1 #ifndef __KVM_X86_MMU_H
2 #define __KVM_X86_MMU_H
4 #include <linux/kvm_host.h>
5 #include "kvm_cache_regs.h"
8 #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
9 #define PT32_PT_BITS 10
10 #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
12 #define PT_WRITABLE_SHIFT 1
14 #define PT_PRESENT_MASK (1ULL << 0)
15 #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
16 #define PT_USER_MASK (1ULL << 2)
17 #define PT_PWT_MASK (1ULL << 3)
18 #define PT_PCD_MASK (1ULL << 4)
19 #define PT_ACCESSED_SHIFT 5
20 #define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT)
21 #define PT_DIRTY_SHIFT 6
22 #define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT)
23 #define PT_PAGE_SIZE_SHIFT 7
24 #define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT)
25 #define PT_PAT_MASK (1ULL << 7)
26 #define PT_GLOBAL_MASK (1ULL << 8)
27 #define PT64_NX_SHIFT 63
28 #define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
30 #define PT_PAT_SHIFT 7
31 #define PT_DIR_PAT_SHIFT 12
32 #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
34 #define PT32_DIR_PSE36_SIZE 4
35 #define PT32_DIR_PSE36_SHIFT 13
36 #define PT32_DIR_PSE36_MASK \
37 (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
39 #define PT64_ROOT_LEVEL 4
40 #define PT32_ROOT_LEVEL 2
41 #define PT32E_ROOT_LEVEL 3
43 #define PT_PDPE_LEVEL 3
44 #define PT_DIRECTORY_LEVEL 2
45 #define PT_PAGE_TABLE_LEVEL 1
46 #define PT_MAX_HUGEPAGE_LEVEL (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES - 1)
48 static inline u64
rsvd_bits(int s
, int e
)
50 return ((1ULL << (e
- s
+ 1)) - 1) << s
;
53 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu
*vcpu
, u64 addr
, u64 sptes
[4]);
54 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask
);
57 * Return values of handle_mmio_page_fault_common:
58 * RET_MMIO_PF_EMULATE: it is a real mmio page fault, emulate the instruction
60 * RET_MMIO_PF_INVALID: invalid spte is detected then let the real page
61 * fault path update the mmio spte.
62 * RET_MMIO_PF_RETRY: let CPU fault again on the address.
63 * RET_MMIO_PF_BUG: bug is detected.
66 RET_MMIO_PF_EMULATE
= 1,
67 RET_MMIO_PF_INVALID
= 2,
68 RET_MMIO_PF_RETRY
= 0,
72 int handle_mmio_page_fault_common(struct kvm_vcpu
*vcpu
, u64 addr
, bool direct
);
73 void kvm_init_shadow_mmu(struct kvm_vcpu
*vcpu
);
74 void kvm_init_shadow_ept_mmu(struct kvm_vcpu
*vcpu
, bool execonly
);
76 static inline unsigned int kvm_mmu_available_pages(struct kvm
*kvm
)
78 if (kvm
->arch
.n_max_mmu_pages
> kvm
->arch
.n_used_mmu_pages
)
79 return kvm
->arch
.n_max_mmu_pages
-
80 kvm
->arch
.n_used_mmu_pages
;
85 static inline int kvm_mmu_reload(struct kvm_vcpu
*vcpu
)
87 if (likely(vcpu
->arch
.mmu
.root_hpa
!= INVALID_PAGE
))
90 return kvm_mmu_load(vcpu
);
93 static inline int is_present_gpte(unsigned long pte
)
95 return pte
& PT_PRESENT_MASK
;
99 * Currently, we have two sorts of write-protection, a) the first one
100 * write-protects guest page to sync the guest modification, b) another one is
101 * used to sync dirty bitmap when we do KVM_GET_DIRTY_LOG. The differences
102 * between these two sorts are:
103 * 1) the first case clears SPTE_MMU_WRITEABLE bit.
104 * 2) the first case requires flushing tlb immediately avoiding corrupting
105 * shadow page table between all vcpus so it should be in the protection of
106 * mmu-lock. And the another case does not need to flush tlb until returning
107 * the dirty bitmap to userspace since it only write-protects the page
108 * logged in the bitmap, that means the page in the dirty bitmap is not
109 * missed, so it can flush tlb out of mmu-lock.
111 * So, there is the problem: the first case can meet the corrupted tlb caused
112 * by another case which write-protects pages but without flush tlb
113 * immediately. In order to making the first case be aware this problem we let
114 * it flush tlb if we try to write-protect a spte whose SPTE_MMU_WRITEABLE bit
115 * is set, it works since another case never touches SPTE_MMU_WRITEABLE bit.
117 * Anyway, whenever a spte is updated (only permission and status bits are
118 * changed) we need to check whether the spte with SPTE_MMU_WRITEABLE becomes
119 * readonly, if that happens, we need to flush tlb. Fortunately,
120 * mmu_spte_update() has already handled it perfectly.
122 * The rules to use SPTE_MMU_WRITEABLE and PT_WRITABLE_MASK:
123 * - if we want to see if it has writable tlb entry or if the spte can be
124 * writable on the mmu mapping, check SPTE_MMU_WRITEABLE, this is the most
126 * - if we fix page fault on the spte or do write-protection by dirty logging,
127 * check PT_WRITABLE_MASK.
129 * TODO: introduce APIs to split these two cases.
131 static inline int is_writable_pte(unsigned long pte
)
133 return pte
& PT_WRITABLE_MASK
;
136 static inline bool is_write_protection(struct kvm_vcpu
*vcpu
)
138 return kvm_read_cr0_bits(vcpu
, X86_CR0_WP
);
142 * Will a fault with a given page-fault error code (pfec) cause a permission
143 * fault with the given access (in ACC_* format)?
145 static inline bool permission_fault(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
,
146 unsigned pte_access
, unsigned pfec
)
148 int cpl
= kvm_x86_ops
->get_cpl(vcpu
);
149 unsigned long rflags
= kvm_x86_ops
->get_rflags(vcpu
);
152 * If CPL < 3, SMAP prevention are disabled if EFLAGS.AC = 1.
154 * If CPL = 3, SMAP applies to all supervisor-mode data accesses
155 * (these are implicit supervisor accesses) regardless of the value
158 * This computes (cpl < 3) && (rflags & X86_EFLAGS_AC), leaving
159 * the result in X86_EFLAGS_AC. We then insert it in place of
160 * the PFERR_RSVD_MASK bit; this bit will always be zero in pfec,
161 * but it will be one in index if SMAP checks are being overridden.
162 * It is important to keep this branchless.
164 unsigned long smap
= (cpl
- 3) & (rflags
& X86_EFLAGS_AC
);
165 int index
= (pfec
>> 1) +
166 (smap
>> (X86_EFLAGS_AC_BIT
- PFERR_RSVD_BIT
+ 1));
168 WARN_ON(pfec
& PFERR_RSVD_MASK
);
170 return (mmu
->permissions
[index
] >> pte_access
) & 1;
173 void kvm_mmu_invalidate_zap_all_pages(struct kvm
*kvm
);
174 void kvm_zap_gfn_range(struct kvm
*kvm
, gfn_t gfn_start
, gfn_t gfn_end
);