Linux 4.2.2
[linux/fpc-iii.git] / arch / um / os-Linux / signal.c
blob036d0dbc7b52730ece2a72d69ed95570269fef76
1 /*
2 * Copyright (C) 2004 PathScale, Inc
3 * Copyright (C) 2004 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
4 * Licensed under the GPL
5 */
7 #include <stdlib.h>
8 #include <stdarg.h>
9 #include <errno.h>
10 #include <signal.h>
11 #include <strings.h>
12 #include <as-layout.h>
13 #include <kern_util.h>
14 #include <os.h>
15 #include <sysdep/mcontext.h>
16 #include "internal.h"
18 void (*sig_info[NSIG])(int, struct siginfo *, struct uml_pt_regs *) = {
19 [SIGTRAP] = relay_signal,
20 [SIGFPE] = relay_signal,
21 [SIGILL] = relay_signal,
22 [SIGWINCH] = winch,
23 [SIGBUS] = bus_handler,
24 [SIGSEGV] = segv_handler,
25 [SIGIO] = sigio_handler,
26 [SIGVTALRM] = timer_handler };
28 static void sig_handler_common(int sig, struct siginfo *si, mcontext_t *mc)
30 struct uml_pt_regs r;
31 int save_errno = errno;
33 r.is_user = 0;
34 if (sig == SIGSEGV) {
35 /* For segfaults, we want the data from the sigcontext. */
36 get_regs_from_mc(&r, mc);
37 GET_FAULTINFO_FROM_MC(r.faultinfo, mc);
40 /* enable signals if sig isn't IRQ signal */
41 if ((sig != SIGIO) && (sig != SIGWINCH) && (sig != SIGVTALRM))
42 unblock_signals();
44 (*sig_info[sig])(sig, si, &r);
46 errno = save_errno;
50 * These are the asynchronous signals. SIGPROF is excluded because we want to
51 * be able to profile all of UML, not just the non-critical sections. If
52 * profiling is not thread-safe, then that is not my problem. We can disable
53 * profiling when SMP is enabled in that case.
55 #define SIGIO_BIT 0
56 #define SIGIO_MASK (1 << SIGIO_BIT)
58 #define SIGVTALRM_BIT 1
59 #define SIGVTALRM_MASK (1 << SIGVTALRM_BIT)
61 static int signals_enabled;
62 static unsigned int signals_pending;
64 void sig_handler(int sig, struct siginfo *si, mcontext_t *mc)
66 int enabled;
68 enabled = signals_enabled;
69 if (!enabled && (sig == SIGIO)) {
70 signals_pending |= SIGIO_MASK;
71 return;
74 block_signals();
76 sig_handler_common(sig, si, mc);
78 set_signals(enabled);
81 static void real_alarm_handler(mcontext_t *mc)
83 struct uml_pt_regs regs;
85 if (mc != NULL)
86 get_regs_from_mc(&regs, mc);
87 regs.is_user = 0;
88 unblock_signals();
89 timer_handler(SIGVTALRM, NULL, &regs);
92 void alarm_handler(int sig, struct siginfo *unused_si, mcontext_t *mc)
94 int enabled;
96 enabled = signals_enabled;
97 if (!signals_enabled) {
98 signals_pending |= SIGVTALRM_MASK;
99 return;
102 block_signals();
104 real_alarm_handler(mc);
105 set_signals(enabled);
108 void timer_init(void)
110 set_handler(SIGVTALRM);
113 void set_sigstack(void *sig_stack, int size)
115 stack_t stack = {
116 .ss_flags = 0,
117 .ss_sp = sig_stack,
118 .ss_size = size - sizeof(void *)
121 if (sigaltstack(&stack, NULL) != 0)
122 panic("enabling signal stack failed, errno = %d\n", errno);
125 static void (*handlers[_NSIG])(int sig, struct siginfo *si, mcontext_t *mc) = {
126 [SIGSEGV] = sig_handler,
127 [SIGBUS] = sig_handler,
128 [SIGILL] = sig_handler,
129 [SIGFPE] = sig_handler,
130 [SIGTRAP] = sig_handler,
132 [SIGIO] = sig_handler,
133 [SIGWINCH] = sig_handler,
134 [SIGVTALRM] = alarm_handler
138 static void hard_handler(int sig, siginfo_t *si, void *p)
140 struct ucontext *uc = p;
141 mcontext_t *mc = &uc->uc_mcontext;
142 unsigned long pending = 1UL << sig;
144 do {
145 int nested, bail;
148 * pending comes back with one bit set for each
149 * interrupt that arrived while setting up the stack,
150 * plus a bit for this interrupt, plus the zero bit is
151 * set if this is a nested interrupt.
152 * If bail is true, then we interrupted another
153 * handler setting up the stack. In this case, we
154 * have to return, and the upper handler will deal
155 * with this interrupt.
157 bail = to_irq_stack(&pending);
158 if (bail)
159 return;
161 nested = pending & 1;
162 pending &= ~1;
164 while ((sig = ffs(pending)) != 0){
165 sig--;
166 pending &= ~(1 << sig);
167 (*handlers[sig])(sig, (struct siginfo *)si, mc);
171 * Again, pending comes back with a mask of signals
172 * that arrived while tearing down the stack. If this
173 * is non-zero, we just go back, set up the stack
174 * again, and handle the new interrupts.
176 if (!nested)
177 pending = from_irq_stack(nested);
178 } while (pending);
181 void set_handler(int sig)
183 struct sigaction action;
184 int flags = SA_SIGINFO | SA_ONSTACK;
185 sigset_t sig_mask;
187 action.sa_sigaction = hard_handler;
189 /* block irq ones */
190 sigemptyset(&action.sa_mask);
191 sigaddset(&action.sa_mask, SIGVTALRM);
192 sigaddset(&action.sa_mask, SIGIO);
193 sigaddset(&action.sa_mask, SIGWINCH);
195 if (sig == SIGSEGV)
196 flags |= SA_NODEFER;
198 if (sigismember(&action.sa_mask, sig))
199 flags |= SA_RESTART; /* if it's an irq signal */
201 action.sa_flags = flags;
202 action.sa_restorer = NULL;
203 if (sigaction(sig, &action, NULL) < 0)
204 panic("sigaction failed - errno = %d\n", errno);
206 sigemptyset(&sig_mask);
207 sigaddset(&sig_mask, sig);
208 if (sigprocmask(SIG_UNBLOCK, &sig_mask, NULL) < 0)
209 panic("sigprocmask failed - errno = %d\n", errno);
212 int change_sig(int signal, int on)
214 sigset_t sigset;
216 sigemptyset(&sigset);
217 sigaddset(&sigset, signal);
218 if (sigprocmask(on ? SIG_UNBLOCK : SIG_BLOCK, &sigset, NULL) < 0)
219 return -errno;
221 return 0;
224 void block_signals(void)
226 signals_enabled = 0;
228 * This must return with signals disabled, so this barrier
229 * ensures that writes are flushed out before the return.
230 * This might matter if gcc figures out how to inline this and
231 * decides to shuffle this code into the caller.
233 barrier();
236 void unblock_signals(void)
238 int save_pending;
240 if (signals_enabled == 1)
241 return;
244 * We loop because the IRQ handler returns with interrupts off. So,
245 * interrupts may have arrived and we need to re-enable them and
246 * recheck signals_pending.
248 while (1) {
250 * Save and reset save_pending after enabling signals. This
251 * way, signals_pending won't be changed while we're reading it.
253 signals_enabled = 1;
256 * Setting signals_enabled and reading signals_pending must
257 * happen in this order.
259 barrier();
261 save_pending = signals_pending;
262 if (save_pending == 0)
263 return;
265 signals_pending = 0;
268 * We have pending interrupts, so disable signals, as the
269 * handlers expect them off when they are called. They will
270 * be enabled again above.
273 signals_enabled = 0;
276 * Deal with SIGIO first because the alarm handler might
277 * schedule, leaving the pending SIGIO stranded until we come
278 * back here.
280 * SIGIO's handler doesn't use siginfo or mcontext,
281 * so they can be NULL.
283 if (save_pending & SIGIO_MASK)
284 sig_handler_common(SIGIO, NULL, NULL);
286 if (save_pending & SIGVTALRM_MASK)
287 real_alarm_handler(NULL);
291 int get_signals(void)
293 return signals_enabled;
296 int set_signals(int enable)
298 int ret;
299 if (signals_enabled == enable)
300 return enable;
302 ret = signals_enabled;
303 if (enable)
304 unblock_signals();
305 else block_signals();
307 return ret;
310 int os_is_signal_stack(void)
312 stack_t ss;
313 sigaltstack(NULL, &ss);
315 return ss.ss_flags & SS_ONSTACK;