2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
24 #include "kvm_cache_regs.h"
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/swap.h>
34 #include <linux/hugetlb.h>
35 #include <linux/compiler.h>
36 #include <linux/srcu.h>
37 #include <linux/slab.h>
38 #include <linux/uaccess.h>
41 #include <asm/cmpxchg.h>
46 * When setting this variable to true it enables Two-Dimensional-Paging
47 * where the hardware walks 2 page tables:
48 * 1. the guest-virtual to guest-physical
49 * 2. while doing 1. it walks guest-physical to host-physical
50 * If the hardware supports that we don't need to do shadow paging.
52 bool tdp_enabled
= false;
56 AUDIT_POST_PAGE_FAULT
,
67 module_param(dbg
, bool, 0644);
69 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
70 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
71 #define MMU_WARN_ON(x) WARN_ON(x)
73 #define pgprintk(x...) do { } while (0)
74 #define rmap_printk(x...) do { } while (0)
75 #define MMU_WARN_ON(x) do { } while (0)
78 #define PTE_PREFETCH_NUM 8
80 #define PT_FIRST_AVAIL_BITS_SHIFT 10
81 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
83 #define PT64_LEVEL_BITS 9
85 #define PT64_LEVEL_SHIFT(level) \
86 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
88 #define PT64_INDEX(address, level)\
89 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
92 #define PT32_LEVEL_BITS 10
94 #define PT32_LEVEL_SHIFT(level) \
95 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
97 #define PT32_LVL_OFFSET_MASK(level) \
98 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
99 * PT32_LEVEL_BITS))) - 1))
101 #define PT32_INDEX(address, level)\
102 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
105 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
106 #define PT64_DIR_BASE_ADDR_MASK \
107 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
108 #define PT64_LVL_ADDR_MASK(level) \
109 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
110 * PT64_LEVEL_BITS))) - 1))
111 #define PT64_LVL_OFFSET_MASK(level) \
112 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
113 * PT64_LEVEL_BITS))) - 1))
115 #define PT32_BASE_ADDR_MASK PAGE_MASK
116 #define PT32_DIR_BASE_ADDR_MASK \
117 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
118 #define PT32_LVL_ADDR_MASK(level) \
119 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
120 * PT32_LEVEL_BITS))) - 1))
122 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
123 | shadow_x_mask | shadow_nx_mask)
125 #define ACC_EXEC_MASK 1
126 #define ACC_WRITE_MASK PT_WRITABLE_MASK
127 #define ACC_USER_MASK PT_USER_MASK
128 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
130 #include <trace/events/kvm.h>
132 #define CREATE_TRACE_POINTS
133 #include "mmutrace.h"
135 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
136 #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
138 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
140 /* make pte_list_desc fit well in cache line */
141 #define PTE_LIST_EXT 3
143 struct pte_list_desc
{
144 u64
*sptes
[PTE_LIST_EXT
];
145 struct pte_list_desc
*more
;
148 struct kvm_shadow_walk_iterator
{
156 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
157 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
158 shadow_walk_okay(&(_walker)); \
159 shadow_walk_next(&(_walker)))
161 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
162 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
163 shadow_walk_okay(&(_walker)) && \
164 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
165 __shadow_walk_next(&(_walker), spte))
167 static struct kmem_cache
*pte_list_desc_cache
;
168 static struct kmem_cache
*mmu_page_header_cache
;
169 static struct percpu_counter kvm_total_used_mmu_pages
;
171 static u64 __read_mostly shadow_nx_mask
;
172 static u64 __read_mostly shadow_x_mask
; /* mutual exclusive with nx_mask */
173 static u64 __read_mostly shadow_user_mask
;
174 static u64 __read_mostly shadow_accessed_mask
;
175 static u64 __read_mostly shadow_dirty_mask
;
176 static u64 __read_mostly shadow_mmio_mask
;
178 static void mmu_spte_set(u64
*sptep
, u64 spte
);
179 static void mmu_free_roots(struct kvm_vcpu
*vcpu
);
181 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask
)
183 shadow_mmio_mask
= mmio_mask
;
185 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask
);
188 * the low bit of the generation number is always presumed to be zero.
189 * This disables mmio caching during memslot updates. The concept is
190 * similar to a seqcount but instead of retrying the access we just punt
191 * and ignore the cache.
193 * spte bits 3-11 are used as bits 1-9 of the generation number,
194 * the bits 52-61 are used as bits 10-19 of the generation number.
196 #define MMIO_SPTE_GEN_LOW_SHIFT 2
197 #define MMIO_SPTE_GEN_HIGH_SHIFT 52
199 #define MMIO_GEN_SHIFT 20
200 #define MMIO_GEN_LOW_SHIFT 10
201 #define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
202 #define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
204 static u64
generation_mmio_spte_mask(unsigned int gen
)
208 WARN_ON(gen
& ~MMIO_GEN_MASK
);
210 mask
= (gen
& MMIO_GEN_LOW_MASK
) << MMIO_SPTE_GEN_LOW_SHIFT
;
211 mask
|= ((u64
)gen
>> MMIO_GEN_LOW_SHIFT
) << MMIO_SPTE_GEN_HIGH_SHIFT
;
215 static unsigned int get_mmio_spte_generation(u64 spte
)
219 spte
&= ~shadow_mmio_mask
;
221 gen
= (spte
>> MMIO_SPTE_GEN_LOW_SHIFT
) & MMIO_GEN_LOW_MASK
;
222 gen
|= (spte
>> MMIO_SPTE_GEN_HIGH_SHIFT
) << MMIO_GEN_LOW_SHIFT
;
226 static unsigned int kvm_current_mmio_generation(struct kvm_vcpu
*vcpu
)
228 return kvm_vcpu_memslots(vcpu
)->generation
& MMIO_GEN_MASK
;
231 static void mark_mmio_spte(struct kvm_vcpu
*vcpu
, u64
*sptep
, u64 gfn
,
234 unsigned int gen
= kvm_current_mmio_generation(vcpu
);
235 u64 mask
= generation_mmio_spte_mask(gen
);
237 access
&= ACC_WRITE_MASK
| ACC_USER_MASK
;
238 mask
|= shadow_mmio_mask
| access
| gfn
<< PAGE_SHIFT
;
240 trace_mark_mmio_spte(sptep
, gfn
, access
, gen
);
241 mmu_spte_set(sptep
, mask
);
244 static bool is_mmio_spte(u64 spte
)
246 return (spte
& shadow_mmio_mask
) == shadow_mmio_mask
;
249 static gfn_t
get_mmio_spte_gfn(u64 spte
)
251 u64 mask
= generation_mmio_spte_mask(MMIO_GEN_MASK
) | shadow_mmio_mask
;
252 return (spte
& ~mask
) >> PAGE_SHIFT
;
255 static unsigned get_mmio_spte_access(u64 spte
)
257 u64 mask
= generation_mmio_spte_mask(MMIO_GEN_MASK
) | shadow_mmio_mask
;
258 return (spte
& ~mask
) & ~PAGE_MASK
;
261 static bool set_mmio_spte(struct kvm_vcpu
*vcpu
, u64
*sptep
, gfn_t gfn
,
262 pfn_t pfn
, unsigned access
)
264 if (unlikely(is_noslot_pfn(pfn
))) {
265 mark_mmio_spte(vcpu
, sptep
, gfn
, access
);
272 static bool check_mmio_spte(struct kvm_vcpu
*vcpu
, u64 spte
)
274 unsigned int kvm_gen
, spte_gen
;
276 kvm_gen
= kvm_current_mmio_generation(vcpu
);
277 spte_gen
= get_mmio_spte_generation(spte
);
279 trace_check_mmio_spte(spte
, kvm_gen
, spte_gen
);
280 return likely(kvm_gen
== spte_gen
);
283 void kvm_mmu_set_mask_ptes(u64 user_mask
, u64 accessed_mask
,
284 u64 dirty_mask
, u64 nx_mask
, u64 x_mask
)
286 shadow_user_mask
= user_mask
;
287 shadow_accessed_mask
= accessed_mask
;
288 shadow_dirty_mask
= dirty_mask
;
289 shadow_nx_mask
= nx_mask
;
290 shadow_x_mask
= x_mask
;
292 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes
);
294 static int is_cpuid_PSE36(void)
299 static int is_nx(struct kvm_vcpu
*vcpu
)
301 return vcpu
->arch
.efer
& EFER_NX
;
304 static int is_shadow_present_pte(u64 pte
)
306 return pte
& PT_PRESENT_MASK
&& !is_mmio_spte(pte
);
309 static int is_large_pte(u64 pte
)
311 return pte
& PT_PAGE_SIZE_MASK
;
314 static int is_rmap_spte(u64 pte
)
316 return is_shadow_present_pte(pte
);
319 static int is_last_spte(u64 pte
, int level
)
321 if (level
== PT_PAGE_TABLE_LEVEL
)
323 if (is_large_pte(pte
))
328 static pfn_t
spte_to_pfn(u64 pte
)
330 return (pte
& PT64_BASE_ADDR_MASK
) >> PAGE_SHIFT
;
333 static gfn_t
pse36_gfn_delta(u32 gpte
)
335 int shift
= 32 - PT32_DIR_PSE36_SHIFT
- PAGE_SHIFT
;
337 return (gpte
& PT32_DIR_PSE36_MASK
) << shift
;
341 static void __set_spte(u64
*sptep
, u64 spte
)
346 static void __update_clear_spte_fast(u64
*sptep
, u64 spte
)
351 static u64
__update_clear_spte_slow(u64
*sptep
, u64 spte
)
353 return xchg(sptep
, spte
);
356 static u64
__get_spte_lockless(u64
*sptep
)
358 return ACCESS_ONCE(*sptep
);
369 static void count_spte_clear(u64
*sptep
, u64 spte
)
371 struct kvm_mmu_page
*sp
= page_header(__pa(sptep
));
373 if (is_shadow_present_pte(spte
))
376 /* Ensure the spte is completely set before we increase the count */
378 sp
->clear_spte_count
++;
381 static void __set_spte(u64
*sptep
, u64 spte
)
383 union split_spte
*ssptep
, sspte
;
385 ssptep
= (union split_spte
*)sptep
;
386 sspte
= (union split_spte
)spte
;
388 ssptep
->spte_high
= sspte
.spte_high
;
391 * If we map the spte from nonpresent to present, We should store
392 * the high bits firstly, then set present bit, so cpu can not
393 * fetch this spte while we are setting the spte.
397 ssptep
->spte_low
= sspte
.spte_low
;
400 static void __update_clear_spte_fast(u64
*sptep
, u64 spte
)
402 union split_spte
*ssptep
, sspte
;
404 ssptep
= (union split_spte
*)sptep
;
405 sspte
= (union split_spte
)spte
;
407 ssptep
->spte_low
= sspte
.spte_low
;
410 * If we map the spte from present to nonpresent, we should clear
411 * present bit firstly to avoid vcpu fetch the old high bits.
415 ssptep
->spte_high
= sspte
.spte_high
;
416 count_spte_clear(sptep
, spte
);
419 static u64
__update_clear_spte_slow(u64
*sptep
, u64 spte
)
421 union split_spte
*ssptep
, sspte
, orig
;
423 ssptep
= (union split_spte
*)sptep
;
424 sspte
= (union split_spte
)spte
;
426 /* xchg acts as a barrier before the setting of the high bits */
427 orig
.spte_low
= xchg(&ssptep
->spte_low
, sspte
.spte_low
);
428 orig
.spte_high
= ssptep
->spte_high
;
429 ssptep
->spte_high
= sspte
.spte_high
;
430 count_spte_clear(sptep
, spte
);
436 * The idea using the light way get the spte on x86_32 guest is from
437 * gup_get_pte(arch/x86/mm/gup.c).
439 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
440 * coalesces them and we are running out of the MMU lock. Therefore
441 * we need to protect against in-progress updates of the spte.
443 * Reading the spte while an update is in progress may get the old value
444 * for the high part of the spte. The race is fine for a present->non-present
445 * change (because the high part of the spte is ignored for non-present spte),
446 * but for a present->present change we must reread the spte.
448 * All such changes are done in two steps (present->non-present and
449 * non-present->present), hence it is enough to count the number of
450 * present->non-present updates: if it changed while reading the spte,
451 * we might have hit the race. This is done using clear_spte_count.
453 static u64
__get_spte_lockless(u64
*sptep
)
455 struct kvm_mmu_page
*sp
= page_header(__pa(sptep
));
456 union split_spte spte
, *orig
= (union split_spte
*)sptep
;
460 count
= sp
->clear_spte_count
;
463 spte
.spte_low
= orig
->spte_low
;
466 spte
.spte_high
= orig
->spte_high
;
469 if (unlikely(spte
.spte_low
!= orig
->spte_low
||
470 count
!= sp
->clear_spte_count
))
477 static bool spte_is_locklessly_modifiable(u64 spte
)
479 return (spte
& (SPTE_HOST_WRITEABLE
| SPTE_MMU_WRITEABLE
)) ==
480 (SPTE_HOST_WRITEABLE
| SPTE_MMU_WRITEABLE
);
483 static bool spte_has_volatile_bits(u64 spte
)
486 * Always atomicly update spte if it can be updated
487 * out of mmu-lock, it can ensure dirty bit is not lost,
488 * also, it can help us to get a stable is_writable_pte()
489 * to ensure tlb flush is not missed.
491 if (spte_is_locklessly_modifiable(spte
))
494 if (!shadow_accessed_mask
)
497 if (!is_shadow_present_pte(spte
))
500 if ((spte
& shadow_accessed_mask
) &&
501 (!is_writable_pte(spte
) || (spte
& shadow_dirty_mask
)))
507 static bool spte_is_bit_cleared(u64 old_spte
, u64 new_spte
, u64 bit_mask
)
509 return (old_spte
& bit_mask
) && !(new_spte
& bit_mask
);
512 static bool spte_is_bit_changed(u64 old_spte
, u64 new_spte
, u64 bit_mask
)
514 return (old_spte
& bit_mask
) != (new_spte
& bit_mask
);
517 /* Rules for using mmu_spte_set:
518 * Set the sptep from nonpresent to present.
519 * Note: the sptep being assigned *must* be either not present
520 * or in a state where the hardware will not attempt to update
523 static void mmu_spte_set(u64
*sptep
, u64 new_spte
)
525 WARN_ON(is_shadow_present_pte(*sptep
));
526 __set_spte(sptep
, new_spte
);
529 /* Rules for using mmu_spte_update:
530 * Update the state bits, it means the mapped pfn is not changged.
532 * Whenever we overwrite a writable spte with a read-only one we
533 * should flush remote TLBs. Otherwise rmap_write_protect
534 * will find a read-only spte, even though the writable spte
535 * might be cached on a CPU's TLB, the return value indicates this
538 static bool mmu_spte_update(u64
*sptep
, u64 new_spte
)
540 u64 old_spte
= *sptep
;
543 WARN_ON(!is_rmap_spte(new_spte
));
545 if (!is_shadow_present_pte(old_spte
)) {
546 mmu_spte_set(sptep
, new_spte
);
550 if (!spte_has_volatile_bits(old_spte
))
551 __update_clear_spte_fast(sptep
, new_spte
);
553 old_spte
= __update_clear_spte_slow(sptep
, new_spte
);
556 * For the spte updated out of mmu-lock is safe, since
557 * we always atomicly update it, see the comments in
558 * spte_has_volatile_bits().
560 if (spte_is_locklessly_modifiable(old_spte
) &&
561 !is_writable_pte(new_spte
))
564 if (!shadow_accessed_mask
)
568 * Flush TLB when accessed/dirty bits are changed in the page tables,
569 * to guarantee consistency between TLB and page tables.
571 if (spte_is_bit_changed(old_spte
, new_spte
,
572 shadow_accessed_mask
| shadow_dirty_mask
))
575 if (spte_is_bit_cleared(old_spte
, new_spte
, shadow_accessed_mask
))
576 kvm_set_pfn_accessed(spte_to_pfn(old_spte
));
577 if (spte_is_bit_cleared(old_spte
, new_spte
, shadow_dirty_mask
))
578 kvm_set_pfn_dirty(spte_to_pfn(old_spte
));
584 * Rules for using mmu_spte_clear_track_bits:
585 * It sets the sptep from present to nonpresent, and track the
586 * state bits, it is used to clear the last level sptep.
588 static int mmu_spte_clear_track_bits(u64
*sptep
)
591 u64 old_spte
= *sptep
;
593 if (!spte_has_volatile_bits(old_spte
))
594 __update_clear_spte_fast(sptep
, 0ull);
596 old_spte
= __update_clear_spte_slow(sptep
, 0ull);
598 if (!is_rmap_spte(old_spte
))
601 pfn
= spte_to_pfn(old_spte
);
604 * KVM does not hold the refcount of the page used by
605 * kvm mmu, before reclaiming the page, we should
606 * unmap it from mmu first.
608 WARN_ON(!kvm_is_reserved_pfn(pfn
) && !page_count(pfn_to_page(pfn
)));
610 if (!shadow_accessed_mask
|| old_spte
& shadow_accessed_mask
)
611 kvm_set_pfn_accessed(pfn
);
612 if (!shadow_dirty_mask
|| (old_spte
& shadow_dirty_mask
))
613 kvm_set_pfn_dirty(pfn
);
618 * Rules for using mmu_spte_clear_no_track:
619 * Directly clear spte without caring the state bits of sptep,
620 * it is used to set the upper level spte.
622 static void mmu_spte_clear_no_track(u64
*sptep
)
624 __update_clear_spte_fast(sptep
, 0ull);
627 static u64
mmu_spte_get_lockless(u64
*sptep
)
629 return __get_spte_lockless(sptep
);
632 static void walk_shadow_page_lockless_begin(struct kvm_vcpu
*vcpu
)
635 * Prevent page table teardown by making any free-er wait during
636 * kvm_flush_remote_tlbs() IPI to all active vcpus.
639 vcpu
->mode
= READING_SHADOW_PAGE_TABLES
;
641 * Make sure a following spte read is not reordered ahead of the write
647 static void walk_shadow_page_lockless_end(struct kvm_vcpu
*vcpu
)
650 * Make sure the write to vcpu->mode is not reordered in front of
651 * reads to sptes. If it does, kvm_commit_zap_page() can see us
652 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
655 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
659 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache
*cache
,
660 struct kmem_cache
*base_cache
, int min
)
664 if (cache
->nobjs
>= min
)
666 while (cache
->nobjs
< ARRAY_SIZE(cache
->objects
)) {
667 obj
= kmem_cache_zalloc(base_cache
, GFP_KERNEL
);
670 cache
->objects
[cache
->nobjs
++] = obj
;
675 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache
*cache
)
680 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache
*mc
,
681 struct kmem_cache
*cache
)
684 kmem_cache_free(cache
, mc
->objects
[--mc
->nobjs
]);
687 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache
*cache
,
692 if (cache
->nobjs
>= min
)
694 while (cache
->nobjs
< ARRAY_SIZE(cache
->objects
)) {
695 page
= (void *)__get_free_page(GFP_KERNEL
);
698 cache
->objects
[cache
->nobjs
++] = page
;
703 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache
*mc
)
706 free_page((unsigned long)mc
->objects
[--mc
->nobjs
]);
709 static int mmu_topup_memory_caches(struct kvm_vcpu
*vcpu
)
713 r
= mmu_topup_memory_cache(&vcpu
->arch
.mmu_pte_list_desc_cache
,
714 pte_list_desc_cache
, 8 + PTE_PREFETCH_NUM
);
717 r
= mmu_topup_memory_cache_page(&vcpu
->arch
.mmu_page_cache
, 8);
720 r
= mmu_topup_memory_cache(&vcpu
->arch
.mmu_page_header_cache
,
721 mmu_page_header_cache
, 4);
726 static void mmu_free_memory_caches(struct kvm_vcpu
*vcpu
)
728 mmu_free_memory_cache(&vcpu
->arch
.mmu_pte_list_desc_cache
,
729 pte_list_desc_cache
);
730 mmu_free_memory_cache_page(&vcpu
->arch
.mmu_page_cache
);
731 mmu_free_memory_cache(&vcpu
->arch
.mmu_page_header_cache
,
732 mmu_page_header_cache
);
735 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache
*mc
)
740 p
= mc
->objects
[--mc
->nobjs
];
744 static struct pte_list_desc
*mmu_alloc_pte_list_desc(struct kvm_vcpu
*vcpu
)
746 return mmu_memory_cache_alloc(&vcpu
->arch
.mmu_pte_list_desc_cache
);
749 static void mmu_free_pte_list_desc(struct pte_list_desc
*pte_list_desc
)
751 kmem_cache_free(pte_list_desc_cache
, pte_list_desc
);
754 static gfn_t
kvm_mmu_page_get_gfn(struct kvm_mmu_page
*sp
, int index
)
756 if (!sp
->role
.direct
)
757 return sp
->gfns
[index
];
759 return sp
->gfn
+ (index
<< ((sp
->role
.level
- 1) * PT64_LEVEL_BITS
));
762 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page
*sp
, int index
, gfn_t gfn
)
765 BUG_ON(gfn
!= kvm_mmu_page_get_gfn(sp
, index
));
767 sp
->gfns
[index
] = gfn
;
771 * Return the pointer to the large page information for a given gfn,
772 * handling slots that are not large page aligned.
774 static struct kvm_lpage_info
*lpage_info_slot(gfn_t gfn
,
775 struct kvm_memory_slot
*slot
,
780 idx
= gfn_to_index(gfn
, slot
->base_gfn
, level
);
781 return &slot
->arch
.lpage_info
[level
- 2][idx
];
784 static void account_shadowed(struct kvm
*kvm
, struct kvm_mmu_page
*sp
)
786 struct kvm_memslots
*slots
;
787 struct kvm_memory_slot
*slot
;
788 struct kvm_lpage_info
*linfo
;
793 slots
= kvm_memslots_for_spte_role(kvm
, sp
->role
);
794 slot
= __gfn_to_memslot(slots
, gfn
);
795 for (i
= PT_DIRECTORY_LEVEL
; i
<= PT_MAX_HUGEPAGE_LEVEL
; ++i
) {
796 linfo
= lpage_info_slot(gfn
, slot
, i
);
797 linfo
->write_count
+= 1;
799 kvm
->arch
.indirect_shadow_pages
++;
802 static void unaccount_shadowed(struct kvm
*kvm
, struct kvm_mmu_page
*sp
)
804 struct kvm_memslots
*slots
;
805 struct kvm_memory_slot
*slot
;
806 struct kvm_lpage_info
*linfo
;
811 slots
= kvm_memslots_for_spte_role(kvm
, sp
->role
);
812 slot
= __gfn_to_memslot(slots
, gfn
);
813 for (i
= PT_DIRECTORY_LEVEL
; i
<= PT_MAX_HUGEPAGE_LEVEL
; ++i
) {
814 linfo
= lpage_info_slot(gfn
, slot
, i
);
815 linfo
->write_count
-= 1;
816 WARN_ON(linfo
->write_count
< 0);
818 kvm
->arch
.indirect_shadow_pages
--;
821 static int has_wrprotected_page(struct kvm_vcpu
*vcpu
,
825 struct kvm_memory_slot
*slot
;
826 struct kvm_lpage_info
*linfo
;
828 slot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
830 linfo
= lpage_info_slot(gfn
, slot
, level
);
831 return linfo
->write_count
;
837 static int host_mapping_level(struct kvm
*kvm
, gfn_t gfn
)
839 unsigned long page_size
;
842 page_size
= kvm_host_page_size(kvm
, gfn
);
844 for (i
= PT_PAGE_TABLE_LEVEL
; i
<= PT_MAX_HUGEPAGE_LEVEL
; ++i
) {
845 if (page_size
>= KVM_HPAGE_SIZE(i
))
854 static struct kvm_memory_slot
*
855 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
858 struct kvm_memory_slot
*slot
;
860 slot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
861 if (!slot
|| slot
->flags
& KVM_MEMSLOT_INVALID
||
862 (no_dirty_log
&& slot
->dirty_bitmap
))
868 static bool mapping_level_dirty_bitmap(struct kvm_vcpu
*vcpu
, gfn_t large_gfn
)
870 return !gfn_to_memslot_dirty_bitmap(vcpu
, large_gfn
, true);
873 static int mapping_level(struct kvm_vcpu
*vcpu
, gfn_t large_gfn
)
875 int host_level
, level
, max_level
;
877 host_level
= host_mapping_level(vcpu
->kvm
, large_gfn
);
879 if (host_level
== PT_PAGE_TABLE_LEVEL
)
882 max_level
= min(kvm_x86_ops
->get_lpage_level(), host_level
);
884 for (level
= PT_DIRECTORY_LEVEL
; level
<= max_level
; ++level
)
885 if (has_wrprotected_page(vcpu
, large_gfn
, level
))
892 * Pte mapping structures:
894 * If pte_list bit zero is zero, then pte_list point to the spte.
896 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
897 * pte_list_desc containing more mappings.
899 * Returns the number of pte entries before the spte was added or zero if
900 * the spte was not added.
903 static int pte_list_add(struct kvm_vcpu
*vcpu
, u64
*spte
,
904 unsigned long *pte_list
)
906 struct pte_list_desc
*desc
;
910 rmap_printk("pte_list_add: %p %llx 0->1\n", spte
, *spte
);
911 *pte_list
= (unsigned long)spte
;
912 } else if (!(*pte_list
& 1)) {
913 rmap_printk("pte_list_add: %p %llx 1->many\n", spte
, *spte
);
914 desc
= mmu_alloc_pte_list_desc(vcpu
);
915 desc
->sptes
[0] = (u64
*)*pte_list
;
916 desc
->sptes
[1] = spte
;
917 *pte_list
= (unsigned long)desc
| 1;
920 rmap_printk("pte_list_add: %p %llx many->many\n", spte
, *spte
);
921 desc
= (struct pte_list_desc
*)(*pte_list
& ~1ul);
922 while (desc
->sptes
[PTE_LIST_EXT
-1] && desc
->more
) {
924 count
+= PTE_LIST_EXT
;
926 if (desc
->sptes
[PTE_LIST_EXT
-1]) {
927 desc
->more
= mmu_alloc_pte_list_desc(vcpu
);
930 for (i
= 0; desc
->sptes
[i
]; ++i
)
932 desc
->sptes
[i
] = spte
;
938 pte_list_desc_remove_entry(unsigned long *pte_list
, struct pte_list_desc
*desc
,
939 int i
, struct pte_list_desc
*prev_desc
)
943 for (j
= PTE_LIST_EXT
- 1; !desc
->sptes
[j
] && j
> i
; --j
)
945 desc
->sptes
[i
] = desc
->sptes
[j
];
946 desc
->sptes
[j
] = NULL
;
949 if (!prev_desc
&& !desc
->more
)
950 *pte_list
= (unsigned long)desc
->sptes
[0];
953 prev_desc
->more
= desc
->more
;
955 *pte_list
= (unsigned long)desc
->more
| 1;
956 mmu_free_pte_list_desc(desc
);
959 static void pte_list_remove(u64
*spte
, unsigned long *pte_list
)
961 struct pte_list_desc
*desc
;
962 struct pte_list_desc
*prev_desc
;
966 printk(KERN_ERR
"pte_list_remove: %p 0->BUG\n", spte
);
968 } else if (!(*pte_list
& 1)) {
969 rmap_printk("pte_list_remove: %p 1->0\n", spte
);
970 if ((u64
*)*pte_list
!= spte
) {
971 printk(KERN_ERR
"pte_list_remove: %p 1->BUG\n", spte
);
976 rmap_printk("pte_list_remove: %p many->many\n", spte
);
977 desc
= (struct pte_list_desc
*)(*pte_list
& ~1ul);
980 for (i
= 0; i
< PTE_LIST_EXT
&& desc
->sptes
[i
]; ++i
)
981 if (desc
->sptes
[i
] == spte
) {
982 pte_list_desc_remove_entry(pte_list
,
990 pr_err("pte_list_remove: %p many->many\n", spte
);
995 typedef void (*pte_list_walk_fn
) (u64
*spte
);
996 static void pte_list_walk(unsigned long *pte_list
, pte_list_walk_fn fn
)
998 struct pte_list_desc
*desc
;
1004 if (!(*pte_list
& 1))
1005 return fn((u64
*)*pte_list
);
1007 desc
= (struct pte_list_desc
*)(*pte_list
& ~1ul);
1009 for (i
= 0; i
< PTE_LIST_EXT
&& desc
->sptes
[i
]; ++i
)
1015 static unsigned long *__gfn_to_rmap(gfn_t gfn
, int level
,
1016 struct kvm_memory_slot
*slot
)
1020 idx
= gfn_to_index(gfn
, slot
->base_gfn
, level
);
1021 return &slot
->arch
.rmap
[level
- PT_PAGE_TABLE_LEVEL
][idx
];
1025 * Take gfn and return the reverse mapping to it.
1027 static unsigned long *gfn_to_rmap(struct kvm
*kvm
, gfn_t gfn
, struct kvm_mmu_page
*sp
)
1029 struct kvm_memslots
*slots
;
1030 struct kvm_memory_slot
*slot
;
1032 slots
= kvm_memslots_for_spte_role(kvm
, sp
->role
);
1033 slot
= __gfn_to_memslot(slots
, gfn
);
1034 return __gfn_to_rmap(gfn
, sp
->role
.level
, slot
);
1037 static bool rmap_can_add(struct kvm_vcpu
*vcpu
)
1039 struct kvm_mmu_memory_cache
*cache
;
1041 cache
= &vcpu
->arch
.mmu_pte_list_desc_cache
;
1042 return mmu_memory_cache_free_objects(cache
);
1045 static int rmap_add(struct kvm_vcpu
*vcpu
, u64
*spte
, gfn_t gfn
)
1047 struct kvm_mmu_page
*sp
;
1048 unsigned long *rmapp
;
1050 sp
= page_header(__pa(spte
));
1051 kvm_mmu_page_set_gfn(sp
, spte
- sp
->spt
, gfn
);
1052 rmapp
= gfn_to_rmap(vcpu
->kvm
, gfn
, sp
);
1053 return pte_list_add(vcpu
, spte
, rmapp
);
1056 static void rmap_remove(struct kvm
*kvm
, u64
*spte
)
1058 struct kvm_mmu_page
*sp
;
1060 unsigned long *rmapp
;
1062 sp
= page_header(__pa(spte
));
1063 gfn
= kvm_mmu_page_get_gfn(sp
, spte
- sp
->spt
);
1064 rmapp
= gfn_to_rmap(kvm
, gfn
, sp
);
1065 pte_list_remove(spte
, rmapp
);
1069 * Used by the following functions to iterate through the sptes linked by a
1070 * rmap. All fields are private and not assumed to be used outside.
1072 struct rmap_iterator
{
1073 /* private fields */
1074 struct pte_list_desc
*desc
; /* holds the sptep if not NULL */
1075 int pos
; /* index of the sptep */
1079 * Iteration must be started by this function. This should also be used after
1080 * removing/dropping sptes from the rmap link because in such cases the
1081 * information in the itererator may not be valid.
1083 * Returns sptep if found, NULL otherwise.
1085 static u64
*rmap_get_first(unsigned long rmap
, struct rmap_iterator
*iter
)
1095 iter
->desc
= (struct pte_list_desc
*)(rmap
& ~1ul);
1097 return iter
->desc
->sptes
[iter
->pos
];
1101 * Must be used with a valid iterator: e.g. after rmap_get_first().
1103 * Returns sptep if found, NULL otherwise.
1105 static u64
*rmap_get_next(struct rmap_iterator
*iter
)
1108 if (iter
->pos
< PTE_LIST_EXT
- 1) {
1112 sptep
= iter
->desc
->sptes
[iter
->pos
];
1117 iter
->desc
= iter
->desc
->more
;
1121 /* desc->sptes[0] cannot be NULL */
1122 return iter
->desc
->sptes
[iter
->pos
];
1129 #define for_each_rmap_spte(_rmap_, _iter_, _spte_) \
1130 for (_spte_ = rmap_get_first(*_rmap_, _iter_); \
1131 _spte_ && ({BUG_ON(!is_shadow_present_pte(*_spte_)); 1;}); \
1132 _spte_ = rmap_get_next(_iter_))
1134 static void drop_spte(struct kvm
*kvm
, u64
*sptep
)
1136 if (mmu_spte_clear_track_bits(sptep
))
1137 rmap_remove(kvm
, sptep
);
1141 static bool __drop_large_spte(struct kvm
*kvm
, u64
*sptep
)
1143 if (is_large_pte(*sptep
)) {
1144 WARN_ON(page_header(__pa(sptep
))->role
.level
==
1145 PT_PAGE_TABLE_LEVEL
);
1146 drop_spte(kvm
, sptep
);
1154 static void drop_large_spte(struct kvm_vcpu
*vcpu
, u64
*sptep
)
1156 if (__drop_large_spte(vcpu
->kvm
, sptep
))
1157 kvm_flush_remote_tlbs(vcpu
->kvm
);
1161 * Write-protect on the specified @sptep, @pt_protect indicates whether
1162 * spte write-protection is caused by protecting shadow page table.
1164 * Note: write protection is difference between dirty logging and spte
1166 * - for dirty logging, the spte can be set to writable at anytime if
1167 * its dirty bitmap is properly set.
1168 * - for spte protection, the spte can be writable only after unsync-ing
1171 * Return true if tlb need be flushed.
1173 static bool spte_write_protect(struct kvm
*kvm
, u64
*sptep
, bool pt_protect
)
1177 if (!is_writable_pte(spte
) &&
1178 !(pt_protect
&& spte_is_locklessly_modifiable(spte
)))
1181 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep
, *sptep
);
1184 spte
&= ~SPTE_MMU_WRITEABLE
;
1185 spte
= spte
& ~PT_WRITABLE_MASK
;
1187 return mmu_spte_update(sptep
, spte
);
1190 static bool __rmap_write_protect(struct kvm
*kvm
, unsigned long *rmapp
,
1194 struct rmap_iterator iter
;
1197 for_each_rmap_spte(rmapp
, &iter
, sptep
)
1198 flush
|= spte_write_protect(kvm
, sptep
, pt_protect
);
1203 static bool spte_clear_dirty(struct kvm
*kvm
, u64
*sptep
)
1207 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep
, *sptep
);
1209 spte
&= ~shadow_dirty_mask
;
1211 return mmu_spte_update(sptep
, spte
);
1214 static bool __rmap_clear_dirty(struct kvm
*kvm
, unsigned long *rmapp
)
1217 struct rmap_iterator iter
;
1220 for_each_rmap_spte(rmapp
, &iter
, sptep
)
1221 flush
|= spte_clear_dirty(kvm
, sptep
);
1226 static bool spte_set_dirty(struct kvm
*kvm
, u64
*sptep
)
1230 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep
, *sptep
);
1232 spte
|= shadow_dirty_mask
;
1234 return mmu_spte_update(sptep
, spte
);
1237 static bool __rmap_set_dirty(struct kvm
*kvm
, unsigned long *rmapp
)
1240 struct rmap_iterator iter
;
1243 for_each_rmap_spte(rmapp
, &iter
, sptep
)
1244 flush
|= spte_set_dirty(kvm
, sptep
);
1250 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1251 * @kvm: kvm instance
1252 * @slot: slot to protect
1253 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1254 * @mask: indicates which pages we should protect
1256 * Used when we do not need to care about huge page mappings: e.g. during dirty
1257 * logging we do not have any such mappings.
1259 static void kvm_mmu_write_protect_pt_masked(struct kvm
*kvm
,
1260 struct kvm_memory_slot
*slot
,
1261 gfn_t gfn_offset
, unsigned long mask
)
1263 unsigned long *rmapp
;
1266 rmapp
= __gfn_to_rmap(slot
->base_gfn
+ gfn_offset
+ __ffs(mask
),
1267 PT_PAGE_TABLE_LEVEL
, slot
);
1268 __rmap_write_protect(kvm
, rmapp
, false);
1270 /* clear the first set bit */
1276 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
1277 * @kvm: kvm instance
1278 * @slot: slot to clear D-bit
1279 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1280 * @mask: indicates which pages we should clear D-bit
1282 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1284 void kvm_mmu_clear_dirty_pt_masked(struct kvm
*kvm
,
1285 struct kvm_memory_slot
*slot
,
1286 gfn_t gfn_offset
, unsigned long mask
)
1288 unsigned long *rmapp
;
1291 rmapp
= __gfn_to_rmap(slot
->base_gfn
+ gfn_offset
+ __ffs(mask
),
1292 PT_PAGE_TABLE_LEVEL
, slot
);
1293 __rmap_clear_dirty(kvm
, rmapp
);
1295 /* clear the first set bit */
1299 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked
);
1302 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1305 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1306 * enable dirty logging for them.
1308 * Used when we do not need to care about huge page mappings: e.g. during dirty
1309 * logging we do not have any such mappings.
1311 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm
*kvm
,
1312 struct kvm_memory_slot
*slot
,
1313 gfn_t gfn_offset
, unsigned long mask
)
1315 if (kvm_x86_ops
->enable_log_dirty_pt_masked
)
1316 kvm_x86_ops
->enable_log_dirty_pt_masked(kvm
, slot
, gfn_offset
,
1319 kvm_mmu_write_protect_pt_masked(kvm
, slot
, gfn_offset
, mask
);
1322 static bool rmap_write_protect(struct kvm_vcpu
*vcpu
, u64 gfn
)
1324 struct kvm_memory_slot
*slot
;
1325 unsigned long *rmapp
;
1327 bool write_protected
= false;
1329 slot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
1331 for (i
= PT_PAGE_TABLE_LEVEL
; i
<= PT_MAX_HUGEPAGE_LEVEL
; ++i
) {
1332 rmapp
= __gfn_to_rmap(gfn
, i
, slot
);
1333 write_protected
|= __rmap_write_protect(vcpu
->kvm
, rmapp
, true);
1336 return write_protected
;
1339 static bool kvm_zap_rmapp(struct kvm
*kvm
, unsigned long *rmapp
)
1342 struct rmap_iterator iter
;
1345 while ((sptep
= rmap_get_first(*rmapp
, &iter
))) {
1346 BUG_ON(!(*sptep
& PT_PRESENT_MASK
));
1347 rmap_printk("%s: spte %p %llx.\n", __func__
, sptep
, *sptep
);
1349 drop_spte(kvm
, sptep
);
1356 static int kvm_unmap_rmapp(struct kvm
*kvm
, unsigned long *rmapp
,
1357 struct kvm_memory_slot
*slot
, gfn_t gfn
, int level
,
1360 return kvm_zap_rmapp(kvm
, rmapp
);
1363 static int kvm_set_pte_rmapp(struct kvm
*kvm
, unsigned long *rmapp
,
1364 struct kvm_memory_slot
*slot
, gfn_t gfn
, int level
,
1368 struct rmap_iterator iter
;
1371 pte_t
*ptep
= (pte_t
*)data
;
1374 WARN_ON(pte_huge(*ptep
));
1375 new_pfn
= pte_pfn(*ptep
);
1378 for_each_rmap_spte(rmapp
, &iter
, sptep
) {
1379 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1380 sptep
, *sptep
, gfn
, level
);
1384 if (pte_write(*ptep
)) {
1385 drop_spte(kvm
, sptep
);
1388 new_spte
= *sptep
& ~PT64_BASE_ADDR_MASK
;
1389 new_spte
|= (u64
)new_pfn
<< PAGE_SHIFT
;
1391 new_spte
&= ~PT_WRITABLE_MASK
;
1392 new_spte
&= ~SPTE_HOST_WRITEABLE
;
1393 new_spte
&= ~shadow_accessed_mask
;
1395 mmu_spte_clear_track_bits(sptep
);
1396 mmu_spte_set(sptep
, new_spte
);
1401 kvm_flush_remote_tlbs(kvm
);
1406 struct slot_rmap_walk_iterator
{
1408 struct kvm_memory_slot
*slot
;
1414 /* output fields. */
1416 unsigned long *rmap
;
1419 /* private field. */
1420 unsigned long *end_rmap
;
1424 rmap_walk_init_level(struct slot_rmap_walk_iterator
*iterator
, int level
)
1426 iterator
->level
= level
;
1427 iterator
->gfn
= iterator
->start_gfn
;
1428 iterator
->rmap
= __gfn_to_rmap(iterator
->gfn
, level
, iterator
->slot
);
1429 iterator
->end_rmap
= __gfn_to_rmap(iterator
->end_gfn
, level
,
1434 slot_rmap_walk_init(struct slot_rmap_walk_iterator
*iterator
,
1435 struct kvm_memory_slot
*slot
, int start_level
,
1436 int end_level
, gfn_t start_gfn
, gfn_t end_gfn
)
1438 iterator
->slot
= slot
;
1439 iterator
->start_level
= start_level
;
1440 iterator
->end_level
= end_level
;
1441 iterator
->start_gfn
= start_gfn
;
1442 iterator
->end_gfn
= end_gfn
;
1444 rmap_walk_init_level(iterator
, iterator
->start_level
);
1447 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator
*iterator
)
1449 return !!iterator
->rmap
;
1452 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator
*iterator
)
1454 if (++iterator
->rmap
<= iterator
->end_rmap
) {
1455 iterator
->gfn
+= (1UL << KVM_HPAGE_GFN_SHIFT(iterator
->level
));
1459 if (++iterator
->level
> iterator
->end_level
) {
1460 iterator
->rmap
= NULL
;
1464 rmap_walk_init_level(iterator
, iterator
->level
);
1467 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1468 _start_gfn, _end_gfn, _iter_) \
1469 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1470 _end_level_, _start_gfn, _end_gfn); \
1471 slot_rmap_walk_okay(_iter_); \
1472 slot_rmap_walk_next(_iter_))
1474 static int kvm_handle_hva_range(struct kvm
*kvm
,
1475 unsigned long start
,
1478 int (*handler
)(struct kvm
*kvm
,
1479 unsigned long *rmapp
,
1480 struct kvm_memory_slot
*slot
,
1483 unsigned long data
))
1485 struct kvm_memslots
*slots
;
1486 struct kvm_memory_slot
*memslot
;
1487 struct slot_rmap_walk_iterator iterator
;
1491 for (i
= 0; i
< KVM_ADDRESS_SPACE_NUM
; i
++) {
1492 slots
= __kvm_memslots(kvm
, i
);
1493 kvm_for_each_memslot(memslot
, slots
) {
1494 unsigned long hva_start
, hva_end
;
1495 gfn_t gfn_start
, gfn_end
;
1497 hva_start
= max(start
, memslot
->userspace_addr
);
1498 hva_end
= min(end
, memslot
->userspace_addr
+
1499 (memslot
->npages
<< PAGE_SHIFT
));
1500 if (hva_start
>= hva_end
)
1503 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1504 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1506 gfn_start
= hva_to_gfn_memslot(hva_start
, memslot
);
1507 gfn_end
= hva_to_gfn_memslot(hva_end
+ PAGE_SIZE
- 1, memslot
);
1509 for_each_slot_rmap_range(memslot
, PT_PAGE_TABLE_LEVEL
,
1510 PT_MAX_HUGEPAGE_LEVEL
,
1511 gfn_start
, gfn_end
- 1,
1513 ret
|= handler(kvm
, iterator
.rmap
, memslot
,
1514 iterator
.gfn
, iterator
.level
, data
);
1521 static int kvm_handle_hva(struct kvm
*kvm
, unsigned long hva
,
1523 int (*handler
)(struct kvm
*kvm
, unsigned long *rmapp
,
1524 struct kvm_memory_slot
*slot
,
1525 gfn_t gfn
, int level
,
1526 unsigned long data
))
1528 return kvm_handle_hva_range(kvm
, hva
, hva
+ 1, data
, handler
);
1531 int kvm_unmap_hva(struct kvm
*kvm
, unsigned long hva
)
1533 return kvm_handle_hva(kvm
, hva
, 0, kvm_unmap_rmapp
);
1536 int kvm_unmap_hva_range(struct kvm
*kvm
, unsigned long start
, unsigned long end
)
1538 return kvm_handle_hva_range(kvm
, start
, end
, 0, kvm_unmap_rmapp
);
1541 void kvm_set_spte_hva(struct kvm
*kvm
, unsigned long hva
, pte_t pte
)
1543 kvm_handle_hva(kvm
, hva
, (unsigned long)&pte
, kvm_set_pte_rmapp
);
1546 static int kvm_age_rmapp(struct kvm
*kvm
, unsigned long *rmapp
,
1547 struct kvm_memory_slot
*slot
, gfn_t gfn
, int level
,
1551 struct rmap_iterator
uninitialized_var(iter
);
1554 BUG_ON(!shadow_accessed_mask
);
1556 for_each_rmap_spte(rmapp
, &iter
, sptep
)
1557 if (*sptep
& shadow_accessed_mask
) {
1559 clear_bit((ffs(shadow_accessed_mask
) - 1),
1560 (unsigned long *)sptep
);
1563 trace_kvm_age_page(gfn
, level
, slot
, young
);
1567 static int kvm_test_age_rmapp(struct kvm
*kvm
, unsigned long *rmapp
,
1568 struct kvm_memory_slot
*slot
, gfn_t gfn
,
1569 int level
, unsigned long data
)
1572 struct rmap_iterator iter
;
1576 * If there's no access bit in the secondary pte set by the
1577 * hardware it's up to gup-fast/gup to set the access bit in
1578 * the primary pte or in the page structure.
1580 if (!shadow_accessed_mask
)
1583 for_each_rmap_spte(rmapp
, &iter
, sptep
)
1584 if (*sptep
& shadow_accessed_mask
) {
1592 #define RMAP_RECYCLE_THRESHOLD 1000
1594 static void rmap_recycle(struct kvm_vcpu
*vcpu
, u64
*spte
, gfn_t gfn
)
1596 unsigned long *rmapp
;
1597 struct kvm_mmu_page
*sp
;
1599 sp
= page_header(__pa(spte
));
1601 rmapp
= gfn_to_rmap(vcpu
->kvm
, gfn
, sp
);
1603 kvm_unmap_rmapp(vcpu
->kvm
, rmapp
, NULL
, gfn
, sp
->role
.level
, 0);
1604 kvm_flush_remote_tlbs(vcpu
->kvm
);
1607 int kvm_age_hva(struct kvm
*kvm
, unsigned long start
, unsigned long end
)
1610 * In case of absence of EPT Access and Dirty Bits supports,
1611 * emulate the accessed bit for EPT, by checking if this page has
1612 * an EPT mapping, and clearing it if it does. On the next access,
1613 * a new EPT mapping will be established.
1614 * This has some overhead, but not as much as the cost of swapping
1615 * out actively used pages or breaking up actively used hugepages.
1617 if (!shadow_accessed_mask
) {
1619 * We are holding the kvm->mmu_lock, and we are blowing up
1620 * shadow PTEs. MMU notifier consumers need to be kept at bay.
1621 * This is correct as long as we don't decouple the mmu_lock
1622 * protected regions (like invalidate_range_start|end does).
1624 kvm
->mmu_notifier_seq
++;
1625 return kvm_handle_hva_range(kvm
, start
, end
, 0,
1629 return kvm_handle_hva_range(kvm
, start
, end
, 0, kvm_age_rmapp
);
1632 int kvm_test_age_hva(struct kvm
*kvm
, unsigned long hva
)
1634 return kvm_handle_hva(kvm
, hva
, 0, kvm_test_age_rmapp
);
1638 static int is_empty_shadow_page(u64
*spt
)
1643 for (pos
= spt
, end
= pos
+ PAGE_SIZE
/ sizeof(u64
); pos
!= end
; pos
++)
1644 if (is_shadow_present_pte(*pos
)) {
1645 printk(KERN_ERR
"%s: %p %llx\n", __func__
,
1654 * This value is the sum of all of the kvm instances's
1655 * kvm->arch.n_used_mmu_pages values. We need a global,
1656 * aggregate version in order to make the slab shrinker
1659 static inline void kvm_mod_used_mmu_pages(struct kvm
*kvm
, int nr
)
1661 kvm
->arch
.n_used_mmu_pages
+= nr
;
1662 percpu_counter_add(&kvm_total_used_mmu_pages
, nr
);
1665 static void kvm_mmu_free_page(struct kvm_mmu_page
*sp
)
1667 MMU_WARN_ON(!is_empty_shadow_page(sp
->spt
));
1668 hlist_del(&sp
->hash_link
);
1669 list_del(&sp
->link
);
1670 free_page((unsigned long)sp
->spt
);
1671 if (!sp
->role
.direct
)
1672 free_page((unsigned long)sp
->gfns
);
1673 kmem_cache_free(mmu_page_header_cache
, sp
);
1676 static unsigned kvm_page_table_hashfn(gfn_t gfn
)
1678 return gfn
& ((1 << KVM_MMU_HASH_SHIFT
) - 1);
1681 static void mmu_page_add_parent_pte(struct kvm_vcpu
*vcpu
,
1682 struct kvm_mmu_page
*sp
, u64
*parent_pte
)
1687 pte_list_add(vcpu
, parent_pte
, &sp
->parent_ptes
);
1690 static void mmu_page_remove_parent_pte(struct kvm_mmu_page
*sp
,
1693 pte_list_remove(parent_pte
, &sp
->parent_ptes
);
1696 static void drop_parent_pte(struct kvm_mmu_page
*sp
,
1699 mmu_page_remove_parent_pte(sp
, parent_pte
);
1700 mmu_spte_clear_no_track(parent_pte
);
1703 static struct kvm_mmu_page
*kvm_mmu_alloc_page(struct kvm_vcpu
*vcpu
,
1704 u64
*parent_pte
, int direct
)
1706 struct kvm_mmu_page
*sp
;
1708 sp
= mmu_memory_cache_alloc(&vcpu
->arch
.mmu_page_header_cache
);
1709 sp
->spt
= mmu_memory_cache_alloc(&vcpu
->arch
.mmu_page_cache
);
1711 sp
->gfns
= mmu_memory_cache_alloc(&vcpu
->arch
.mmu_page_cache
);
1712 set_page_private(virt_to_page(sp
->spt
), (unsigned long)sp
);
1715 * The active_mmu_pages list is the FIFO list, do not move the
1716 * page until it is zapped. kvm_zap_obsolete_pages depends on
1717 * this feature. See the comments in kvm_zap_obsolete_pages().
1719 list_add(&sp
->link
, &vcpu
->kvm
->arch
.active_mmu_pages
);
1720 sp
->parent_ptes
= 0;
1721 mmu_page_add_parent_pte(vcpu
, sp
, parent_pte
);
1722 kvm_mod_used_mmu_pages(vcpu
->kvm
, +1);
1726 static void mark_unsync(u64
*spte
);
1727 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page
*sp
)
1729 pte_list_walk(&sp
->parent_ptes
, mark_unsync
);
1732 static void mark_unsync(u64
*spte
)
1734 struct kvm_mmu_page
*sp
;
1737 sp
= page_header(__pa(spte
));
1738 index
= spte
- sp
->spt
;
1739 if (__test_and_set_bit(index
, sp
->unsync_child_bitmap
))
1741 if (sp
->unsync_children
++)
1743 kvm_mmu_mark_parents_unsync(sp
);
1746 static int nonpaging_sync_page(struct kvm_vcpu
*vcpu
,
1747 struct kvm_mmu_page
*sp
)
1752 static void nonpaging_invlpg(struct kvm_vcpu
*vcpu
, gva_t gva
)
1756 static void nonpaging_update_pte(struct kvm_vcpu
*vcpu
,
1757 struct kvm_mmu_page
*sp
, u64
*spte
,
1763 #define KVM_PAGE_ARRAY_NR 16
1765 struct kvm_mmu_pages
{
1766 struct mmu_page_and_offset
{
1767 struct kvm_mmu_page
*sp
;
1769 } page
[KVM_PAGE_ARRAY_NR
];
1773 static int mmu_pages_add(struct kvm_mmu_pages
*pvec
, struct kvm_mmu_page
*sp
,
1779 for (i
=0; i
< pvec
->nr
; i
++)
1780 if (pvec
->page
[i
].sp
== sp
)
1783 pvec
->page
[pvec
->nr
].sp
= sp
;
1784 pvec
->page
[pvec
->nr
].idx
= idx
;
1786 return (pvec
->nr
== KVM_PAGE_ARRAY_NR
);
1789 static int __mmu_unsync_walk(struct kvm_mmu_page
*sp
,
1790 struct kvm_mmu_pages
*pvec
)
1792 int i
, ret
, nr_unsync_leaf
= 0;
1794 for_each_set_bit(i
, sp
->unsync_child_bitmap
, 512) {
1795 struct kvm_mmu_page
*child
;
1796 u64 ent
= sp
->spt
[i
];
1798 if (!is_shadow_present_pte(ent
) || is_large_pte(ent
))
1799 goto clear_child_bitmap
;
1801 child
= page_header(ent
& PT64_BASE_ADDR_MASK
);
1803 if (child
->unsync_children
) {
1804 if (mmu_pages_add(pvec
, child
, i
))
1807 ret
= __mmu_unsync_walk(child
, pvec
);
1809 goto clear_child_bitmap
;
1811 nr_unsync_leaf
+= ret
;
1814 } else if (child
->unsync
) {
1816 if (mmu_pages_add(pvec
, child
, i
))
1819 goto clear_child_bitmap
;
1824 __clear_bit(i
, sp
->unsync_child_bitmap
);
1825 sp
->unsync_children
--;
1826 WARN_ON((int)sp
->unsync_children
< 0);
1830 return nr_unsync_leaf
;
1833 static int mmu_unsync_walk(struct kvm_mmu_page
*sp
,
1834 struct kvm_mmu_pages
*pvec
)
1836 if (!sp
->unsync_children
)
1839 mmu_pages_add(pvec
, sp
, 0);
1840 return __mmu_unsync_walk(sp
, pvec
);
1843 static void kvm_unlink_unsync_page(struct kvm
*kvm
, struct kvm_mmu_page
*sp
)
1845 WARN_ON(!sp
->unsync
);
1846 trace_kvm_mmu_sync_page(sp
);
1848 --kvm
->stat
.mmu_unsync
;
1851 static int kvm_mmu_prepare_zap_page(struct kvm
*kvm
, struct kvm_mmu_page
*sp
,
1852 struct list_head
*invalid_list
);
1853 static void kvm_mmu_commit_zap_page(struct kvm
*kvm
,
1854 struct list_head
*invalid_list
);
1857 * NOTE: we should pay more attention on the zapped-obsolete page
1858 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1859 * since it has been deleted from active_mmu_pages but still can be found
1862 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1863 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1864 * all the obsolete pages.
1866 #define for_each_gfn_sp(_kvm, _sp, _gfn) \
1867 hlist_for_each_entry(_sp, \
1868 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1869 if ((_sp)->gfn != (_gfn)) {} else
1871 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
1872 for_each_gfn_sp(_kvm, _sp, _gfn) \
1873 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1875 /* @sp->gfn should be write-protected at the call site */
1876 static int __kvm_sync_page(struct kvm_vcpu
*vcpu
, struct kvm_mmu_page
*sp
,
1877 struct list_head
*invalid_list
, bool clear_unsync
)
1879 if (sp
->role
.cr4_pae
!= !!is_pae(vcpu
)) {
1880 kvm_mmu_prepare_zap_page(vcpu
->kvm
, sp
, invalid_list
);
1885 kvm_unlink_unsync_page(vcpu
->kvm
, sp
);
1887 if (vcpu
->arch
.mmu
.sync_page(vcpu
, sp
)) {
1888 kvm_mmu_prepare_zap_page(vcpu
->kvm
, sp
, invalid_list
);
1892 kvm_make_request(KVM_REQ_TLB_FLUSH
, vcpu
);
1896 static int kvm_sync_page_transient(struct kvm_vcpu
*vcpu
,
1897 struct kvm_mmu_page
*sp
)
1899 LIST_HEAD(invalid_list
);
1902 ret
= __kvm_sync_page(vcpu
, sp
, &invalid_list
, false);
1904 kvm_mmu_commit_zap_page(vcpu
->kvm
, &invalid_list
);
1909 #ifdef CONFIG_KVM_MMU_AUDIT
1910 #include "mmu_audit.c"
1912 static void kvm_mmu_audit(struct kvm_vcpu
*vcpu
, int point
) { }
1913 static void mmu_audit_disable(void) { }
1916 static int kvm_sync_page(struct kvm_vcpu
*vcpu
, struct kvm_mmu_page
*sp
,
1917 struct list_head
*invalid_list
)
1919 return __kvm_sync_page(vcpu
, sp
, invalid_list
, true);
1922 /* @gfn should be write-protected at the call site */
1923 static void kvm_sync_pages(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1925 struct kvm_mmu_page
*s
;
1926 LIST_HEAD(invalid_list
);
1929 for_each_gfn_indirect_valid_sp(vcpu
->kvm
, s
, gfn
) {
1933 WARN_ON(s
->role
.level
!= PT_PAGE_TABLE_LEVEL
);
1934 kvm_unlink_unsync_page(vcpu
->kvm
, s
);
1935 if ((s
->role
.cr4_pae
!= !!is_pae(vcpu
)) ||
1936 (vcpu
->arch
.mmu
.sync_page(vcpu
, s
))) {
1937 kvm_mmu_prepare_zap_page(vcpu
->kvm
, s
, &invalid_list
);
1943 kvm_mmu_commit_zap_page(vcpu
->kvm
, &invalid_list
);
1945 kvm_make_request(KVM_REQ_TLB_FLUSH
, vcpu
);
1948 struct mmu_page_path
{
1949 struct kvm_mmu_page
*parent
[PT64_ROOT_LEVEL
-1];
1950 unsigned int idx
[PT64_ROOT_LEVEL
-1];
1953 #define for_each_sp(pvec, sp, parents, i) \
1954 for (i = mmu_pages_next(&pvec, &parents, -1), \
1955 sp = pvec.page[i].sp; \
1956 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1957 i = mmu_pages_next(&pvec, &parents, i))
1959 static int mmu_pages_next(struct kvm_mmu_pages
*pvec
,
1960 struct mmu_page_path
*parents
,
1965 for (n
= i
+1; n
< pvec
->nr
; n
++) {
1966 struct kvm_mmu_page
*sp
= pvec
->page
[n
].sp
;
1968 if (sp
->role
.level
== PT_PAGE_TABLE_LEVEL
) {
1969 parents
->idx
[0] = pvec
->page
[n
].idx
;
1973 parents
->parent
[sp
->role
.level
-2] = sp
;
1974 parents
->idx
[sp
->role
.level
-1] = pvec
->page
[n
].idx
;
1980 static void mmu_pages_clear_parents(struct mmu_page_path
*parents
)
1982 struct kvm_mmu_page
*sp
;
1983 unsigned int level
= 0;
1986 unsigned int idx
= parents
->idx
[level
];
1988 sp
= parents
->parent
[level
];
1992 --sp
->unsync_children
;
1993 WARN_ON((int)sp
->unsync_children
< 0);
1994 __clear_bit(idx
, sp
->unsync_child_bitmap
);
1996 } while (level
< PT64_ROOT_LEVEL
-1 && !sp
->unsync_children
);
1999 static void kvm_mmu_pages_init(struct kvm_mmu_page
*parent
,
2000 struct mmu_page_path
*parents
,
2001 struct kvm_mmu_pages
*pvec
)
2003 parents
->parent
[parent
->role
.level
-1] = NULL
;
2007 static void mmu_sync_children(struct kvm_vcpu
*vcpu
,
2008 struct kvm_mmu_page
*parent
)
2011 struct kvm_mmu_page
*sp
;
2012 struct mmu_page_path parents
;
2013 struct kvm_mmu_pages pages
;
2014 LIST_HEAD(invalid_list
);
2016 kvm_mmu_pages_init(parent
, &parents
, &pages
);
2017 while (mmu_unsync_walk(parent
, &pages
)) {
2018 bool protected = false;
2020 for_each_sp(pages
, sp
, parents
, i
)
2021 protected |= rmap_write_protect(vcpu
, sp
->gfn
);
2024 kvm_flush_remote_tlbs(vcpu
->kvm
);
2026 for_each_sp(pages
, sp
, parents
, i
) {
2027 kvm_sync_page(vcpu
, sp
, &invalid_list
);
2028 mmu_pages_clear_parents(&parents
);
2030 kvm_mmu_commit_zap_page(vcpu
->kvm
, &invalid_list
);
2031 cond_resched_lock(&vcpu
->kvm
->mmu_lock
);
2032 kvm_mmu_pages_init(parent
, &parents
, &pages
);
2036 static void init_shadow_page_table(struct kvm_mmu_page
*sp
)
2040 for (i
= 0; i
< PT64_ENT_PER_PAGE
; ++i
)
2044 static void __clear_sp_write_flooding_count(struct kvm_mmu_page
*sp
)
2046 sp
->write_flooding_count
= 0;
2049 static void clear_sp_write_flooding_count(u64
*spte
)
2051 struct kvm_mmu_page
*sp
= page_header(__pa(spte
));
2053 __clear_sp_write_flooding_count(sp
);
2056 static bool is_obsolete_sp(struct kvm
*kvm
, struct kvm_mmu_page
*sp
)
2058 return unlikely(sp
->mmu_valid_gen
!= kvm
->arch
.mmu_valid_gen
);
2061 static struct kvm_mmu_page
*kvm_mmu_get_page(struct kvm_vcpu
*vcpu
,
2069 union kvm_mmu_page_role role
;
2071 struct kvm_mmu_page
*sp
;
2072 bool need_sync
= false;
2074 role
= vcpu
->arch
.mmu
.base_role
;
2076 role
.direct
= direct
;
2079 role
.access
= access
;
2080 if (!vcpu
->arch
.mmu
.direct_map
2081 && vcpu
->arch
.mmu
.root_level
<= PT32_ROOT_LEVEL
) {
2082 quadrant
= gaddr
>> (PAGE_SHIFT
+ (PT64_PT_BITS
* level
));
2083 quadrant
&= (1 << ((PT32_PT_BITS
- PT64_PT_BITS
) * level
)) - 1;
2084 role
.quadrant
= quadrant
;
2086 for_each_gfn_sp(vcpu
->kvm
, sp
, gfn
) {
2087 if (is_obsolete_sp(vcpu
->kvm
, sp
))
2090 if (!need_sync
&& sp
->unsync
)
2093 if (sp
->role
.word
!= role
.word
)
2096 if (sp
->unsync
&& kvm_sync_page_transient(vcpu
, sp
))
2099 mmu_page_add_parent_pte(vcpu
, sp
, parent_pte
);
2100 if (sp
->unsync_children
) {
2101 kvm_make_request(KVM_REQ_MMU_SYNC
, vcpu
);
2102 kvm_mmu_mark_parents_unsync(sp
);
2103 } else if (sp
->unsync
)
2104 kvm_mmu_mark_parents_unsync(sp
);
2106 __clear_sp_write_flooding_count(sp
);
2107 trace_kvm_mmu_get_page(sp
, false);
2110 ++vcpu
->kvm
->stat
.mmu_cache_miss
;
2111 sp
= kvm_mmu_alloc_page(vcpu
, parent_pte
, direct
);
2116 hlist_add_head(&sp
->hash_link
,
2117 &vcpu
->kvm
->arch
.mmu_page_hash
[kvm_page_table_hashfn(gfn
)]);
2119 if (rmap_write_protect(vcpu
, gfn
))
2120 kvm_flush_remote_tlbs(vcpu
->kvm
);
2121 if (level
> PT_PAGE_TABLE_LEVEL
&& need_sync
)
2122 kvm_sync_pages(vcpu
, gfn
);
2124 account_shadowed(vcpu
->kvm
, sp
);
2126 sp
->mmu_valid_gen
= vcpu
->kvm
->arch
.mmu_valid_gen
;
2127 init_shadow_page_table(sp
);
2128 trace_kvm_mmu_get_page(sp
, true);
2132 static void shadow_walk_init(struct kvm_shadow_walk_iterator
*iterator
,
2133 struct kvm_vcpu
*vcpu
, u64 addr
)
2135 iterator
->addr
= addr
;
2136 iterator
->shadow_addr
= vcpu
->arch
.mmu
.root_hpa
;
2137 iterator
->level
= vcpu
->arch
.mmu
.shadow_root_level
;
2139 if (iterator
->level
== PT64_ROOT_LEVEL
&&
2140 vcpu
->arch
.mmu
.root_level
< PT64_ROOT_LEVEL
&&
2141 !vcpu
->arch
.mmu
.direct_map
)
2144 if (iterator
->level
== PT32E_ROOT_LEVEL
) {
2145 iterator
->shadow_addr
2146 = vcpu
->arch
.mmu
.pae_root
[(addr
>> 30) & 3];
2147 iterator
->shadow_addr
&= PT64_BASE_ADDR_MASK
;
2149 if (!iterator
->shadow_addr
)
2150 iterator
->level
= 0;
2154 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator
*iterator
)
2156 if (iterator
->level
< PT_PAGE_TABLE_LEVEL
)
2159 iterator
->index
= SHADOW_PT_INDEX(iterator
->addr
, iterator
->level
);
2160 iterator
->sptep
= ((u64
*)__va(iterator
->shadow_addr
)) + iterator
->index
;
2164 static void __shadow_walk_next(struct kvm_shadow_walk_iterator
*iterator
,
2167 if (is_last_spte(spte
, iterator
->level
)) {
2168 iterator
->level
= 0;
2172 iterator
->shadow_addr
= spte
& PT64_BASE_ADDR_MASK
;
2176 static void shadow_walk_next(struct kvm_shadow_walk_iterator
*iterator
)
2178 return __shadow_walk_next(iterator
, *iterator
->sptep
);
2181 static void link_shadow_page(u64
*sptep
, struct kvm_mmu_page
*sp
, bool accessed
)
2185 BUILD_BUG_ON(VMX_EPT_READABLE_MASK
!= PT_PRESENT_MASK
||
2186 VMX_EPT_WRITABLE_MASK
!= PT_WRITABLE_MASK
);
2188 spte
= __pa(sp
->spt
) | PT_PRESENT_MASK
| PT_WRITABLE_MASK
|
2189 shadow_user_mask
| shadow_x_mask
;
2192 spte
|= shadow_accessed_mask
;
2194 mmu_spte_set(sptep
, spte
);
2197 static void validate_direct_spte(struct kvm_vcpu
*vcpu
, u64
*sptep
,
2198 unsigned direct_access
)
2200 if (is_shadow_present_pte(*sptep
) && !is_large_pte(*sptep
)) {
2201 struct kvm_mmu_page
*child
;
2204 * For the direct sp, if the guest pte's dirty bit
2205 * changed form clean to dirty, it will corrupt the
2206 * sp's access: allow writable in the read-only sp,
2207 * so we should update the spte at this point to get
2208 * a new sp with the correct access.
2210 child
= page_header(*sptep
& PT64_BASE_ADDR_MASK
);
2211 if (child
->role
.access
== direct_access
)
2214 drop_parent_pte(child
, sptep
);
2215 kvm_flush_remote_tlbs(vcpu
->kvm
);
2219 static bool mmu_page_zap_pte(struct kvm
*kvm
, struct kvm_mmu_page
*sp
,
2223 struct kvm_mmu_page
*child
;
2226 if (is_shadow_present_pte(pte
)) {
2227 if (is_last_spte(pte
, sp
->role
.level
)) {
2228 drop_spte(kvm
, spte
);
2229 if (is_large_pte(pte
))
2232 child
= page_header(pte
& PT64_BASE_ADDR_MASK
);
2233 drop_parent_pte(child
, spte
);
2238 if (is_mmio_spte(pte
))
2239 mmu_spte_clear_no_track(spte
);
2244 static void kvm_mmu_page_unlink_children(struct kvm
*kvm
,
2245 struct kvm_mmu_page
*sp
)
2249 for (i
= 0; i
< PT64_ENT_PER_PAGE
; ++i
)
2250 mmu_page_zap_pte(kvm
, sp
, sp
->spt
+ i
);
2253 static void kvm_mmu_put_page(struct kvm_mmu_page
*sp
, u64
*parent_pte
)
2255 mmu_page_remove_parent_pte(sp
, parent_pte
);
2258 static void kvm_mmu_unlink_parents(struct kvm
*kvm
, struct kvm_mmu_page
*sp
)
2261 struct rmap_iterator iter
;
2263 while ((sptep
= rmap_get_first(sp
->parent_ptes
, &iter
)))
2264 drop_parent_pte(sp
, sptep
);
2267 static int mmu_zap_unsync_children(struct kvm
*kvm
,
2268 struct kvm_mmu_page
*parent
,
2269 struct list_head
*invalid_list
)
2272 struct mmu_page_path parents
;
2273 struct kvm_mmu_pages pages
;
2275 if (parent
->role
.level
== PT_PAGE_TABLE_LEVEL
)
2278 kvm_mmu_pages_init(parent
, &parents
, &pages
);
2279 while (mmu_unsync_walk(parent
, &pages
)) {
2280 struct kvm_mmu_page
*sp
;
2282 for_each_sp(pages
, sp
, parents
, i
) {
2283 kvm_mmu_prepare_zap_page(kvm
, sp
, invalid_list
);
2284 mmu_pages_clear_parents(&parents
);
2287 kvm_mmu_pages_init(parent
, &parents
, &pages
);
2293 static int kvm_mmu_prepare_zap_page(struct kvm
*kvm
, struct kvm_mmu_page
*sp
,
2294 struct list_head
*invalid_list
)
2298 trace_kvm_mmu_prepare_zap_page(sp
);
2299 ++kvm
->stat
.mmu_shadow_zapped
;
2300 ret
= mmu_zap_unsync_children(kvm
, sp
, invalid_list
);
2301 kvm_mmu_page_unlink_children(kvm
, sp
);
2302 kvm_mmu_unlink_parents(kvm
, sp
);
2304 if (!sp
->role
.invalid
&& !sp
->role
.direct
)
2305 unaccount_shadowed(kvm
, sp
);
2308 kvm_unlink_unsync_page(kvm
, sp
);
2309 if (!sp
->root_count
) {
2312 list_move(&sp
->link
, invalid_list
);
2313 kvm_mod_used_mmu_pages(kvm
, -1);
2315 list_move(&sp
->link
, &kvm
->arch
.active_mmu_pages
);
2318 * The obsolete pages can not be used on any vcpus.
2319 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2321 if (!sp
->role
.invalid
&& !is_obsolete_sp(kvm
, sp
))
2322 kvm_reload_remote_mmus(kvm
);
2325 sp
->role
.invalid
= 1;
2329 static void kvm_mmu_commit_zap_page(struct kvm
*kvm
,
2330 struct list_head
*invalid_list
)
2332 struct kvm_mmu_page
*sp
, *nsp
;
2334 if (list_empty(invalid_list
))
2338 * wmb: make sure everyone sees our modifications to the page tables
2339 * rmb: make sure we see changes to vcpu->mode
2344 * Wait for all vcpus to exit guest mode and/or lockless shadow
2347 kvm_flush_remote_tlbs(kvm
);
2349 list_for_each_entry_safe(sp
, nsp
, invalid_list
, link
) {
2350 WARN_ON(!sp
->role
.invalid
|| sp
->root_count
);
2351 kvm_mmu_free_page(sp
);
2355 static bool prepare_zap_oldest_mmu_page(struct kvm
*kvm
,
2356 struct list_head
*invalid_list
)
2358 struct kvm_mmu_page
*sp
;
2360 if (list_empty(&kvm
->arch
.active_mmu_pages
))
2363 sp
= list_entry(kvm
->arch
.active_mmu_pages
.prev
,
2364 struct kvm_mmu_page
, link
);
2365 kvm_mmu_prepare_zap_page(kvm
, sp
, invalid_list
);
2371 * Changing the number of mmu pages allocated to the vm
2372 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2374 void kvm_mmu_change_mmu_pages(struct kvm
*kvm
, unsigned int goal_nr_mmu_pages
)
2376 LIST_HEAD(invalid_list
);
2378 spin_lock(&kvm
->mmu_lock
);
2380 if (kvm
->arch
.n_used_mmu_pages
> goal_nr_mmu_pages
) {
2381 /* Need to free some mmu pages to achieve the goal. */
2382 while (kvm
->arch
.n_used_mmu_pages
> goal_nr_mmu_pages
)
2383 if (!prepare_zap_oldest_mmu_page(kvm
, &invalid_list
))
2386 kvm_mmu_commit_zap_page(kvm
, &invalid_list
);
2387 goal_nr_mmu_pages
= kvm
->arch
.n_used_mmu_pages
;
2390 kvm
->arch
.n_max_mmu_pages
= goal_nr_mmu_pages
;
2392 spin_unlock(&kvm
->mmu_lock
);
2395 int kvm_mmu_unprotect_page(struct kvm
*kvm
, gfn_t gfn
)
2397 struct kvm_mmu_page
*sp
;
2398 LIST_HEAD(invalid_list
);
2401 pgprintk("%s: looking for gfn %llx\n", __func__
, gfn
);
2403 spin_lock(&kvm
->mmu_lock
);
2404 for_each_gfn_indirect_valid_sp(kvm
, sp
, gfn
) {
2405 pgprintk("%s: gfn %llx role %x\n", __func__
, gfn
,
2408 kvm_mmu_prepare_zap_page(kvm
, sp
, &invalid_list
);
2410 kvm_mmu_commit_zap_page(kvm
, &invalid_list
);
2411 spin_unlock(&kvm
->mmu_lock
);
2415 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page
);
2417 static void __kvm_unsync_page(struct kvm_vcpu
*vcpu
, struct kvm_mmu_page
*sp
)
2419 trace_kvm_mmu_unsync_page(sp
);
2420 ++vcpu
->kvm
->stat
.mmu_unsync
;
2423 kvm_mmu_mark_parents_unsync(sp
);
2426 static void kvm_unsync_pages(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
2428 struct kvm_mmu_page
*s
;
2430 for_each_gfn_indirect_valid_sp(vcpu
->kvm
, s
, gfn
) {
2433 WARN_ON(s
->role
.level
!= PT_PAGE_TABLE_LEVEL
);
2434 __kvm_unsync_page(vcpu
, s
);
2438 static int mmu_need_write_protect(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
2441 struct kvm_mmu_page
*s
;
2442 bool need_unsync
= false;
2444 for_each_gfn_indirect_valid_sp(vcpu
->kvm
, s
, gfn
) {
2448 if (s
->role
.level
!= PT_PAGE_TABLE_LEVEL
)
2455 kvm_unsync_pages(vcpu
, gfn
);
2459 static bool kvm_is_mmio_pfn(pfn_t pfn
)
2462 return !is_zero_pfn(pfn
) && PageReserved(pfn_to_page(pfn
));
2467 static int set_spte(struct kvm_vcpu
*vcpu
, u64
*sptep
,
2468 unsigned pte_access
, int level
,
2469 gfn_t gfn
, pfn_t pfn
, bool speculative
,
2470 bool can_unsync
, bool host_writable
)
2475 if (set_mmio_spte(vcpu
, sptep
, gfn
, pfn
, pte_access
))
2478 spte
= PT_PRESENT_MASK
;
2480 spte
|= shadow_accessed_mask
;
2482 if (pte_access
& ACC_EXEC_MASK
)
2483 spte
|= shadow_x_mask
;
2485 spte
|= shadow_nx_mask
;
2487 if (pte_access
& ACC_USER_MASK
)
2488 spte
|= shadow_user_mask
;
2490 if (level
> PT_PAGE_TABLE_LEVEL
)
2491 spte
|= PT_PAGE_SIZE_MASK
;
2493 spte
|= kvm_x86_ops
->get_mt_mask(vcpu
, gfn
,
2494 kvm_is_mmio_pfn(pfn
));
2497 spte
|= SPTE_HOST_WRITEABLE
;
2499 pte_access
&= ~ACC_WRITE_MASK
;
2501 spte
|= (u64
)pfn
<< PAGE_SHIFT
;
2503 if (pte_access
& ACC_WRITE_MASK
) {
2506 * Other vcpu creates new sp in the window between
2507 * mapping_level() and acquiring mmu-lock. We can
2508 * allow guest to retry the access, the mapping can
2509 * be fixed if guest refault.
2511 if (level
> PT_PAGE_TABLE_LEVEL
&&
2512 has_wrprotected_page(vcpu
, gfn
, level
))
2515 spte
|= PT_WRITABLE_MASK
| SPTE_MMU_WRITEABLE
;
2518 * Optimization: for pte sync, if spte was writable the hash
2519 * lookup is unnecessary (and expensive). Write protection
2520 * is responsibility of mmu_get_page / kvm_sync_page.
2521 * Same reasoning can be applied to dirty page accounting.
2523 if (!can_unsync
&& is_writable_pte(*sptep
))
2526 if (mmu_need_write_protect(vcpu
, gfn
, can_unsync
)) {
2527 pgprintk("%s: found shadow page for %llx, marking ro\n",
2530 pte_access
&= ~ACC_WRITE_MASK
;
2531 spte
&= ~(PT_WRITABLE_MASK
| SPTE_MMU_WRITEABLE
);
2535 if (pte_access
& ACC_WRITE_MASK
) {
2536 kvm_vcpu_mark_page_dirty(vcpu
, gfn
);
2537 spte
|= shadow_dirty_mask
;
2541 if (mmu_spte_update(sptep
, spte
))
2542 kvm_flush_remote_tlbs(vcpu
->kvm
);
2547 static void mmu_set_spte(struct kvm_vcpu
*vcpu
, u64
*sptep
,
2548 unsigned pte_access
, int write_fault
, int *emulate
,
2549 int level
, gfn_t gfn
, pfn_t pfn
, bool speculative
,
2552 int was_rmapped
= 0;
2555 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__
,
2556 *sptep
, write_fault
, gfn
);
2558 if (is_rmap_spte(*sptep
)) {
2560 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2561 * the parent of the now unreachable PTE.
2563 if (level
> PT_PAGE_TABLE_LEVEL
&&
2564 !is_large_pte(*sptep
)) {
2565 struct kvm_mmu_page
*child
;
2568 child
= page_header(pte
& PT64_BASE_ADDR_MASK
);
2569 drop_parent_pte(child
, sptep
);
2570 kvm_flush_remote_tlbs(vcpu
->kvm
);
2571 } else if (pfn
!= spte_to_pfn(*sptep
)) {
2572 pgprintk("hfn old %llx new %llx\n",
2573 spte_to_pfn(*sptep
), pfn
);
2574 drop_spte(vcpu
->kvm
, sptep
);
2575 kvm_flush_remote_tlbs(vcpu
->kvm
);
2580 if (set_spte(vcpu
, sptep
, pte_access
, level
, gfn
, pfn
, speculative
,
2581 true, host_writable
)) {
2584 kvm_make_request(KVM_REQ_TLB_FLUSH
, vcpu
);
2587 if (unlikely(is_mmio_spte(*sptep
) && emulate
))
2590 pgprintk("%s: setting spte %llx\n", __func__
, *sptep
);
2591 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2592 is_large_pte(*sptep
)? "2MB" : "4kB",
2593 *sptep
& PT_PRESENT_MASK
?"RW":"R", gfn
,
2595 if (!was_rmapped
&& is_large_pte(*sptep
))
2596 ++vcpu
->kvm
->stat
.lpages
;
2598 if (is_shadow_present_pte(*sptep
)) {
2600 rmap_count
= rmap_add(vcpu
, sptep
, gfn
);
2601 if (rmap_count
> RMAP_RECYCLE_THRESHOLD
)
2602 rmap_recycle(vcpu
, sptep
, gfn
);
2606 kvm_release_pfn_clean(pfn
);
2609 static pfn_t
pte_prefetch_gfn_to_pfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
2612 struct kvm_memory_slot
*slot
;
2614 slot
= gfn_to_memslot_dirty_bitmap(vcpu
, gfn
, no_dirty_log
);
2616 return KVM_PFN_ERR_FAULT
;
2618 return gfn_to_pfn_memslot_atomic(slot
, gfn
);
2621 static int direct_pte_prefetch_many(struct kvm_vcpu
*vcpu
,
2622 struct kvm_mmu_page
*sp
,
2623 u64
*start
, u64
*end
)
2625 struct page
*pages
[PTE_PREFETCH_NUM
];
2626 struct kvm_memory_slot
*slot
;
2627 unsigned access
= sp
->role
.access
;
2631 gfn
= kvm_mmu_page_get_gfn(sp
, start
- sp
->spt
);
2632 slot
= gfn_to_memslot_dirty_bitmap(vcpu
, gfn
, access
& ACC_WRITE_MASK
);
2636 ret
= gfn_to_page_many_atomic(slot
, gfn
, pages
, end
- start
);
2640 for (i
= 0; i
< ret
; i
++, gfn
++, start
++)
2641 mmu_set_spte(vcpu
, start
, access
, 0, NULL
,
2642 sp
->role
.level
, gfn
, page_to_pfn(pages
[i
]),
2648 static void __direct_pte_prefetch(struct kvm_vcpu
*vcpu
,
2649 struct kvm_mmu_page
*sp
, u64
*sptep
)
2651 u64
*spte
, *start
= NULL
;
2654 WARN_ON(!sp
->role
.direct
);
2656 i
= (sptep
- sp
->spt
) & ~(PTE_PREFETCH_NUM
- 1);
2659 for (i
= 0; i
< PTE_PREFETCH_NUM
; i
++, spte
++) {
2660 if (is_shadow_present_pte(*spte
) || spte
== sptep
) {
2663 if (direct_pte_prefetch_many(vcpu
, sp
, start
, spte
) < 0)
2671 static void direct_pte_prefetch(struct kvm_vcpu
*vcpu
, u64
*sptep
)
2673 struct kvm_mmu_page
*sp
;
2676 * Since it's no accessed bit on EPT, it's no way to
2677 * distinguish between actually accessed translations
2678 * and prefetched, so disable pte prefetch if EPT is
2681 if (!shadow_accessed_mask
)
2684 sp
= page_header(__pa(sptep
));
2685 if (sp
->role
.level
> PT_PAGE_TABLE_LEVEL
)
2688 __direct_pte_prefetch(vcpu
, sp
, sptep
);
2691 static int __direct_map(struct kvm_vcpu
*vcpu
, gpa_t v
, int write
,
2692 int map_writable
, int level
, gfn_t gfn
, pfn_t pfn
,
2695 struct kvm_shadow_walk_iterator iterator
;
2696 struct kvm_mmu_page
*sp
;
2700 if (!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
2703 for_each_shadow_entry(vcpu
, (u64
)gfn
<< PAGE_SHIFT
, iterator
) {
2704 if (iterator
.level
== level
) {
2705 mmu_set_spte(vcpu
, iterator
.sptep
, ACC_ALL
,
2706 write
, &emulate
, level
, gfn
, pfn
,
2707 prefault
, map_writable
);
2708 direct_pte_prefetch(vcpu
, iterator
.sptep
);
2709 ++vcpu
->stat
.pf_fixed
;
2713 drop_large_spte(vcpu
, iterator
.sptep
);
2714 if (!is_shadow_present_pte(*iterator
.sptep
)) {
2715 u64 base_addr
= iterator
.addr
;
2717 base_addr
&= PT64_LVL_ADDR_MASK(iterator
.level
);
2718 pseudo_gfn
= base_addr
>> PAGE_SHIFT
;
2719 sp
= kvm_mmu_get_page(vcpu
, pseudo_gfn
, iterator
.addr
,
2721 1, ACC_ALL
, iterator
.sptep
);
2723 link_shadow_page(iterator
.sptep
, sp
, true);
2729 static void kvm_send_hwpoison_signal(unsigned long address
, struct task_struct
*tsk
)
2733 info
.si_signo
= SIGBUS
;
2735 info
.si_code
= BUS_MCEERR_AR
;
2736 info
.si_addr
= (void __user
*)address
;
2737 info
.si_addr_lsb
= PAGE_SHIFT
;
2739 send_sig_info(SIGBUS
, &info
, tsk
);
2742 static int kvm_handle_bad_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
, pfn_t pfn
)
2745 * Do not cache the mmio info caused by writing the readonly gfn
2746 * into the spte otherwise read access on readonly gfn also can
2747 * caused mmio page fault and treat it as mmio access.
2748 * Return 1 to tell kvm to emulate it.
2750 if (pfn
== KVM_PFN_ERR_RO_FAULT
)
2753 if (pfn
== KVM_PFN_ERR_HWPOISON
) {
2754 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu
, gfn
), current
);
2761 static void transparent_hugepage_adjust(struct kvm_vcpu
*vcpu
,
2762 gfn_t
*gfnp
, pfn_t
*pfnp
, int *levelp
)
2766 int level
= *levelp
;
2769 * Check if it's a transparent hugepage. If this would be an
2770 * hugetlbfs page, level wouldn't be set to
2771 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2774 if (!is_error_noslot_pfn(pfn
) && !kvm_is_reserved_pfn(pfn
) &&
2775 level
== PT_PAGE_TABLE_LEVEL
&&
2776 PageTransCompound(pfn_to_page(pfn
)) &&
2777 !has_wrprotected_page(vcpu
, gfn
, PT_DIRECTORY_LEVEL
)) {
2780 * mmu_notifier_retry was successful and we hold the
2781 * mmu_lock here, so the pmd can't become splitting
2782 * from under us, and in turn
2783 * __split_huge_page_refcount() can't run from under
2784 * us and we can safely transfer the refcount from
2785 * PG_tail to PG_head as we switch the pfn to tail to
2788 *levelp
= level
= PT_DIRECTORY_LEVEL
;
2789 mask
= KVM_PAGES_PER_HPAGE(level
) - 1;
2790 VM_BUG_ON((gfn
& mask
) != (pfn
& mask
));
2794 kvm_release_pfn_clean(pfn
);
2802 static bool handle_abnormal_pfn(struct kvm_vcpu
*vcpu
, gva_t gva
, gfn_t gfn
,
2803 pfn_t pfn
, unsigned access
, int *ret_val
)
2807 /* The pfn is invalid, report the error! */
2808 if (unlikely(is_error_pfn(pfn
))) {
2809 *ret_val
= kvm_handle_bad_page(vcpu
, gfn
, pfn
);
2813 if (unlikely(is_noslot_pfn(pfn
)))
2814 vcpu_cache_mmio_info(vcpu
, gva
, gfn
, access
);
2821 static bool page_fault_can_be_fast(u32 error_code
)
2824 * Do not fix the mmio spte with invalid generation number which
2825 * need to be updated by slow page fault path.
2827 if (unlikely(error_code
& PFERR_RSVD_MASK
))
2831 * #PF can be fast only if the shadow page table is present and it
2832 * is caused by write-protect, that means we just need change the
2833 * W bit of the spte which can be done out of mmu-lock.
2835 if (!(error_code
& PFERR_PRESENT_MASK
) ||
2836 !(error_code
& PFERR_WRITE_MASK
))
2843 fast_pf_fix_direct_spte(struct kvm_vcpu
*vcpu
, struct kvm_mmu_page
*sp
,
2844 u64
*sptep
, u64 spte
)
2848 WARN_ON(!sp
->role
.direct
);
2851 * The gfn of direct spte is stable since it is calculated
2854 gfn
= kvm_mmu_page_get_gfn(sp
, sptep
- sp
->spt
);
2857 * Theoretically we could also set dirty bit (and flush TLB) here in
2858 * order to eliminate unnecessary PML logging. See comments in
2859 * set_spte. But fast_page_fault is very unlikely to happen with PML
2860 * enabled, so we do not do this. This might result in the same GPA
2861 * to be logged in PML buffer again when the write really happens, and
2862 * eventually to be called by mark_page_dirty twice. But it's also no
2863 * harm. This also avoids the TLB flush needed after setting dirty bit
2864 * so non-PML cases won't be impacted.
2866 * Compare with set_spte where instead shadow_dirty_mask is set.
2868 if (cmpxchg64(sptep
, spte
, spte
| PT_WRITABLE_MASK
) == spte
)
2869 kvm_vcpu_mark_page_dirty(vcpu
, gfn
);
2876 * - true: let the vcpu to access on the same address again.
2877 * - false: let the real page fault path to fix it.
2879 static bool fast_page_fault(struct kvm_vcpu
*vcpu
, gva_t gva
, int level
,
2882 struct kvm_shadow_walk_iterator iterator
;
2883 struct kvm_mmu_page
*sp
;
2887 if (!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
2890 if (!page_fault_can_be_fast(error_code
))
2893 walk_shadow_page_lockless_begin(vcpu
);
2894 for_each_shadow_entry_lockless(vcpu
, gva
, iterator
, spte
)
2895 if (!is_shadow_present_pte(spte
) || iterator
.level
< level
)
2899 * If the mapping has been changed, let the vcpu fault on the
2900 * same address again.
2902 if (!is_rmap_spte(spte
)) {
2907 sp
= page_header(__pa(iterator
.sptep
));
2908 if (!is_last_spte(spte
, sp
->role
.level
))
2912 * Check if it is a spurious fault caused by TLB lazily flushed.
2914 * Need not check the access of upper level table entries since
2915 * they are always ACC_ALL.
2917 if (is_writable_pte(spte
)) {
2923 * Currently, to simplify the code, only the spte write-protected
2924 * by dirty-log can be fast fixed.
2926 if (!spte_is_locklessly_modifiable(spte
))
2930 * Do not fix write-permission on the large spte since we only dirty
2931 * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
2932 * that means other pages are missed if its slot is dirty-logged.
2934 * Instead, we let the slow page fault path create a normal spte to
2937 * See the comments in kvm_arch_commit_memory_region().
2939 if (sp
->role
.level
> PT_PAGE_TABLE_LEVEL
)
2943 * Currently, fast page fault only works for direct mapping since
2944 * the gfn is not stable for indirect shadow page.
2945 * See Documentation/virtual/kvm/locking.txt to get more detail.
2947 ret
= fast_pf_fix_direct_spte(vcpu
, sp
, iterator
.sptep
, spte
);
2949 trace_fast_page_fault(vcpu
, gva
, error_code
, iterator
.sptep
,
2951 walk_shadow_page_lockless_end(vcpu
);
2956 static bool try_async_pf(struct kvm_vcpu
*vcpu
, bool prefault
, gfn_t gfn
,
2957 gva_t gva
, pfn_t
*pfn
, bool write
, bool *writable
);
2958 static void make_mmu_pages_available(struct kvm_vcpu
*vcpu
);
2960 static int nonpaging_map(struct kvm_vcpu
*vcpu
, gva_t v
, u32 error_code
,
2961 gfn_t gfn
, bool prefault
)
2967 unsigned long mmu_seq
;
2968 bool map_writable
, write
= error_code
& PFERR_WRITE_MASK
;
2970 force_pt_level
= mapping_level_dirty_bitmap(vcpu
, gfn
);
2971 if (likely(!force_pt_level
)) {
2972 level
= mapping_level(vcpu
, gfn
);
2974 * This path builds a PAE pagetable - so we can map
2975 * 2mb pages at maximum. Therefore check if the level
2976 * is larger than that.
2978 if (level
> PT_DIRECTORY_LEVEL
)
2979 level
= PT_DIRECTORY_LEVEL
;
2981 gfn
&= ~(KVM_PAGES_PER_HPAGE(level
) - 1);
2983 level
= PT_PAGE_TABLE_LEVEL
;
2985 if (fast_page_fault(vcpu
, v
, level
, error_code
))
2988 mmu_seq
= vcpu
->kvm
->mmu_notifier_seq
;
2991 if (try_async_pf(vcpu
, prefault
, gfn
, v
, &pfn
, write
, &map_writable
))
2994 if (handle_abnormal_pfn(vcpu
, v
, gfn
, pfn
, ACC_ALL
, &r
))
2997 spin_lock(&vcpu
->kvm
->mmu_lock
);
2998 if (mmu_notifier_retry(vcpu
->kvm
, mmu_seq
))
3000 make_mmu_pages_available(vcpu
);
3001 if (likely(!force_pt_level
))
3002 transparent_hugepage_adjust(vcpu
, &gfn
, &pfn
, &level
);
3003 r
= __direct_map(vcpu
, v
, write
, map_writable
, level
, gfn
, pfn
,
3005 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3011 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3012 kvm_release_pfn_clean(pfn
);
3017 static void mmu_free_roots(struct kvm_vcpu
*vcpu
)
3020 struct kvm_mmu_page
*sp
;
3021 LIST_HEAD(invalid_list
);
3023 if (!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
3026 if (vcpu
->arch
.mmu
.shadow_root_level
== PT64_ROOT_LEVEL
&&
3027 (vcpu
->arch
.mmu
.root_level
== PT64_ROOT_LEVEL
||
3028 vcpu
->arch
.mmu
.direct_map
)) {
3029 hpa_t root
= vcpu
->arch
.mmu
.root_hpa
;
3031 spin_lock(&vcpu
->kvm
->mmu_lock
);
3032 sp
= page_header(root
);
3034 if (!sp
->root_count
&& sp
->role
.invalid
) {
3035 kvm_mmu_prepare_zap_page(vcpu
->kvm
, sp
, &invalid_list
);
3036 kvm_mmu_commit_zap_page(vcpu
->kvm
, &invalid_list
);
3038 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3039 vcpu
->arch
.mmu
.root_hpa
= INVALID_PAGE
;
3043 spin_lock(&vcpu
->kvm
->mmu_lock
);
3044 for (i
= 0; i
< 4; ++i
) {
3045 hpa_t root
= vcpu
->arch
.mmu
.pae_root
[i
];
3048 root
&= PT64_BASE_ADDR_MASK
;
3049 sp
= page_header(root
);
3051 if (!sp
->root_count
&& sp
->role
.invalid
)
3052 kvm_mmu_prepare_zap_page(vcpu
->kvm
, sp
,
3055 vcpu
->arch
.mmu
.pae_root
[i
] = INVALID_PAGE
;
3057 kvm_mmu_commit_zap_page(vcpu
->kvm
, &invalid_list
);
3058 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3059 vcpu
->arch
.mmu
.root_hpa
= INVALID_PAGE
;
3062 static int mmu_check_root(struct kvm_vcpu
*vcpu
, gfn_t root_gfn
)
3066 if (!kvm_is_visible_gfn(vcpu
->kvm
, root_gfn
)) {
3067 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
3074 static int mmu_alloc_direct_roots(struct kvm_vcpu
*vcpu
)
3076 struct kvm_mmu_page
*sp
;
3079 if (vcpu
->arch
.mmu
.shadow_root_level
== PT64_ROOT_LEVEL
) {
3080 spin_lock(&vcpu
->kvm
->mmu_lock
);
3081 make_mmu_pages_available(vcpu
);
3082 sp
= kvm_mmu_get_page(vcpu
, 0, 0, PT64_ROOT_LEVEL
,
3085 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3086 vcpu
->arch
.mmu
.root_hpa
= __pa(sp
->spt
);
3087 } else if (vcpu
->arch
.mmu
.shadow_root_level
== PT32E_ROOT_LEVEL
) {
3088 for (i
= 0; i
< 4; ++i
) {
3089 hpa_t root
= vcpu
->arch
.mmu
.pae_root
[i
];
3091 MMU_WARN_ON(VALID_PAGE(root
));
3092 spin_lock(&vcpu
->kvm
->mmu_lock
);
3093 make_mmu_pages_available(vcpu
);
3094 sp
= kvm_mmu_get_page(vcpu
, i
<< (30 - PAGE_SHIFT
),
3096 PT32_ROOT_LEVEL
, 1, ACC_ALL
,
3098 root
= __pa(sp
->spt
);
3100 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3101 vcpu
->arch
.mmu
.pae_root
[i
] = root
| PT_PRESENT_MASK
;
3103 vcpu
->arch
.mmu
.root_hpa
= __pa(vcpu
->arch
.mmu
.pae_root
);
3110 static int mmu_alloc_shadow_roots(struct kvm_vcpu
*vcpu
)
3112 struct kvm_mmu_page
*sp
;
3117 root_gfn
= vcpu
->arch
.mmu
.get_cr3(vcpu
) >> PAGE_SHIFT
;
3119 if (mmu_check_root(vcpu
, root_gfn
))
3123 * Do we shadow a long mode page table? If so we need to
3124 * write-protect the guests page table root.
3126 if (vcpu
->arch
.mmu
.root_level
== PT64_ROOT_LEVEL
) {
3127 hpa_t root
= vcpu
->arch
.mmu
.root_hpa
;
3129 MMU_WARN_ON(VALID_PAGE(root
));
3131 spin_lock(&vcpu
->kvm
->mmu_lock
);
3132 make_mmu_pages_available(vcpu
);
3133 sp
= kvm_mmu_get_page(vcpu
, root_gfn
, 0, PT64_ROOT_LEVEL
,
3135 root
= __pa(sp
->spt
);
3137 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3138 vcpu
->arch
.mmu
.root_hpa
= root
;
3143 * We shadow a 32 bit page table. This may be a legacy 2-level
3144 * or a PAE 3-level page table. In either case we need to be aware that
3145 * the shadow page table may be a PAE or a long mode page table.
3147 pm_mask
= PT_PRESENT_MASK
;
3148 if (vcpu
->arch
.mmu
.shadow_root_level
== PT64_ROOT_LEVEL
)
3149 pm_mask
|= PT_ACCESSED_MASK
| PT_WRITABLE_MASK
| PT_USER_MASK
;
3151 for (i
= 0; i
< 4; ++i
) {
3152 hpa_t root
= vcpu
->arch
.mmu
.pae_root
[i
];
3154 MMU_WARN_ON(VALID_PAGE(root
));
3155 if (vcpu
->arch
.mmu
.root_level
== PT32E_ROOT_LEVEL
) {
3156 pdptr
= vcpu
->arch
.mmu
.get_pdptr(vcpu
, i
);
3157 if (!is_present_gpte(pdptr
)) {
3158 vcpu
->arch
.mmu
.pae_root
[i
] = 0;
3161 root_gfn
= pdptr
>> PAGE_SHIFT
;
3162 if (mmu_check_root(vcpu
, root_gfn
))
3165 spin_lock(&vcpu
->kvm
->mmu_lock
);
3166 make_mmu_pages_available(vcpu
);
3167 sp
= kvm_mmu_get_page(vcpu
, root_gfn
, i
<< 30,
3170 root
= __pa(sp
->spt
);
3172 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3174 vcpu
->arch
.mmu
.pae_root
[i
] = root
| pm_mask
;
3176 vcpu
->arch
.mmu
.root_hpa
= __pa(vcpu
->arch
.mmu
.pae_root
);
3179 * If we shadow a 32 bit page table with a long mode page
3180 * table we enter this path.
3182 if (vcpu
->arch
.mmu
.shadow_root_level
== PT64_ROOT_LEVEL
) {
3183 if (vcpu
->arch
.mmu
.lm_root
== NULL
) {
3185 * The additional page necessary for this is only
3186 * allocated on demand.
3191 lm_root
= (void*)get_zeroed_page(GFP_KERNEL
);
3192 if (lm_root
== NULL
)
3195 lm_root
[0] = __pa(vcpu
->arch
.mmu
.pae_root
) | pm_mask
;
3197 vcpu
->arch
.mmu
.lm_root
= lm_root
;
3200 vcpu
->arch
.mmu
.root_hpa
= __pa(vcpu
->arch
.mmu
.lm_root
);
3206 static int mmu_alloc_roots(struct kvm_vcpu
*vcpu
)
3208 if (vcpu
->arch
.mmu
.direct_map
)
3209 return mmu_alloc_direct_roots(vcpu
);
3211 return mmu_alloc_shadow_roots(vcpu
);
3214 static void mmu_sync_roots(struct kvm_vcpu
*vcpu
)
3217 struct kvm_mmu_page
*sp
;
3219 if (vcpu
->arch
.mmu
.direct_map
)
3222 if (!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
3225 vcpu_clear_mmio_info(vcpu
, MMIO_GVA_ANY
);
3226 kvm_mmu_audit(vcpu
, AUDIT_PRE_SYNC
);
3227 if (vcpu
->arch
.mmu
.root_level
== PT64_ROOT_LEVEL
) {
3228 hpa_t root
= vcpu
->arch
.mmu
.root_hpa
;
3229 sp
= page_header(root
);
3230 mmu_sync_children(vcpu
, sp
);
3231 kvm_mmu_audit(vcpu
, AUDIT_POST_SYNC
);
3234 for (i
= 0; i
< 4; ++i
) {
3235 hpa_t root
= vcpu
->arch
.mmu
.pae_root
[i
];
3237 if (root
&& VALID_PAGE(root
)) {
3238 root
&= PT64_BASE_ADDR_MASK
;
3239 sp
= page_header(root
);
3240 mmu_sync_children(vcpu
, sp
);
3243 kvm_mmu_audit(vcpu
, AUDIT_POST_SYNC
);
3246 void kvm_mmu_sync_roots(struct kvm_vcpu
*vcpu
)
3248 spin_lock(&vcpu
->kvm
->mmu_lock
);
3249 mmu_sync_roots(vcpu
);
3250 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3252 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots
);
3254 static gpa_t
nonpaging_gva_to_gpa(struct kvm_vcpu
*vcpu
, gva_t vaddr
,
3255 u32 access
, struct x86_exception
*exception
)
3258 exception
->error_code
= 0;
3262 static gpa_t
nonpaging_gva_to_gpa_nested(struct kvm_vcpu
*vcpu
, gva_t vaddr
,
3264 struct x86_exception
*exception
)
3267 exception
->error_code
= 0;
3268 return vcpu
->arch
.nested_mmu
.translate_gpa(vcpu
, vaddr
, access
, exception
);
3271 static bool quickly_check_mmio_pf(struct kvm_vcpu
*vcpu
, u64 addr
, bool direct
)
3274 return vcpu_match_mmio_gpa(vcpu
, addr
);
3276 return vcpu_match_mmio_gva(vcpu
, addr
);
3279 static u64
walk_shadow_page_get_mmio_spte(struct kvm_vcpu
*vcpu
, u64 addr
)
3281 struct kvm_shadow_walk_iterator iterator
;
3284 if (!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
3287 walk_shadow_page_lockless_begin(vcpu
);
3288 for_each_shadow_entry_lockless(vcpu
, addr
, iterator
, spte
)
3289 if (!is_shadow_present_pte(spte
))
3291 walk_shadow_page_lockless_end(vcpu
);
3296 int handle_mmio_page_fault_common(struct kvm_vcpu
*vcpu
, u64 addr
, bool direct
)
3300 if (quickly_check_mmio_pf(vcpu
, addr
, direct
))
3301 return RET_MMIO_PF_EMULATE
;
3303 spte
= walk_shadow_page_get_mmio_spte(vcpu
, addr
);
3305 if (is_mmio_spte(spte
)) {
3306 gfn_t gfn
= get_mmio_spte_gfn(spte
);
3307 unsigned access
= get_mmio_spte_access(spte
);
3309 if (!check_mmio_spte(vcpu
, spte
))
3310 return RET_MMIO_PF_INVALID
;
3315 trace_handle_mmio_page_fault(addr
, gfn
, access
);
3316 vcpu_cache_mmio_info(vcpu
, addr
, gfn
, access
);
3317 return RET_MMIO_PF_EMULATE
;
3321 * If the page table is zapped by other cpus, let CPU fault again on
3324 return RET_MMIO_PF_RETRY
;
3326 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common
);
3328 static int handle_mmio_page_fault(struct kvm_vcpu
*vcpu
, u64 addr
,
3329 u32 error_code
, bool direct
)
3333 ret
= handle_mmio_page_fault_common(vcpu
, addr
, direct
);
3334 WARN_ON(ret
== RET_MMIO_PF_BUG
);
3338 static int nonpaging_page_fault(struct kvm_vcpu
*vcpu
, gva_t gva
,
3339 u32 error_code
, bool prefault
)
3344 pgprintk("%s: gva %lx error %x\n", __func__
, gva
, error_code
);
3346 if (unlikely(error_code
& PFERR_RSVD_MASK
)) {
3347 r
= handle_mmio_page_fault(vcpu
, gva
, error_code
, true);
3349 if (likely(r
!= RET_MMIO_PF_INVALID
))
3353 r
= mmu_topup_memory_caches(vcpu
);
3357 MMU_WARN_ON(!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
));
3359 gfn
= gva
>> PAGE_SHIFT
;
3361 return nonpaging_map(vcpu
, gva
& PAGE_MASK
,
3362 error_code
, gfn
, prefault
);
3365 static int kvm_arch_setup_async_pf(struct kvm_vcpu
*vcpu
, gva_t gva
, gfn_t gfn
)
3367 struct kvm_arch_async_pf arch
;
3369 arch
.token
= (vcpu
->arch
.apf
.id
++ << 12) | vcpu
->vcpu_id
;
3371 arch
.direct_map
= vcpu
->arch
.mmu
.direct_map
;
3372 arch
.cr3
= vcpu
->arch
.mmu
.get_cr3(vcpu
);
3374 return kvm_setup_async_pf(vcpu
, gva
, kvm_vcpu_gfn_to_hva(vcpu
, gfn
), &arch
);
3377 static bool can_do_async_pf(struct kvm_vcpu
*vcpu
)
3379 if (unlikely(!irqchip_in_kernel(vcpu
->kvm
) ||
3380 kvm_event_needs_reinjection(vcpu
)))
3383 return kvm_x86_ops
->interrupt_allowed(vcpu
);
3386 static bool try_async_pf(struct kvm_vcpu
*vcpu
, bool prefault
, gfn_t gfn
,
3387 gva_t gva
, pfn_t
*pfn
, bool write
, bool *writable
)
3389 struct kvm_memory_slot
*slot
;
3392 slot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
3394 *pfn
= __gfn_to_pfn_memslot(slot
, gfn
, false, &async
, write
, writable
);
3396 return false; /* *pfn has correct page already */
3398 if (!prefault
&& can_do_async_pf(vcpu
)) {
3399 trace_kvm_try_async_get_page(gva
, gfn
);
3400 if (kvm_find_async_pf_gfn(vcpu
, gfn
)) {
3401 trace_kvm_async_pf_doublefault(gva
, gfn
);
3402 kvm_make_request(KVM_REQ_APF_HALT
, vcpu
);
3404 } else if (kvm_arch_setup_async_pf(vcpu
, gva
, gfn
))
3408 *pfn
= __gfn_to_pfn_memslot(slot
, gfn
, false, NULL
, write
, writable
);
3413 check_hugepage_cache_consistency(struct kvm_vcpu
*vcpu
, gfn_t gfn
, int level
)
3415 int page_num
= KVM_PAGES_PER_HPAGE(level
);
3417 gfn
&= ~(page_num
- 1);
3419 return kvm_mtrr_check_gfn_range_consistency(vcpu
, gfn
, page_num
);
3422 static int tdp_page_fault(struct kvm_vcpu
*vcpu
, gva_t gpa
, u32 error_code
,
3429 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
3430 unsigned long mmu_seq
;
3431 int write
= error_code
& PFERR_WRITE_MASK
;
3434 MMU_WARN_ON(!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
));
3436 if (unlikely(error_code
& PFERR_RSVD_MASK
)) {
3437 r
= handle_mmio_page_fault(vcpu
, gpa
, error_code
, true);
3439 if (likely(r
!= RET_MMIO_PF_INVALID
))
3443 r
= mmu_topup_memory_caches(vcpu
);
3447 if (mapping_level_dirty_bitmap(vcpu
, gfn
) ||
3448 !check_hugepage_cache_consistency(vcpu
, gfn
, PT_DIRECTORY_LEVEL
))
3453 if (likely(!force_pt_level
)) {
3454 level
= mapping_level(vcpu
, gfn
);
3455 if (level
> PT_DIRECTORY_LEVEL
&&
3456 !check_hugepage_cache_consistency(vcpu
, gfn
, level
))
3457 level
= PT_DIRECTORY_LEVEL
;
3458 gfn
&= ~(KVM_PAGES_PER_HPAGE(level
) - 1);
3460 level
= PT_PAGE_TABLE_LEVEL
;
3462 if (fast_page_fault(vcpu
, gpa
, level
, error_code
))
3465 mmu_seq
= vcpu
->kvm
->mmu_notifier_seq
;
3468 if (try_async_pf(vcpu
, prefault
, gfn
, gpa
, &pfn
, write
, &map_writable
))
3471 if (handle_abnormal_pfn(vcpu
, 0, gfn
, pfn
, ACC_ALL
, &r
))
3474 spin_lock(&vcpu
->kvm
->mmu_lock
);
3475 if (mmu_notifier_retry(vcpu
->kvm
, mmu_seq
))
3477 make_mmu_pages_available(vcpu
);
3478 if (likely(!force_pt_level
))
3479 transparent_hugepage_adjust(vcpu
, &gfn
, &pfn
, &level
);
3480 r
= __direct_map(vcpu
, gpa
, write
, map_writable
,
3481 level
, gfn
, pfn
, prefault
);
3482 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3487 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3488 kvm_release_pfn_clean(pfn
);
3492 static void nonpaging_init_context(struct kvm_vcpu
*vcpu
,
3493 struct kvm_mmu
*context
)
3495 context
->page_fault
= nonpaging_page_fault
;
3496 context
->gva_to_gpa
= nonpaging_gva_to_gpa
;
3497 context
->sync_page
= nonpaging_sync_page
;
3498 context
->invlpg
= nonpaging_invlpg
;
3499 context
->update_pte
= nonpaging_update_pte
;
3500 context
->root_level
= 0;
3501 context
->shadow_root_level
= PT32E_ROOT_LEVEL
;
3502 context
->root_hpa
= INVALID_PAGE
;
3503 context
->direct_map
= true;
3504 context
->nx
= false;
3507 void kvm_mmu_new_cr3(struct kvm_vcpu
*vcpu
)
3509 mmu_free_roots(vcpu
);
3512 static unsigned long get_cr3(struct kvm_vcpu
*vcpu
)
3514 return kvm_read_cr3(vcpu
);
3517 static void inject_page_fault(struct kvm_vcpu
*vcpu
,
3518 struct x86_exception
*fault
)
3520 vcpu
->arch
.mmu
.inject_page_fault(vcpu
, fault
);
3523 static bool sync_mmio_spte(struct kvm_vcpu
*vcpu
, u64
*sptep
, gfn_t gfn
,
3524 unsigned access
, int *nr_present
)
3526 if (unlikely(is_mmio_spte(*sptep
))) {
3527 if (gfn
!= get_mmio_spte_gfn(*sptep
)) {
3528 mmu_spte_clear_no_track(sptep
);
3533 mark_mmio_spte(vcpu
, sptep
, gfn
, access
);
3540 static inline bool is_last_gpte(struct kvm_mmu
*mmu
, unsigned level
, unsigned gpte
)
3545 index
|= (gpte
& PT_PAGE_SIZE_MASK
) >> (PT_PAGE_SIZE_SHIFT
- 2);
3546 return mmu
->last_pte_bitmap
& (1 << index
);
3549 #define PTTYPE_EPT 18 /* arbitrary */
3550 #define PTTYPE PTTYPE_EPT
3551 #include "paging_tmpl.h"
3555 #include "paging_tmpl.h"
3559 #include "paging_tmpl.h"
3562 static void reset_rsvds_bits_mask(struct kvm_vcpu
*vcpu
,
3563 struct kvm_mmu
*context
)
3565 int maxphyaddr
= cpuid_maxphyaddr(vcpu
);
3566 u64 exb_bit_rsvd
= 0;
3567 u64 gbpages_bit_rsvd
= 0;
3568 u64 nonleaf_bit8_rsvd
= 0;
3570 context
->bad_mt_xwr
= 0;
3573 exb_bit_rsvd
= rsvd_bits(63, 63);
3574 if (!guest_cpuid_has_gbpages(vcpu
))
3575 gbpages_bit_rsvd
= rsvd_bits(7, 7);
3578 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3579 * leaf entries) on AMD CPUs only.
3581 if (guest_cpuid_is_amd(vcpu
))
3582 nonleaf_bit8_rsvd
= rsvd_bits(8, 8);
3584 switch (context
->root_level
) {
3585 case PT32_ROOT_LEVEL
:
3586 /* no rsvd bits for 2 level 4K page table entries */
3587 context
->rsvd_bits_mask
[0][1] = 0;
3588 context
->rsvd_bits_mask
[0][0] = 0;
3589 context
->rsvd_bits_mask
[1][0] = context
->rsvd_bits_mask
[0][0];
3591 if (!is_pse(vcpu
)) {
3592 context
->rsvd_bits_mask
[1][1] = 0;
3596 if (is_cpuid_PSE36())
3597 /* 36bits PSE 4MB page */
3598 context
->rsvd_bits_mask
[1][1] = rsvd_bits(17, 21);
3600 /* 32 bits PSE 4MB page */
3601 context
->rsvd_bits_mask
[1][1] = rsvd_bits(13, 21);
3603 case PT32E_ROOT_LEVEL
:
3604 context
->rsvd_bits_mask
[0][2] =
3605 rsvd_bits(maxphyaddr
, 63) |
3606 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
3607 context
->rsvd_bits_mask
[0][1] = exb_bit_rsvd
|
3608 rsvd_bits(maxphyaddr
, 62); /* PDE */
3609 context
->rsvd_bits_mask
[0][0] = exb_bit_rsvd
|
3610 rsvd_bits(maxphyaddr
, 62); /* PTE */
3611 context
->rsvd_bits_mask
[1][1] = exb_bit_rsvd
|
3612 rsvd_bits(maxphyaddr
, 62) |
3613 rsvd_bits(13, 20); /* large page */
3614 context
->rsvd_bits_mask
[1][0] = context
->rsvd_bits_mask
[0][0];
3616 case PT64_ROOT_LEVEL
:
3617 context
->rsvd_bits_mask
[0][3] = exb_bit_rsvd
|
3618 nonleaf_bit8_rsvd
| rsvd_bits(7, 7) | rsvd_bits(maxphyaddr
, 51);
3619 context
->rsvd_bits_mask
[0][2] = exb_bit_rsvd
|
3620 nonleaf_bit8_rsvd
| gbpages_bit_rsvd
| rsvd_bits(maxphyaddr
, 51);
3621 context
->rsvd_bits_mask
[0][1] = exb_bit_rsvd
|
3622 rsvd_bits(maxphyaddr
, 51);
3623 context
->rsvd_bits_mask
[0][0] = exb_bit_rsvd
|
3624 rsvd_bits(maxphyaddr
, 51);
3625 context
->rsvd_bits_mask
[1][3] = context
->rsvd_bits_mask
[0][3];
3626 context
->rsvd_bits_mask
[1][2] = exb_bit_rsvd
|
3627 gbpages_bit_rsvd
| rsvd_bits(maxphyaddr
, 51) |
3629 context
->rsvd_bits_mask
[1][1] = exb_bit_rsvd
|
3630 rsvd_bits(maxphyaddr
, 51) |
3631 rsvd_bits(13, 20); /* large page */
3632 context
->rsvd_bits_mask
[1][0] = context
->rsvd_bits_mask
[0][0];
3637 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu
*vcpu
,
3638 struct kvm_mmu
*context
, bool execonly
)
3640 int maxphyaddr
= cpuid_maxphyaddr(vcpu
);
3643 context
->rsvd_bits_mask
[0][3] =
3644 rsvd_bits(maxphyaddr
, 51) | rsvd_bits(3, 7);
3645 context
->rsvd_bits_mask
[0][2] =
3646 rsvd_bits(maxphyaddr
, 51) | rsvd_bits(3, 6);
3647 context
->rsvd_bits_mask
[0][1] =
3648 rsvd_bits(maxphyaddr
, 51) | rsvd_bits(3, 6);
3649 context
->rsvd_bits_mask
[0][0] = rsvd_bits(maxphyaddr
, 51);
3652 context
->rsvd_bits_mask
[1][3] = context
->rsvd_bits_mask
[0][3];
3653 context
->rsvd_bits_mask
[1][2] =
3654 rsvd_bits(maxphyaddr
, 51) | rsvd_bits(12, 29);
3655 context
->rsvd_bits_mask
[1][1] =
3656 rsvd_bits(maxphyaddr
, 51) | rsvd_bits(12, 20);
3657 context
->rsvd_bits_mask
[1][0] = context
->rsvd_bits_mask
[0][0];
3659 for (pte
= 0; pte
< 64; pte
++) {
3660 int rwx_bits
= pte
& 7;
3662 if (mt
== 0x2 || mt
== 0x3 || mt
== 0x7 ||
3663 rwx_bits
== 0x2 || rwx_bits
== 0x6 ||
3664 (rwx_bits
== 0x4 && !execonly
))
3665 context
->bad_mt_xwr
|= (1ull << pte
);
3669 static void update_permission_bitmask(struct kvm_vcpu
*vcpu
,
3670 struct kvm_mmu
*mmu
, bool ept
)
3672 unsigned bit
, byte
, pfec
;
3674 bool fault
, x
, w
, u
, wf
, uf
, ff
, smapf
, cr4_smap
, cr4_smep
, smap
= 0;
3676 cr4_smep
= kvm_read_cr4_bits(vcpu
, X86_CR4_SMEP
);
3677 cr4_smap
= kvm_read_cr4_bits(vcpu
, X86_CR4_SMAP
);
3678 for (byte
= 0; byte
< ARRAY_SIZE(mmu
->permissions
); ++byte
) {
3681 wf
= pfec
& PFERR_WRITE_MASK
;
3682 uf
= pfec
& PFERR_USER_MASK
;
3683 ff
= pfec
& PFERR_FETCH_MASK
;
3685 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3686 * subject to SMAP restrictions, and cleared otherwise. The
3687 * bit is only meaningful if the SMAP bit is set in CR4.
3689 smapf
= !(pfec
& PFERR_RSVD_MASK
);
3690 for (bit
= 0; bit
< 8; ++bit
) {
3691 x
= bit
& ACC_EXEC_MASK
;
3692 w
= bit
& ACC_WRITE_MASK
;
3693 u
= bit
& ACC_USER_MASK
;
3696 /* Not really needed: !nx will cause pte.nx to fault */
3698 /* Allow supervisor writes if !cr0.wp */
3699 w
|= !is_write_protection(vcpu
) && !uf
;
3700 /* Disallow supervisor fetches of user code if cr4.smep */
3701 x
&= !(cr4_smep
&& u
&& !uf
);
3704 * SMAP:kernel-mode data accesses from user-mode
3705 * mappings should fault. A fault is considered
3706 * as a SMAP violation if all of the following
3707 * conditions are ture:
3708 * - X86_CR4_SMAP is set in CR4
3709 * - An user page is accessed
3710 * - Page fault in kernel mode
3711 * - if CPL = 3 or X86_EFLAGS_AC is clear
3713 * Here, we cover the first three conditions.
3714 * The fourth is computed dynamically in
3715 * permission_fault() and is in smapf.
3717 * Also, SMAP does not affect instruction
3718 * fetches, add the !ff check here to make it
3721 smap
= cr4_smap
&& u
&& !uf
&& !ff
;
3723 /* Not really needed: no U/S accesses on ept */
3726 fault
= (ff
&& !x
) || (uf
&& !u
) || (wf
&& !w
) ||
3728 map
|= fault
<< bit
;
3730 mmu
->permissions
[byte
] = map
;
3734 static void update_last_pte_bitmap(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
)
3737 unsigned level
, root_level
= mmu
->root_level
;
3738 const unsigned ps_set_index
= 1 << 2; /* bit 2 of index: ps */
3740 if (root_level
== PT32E_ROOT_LEVEL
)
3742 /* PT_PAGE_TABLE_LEVEL always terminates */
3743 map
= 1 | (1 << ps_set_index
);
3744 for (level
= PT_DIRECTORY_LEVEL
; level
<= root_level
; ++level
) {
3745 if (level
<= PT_PDPE_LEVEL
3746 && (mmu
->root_level
>= PT32E_ROOT_LEVEL
|| is_pse(vcpu
)))
3747 map
|= 1 << (ps_set_index
| (level
- 1));
3749 mmu
->last_pte_bitmap
= map
;
3752 static void paging64_init_context_common(struct kvm_vcpu
*vcpu
,
3753 struct kvm_mmu
*context
,
3756 context
->nx
= is_nx(vcpu
);
3757 context
->root_level
= level
;
3759 reset_rsvds_bits_mask(vcpu
, context
);
3760 update_permission_bitmask(vcpu
, context
, false);
3761 update_last_pte_bitmap(vcpu
, context
);
3763 MMU_WARN_ON(!is_pae(vcpu
));
3764 context
->page_fault
= paging64_page_fault
;
3765 context
->gva_to_gpa
= paging64_gva_to_gpa
;
3766 context
->sync_page
= paging64_sync_page
;
3767 context
->invlpg
= paging64_invlpg
;
3768 context
->update_pte
= paging64_update_pte
;
3769 context
->shadow_root_level
= level
;
3770 context
->root_hpa
= INVALID_PAGE
;
3771 context
->direct_map
= false;
3774 static void paging64_init_context(struct kvm_vcpu
*vcpu
,
3775 struct kvm_mmu
*context
)
3777 paging64_init_context_common(vcpu
, context
, PT64_ROOT_LEVEL
);
3780 static void paging32_init_context(struct kvm_vcpu
*vcpu
,
3781 struct kvm_mmu
*context
)
3783 context
->nx
= false;
3784 context
->root_level
= PT32_ROOT_LEVEL
;
3786 reset_rsvds_bits_mask(vcpu
, context
);
3787 update_permission_bitmask(vcpu
, context
, false);
3788 update_last_pte_bitmap(vcpu
, context
);
3790 context
->page_fault
= paging32_page_fault
;
3791 context
->gva_to_gpa
= paging32_gva_to_gpa
;
3792 context
->sync_page
= paging32_sync_page
;
3793 context
->invlpg
= paging32_invlpg
;
3794 context
->update_pte
= paging32_update_pte
;
3795 context
->shadow_root_level
= PT32E_ROOT_LEVEL
;
3796 context
->root_hpa
= INVALID_PAGE
;
3797 context
->direct_map
= false;
3800 static void paging32E_init_context(struct kvm_vcpu
*vcpu
,
3801 struct kvm_mmu
*context
)
3803 paging64_init_context_common(vcpu
, context
, PT32E_ROOT_LEVEL
);
3806 static void init_kvm_tdp_mmu(struct kvm_vcpu
*vcpu
)
3808 struct kvm_mmu
*context
= &vcpu
->arch
.mmu
;
3810 context
->base_role
.word
= 0;
3811 context
->base_role
.smm
= is_smm(vcpu
);
3812 context
->page_fault
= tdp_page_fault
;
3813 context
->sync_page
= nonpaging_sync_page
;
3814 context
->invlpg
= nonpaging_invlpg
;
3815 context
->update_pte
= nonpaging_update_pte
;
3816 context
->shadow_root_level
= kvm_x86_ops
->get_tdp_level();
3817 context
->root_hpa
= INVALID_PAGE
;
3818 context
->direct_map
= true;
3819 context
->set_cr3
= kvm_x86_ops
->set_tdp_cr3
;
3820 context
->get_cr3
= get_cr3
;
3821 context
->get_pdptr
= kvm_pdptr_read
;
3822 context
->inject_page_fault
= kvm_inject_page_fault
;
3824 if (!is_paging(vcpu
)) {
3825 context
->nx
= false;
3826 context
->gva_to_gpa
= nonpaging_gva_to_gpa
;
3827 context
->root_level
= 0;
3828 } else if (is_long_mode(vcpu
)) {
3829 context
->nx
= is_nx(vcpu
);
3830 context
->root_level
= PT64_ROOT_LEVEL
;
3831 reset_rsvds_bits_mask(vcpu
, context
);
3832 context
->gva_to_gpa
= paging64_gva_to_gpa
;
3833 } else if (is_pae(vcpu
)) {
3834 context
->nx
= is_nx(vcpu
);
3835 context
->root_level
= PT32E_ROOT_LEVEL
;
3836 reset_rsvds_bits_mask(vcpu
, context
);
3837 context
->gva_to_gpa
= paging64_gva_to_gpa
;
3839 context
->nx
= false;
3840 context
->root_level
= PT32_ROOT_LEVEL
;
3841 reset_rsvds_bits_mask(vcpu
, context
);
3842 context
->gva_to_gpa
= paging32_gva_to_gpa
;
3845 update_permission_bitmask(vcpu
, context
, false);
3846 update_last_pte_bitmap(vcpu
, context
);
3849 void kvm_init_shadow_mmu(struct kvm_vcpu
*vcpu
)
3851 bool smep
= kvm_read_cr4_bits(vcpu
, X86_CR4_SMEP
);
3852 bool smap
= kvm_read_cr4_bits(vcpu
, X86_CR4_SMAP
);
3853 struct kvm_mmu
*context
= &vcpu
->arch
.mmu
;
3855 MMU_WARN_ON(VALID_PAGE(context
->root_hpa
));
3857 if (!is_paging(vcpu
))
3858 nonpaging_init_context(vcpu
, context
);
3859 else if (is_long_mode(vcpu
))
3860 paging64_init_context(vcpu
, context
);
3861 else if (is_pae(vcpu
))
3862 paging32E_init_context(vcpu
, context
);
3864 paging32_init_context(vcpu
, context
);
3866 context
->base_role
.nxe
= is_nx(vcpu
);
3867 context
->base_role
.cr4_pae
= !!is_pae(vcpu
);
3868 context
->base_role
.cr0_wp
= is_write_protection(vcpu
);
3869 context
->base_role
.smep_andnot_wp
3870 = smep
&& !is_write_protection(vcpu
);
3871 context
->base_role
.smap_andnot_wp
3872 = smap
&& !is_write_protection(vcpu
);
3873 context
->base_role
.smm
= is_smm(vcpu
);
3875 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu
);
3877 void kvm_init_shadow_ept_mmu(struct kvm_vcpu
*vcpu
, bool execonly
)
3879 struct kvm_mmu
*context
= &vcpu
->arch
.mmu
;
3881 MMU_WARN_ON(VALID_PAGE(context
->root_hpa
));
3883 context
->shadow_root_level
= kvm_x86_ops
->get_tdp_level();
3886 context
->page_fault
= ept_page_fault
;
3887 context
->gva_to_gpa
= ept_gva_to_gpa
;
3888 context
->sync_page
= ept_sync_page
;
3889 context
->invlpg
= ept_invlpg
;
3890 context
->update_pte
= ept_update_pte
;
3891 context
->root_level
= context
->shadow_root_level
;
3892 context
->root_hpa
= INVALID_PAGE
;
3893 context
->direct_map
= false;
3895 update_permission_bitmask(vcpu
, context
, true);
3896 reset_rsvds_bits_mask_ept(vcpu
, context
, execonly
);
3898 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu
);
3900 static void init_kvm_softmmu(struct kvm_vcpu
*vcpu
)
3902 struct kvm_mmu
*context
= &vcpu
->arch
.mmu
;
3904 kvm_init_shadow_mmu(vcpu
);
3905 context
->set_cr3
= kvm_x86_ops
->set_cr3
;
3906 context
->get_cr3
= get_cr3
;
3907 context
->get_pdptr
= kvm_pdptr_read
;
3908 context
->inject_page_fault
= kvm_inject_page_fault
;
3911 static void init_kvm_nested_mmu(struct kvm_vcpu
*vcpu
)
3913 struct kvm_mmu
*g_context
= &vcpu
->arch
.nested_mmu
;
3915 g_context
->get_cr3
= get_cr3
;
3916 g_context
->get_pdptr
= kvm_pdptr_read
;
3917 g_context
->inject_page_fault
= kvm_inject_page_fault
;
3920 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3921 * translation of l2_gpa to l1_gpa addresses is done using the
3922 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3923 * functions between mmu and nested_mmu are swapped.
3925 if (!is_paging(vcpu
)) {
3926 g_context
->nx
= false;
3927 g_context
->root_level
= 0;
3928 g_context
->gva_to_gpa
= nonpaging_gva_to_gpa_nested
;
3929 } else if (is_long_mode(vcpu
)) {
3930 g_context
->nx
= is_nx(vcpu
);
3931 g_context
->root_level
= PT64_ROOT_LEVEL
;
3932 reset_rsvds_bits_mask(vcpu
, g_context
);
3933 g_context
->gva_to_gpa
= paging64_gva_to_gpa_nested
;
3934 } else if (is_pae(vcpu
)) {
3935 g_context
->nx
= is_nx(vcpu
);
3936 g_context
->root_level
= PT32E_ROOT_LEVEL
;
3937 reset_rsvds_bits_mask(vcpu
, g_context
);
3938 g_context
->gva_to_gpa
= paging64_gva_to_gpa_nested
;
3940 g_context
->nx
= false;
3941 g_context
->root_level
= PT32_ROOT_LEVEL
;
3942 reset_rsvds_bits_mask(vcpu
, g_context
);
3943 g_context
->gva_to_gpa
= paging32_gva_to_gpa_nested
;
3946 update_permission_bitmask(vcpu
, g_context
, false);
3947 update_last_pte_bitmap(vcpu
, g_context
);
3950 static void init_kvm_mmu(struct kvm_vcpu
*vcpu
)
3952 if (mmu_is_nested(vcpu
))
3953 init_kvm_nested_mmu(vcpu
);
3954 else if (tdp_enabled
)
3955 init_kvm_tdp_mmu(vcpu
);
3957 init_kvm_softmmu(vcpu
);
3960 void kvm_mmu_reset_context(struct kvm_vcpu
*vcpu
)
3962 kvm_mmu_unload(vcpu
);
3965 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context
);
3967 int kvm_mmu_load(struct kvm_vcpu
*vcpu
)
3971 r
= mmu_topup_memory_caches(vcpu
);
3974 r
= mmu_alloc_roots(vcpu
);
3975 kvm_mmu_sync_roots(vcpu
);
3978 /* set_cr3() should ensure TLB has been flushed */
3979 vcpu
->arch
.mmu
.set_cr3(vcpu
, vcpu
->arch
.mmu
.root_hpa
);
3983 EXPORT_SYMBOL_GPL(kvm_mmu_load
);
3985 void kvm_mmu_unload(struct kvm_vcpu
*vcpu
)
3987 mmu_free_roots(vcpu
);
3988 WARN_ON(VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
));
3990 EXPORT_SYMBOL_GPL(kvm_mmu_unload
);
3992 static void mmu_pte_write_new_pte(struct kvm_vcpu
*vcpu
,
3993 struct kvm_mmu_page
*sp
, u64
*spte
,
3996 if (sp
->role
.level
!= PT_PAGE_TABLE_LEVEL
) {
3997 ++vcpu
->kvm
->stat
.mmu_pde_zapped
;
4001 ++vcpu
->kvm
->stat
.mmu_pte_updated
;
4002 vcpu
->arch
.mmu
.update_pte(vcpu
, sp
, spte
, new);
4005 static bool need_remote_flush(u64 old
, u64
new)
4007 if (!is_shadow_present_pte(old
))
4009 if (!is_shadow_present_pte(new))
4011 if ((old
^ new) & PT64_BASE_ADDR_MASK
)
4013 old
^= shadow_nx_mask
;
4014 new ^= shadow_nx_mask
;
4015 return (old
& ~new & PT64_PERM_MASK
) != 0;
4018 static void mmu_pte_write_flush_tlb(struct kvm_vcpu
*vcpu
, bool zap_page
,
4019 bool remote_flush
, bool local_flush
)
4025 kvm_flush_remote_tlbs(vcpu
->kvm
);
4026 else if (local_flush
)
4027 kvm_make_request(KVM_REQ_TLB_FLUSH
, vcpu
);
4030 static u64
mmu_pte_write_fetch_gpte(struct kvm_vcpu
*vcpu
, gpa_t
*gpa
,
4031 const u8
*new, int *bytes
)
4037 * Assume that the pte write on a page table of the same type
4038 * as the current vcpu paging mode since we update the sptes only
4039 * when they have the same mode.
4041 if (is_pae(vcpu
) && *bytes
== 4) {
4042 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4045 r
= kvm_vcpu_read_guest(vcpu
, *gpa
, &gentry
, 8);
4048 new = (const u8
*)&gentry
;
4053 gentry
= *(const u32
*)new;
4056 gentry
= *(const u64
*)new;
4067 * If we're seeing too many writes to a page, it may no longer be a page table,
4068 * or we may be forking, in which case it is better to unmap the page.
4070 static bool detect_write_flooding(struct kvm_mmu_page
*sp
)
4073 * Skip write-flooding detected for the sp whose level is 1, because
4074 * it can become unsync, then the guest page is not write-protected.
4076 if (sp
->role
.level
== PT_PAGE_TABLE_LEVEL
)
4079 return ++sp
->write_flooding_count
>= 3;
4083 * Misaligned accesses are too much trouble to fix up; also, they usually
4084 * indicate a page is not used as a page table.
4086 static bool detect_write_misaligned(struct kvm_mmu_page
*sp
, gpa_t gpa
,
4089 unsigned offset
, pte_size
, misaligned
;
4091 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4092 gpa
, bytes
, sp
->role
.word
);
4094 offset
= offset_in_page(gpa
);
4095 pte_size
= sp
->role
.cr4_pae
? 8 : 4;
4098 * Sometimes, the OS only writes the last one bytes to update status
4099 * bits, for example, in linux, andb instruction is used in clear_bit().
4101 if (!(offset
& (pte_size
- 1)) && bytes
== 1)
4104 misaligned
= (offset
^ (offset
+ bytes
- 1)) & ~(pte_size
- 1);
4105 misaligned
|= bytes
< 4;
4110 static u64
*get_written_sptes(struct kvm_mmu_page
*sp
, gpa_t gpa
, int *nspte
)
4112 unsigned page_offset
, quadrant
;
4116 page_offset
= offset_in_page(gpa
);
4117 level
= sp
->role
.level
;
4119 if (!sp
->role
.cr4_pae
) {
4120 page_offset
<<= 1; /* 32->64 */
4122 * A 32-bit pde maps 4MB while the shadow pdes map
4123 * only 2MB. So we need to double the offset again
4124 * and zap two pdes instead of one.
4126 if (level
== PT32_ROOT_LEVEL
) {
4127 page_offset
&= ~7; /* kill rounding error */
4131 quadrant
= page_offset
>> PAGE_SHIFT
;
4132 page_offset
&= ~PAGE_MASK
;
4133 if (quadrant
!= sp
->role
.quadrant
)
4137 spte
= &sp
->spt
[page_offset
/ sizeof(*spte
)];
4141 void kvm_mmu_pte_write(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4142 const u8
*new, int bytes
)
4144 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
4145 struct kvm_mmu_page
*sp
;
4146 LIST_HEAD(invalid_list
);
4147 u64 entry
, gentry
, *spte
;
4149 bool remote_flush
, local_flush
, zap_page
;
4150 union kvm_mmu_page_role mask
= { };
4155 mask
.smep_andnot_wp
= 1;
4156 mask
.smap_andnot_wp
= 1;
4160 * If we don't have indirect shadow pages, it means no page is
4161 * write-protected, so we can exit simply.
4163 if (!ACCESS_ONCE(vcpu
->kvm
->arch
.indirect_shadow_pages
))
4166 zap_page
= remote_flush
= local_flush
= false;
4168 pgprintk("%s: gpa %llx bytes %d\n", __func__
, gpa
, bytes
);
4170 gentry
= mmu_pte_write_fetch_gpte(vcpu
, &gpa
, new, &bytes
);
4173 * No need to care whether allocation memory is successful
4174 * or not since pte prefetch is skiped if it does not have
4175 * enough objects in the cache.
4177 mmu_topup_memory_caches(vcpu
);
4179 spin_lock(&vcpu
->kvm
->mmu_lock
);
4180 ++vcpu
->kvm
->stat
.mmu_pte_write
;
4181 kvm_mmu_audit(vcpu
, AUDIT_PRE_PTE_WRITE
);
4183 for_each_gfn_indirect_valid_sp(vcpu
->kvm
, sp
, gfn
) {
4184 if (detect_write_misaligned(sp
, gpa
, bytes
) ||
4185 detect_write_flooding(sp
)) {
4186 zap_page
|= !!kvm_mmu_prepare_zap_page(vcpu
->kvm
, sp
,
4188 ++vcpu
->kvm
->stat
.mmu_flooded
;
4192 spte
= get_written_sptes(sp
, gpa
, &npte
);
4199 mmu_page_zap_pte(vcpu
->kvm
, sp
, spte
);
4201 !((sp
->role
.word
^ vcpu
->arch
.mmu
.base_role
.word
)
4202 & mask
.word
) && rmap_can_add(vcpu
))
4203 mmu_pte_write_new_pte(vcpu
, sp
, spte
, &gentry
);
4204 if (need_remote_flush(entry
, *spte
))
4205 remote_flush
= true;
4209 mmu_pte_write_flush_tlb(vcpu
, zap_page
, remote_flush
, local_flush
);
4210 kvm_mmu_commit_zap_page(vcpu
->kvm
, &invalid_list
);
4211 kvm_mmu_audit(vcpu
, AUDIT_POST_PTE_WRITE
);
4212 spin_unlock(&vcpu
->kvm
->mmu_lock
);
4215 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu
*vcpu
, gva_t gva
)
4220 if (vcpu
->arch
.mmu
.direct_map
)
4223 gpa
= kvm_mmu_gva_to_gpa_read(vcpu
, gva
, NULL
);
4225 r
= kvm_mmu_unprotect_page(vcpu
->kvm
, gpa
>> PAGE_SHIFT
);
4229 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt
);
4231 static void make_mmu_pages_available(struct kvm_vcpu
*vcpu
)
4233 LIST_HEAD(invalid_list
);
4235 if (likely(kvm_mmu_available_pages(vcpu
->kvm
) >= KVM_MIN_FREE_MMU_PAGES
))
4238 while (kvm_mmu_available_pages(vcpu
->kvm
) < KVM_REFILL_PAGES
) {
4239 if (!prepare_zap_oldest_mmu_page(vcpu
->kvm
, &invalid_list
))
4242 ++vcpu
->kvm
->stat
.mmu_recycled
;
4244 kvm_mmu_commit_zap_page(vcpu
->kvm
, &invalid_list
);
4247 static bool is_mmio_page_fault(struct kvm_vcpu
*vcpu
, gva_t addr
)
4249 if (vcpu
->arch
.mmu
.direct_map
|| mmu_is_nested(vcpu
))
4250 return vcpu_match_mmio_gpa(vcpu
, addr
);
4252 return vcpu_match_mmio_gva(vcpu
, addr
);
4255 int kvm_mmu_page_fault(struct kvm_vcpu
*vcpu
, gva_t cr2
, u32 error_code
,
4256 void *insn
, int insn_len
)
4258 int r
, emulation_type
= EMULTYPE_RETRY
;
4259 enum emulation_result er
;
4261 r
= vcpu
->arch
.mmu
.page_fault(vcpu
, cr2
, error_code
, false);
4270 if (is_mmio_page_fault(vcpu
, cr2
))
4273 er
= x86_emulate_instruction(vcpu
, cr2
, emulation_type
, insn
, insn_len
);
4278 case EMULATE_USER_EXIT
:
4279 ++vcpu
->stat
.mmio_exits
;
4289 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault
);
4291 void kvm_mmu_invlpg(struct kvm_vcpu
*vcpu
, gva_t gva
)
4293 vcpu
->arch
.mmu
.invlpg(vcpu
, gva
);
4294 kvm_make_request(KVM_REQ_TLB_FLUSH
, vcpu
);
4295 ++vcpu
->stat
.invlpg
;
4297 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg
);
4299 void kvm_enable_tdp(void)
4303 EXPORT_SYMBOL_GPL(kvm_enable_tdp
);
4305 void kvm_disable_tdp(void)
4307 tdp_enabled
= false;
4309 EXPORT_SYMBOL_GPL(kvm_disable_tdp
);
4311 static void free_mmu_pages(struct kvm_vcpu
*vcpu
)
4313 free_page((unsigned long)vcpu
->arch
.mmu
.pae_root
);
4314 if (vcpu
->arch
.mmu
.lm_root
!= NULL
)
4315 free_page((unsigned long)vcpu
->arch
.mmu
.lm_root
);
4318 static int alloc_mmu_pages(struct kvm_vcpu
*vcpu
)
4324 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4325 * Therefore we need to allocate shadow page tables in the first
4326 * 4GB of memory, which happens to fit the DMA32 zone.
4328 page
= alloc_page(GFP_KERNEL
| __GFP_DMA32
);
4332 vcpu
->arch
.mmu
.pae_root
= page_address(page
);
4333 for (i
= 0; i
< 4; ++i
)
4334 vcpu
->arch
.mmu
.pae_root
[i
] = INVALID_PAGE
;
4339 int kvm_mmu_create(struct kvm_vcpu
*vcpu
)
4341 vcpu
->arch
.walk_mmu
= &vcpu
->arch
.mmu
;
4342 vcpu
->arch
.mmu
.root_hpa
= INVALID_PAGE
;
4343 vcpu
->arch
.mmu
.translate_gpa
= translate_gpa
;
4344 vcpu
->arch
.nested_mmu
.translate_gpa
= translate_nested_gpa
;
4346 return alloc_mmu_pages(vcpu
);
4349 void kvm_mmu_setup(struct kvm_vcpu
*vcpu
)
4351 MMU_WARN_ON(VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
));
4356 /* The return value indicates if tlb flush on all vcpus is needed. */
4357 typedef bool (*slot_level_handler
) (struct kvm
*kvm
, unsigned long *rmap
);
4359 /* The caller should hold mmu-lock before calling this function. */
4361 slot_handle_level_range(struct kvm
*kvm
, struct kvm_memory_slot
*memslot
,
4362 slot_level_handler fn
, int start_level
, int end_level
,
4363 gfn_t start_gfn
, gfn_t end_gfn
, bool lock_flush_tlb
)
4365 struct slot_rmap_walk_iterator iterator
;
4368 for_each_slot_rmap_range(memslot
, start_level
, end_level
, start_gfn
,
4369 end_gfn
, &iterator
) {
4371 flush
|= fn(kvm
, iterator
.rmap
);
4373 if (need_resched() || spin_needbreak(&kvm
->mmu_lock
)) {
4374 if (flush
&& lock_flush_tlb
) {
4375 kvm_flush_remote_tlbs(kvm
);
4378 cond_resched_lock(&kvm
->mmu_lock
);
4382 if (flush
&& lock_flush_tlb
) {
4383 kvm_flush_remote_tlbs(kvm
);
4391 slot_handle_level(struct kvm
*kvm
, struct kvm_memory_slot
*memslot
,
4392 slot_level_handler fn
, int start_level
, int end_level
,
4393 bool lock_flush_tlb
)
4395 return slot_handle_level_range(kvm
, memslot
, fn
, start_level
,
4396 end_level
, memslot
->base_gfn
,
4397 memslot
->base_gfn
+ memslot
->npages
- 1,
4402 slot_handle_all_level(struct kvm
*kvm
, struct kvm_memory_slot
*memslot
,
4403 slot_level_handler fn
, bool lock_flush_tlb
)
4405 return slot_handle_level(kvm
, memslot
, fn
, PT_PAGE_TABLE_LEVEL
,
4406 PT_MAX_HUGEPAGE_LEVEL
, lock_flush_tlb
);
4410 slot_handle_large_level(struct kvm
*kvm
, struct kvm_memory_slot
*memslot
,
4411 slot_level_handler fn
, bool lock_flush_tlb
)
4413 return slot_handle_level(kvm
, memslot
, fn
, PT_PAGE_TABLE_LEVEL
+ 1,
4414 PT_MAX_HUGEPAGE_LEVEL
, lock_flush_tlb
);
4418 slot_handle_leaf(struct kvm
*kvm
, struct kvm_memory_slot
*memslot
,
4419 slot_level_handler fn
, bool lock_flush_tlb
)
4421 return slot_handle_level(kvm
, memslot
, fn
, PT_PAGE_TABLE_LEVEL
,
4422 PT_PAGE_TABLE_LEVEL
, lock_flush_tlb
);
4425 void kvm_zap_gfn_range(struct kvm
*kvm
, gfn_t gfn_start
, gfn_t gfn_end
)
4427 struct kvm_memslots
*slots
;
4428 struct kvm_memory_slot
*memslot
;
4431 spin_lock(&kvm
->mmu_lock
);
4432 for (i
= 0; i
< KVM_ADDRESS_SPACE_NUM
; i
++) {
4433 slots
= __kvm_memslots(kvm
, i
);
4434 kvm_for_each_memslot(memslot
, slots
) {
4437 start
= max(gfn_start
, memslot
->base_gfn
);
4438 end
= min(gfn_end
, memslot
->base_gfn
+ memslot
->npages
);
4442 slot_handle_level_range(kvm
, memslot
, kvm_zap_rmapp
,
4443 PT_PAGE_TABLE_LEVEL
, PT_MAX_HUGEPAGE_LEVEL
,
4444 start
, end
- 1, true);
4448 spin_unlock(&kvm
->mmu_lock
);
4451 static bool slot_rmap_write_protect(struct kvm
*kvm
, unsigned long *rmapp
)
4453 return __rmap_write_protect(kvm
, rmapp
, false);
4456 void kvm_mmu_slot_remove_write_access(struct kvm
*kvm
,
4457 struct kvm_memory_slot
*memslot
)
4461 spin_lock(&kvm
->mmu_lock
);
4462 flush
= slot_handle_all_level(kvm
, memslot
, slot_rmap_write_protect
,
4464 spin_unlock(&kvm
->mmu_lock
);
4467 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4468 * which do tlb flush out of mmu-lock should be serialized by
4469 * kvm->slots_lock otherwise tlb flush would be missed.
4471 lockdep_assert_held(&kvm
->slots_lock
);
4474 * We can flush all the TLBs out of the mmu lock without TLB
4475 * corruption since we just change the spte from writable to
4476 * readonly so that we only need to care the case of changing
4477 * spte from present to present (changing the spte from present
4478 * to nonpresent will flush all the TLBs immediately), in other
4479 * words, the only case we care is mmu_spte_update() where we
4480 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4481 * instead of PT_WRITABLE_MASK, that means it does not depend
4482 * on PT_WRITABLE_MASK anymore.
4485 kvm_flush_remote_tlbs(kvm
);
4488 static bool kvm_mmu_zap_collapsible_spte(struct kvm
*kvm
,
4489 unsigned long *rmapp
)
4492 struct rmap_iterator iter
;
4493 int need_tlb_flush
= 0;
4495 struct kvm_mmu_page
*sp
;
4498 for_each_rmap_spte(rmapp
, &iter
, sptep
) {
4499 sp
= page_header(__pa(sptep
));
4500 pfn
= spte_to_pfn(*sptep
);
4503 * We cannot do huge page mapping for indirect shadow pages,
4504 * which are found on the last rmap (level = 1) when not using
4505 * tdp; such shadow pages are synced with the page table in
4506 * the guest, and the guest page table is using 4K page size
4507 * mapping if the indirect sp has level = 1.
4509 if (sp
->role
.direct
&&
4510 !kvm_is_reserved_pfn(pfn
) &&
4511 PageTransCompound(pfn_to_page(pfn
))) {
4512 drop_spte(kvm
, sptep
);
4518 return need_tlb_flush
;
4521 void kvm_mmu_zap_collapsible_sptes(struct kvm
*kvm
,
4522 const struct kvm_memory_slot
*memslot
)
4524 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
4525 spin_lock(&kvm
->mmu_lock
);
4526 slot_handle_leaf(kvm
, (struct kvm_memory_slot
*)memslot
,
4527 kvm_mmu_zap_collapsible_spte
, true);
4528 spin_unlock(&kvm
->mmu_lock
);
4531 void kvm_mmu_slot_leaf_clear_dirty(struct kvm
*kvm
,
4532 struct kvm_memory_slot
*memslot
)
4536 spin_lock(&kvm
->mmu_lock
);
4537 flush
= slot_handle_leaf(kvm
, memslot
, __rmap_clear_dirty
, false);
4538 spin_unlock(&kvm
->mmu_lock
);
4540 lockdep_assert_held(&kvm
->slots_lock
);
4543 * It's also safe to flush TLBs out of mmu lock here as currently this
4544 * function is only used for dirty logging, in which case flushing TLB
4545 * out of mmu lock also guarantees no dirty pages will be lost in
4549 kvm_flush_remote_tlbs(kvm
);
4551 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty
);
4553 void kvm_mmu_slot_largepage_remove_write_access(struct kvm
*kvm
,
4554 struct kvm_memory_slot
*memslot
)
4558 spin_lock(&kvm
->mmu_lock
);
4559 flush
= slot_handle_large_level(kvm
, memslot
, slot_rmap_write_protect
,
4561 spin_unlock(&kvm
->mmu_lock
);
4563 /* see kvm_mmu_slot_remove_write_access */
4564 lockdep_assert_held(&kvm
->slots_lock
);
4567 kvm_flush_remote_tlbs(kvm
);
4569 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access
);
4571 void kvm_mmu_slot_set_dirty(struct kvm
*kvm
,
4572 struct kvm_memory_slot
*memslot
)
4576 spin_lock(&kvm
->mmu_lock
);
4577 flush
= slot_handle_all_level(kvm
, memslot
, __rmap_set_dirty
, false);
4578 spin_unlock(&kvm
->mmu_lock
);
4580 lockdep_assert_held(&kvm
->slots_lock
);
4582 /* see kvm_mmu_slot_leaf_clear_dirty */
4584 kvm_flush_remote_tlbs(kvm
);
4586 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty
);
4588 #define BATCH_ZAP_PAGES 10
4589 static void kvm_zap_obsolete_pages(struct kvm
*kvm
)
4591 struct kvm_mmu_page
*sp
, *node
;
4595 list_for_each_entry_safe_reverse(sp
, node
,
4596 &kvm
->arch
.active_mmu_pages
, link
) {
4600 * No obsolete page exists before new created page since
4601 * active_mmu_pages is the FIFO list.
4603 if (!is_obsolete_sp(kvm
, sp
))
4607 * Since we are reversely walking the list and the invalid
4608 * list will be moved to the head, skip the invalid page
4609 * can help us to avoid the infinity list walking.
4611 if (sp
->role
.invalid
)
4615 * Need not flush tlb since we only zap the sp with invalid
4616 * generation number.
4618 if (batch
>= BATCH_ZAP_PAGES
&&
4619 cond_resched_lock(&kvm
->mmu_lock
)) {
4624 ret
= kvm_mmu_prepare_zap_page(kvm
, sp
,
4625 &kvm
->arch
.zapped_obsolete_pages
);
4633 * Should flush tlb before free page tables since lockless-walking
4634 * may use the pages.
4636 kvm_mmu_commit_zap_page(kvm
, &kvm
->arch
.zapped_obsolete_pages
);
4640 * Fast invalidate all shadow pages and use lock-break technique
4641 * to zap obsolete pages.
4643 * It's required when memslot is being deleted or VM is being
4644 * destroyed, in these cases, we should ensure that KVM MMU does
4645 * not use any resource of the being-deleted slot or all slots
4646 * after calling the function.
4648 void kvm_mmu_invalidate_zap_all_pages(struct kvm
*kvm
)
4650 spin_lock(&kvm
->mmu_lock
);
4651 trace_kvm_mmu_invalidate_zap_all_pages(kvm
);
4652 kvm
->arch
.mmu_valid_gen
++;
4655 * Notify all vcpus to reload its shadow page table
4656 * and flush TLB. Then all vcpus will switch to new
4657 * shadow page table with the new mmu_valid_gen.
4659 * Note: we should do this under the protection of
4660 * mmu-lock, otherwise, vcpu would purge shadow page
4661 * but miss tlb flush.
4663 kvm_reload_remote_mmus(kvm
);
4665 kvm_zap_obsolete_pages(kvm
);
4666 spin_unlock(&kvm
->mmu_lock
);
4669 static bool kvm_has_zapped_obsolete_pages(struct kvm
*kvm
)
4671 return unlikely(!list_empty_careful(&kvm
->arch
.zapped_obsolete_pages
));
4674 void kvm_mmu_invalidate_mmio_sptes(struct kvm
*kvm
, struct kvm_memslots
*slots
)
4677 * The very rare case: if the generation-number is round,
4678 * zap all shadow pages.
4680 if (unlikely((slots
->generation
& MMIO_GEN_MASK
) == 0)) {
4681 printk_ratelimited(KERN_DEBUG
"kvm: zapping shadow pages for mmio generation wraparound\n");
4682 kvm_mmu_invalidate_zap_all_pages(kvm
);
4686 static unsigned long
4687 mmu_shrink_scan(struct shrinker
*shrink
, struct shrink_control
*sc
)
4690 int nr_to_scan
= sc
->nr_to_scan
;
4691 unsigned long freed
= 0;
4693 spin_lock(&kvm_lock
);
4695 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
4697 LIST_HEAD(invalid_list
);
4700 * Never scan more than sc->nr_to_scan VM instances.
4701 * Will not hit this condition practically since we do not try
4702 * to shrink more than one VM and it is very unlikely to see
4703 * !n_used_mmu_pages so many times.
4708 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4709 * here. We may skip a VM instance errorneosly, but we do not
4710 * want to shrink a VM that only started to populate its MMU
4713 if (!kvm
->arch
.n_used_mmu_pages
&&
4714 !kvm_has_zapped_obsolete_pages(kvm
))
4717 idx
= srcu_read_lock(&kvm
->srcu
);
4718 spin_lock(&kvm
->mmu_lock
);
4720 if (kvm_has_zapped_obsolete_pages(kvm
)) {
4721 kvm_mmu_commit_zap_page(kvm
,
4722 &kvm
->arch
.zapped_obsolete_pages
);
4726 if (prepare_zap_oldest_mmu_page(kvm
, &invalid_list
))
4728 kvm_mmu_commit_zap_page(kvm
, &invalid_list
);
4731 spin_unlock(&kvm
->mmu_lock
);
4732 srcu_read_unlock(&kvm
->srcu
, idx
);
4735 * unfair on small ones
4736 * per-vm shrinkers cry out
4737 * sadness comes quickly
4739 list_move_tail(&kvm
->vm_list
, &vm_list
);
4743 spin_unlock(&kvm_lock
);
4747 static unsigned long
4748 mmu_shrink_count(struct shrinker
*shrink
, struct shrink_control
*sc
)
4750 return percpu_counter_read_positive(&kvm_total_used_mmu_pages
);
4753 static struct shrinker mmu_shrinker
= {
4754 .count_objects
= mmu_shrink_count
,
4755 .scan_objects
= mmu_shrink_scan
,
4756 .seeks
= DEFAULT_SEEKS
* 10,
4759 static void mmu_destroy_caches(void)
4761 if (pte_list_desc_cache
)
4762 kmem_cache_destroy(pte_list_desc_cache
);
4763 if (mmu_page_header_cache
)
4764 kmem_cache_destroy(mmu_page_header_cache
);
4767 int kvm_mmu_module_init(void)
4769 pte_list_desc_cache
= kmem_cache_create("pte_list_desc",
4770 sizeof(struct pte_list_desc
),
4772 if (!pte_list_desc_cache
)
4775 mmu_page_header_cache
= kmem_cache_create("kvm_mmu_page_header",
4776 sizeof(struct kvm_mmu_page
),
4778 if (!mmu_page_header_cache
)
4781 if (percpu_counter_init(&kvm_total_used_mmu_pages
, 0, GFP_KERNEL
))
4784 register_shrinker(&mmu_shrinker
);
4789 mmu_destroy_caches();
4794 * Caculate mmu pages needed for kvm.
4796 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm
*kvm
)
4798 unsigned int nr_mmu_pages
;
4799 unsigned int nr_pages
= 0;
4800 struct kvm_memslots
*slots
;
4801 struct kvm_memory_slot
*memslot
;
4804 for (i
= 0; i
< KVM_ADDRESS_SPACE_NUM
; i
++) {
4805 slots
= __kvm_memslots(kvm
, i
);
4807 kvm_for_each_memslot(memslot
, slots
)
4808 nr_pages
+= memslot
->npages
;
4811 nr_mmu_pages
= nr_pages
* KVM_PERMILLE_MMU_PAGES
/ 1000;
4812 nr_mmu_pages
= max(nr_mmu_pages
,
4813 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES
);
4815 return nr_mmu_pages
;
4818 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu
*vcpu
, u64 addr
, u64 sptes
[4])
4820 struct kvm_shadow_walk_iterator iterator
;
4824 if (!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
4827 walk_shadow_page_lockless_begin(vcpu
);
4828 for_each_shadow_entry_lockless(vcpu
, addr
, iterator
, spte
) {
4829 sptes
[iterator
.level
-1] = spte
;
4831 if (!is_shadow_present_pte(spte
))
4834 walk_shadow_page_lockless_end(vcpu
);
4838 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy
);
4840 void kvm_mmu_destroy(struct kvm_vcpu
*vcpu
)
4842 kvm_mmu_unload(vcpu
);
4843 free_mmu_pages(vcpu
);
4844 mmu_free_memory_caches(vcpu
);
4847 void kvm_mmu_module_exit(void)
4849 mmu_destroy_caches();
4850 percpu_counter_destroy(&kvm_total_used_mmu_pages
);
4851 unregister_shrinker(&mmu_shrinker
);
4852 mmu_audit_disable();