mappings to Oops if they try to access this pte
248 * without first remapping it. Keeping stale mappings around
251 BUG_ON(!pte_present(pteval
) && !pte_migrating(pteval
));
252 kmap_atomic_unregister(pte_page(pteval
), vaddr
);
253 kpte_clear_flush(pte
, vaddr
);
254 kmap_atomic_idx_pop();
256 /* Must be a lowmem page */
257 BUG_ON(vaddr
< PAGE_OFFSET
);
258 BUG_ON(vaddr
>= (unsigned long)high_memory
);
264 EXPORT_SYMBOL(__kunmap_atomic
);
267 * This API is supposed to allow us to map memory without a "struct page".
268 * Currently we don't support this, though this may change in the future.
270 void *kmap_atomic_pfn(unsigned long pfn
)
272 return kmap_atomic(pfn_to_page(pfn
));
274 void *kmap_atomic_prot_pfn(unsigned long pfn
, pgprot_t prot
)
276 return kmap_atomic_prot(pfn_to_page(pfn
), prot
);
279 struct page
*kmap_atomic_to_page(void *ptr
)
282 unsigned long vaddr
= (unsigned long)ptr
;
284 if (vaddr
< FIXADDR_START
)
285 return virt_to_page(ptr
);
287 pte
= kmap_get_pte(vaddr
);
288 return pte_page(*pte
);