2 * Kernel-based Virtual Machine driver for Linux
3 * cpuid support routines
5 * derived from arch/x86/kvm/x86.c
7 * Copyright 2011 Red Hat, Inc. and/or its affiliates.
8 * Copyright IBM Corporation, 2008
10 * This work is licensed under the terms of the GNU GPL, version 2. See
11 * the COPYING file in the top-level directory.
15 #include <linux/kvm_host.h>
16 #include <linux/module.h>
17 #include <linux/vmalloc.h>
18 #include <linux/uaccess.h>
19 #include <asm/fpu/internal.h> /* For use_eager_fpu. Ugh! */
21 #include <asm/fpu/xstate.h>
28 static u32
xstate_required_size(u64 xstate_bv
, bool compacted
)
31 u32 ret
= XSAVE_HDR_SIZE
+ XSAVE_HDR_OFFSET
;
33 xstate_bv
&= XSTATE_EXTEND_MASK
;
35 if (xstate_bv
& 0x1) {
36 u32 eax
, ebx
, ecx
, edx
, offset
;
37 cpuid_count(0xD, feature_bit
, &eax
, &ebx
, &ecx
, &edx
);
38 offset
= compacted
? ret
: ebx
;
39 ret
= max(ret
, offset
+ eax
);
49 u64
kvm_supported_xcr0(void)
51 u64 xcr0
= KVM_SUPPORTED_XCR0
& host_xcr0
;
53 if (!kvm_x86_ops
->mpx_supported())
54 xcr0
&= ~(XSTATE_BNDREGS
| XSTATE_BNDCSR
);
59 #define F(x) bit(X86_FEATURE_##x)
61 int kvm_update_cpuid(struct kvm_vcpu
*vcpu
)
63 struct kvm_cpuid_entry2
*best
;
64 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
66 best
= kvm_find_cpuid_entry(vcpu
, 1, 0);
70 /* Update OSXSAVE bit */
71 if (cpu_has_xsave
&& best
->function
== 0x1) {
72 best
->ecx
&= ~F(OSXSAVE
);
73 if (kvm_read_cr4_bits(vcpu
, X86_CR4_OSXSAVE
))
74 best
->ecx
|= F(OSXSAVE
);
78 if (best
->ecx
& F(TSC_DEADLINE_TIMER
))
79 apic
->lapic_timer
.timer_mode_mask
= 3 << 17;
81 apic
->lapic_timer
.timer_mode_mask
= 1 << 17;
84 best
= kvm_find_cpuid_entry(vcpu
, 0xD, 0);
86 vcpu
->arch
.guest_supported_xcr0
= 0;
87 vcpu
->arch
.guest_xstate_size
= XSAVE_HDR_SIZE
+ XSAVE_HDR_OFFSET
;
89 vcpu
->arch
.guest_supported_xcr0
=
90 (best
->eax
| ((u64
)best
->edx
<< 32)) &
92 vcpu
->arch
.guest_xstate_size
= best
->ebx
=
93 xstate_required_size(vcpu
->arch
.xcr0
, false);
96 best
= kvm_find_cpuid_entry(vcpu
, 0xD, 1);
97 if (best
&& (best
->eax
& (F(XSAVES
) | F(XSAVEC
))))
98 best
->ebx
= xstate_required_size(vcpu
->arch
.xcr0
, true);
100 vcpu
->arch
.eager_fpu
= use_eager_fpu() || guest_cpuid_has_mpx(vcpu
);
101 if (vcpu
->arch
.eager_fpu
)
102 kvm_x86_ops
->fpu_activate(vcpu
);
105 * The existing code assumes virtual address is 48-bit in the canonical
106 * address checks; exit if it is ever changed.
108 best
= kvm_find_cpuid_entry(vcpu
, 0x80000008, 0);
109 if (best
&& ((best
->eax
& 0xff00) >> 8) != 48 &&
110 ((best
->eax
& 0xff00) >> 8) != 0)
113 /* Update physical-address width */
114 vcpu
->arch
.maxphyaddr
= cpuid_query_maxphyaddr(vcpu
);
116 kvm_pmu_refresh(vcpu
);
120 static int is_efer_nx(void)
122 unsigned long long efer
= 0;
124 rdmsrl_safe(MSR_EFER
, &efer
);
125 return efer
& EFER_NX
;
128 static void cpuid_fix_nx_cap(struct kvm_vcpu
*vcpu
)
131 struct kvm_cpuid_entry2
*e
, *entry
;
134 for (i
= 0; i
< vcpu
->arch
.cpuid_nent
; ++i
) {
135 e
= &vcpu
->arch
.cpuid_entries
[i
];
136 if (e
->function
== 0x80000001) {
141 if (entry
&& (entry
->edx
& F(NX
)) && !is_efer_nx()) {
142 entry
->edx
&= ~F(NX
);
143 printk(KERN_INFO
"kvm: guest NX capability removed\n");
147 int cpuid_query_maxphyaddr(struct kvm_vcpu
*vcpu
)
149 struct kvm_cpuid_entry2
*best
;
151 best
= kvm_find_cpuid_entry(vcpu
, 0x80000000, 0);
152 if (!best
|| best
->eax
< 0x80000008)
154 best
= kvm_find_cpuid_entry(vcpu
, 0x80000008, 0);
156 return best
->eax
& 0xff;
160 EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr
);
162 /* when an old userspace process fills a new kernel module */
163 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu
*vcpu
,
164 struct kvm_cpuid
*cpuid
,
165 struct kvm_cpuid_entry __user
*entries
)
168 struct kvm_cpuid_entry
*cpuid_entries
;
171 if (cpuid
->nent
> KVM_MAX_CPUID_ENTRIES
)
174 cpuid_entries
= vmalloc(sizeof(struct kvm_cpuid_entry
) * cpuid
->nent
);
178 if (copy_from_user(cpuid_entries
, entries
,
179 cpuid
->nent
* sizeof(struct kvm_cpuid_entry
)))
181 for (i
= 0; i
< cpuid
->nent
; i
++) {
182 vcpu
->arch
.cpuid_entries
[i
].function
= cpuid_entries
[i
].function
;
183 vcpu
->arch
.cpuid_entries
[i
].eax
= cpuid_entries
[i
].eax
;
184 vcpu
->arch
.cpuid_entries
[i
].ebx
= cpuid_entries
[i
].ebx
;
185 vcpu
->arch
.cpuid_entries
[i
].ecx
= cpuid_entries
[i
].ecx
;
186 vcpu
->arch
.cpuid_entries
[i
].edx
= cpuid_entries
[i
].edx
;
187 vcpu
->arch
.cpuid_entries
[i
].index
= 0;
188 vcpu
->arch
.cpuid_entries
[i
].flags
= 0;
189 vcpu
->arch
.cpuid_entries
[i
].padding
[0] = 0;
190 vcpu
->arch
.cpuid_entries
[i
].padding
[1] = 0;
191 vcpu
->arch
.cpuid_entries
[i
].padding
[2] = 0;
193 vcpu
->arch
.cpuid_nent
= cpuid
->nent
;
194 cpuid_fix_nx_cap(vcpu
);
195 kvm_apic_set_version(vcpu
);
196 kvm_x86_ops
->cpuid_update(vcpu
);
197 r
= kvm_update_cpuid(vcpu
);
200 vfree(cpuid_entries
);
205 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu
*vcpu
,
206 struct kvm_cpuid2
*cpuid
,
207 struct kvm_cpuid_entry2 __user
*entries
)
212 if (cpuid
->nent
> KVM_MAX_CPUID_ENTRIES
)
215 if (copy_from_user(&vcpu
->arch
.cpuid_entries
, entries
,
216 cpuid
->nent
* sizeof(struct kvm_cpuid_entry2
)))
218 vcpu
->arch
.cpuid_nent
= cpuid
->nent
;
219 kvm_apic_set_version(vcpu
);
220 kvm_x86_ops
->cpuid_update(vcpu
);
221 r
= kvm_update_cpuid(vcpu
);
226 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu
*vcpu
,
227 struct kvm_cpuid2
*cpuid
,
228 struct kvm_cpuid_entry2 __user
*entries
)
233 if (cpuid
->nent
< vcpu
->arch
.cpuid_nent
)
236 if (copy_to_user(entries
, &vcpu
->arch
.cpuid_entries
,
237 vcpu
->arch
.cpuid_nent
* sizeof(struct kvm_cpuid_entry2
)))
242 cpuid
->nent
= vcpu
->arch
.cpuid_nent
;
246 static void cpuid_mask(u32
*word
, int wordnum
)
248 *word
&= boot_cpu_data
.x86_capability
[wordnum
];
251 static void do_cpuid_1_ent(struct kvm_cpuid_entry2
*entry
, u32 function
,
254 entry
->function
= function
;
255 entry
->index
= index
;
256 cpuid_count(entry
->function
, entry
->index
,
257 &entry
->eax
, &entry
->ebx
, &entry
->ecx
, &entry
->edx
);
261 static int __do_cpuid_ent_emulated(struct kvm_cpuid_entry2
*entry
,
262 u32 func
, u32 index
, int *nent
, int maxnent
)
266 entry
->eax
= 1; /* only one leaf currently */
270 entry
->ecx
= F(MOVBE
);
277 entry
->function
= func
;
278 entry
->index
= index
;
283 static inline int __do_cpuid_ent(struct kvm_cpuid_entry2
*entry
, u32 function
,
284 u32 index
, int *nent
, int maxnent
)
287 unsigned f_nx
= is_efer_nx() ? F(NX
) : 0;
289 unsigned f_gbpages
= (kvm_x86_ops
->get_lpage_level() == PT_PDPE_LEVEL
)
291 unsigned f_lm
= F(LM
);
293 unsigned f_gbpages
= 0;
296 unsigned f_rdtscp
= kvm_x86_ops
->rdtscp_supported() ? F(RDTSCP
) : 0;
297 unsigned f_invpcid
= kvm_x86_ops
->invpcid_supported() ? F(INVPCID
) : 0;
298 unsigned f_mpx
= kvm_x86_ops
->mpx_supported() ? F(MPX
) : 0;
299 unsigned f_xsaves
= kvm_x86_ops
->xsaves_supported() ? F(XSAVES
) : 0;
302 const u32 kvm_supported_word0_x86_features
=
303 F(FPU
) | F(VME
) | F(DE
) | F(PSE
) |
304 F(TSC
) | F(MSR
) | F(PAE
) | F(MCE
) |
305 F(CX8
) | F(APIC
) | 0 /* Reserved */ | F(SEP
) |
306 F(MTRR
) | F(PGE
) | F(MCA
) | F(CMOV
) |
307 F(PAT
) | F(PSE36
) | 0 /* PSN */ | F(CLFLUSH
) |
308 0 /* Reserved, DS, ACPI */ | F(MMX
) |
309 F(FXSR
) | F(XMM
) | F(XMM2
) | F(SELFSNOOP
) |
310 0 /* HTT, TM, Reserved, PBE */;
311 /* cpuid 0x80000001.edx */
312 const u32 kvm_supported_word1_x86_features
=
313 F(FPU
) | F(VME
) | F(DE
) | F(PSE
) |
314 F(TSC
) | F(MSR
) | F(PAE
) | F(MCE
) |
315 F(CX8
) | F(APIC
) | 0 /* Reserved */ | F(SYSCALL
) |
316 F(MTRR
) | F(PGE
) | F(MCA
) | F(CMOV
) |
317 F(PAT
) | F(PSE36
) | 0 /* Reserved */ |
318 f_nx
| 0 /* Reserved */ | F(MMXEXT
) | F(MMX
) |
319 F(FXSR
) | F(FXSR_OPT
) | f_gbpages
| f_rdtscp
|
320 0 /* Reserved */ | f_lm
| F(3DNOWEXT
) | F(3DNOW
);
322 const u32 kvm_supported_word4_x86_features
=
323 /* NOTE: MONITOR (and MWAIT) are emulated as NOP,
324 * but *not* advertised to guests via CPUID ! */
325 F(XMM3
) | F(PCLMULQDQ
) | 0 /* DTES64, MONITOR */ |
326 0 /* DS-CPL, VMX, SMX, EST */ |
327 0 /* TM2 */ | F(SSSE3
) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
328 F(FMA
) | F(CX16
) | 0 /* xTPR Update, PDCM */ |
329 F(PCID
) | 0 /* Reserved, DCA */ | F(XMM4_1
) |
330 F(XMM4_2
) | F(X2APIC
) | F(MOVBE
) | F(POPCNT
) |
331 0 /* Reserved*/ | F(AES
) | F(XSAVE
) | 0 /* OSXSAVE */ | F(AVX
) |
333 /* cpuid 0x80000001.ecx */
334 const u32 kvm_supported_word6_x86_features
=
335 F(LAHF_LM
) | F(CMP_LEGACY
) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
336 F(CR8_LEGACY
) | F(ABM
) | F(SSE4A
) | F(MISALIGNSSE
) |
337 F(3DNOWPREFETCH
) | F(OSVW
) | 0 /* IBS */ | F(XOP
) |
338 0 /* SKINIT, WDT, LWP */ | F(FMA4
) | F(TBM
);
340 /* cpuid 0xC0000001.edx */
341 const u32 kvm_supported_word5_x86_features
=
342 F(XSTORE
) | F(XSTORE_EN
) | F(XCRYPT
) | F(XCRYPT_EN
) |
343 F(ACE2
) | F(ACE2_EN
) | F(PHE
) | F(PHE_EN
) |
347 const u32 kvm_supported_word9_x86_features
=
348 F(FSGSBASE
) | F(BMI1
) | F(HLE
) | F(AVX2
) | F(SMEP
) |
349 F(BMI2
) | F(ERMS
) | f_invpcid
| F(RTM
) | f_mpx
| F(RDSEED
) |
350 F(ADX
) | F(SMAP
) | F(AVX512F
) | F(AVX512PF
) | F(AVX512ER
) |
353 /* cpuid 0xD.1.eax */
354 const u32 kvm_supported_word10_x86_features
=
355 F(XSAVEOPT
) | F(XSAVEC
) | F(XGETBV1
) | f_xsaves
;
357 /* all calls to cpuid_count() should be made on the same cpu */
362 if (*nent
>= maxnent
)
365 do_cpuid_1_ent(entry
, function
, index
);
370 entry
->eax
= min(entry
->eax
, (u32
)0xd);
373 entry
->edx
&= kvm_supported_word0_x86_features
;
374 cpuid_mask(&entry
->edx
, 0);
375 entry
->ecx
&= kvm_supported_word4_x86_features
;
376 cpuid_mask(&entry
->ecx
, 4);
377 /* we support x2apic emulation even if host does not support
378 * it since we emulate x2apic in software */
379 entry
->ecx
|= F(X2APIC
);
381 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
382 * may return different values. This forces us to get_cpu() before
383 * issuing the first command, and also to emulate this annoying behavior
384 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
386 int t
, times
= entry
->eax
& 0xff;
388 entry
->flags
|= KVM_CPUID_FLAG_STATEFUL_FUNC
;
389 entry
->flags
|= KVM_CPUID_FLAG_STATE_READ_NEXT
;
390 for (t
= 1; t
< times
; ++t
) {
391 if (*nent
>= maxnent
)
394 do_cpuid_1_ent(&entry
[t
], function
, 0);
395 entry
[t
].flags
|= KVM_CPUID_FLAG_STATEFUL_FUNC
;
400 /* function 4 has additional index. */
404 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
405 /* read more entries until cache_type is zero */
407 if (*nent
>= maxnent
)
410 cache_type
= entry
[i
- 1].eax
& 0x1f;
413 do_cpuid_1_ent(&entry
[i
], function
, i
);
415 KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
420 case 6: /* Thermal management */
421 entry
->eax
= 0x4; /* allow ARAT */
427 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
428 /* Mask ebx against host capability word 9 */
430 entry
->ebx
&= kvm_supported_word9_x86_features
;
431 cpuid_mask(&entry
->ebx
, 9);
432 // TSC_ADJUST is emulated
433 entry
->ebx
|= F(TSC_ADJUST
);
443 case 0xa: { /* Architectural Performance Monitoring */
444 struct x86_pmu_capability cap
;
445 union cpuid10_eax eax
;
446 union cpuid10_edx edx
;
448 perf_get_x86_pmu_capability(&cap
);
451 * Only support guest architectural pmu on a host
452 * with architectural pmu.
455 memset(&cap
, 0, sizeof(cap
));
457 eax
.split
.version_id
= min(cap
.version
, 2);
458 eax
.split
.num_counters
= cap
.num_counters_gp
;
459 eax
.split
.bit_width
= cap
.bit_width_gp
;
460 eax
.split
.mask_length
= cap
.events_mask_len
;
462 edx
.split
.num_counters_fixed
= cap
.num_counters_fixed
;
463 edx
.split
.bit_width_fixed
= cap
.bit_width_fixed
;
464 edx
.split
.reserved
= 0;
466 entry
->eax
= eax
.full
;
467 entry
->ebx
= cap
.events_mask
;
469 entry
->edx
= edx
.full
;
472 /* function 0xb has additional index. */
476 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
477 /* read more entries until level_type is zero */
479 if (*nent
>= maxnent
)
482 level_type
= entry
[i
- 1].ecx
& 0xff00;
485 do_cpuid_1_ent(&entry
[i
], function
, i
);
487 KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
494 u64 supported
= kvm_supported_xcr0();
496 entry
->eax
&= supported
;
497 entry
->ebx
= xstate_required_size(supported
, false);
498 entry
->ecx
= entry
->ebx
;
499 entry
->edx
&= supported
>> 32;
500 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
504 for (idx
= 1, i
= 1; idx
< 64; ++idx
) {
505 u64 mask
= ((u64
)1 << idx
);
506 if (*nent
>= maxnent
)
509 do_cpuid_1_ent(&entry
[i
], function
, idx
);
511 entry
[i
].eax
&= kvm_supported_word10_x86_features
;
513 if (entry
[i
].eax
& (F(XSAVES
)|F(XSAVEC
)))
515 xstate_required_size(supported
,
518 if (entry
[i
].eax
== 0 || !(supported
& mask
))
520 if (WARN_ON_ONCE(entry
[i
].ecx
& 1))
526 KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
532 case KVM_CPUID_SIGNATURE
: {
533 static const char signature
[12] = "KVMKVMKVM\0\0";
534 const u32
*sigptr
= (const u32
*)signature
;
535 entry
->eax
= KVM_CPUID_FEATURES
;
536 entry
->ebx
= sigptr
[0];
537 entry
->ecx
= sigptr
[1];
538 entry
->edx
= sigptr
[2];
541 case KVM_CPUID_FEATURES
:
542 entry
->eax
= (1 << KVM_FEATURE_CLOCKSOURCE
) |
543 (1 << KVM_FEATURE_NOP_IO_DELAY
) |
544 (1 << KVM_FEATURE_CLOCKSOURCE2
) |
545 (1 << KVM_FEATURE_ASYNC_PF
) |
546 (1 << KVM_FEATURE_PV_EOI
) |
547 (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT
) |
548 (1 << KVM_FEATURE_PV_UNHALT
);
551 entry
->eax
|= (1 << KVM_FEATURE_STEAL_TIME
);
558 entry
->eax
= min(entry
->eax
, 0x8000001a);
561 entry
->edx
&= kvm_supported_word1_x86_features
;
562 cpuid_mask(&entry
->edx
, 1);
563 entry
->ecx
&= kvm_supported_word6_x86_features
;
564 cpuid_mask(&entry
->ecx
, 6);
566 case 0x80000007: /* Advanced power management */
567 /* invariant TSC is CPUID.80000007H:EDX[8] */
568 entry
->edx
&= (1 << 8);
569 /* mask against host */
570 entry
->edx
&= boot_cpu_data
.x86_power
;
571 entry
->eax
= entry
->ebx
= entry
->ecx
= 0;
574 unsigned g_phys_as
= (entry
->eax
>> 16) & 0xff;
575 unsigned virt_as
= max((entry
->eax
>> 8) & 0xff, 48U);
576 unsigned phys_as
= entry
->eax
& 0xff;
580 entry
->eax
= g_phys_as
| (virt_as
<< 8);
581 entry
->ebx
= entry
->edx
= 0;
585 entry
->ecx
= entry
->edx
= 0;
591 /*Add support for Centaur's CPUID instruction*/
593 /*Just support up to 0xC0000004 now*/
594 entry
->eax
= min(entry
->eax
, 0xC0000004);
597 entry
->edx
&= kvm_supported_word5_x86_features
;
598 cpuid_mask(&entry
->edx
, 5);
600 case 3: /* Processor serial number */
601 case 5: /* MONITOR/MWAIT */
606 entry
->eax
= entry
->ebx
= entry
->ecx
= entry
->edx
= 0;
610 kvm_x86_ops
->set_supported_cpuid(function
, entry
);
620 static int do_cpuid_ent(struct kvm_cpuid_entry2
*entry
, u32 func
,
621 u32 idx
, int *nent
, int maxnent
, unsigned int type
)
623 if (type
== KVM_GET_EMULATED_CPUID
)
624 return __do_cpuid_ent_emulated(entry
, func
, idx
, nent
, maxnent
);
626 return __do_cpuid_ent(entry
, func
, idx
, nent
, maxnent
);
631 struct kvm_cpuid_param
{
635 bool (*qualifier
)(const struct kvm_cpuid_param
*param
);
638 static bool is_centaur_cpu(const struct kvm_cpuid_param
*param
)
640 return boot_cpu_data
.x86_vendor
== X86_VENDOR_CENTAUR
;
643 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user
*entries
,
644 __u32 num_entries
, unsigned int ioctl_type
)
649 if (ioctl_type
!= KVM_GET_EMULATED_CPUID
)
653 * We want to make sure that ->padding is being passed clean from
654 * userspace in case we want to use it for something in the future.
656 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
657 * have to give ourselves satisfied only with the emulated side. /me
660 for (i
= 0; i
< num_entries
; i
++) {
661 if (copy_from_user(pad
, entries
[i
].padding
, sizeof(pad
)))
664 if (pad
[0] || pad
[1] || pad
[2])
670 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2
*cpuid
,
671 struct kvm_cpuid_entry2 __user
*entries
,
674 struct kvm_cpuid_entry2
*cpuid_entries
;
675 int limit
, nent
= 0, r
= -E2BIG
, i
;
677 static const struct kvm_cpuid_param param
[] = {
678 { .func
= 0, .has_leaf_count
= true },
679 { .func
= 0x80000000, .has_leaf_count
= true },
680 { .func
= 0xC0000000, .qualifier
= is_centaur_cpu
, .has_leaf_count
= true },
681 { .func
= KVM_CPUID_SIGNATURE
},
682 { .func
= KVM_CPUID_FEATURES
},
687 if (cpuid
->nent
> KVM_MAX_CPUID_ENTRIES
)
688 cpuid
->nent
= KVM_MAX_CPUID_ENTRIES
;
690 if (sanity_check_entries(entries
, cpuid
->nent
, type
))
694 cpuid_entries
= vzalloc(sizeof(struct kvm_cpuid_entry2
) * cpuid
->nent
);
699 for (i
= 0; i
< ARRAY_SIZE(param
); i
++) {
700 const struct kvm_cpuid_param
*ent
= ¶m
[i
];
702 if (ent
->qualifier
&& !ent
->qualifier(ent
))
705 r
= do_cpuid_ent(&cpuid_entries
[nent
], ent
->func
, ent
->idx
,
706 &nent
, cpuid
->nent
, type
);
711 if (!ent
->has_leaf_count
)
714 limit
= cpuid_entries
[nent
- 1].eax
;
715 for (func
= ent
->func
+ 1; func
<= limit
&& nent
< cpuid
->nent
&& r
== 0; ++func
)
716 r
= do_cpuid_ent(&cpuid_entries
[nent
], func
, ent
->idx
,
717 &nent
, cpuid
->nent
, type
);
724 if (copy_to_user(entries
, cpuid_entries
,
725 nent
* sizeof(struct kvm_cpuid_entry2
)))
731 vfree(cpuid_entries
);
736 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu
*vcpu
, int i
)
738 struct kvm_cpuid_entry2
*e
= &vcpu
->arch
.cpuid_entries
[i
];
739 int j
, nent
= vcpu
->arch
.cpuid_nent
;
741 e
->flags
&= ~KVM_CPUID_FLAG_STATE_READ_NEXT
;
742 /* when no next entry is found, the current entry[i] is reselected */
743 for (j
= i
+ 1; ; j
= (j
+ 1) % nent
) {
744 struct kvm_cpuid_entry2
*ej
= &vcpu
->arch
.cpuid_entries
[j
];
745 if (ej
->function
== e
->function
) {
746 ej
->flags
|= KVM_CPUID_FLAG_STATE_READ_NEXT
;
750 return 0; /* silence gcc, even though control never reaches here */
753 /* find an entry with matching function, matching index (if needed), and that
754 * should be read next (if it's stateful) */
755 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2
*e
,
756 u32 function
, u32 index
)
758 if (e
->function
!= function
)
760 if ((e
->flags
& KVM_CPUID_FLAG_SIGNIFCANT_INDEX
) && e
->index
!= index
)
762 if ((e
->flags
& KVM_CPUID_FLAG_STATEFUL_FUNC
) &&
763 !(e
->flags
& KVM_CPUID_FLAG_STATE_READ_NEXT
))
768 struct kvm_cpuid_entry2
*kvm_find_cpuid_entry(struct kvm_vcpu
*vcpu
,
769 u32 function
, u32 index
)
772 struct kvm_cpuid_entry2
*best
= NULL
;
774 for (i
= 0; i
< vcpu
->arch
.cpuid_nent
; ++i
) {
775 struct kvm_cpuid_entry2
*e
;
777 e
= &vcpu
->arch
.cpuid_entries
[i
];
778 if (is_matching_cpuid_entry(e
, function
, index
)) {
779 if (e
->flags
& KVM_CPUID_FLAG_STATEFUL_FUNC
)
780 move_to_next_stateful_cpuid_entry(vcpu
, i
);
787 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry
);
790 * If no match is found, check whether we exceed the vCPU's limit
791 * and return the content of the highest valid _standard_ leaf instead.
792 * This is to satisfy the CPUID specification.
794 static struct kvm_cpuid_entry2
* check_cpuid_limit(struct kvm_vcpu
*vcpu
,
795 u32 function
, u32 index
)
797 struct kvm_cpuid_entry2
*maxlevel
;
799 maxlevel
= kvm_find_cpuid_entry(vcpu
, function
& 0x80000000, 0);
800 if (!maxlevel
|| maxlevel
->eax
>= function
)
802 if (function
& 0x80000000) {
803 maxlevel
= kvm_find_cpuid_entry(vcpu
, 0, 0);
807 return kvm_find_cpuid_entry(vcpu
, maxlevel
->eax
, index
);
810 void kvm_cpuid(struct kvm_vcpu
*vcpu
, u32
*eax
, u32
*ebx
, u32
*ecx
, u32
*edx
)
812 u32 function
= *eax
, index
= *ecx
;
813 struct kvm_cpuid_entry2
*best
;
815 best
= kvm_find_cpuid_entry(vcpu
, function
, index
);
818 best
= check_cpuid_limit(vcpu
, function
, index
);
821 * Perfmon not yet supported for L2 guest.
823 if (is_guest_mode(vcpu
) && function
== 0xa)
832 *eax
= *ebx
= *ecx
= *edx
= 0;
833 trace_kvm_cpuid(function
, *eax
, *ebx
, *ecx
, *edx
);
835 EXPORT_SYMBOL_GPL(kvm_cpuid
);
837 void kvm_emulate_cpuid(struct kvm_vcpu
*vcpu
)
839 u32 function
, eax
, ebx
, ecx
, edx
;
841 function
= eax
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
842 ecx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
843 kvm_cpuid(vcpu
, &eax
, &ebx
, &ecx
, &edx
);
844 kvm_register_write(vcpu
, VCPU_REGS_RAX
, eax
);
845 kvm_register_write(vcpu
, VCPU_REGS_RBX
, ebx
);
846 kvm_register_write(vcpu
, VCPU_REGS_RCX
, ecx
);
847 kvm_register_write(vcpu
, VCPU_REGS_RDX
, edx
);
848 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
850 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid
);