4 * Copyright (C) 2006 Qumranet, Inc.
5 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6 * Copyright(C) 2015 Intel Corporation.
9 * Yaniv Kamay <yaniv@qumranet.com>
10 * Avi Kivity <avi@qumranet.com>
11 * Marcelo Tosatti <mtosatti@redhat.com>
12 * Paolo Bonzini <pbonzini@redhat.com>
13 * Xiao Guangrong <guangrong.xiao@linux.intel.com>
15 * This work is licensed under the terms of the GNU GPL, version 2. See
16 * the COPYING file in the top-level directory.
19 #include <linux/kvm_host.h>
25 #define IA32_MTRR_DEF_TYPE_E (1ULL << 11)
26 #define IA32_MTRR_DEF_TYPE_FE (1ULL << 10)
27 #define IA32_MTRR_DEF_TYPE_TYPE_MASK (0xff)
29 static bool msr_mtrr_valid(unsigned msr
)
32 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR
- 1:
33 case MSR_MTRRfix64K_00000
:
34 case MSR_MTRRfix16K_80000
:
35 case MSR_MTRRfix16K_A0000
:
36 case MSR_MTRRfix4K_C0000
:
37 case MSR_MTRRfix4K_C8000
:
38 case MSR_MTRRfix4K_D0000
:
39 case MSR_MTRRfix4K_D8000
:
40 case MSR_MTRRfix4K_E0000
:
41 case MSR_MTRRfix4K_E8000
:
42 case MSR_MTRRfix4K_F0000
:
43 case MSR_MTRRfix4K_F8000
:
53 static bool valid_pat_type(unsigned t
)
55 return t
< 8 && (1 << t
) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
58 static bool valid_mtrr_type(unsigned t
)
60 return t
< 8 && (1 << t
) & 0x73; /* 0, 1, 4, 5, 6 */
63 bool kvm_mtrr_valid(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
68 if (!msr_mtrr_valid(msr
))
71 if (msr
== MSR_IA32_CR_PAT
) {
72 for (i
= 0; i
< 8; i
++)
73 if (!valid_pat_type((data
>> (i
* 8)) & 0xff))
76 } else if (msr
== MSR_MTRRdefType
) {
79 return valid_mtrr_type(data
& 0xff);
80 } else if (msr
>= MSR_MTRRfix64K_00000
&& msr
<= MSR_MTRRfix4K_F8000
) {
81 for (i
= 0; i
< 8 ; i
++)
82 if (!valid_mtrr_type((data
>> (i
* 8)) & 0xff))
88 WARN_ON(!(msr
>= 0x200 && msr
< 0x200 + 2 * KVM_NR_VAR_MTRR
));
90 mask
= (~0ULL) << cpuid_maxphyaddr(vcpu
);
93 if (!valid_mtrr_type(data
& 0xff))
100 kvm_inject_gp(vcpu
, 0);
106 EXPORT_SYMBOL_GPL(kvm_mtrr_valid
);
108 static bool mtrr_is_enabled(struct kvm_mtrr
*mtrr_state
)
110 return !!(mtrr_state
->deftype
& IA32_MTRR_DEF_TYPE_E
);
113 static bool fixed_mtrr_is_enabled(struct kvm_mtrr
*mtrr_state
)
115 return !!(mtrr_state
->deftype
& IA32_MTRR_DEF_TYPE_FE
);
118 static u8
mtrr_default_type(struct kvm_mtrr
*mtrr_state
)
120 return mtrr_state
->deftype
& IA32_MTRR_DEF_TYPE_TYPE_MASK
;
123 static u8
mtrr_disabled_type(void)
126 * Intel SDM 11.11.2.2: all MTRRs are disabled when
127 * IA32_MTRR_DEF_TYPE.E bit is cleared, and the UC
128 * memory type is applied to all of physical memory.
130 return MTRR_TYPE_UNCACHABLE
;
134 * Three terms are used in the following code:
135 * - segment, it indicates the address segments covered by fixed MTRRs.
136 * - unit, it corresponds to the MSR entry in the segment.
137 * - range, a range is covered in one memory cache type.
139 struct fixed_mtrr_segment
{
145 /* the start position in kvm_mtrr.fixed_ranges[]. */
149 static struct fixed_mtrr_segment fixed_seg_table
[] = {
150 /* MSR_MTRRfix64K_00000, 1 unit. 64K fixed mtrr. */
154 .range_shift
= 16, /* 64K */
159 * MSR_MTRRfix16K_80000 ... MSR_MTRRfix16K_A0000, 2 units,
165 .range_shift
= 14, /* 16K */
170 * MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000, 8 units,
176 .range_shift
= 12, /* 12K */
182 * The size of unit is covered in one MSR, one MSR entry contains
183 * 8 ranges so that unit size is always 8 * 2^range_shift.
185 static u64
fixed_mtrr_seg_unit_size(int seg
)
187 return 8 << fixed_seg_table
[seg
].range_shift
;
190 static bool fixed_msr_to_seg_unit(u32 msr
, int *seg
, int *unit
)
193 case MSR_MTRRfix64K_00000
:
197 case MSR_MTRRfix16K_80000
... MSR_MTRRfix16K_A0000
:
199 *unit
= msr
- MSR_MTRRfix16K_80000
;
201 case MSR_MTRRfix4K_C0000
... MSR_MTRRfix4K_F8000
:
203 *unit
= msr
- MSR_MTRRfix4K_C0000
;
212 static void fixed_mtrr_seg_unit_range(int seg
, int unit
, u64
*start
, u64
*end
)
214 struct fixed_mtrr_segment
*mtrr_seg
= &fixed_seg_table
[seg
];
215 u64 unit_size
= fixed_mtrr_seg_unit_size(seg
);
217 *start
= mtrr_seg
->start
+ unit
* unit_size
;
218 *end
= *start
+ unit_size
;
219 WARN_ON(*end
> mtrr_seg
->end
);
222 static int fixed_mtrr_seg_unit_range_index(int seg
, int unit
)
224 struct fixed_mtrr_segment
*mtrr_seg
= &fixed_seg_table
[seg
];
226 WARN_ON(mtrr_seg
->start
+ unit
* fixed_mtrr_seg_unit_size(seg
)
229 /* each unit has 8 ranges. */
230 return mtrr_seg
->range_start
+ 8 * unit
;
233 static int fixed_mtrr_seg_end_range_index(int seg
)
235 struct fixed_mtrr_segment
*mtrr_seg
= &fixed_seg_table
[seg
];
238 n
= (mtrr_seg
->end
- mtrr_seg
->start
) >> mtrr_seg
->range_shift
;
239 return mtrr_seg
->range_start
+ n
- 1;
242 static bool fixed_msr_to_range(u32 msr
, u64
*start
, u64
*end
)
246 if (!fixed_msr_to_seg_unit(msr
, &seg
, &unit
))
249 fixed_mtrr_seg_unit_range(seg
, unit
, start
, end
);
253 static int fixed_msr_to_range_index(u32 msr
)
257 if (!fixed_msr_to_seg_unit(msr
, &seg
, &unit
))
260 return fixed_mtrr_seg_unit_range_index(seg
, unit
);
263 static int fixed_mtrr_addr_to_seg(u64 addr
)
265 struct fixed_mtrr_segment
*mtrr_seg
;
266 int seg
, seg_num
= ARRAY_SIZE(fixed_seg_table
);
268 for (seg
= 0; seg
< seg_num
; seg
++) {
269 mtrr_seg
= &fixed_seg_table
[seg
];
270 if (mtrr_seg
->start
>= addr
&& addr
< mtrr_seg
->end
)
277 static int fixed_mtrr_addr_seg_to_range_index(u64 addr
, int seg
)
279 struct fixed_mtrr_segment
*mtrr_seg
;
282 mtrr_seg
= &fixed_seg_table
[seg
];
283 index
= mtrr_seg
->range_start
;
284 index
+= (addr
- mtrr_seg
->start
) >> mtrr_seg
->range_shift
;
288 static u64
fixed_mtrr_range_end_addr(int seg
, int index
)
290 struct fixed_mtrr_segment
*mtrr_seg
= &fixed_seg_table
[seg
];
291 int pos
= index
- mtrr_seg
->range_start
;
293 return mtrr_seg
->start
+ ((pos
+ 1) << mtrr_seg
->range_shift
);
296 static void var_mtrr_range(struct kvm_mtrr_range
*range
, u64
*start
, u64
*end
)
300 *start
= range
->base
& PAGE_MASK
;
302 mask
= range
->mask
& PAGE_MASK
;
303 mask
|= ~0ULL << boot_cpu_data
.x86_phys_bits
;
305 /* This cannot overflow because writing to the reserved bits of
306 * variable MTRRs causes a #GP.
308 *end
= (*start
| ~mask
) + 1;
311 static void update_mtrr(struct kvm_vcpu
*vcpu
, u32 msr
)
313 struct kvm_mtrr
*mtrr_state
= &vcpu
->arch
.mtrr_state
;
317 if (msr
== MSR_IA32_CR_PAT
|| !tdp_enabled
||
318 !kvm_arch_has_noncoherent_dma(vcpu
->kvm
))
321 if (!mtrr_is_enabled(mtrr_state
) && msr
!= MSR_MTRRdefType
)
325 if (fixed_msr_to_range(msr
, &start
, &end
)) {
326 if (!fixed_mtrr_is_enabled(mtrr_state
))
328 } else if (msr
== MSR_MTRRdefType
) {
332 /* variable range MTRRs. */
333 index
= (msr
- 0x200) / 2;
334 var_mtrr_range(&mtrr_state
->var_ranges
[index
], &start
, &end
);
337 kvm_zap_gfn_range(vcpu
->kvm
, gpa_to_gfn(start
), gpa_to_gfn(end
));
340 static bool var_mtrr_range_is_valid(struct kvm_mtrr_range
*range
)
342 return (range
->mask
& (1 << 11)) != 0;
345 static void set_var_mtrr_msr(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
347 struct kvm_mtrr
*mtrr_state
= &vcpu
->arch
.mtrr_state
;
348 struct kvm_mtrr_range
*tmp
, *cur
;
349 int index
, is_mtrr_mask
;
351 index
= (msr
- 0x200) / 2;
352 is_mtrr_mask
= msr
- 0x200 - 2 * index
;
353 cur
= &mtrr_state
->var_ranges
[index
];
355 /* remove the entry if it's in the list. */
356 if (var_mtrr_range_is_valid(cur
))
357 list_del(&mtrr_state
->var_ranges
[index
].node
);
364 /* add it to the list if it's enabled. */
365 if (var_mtrr_range_is_valid(cur
)) {
366 list_for_each_entry(tmp
, &mtrr_state
->head
, node
)
367 if (cur
->base
>= tmp
->base
)
369 list_add_tail(&cur
->node
, &tmp
->node
);
373 int kvm_mtrr_set_msr(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
377 if (!kvm_mtrr_valid(vcpu
, msr
, data
))
380 index
= fixed_msr_to_range_index(msr
);
382 *(u64
*)&vcpu
->arch
.mtrr_state
.fixed_ranges
[index
] = data
;
383 else if (msr
== MSR_MTRRdefType
)
384 vcpu
->arch
.mtrr_state
.deftype
= data
;
385 else if (msr
== MSR_IA32_CR_PAT
)
386 vcpu
->arch
.pat
= data
;
388 set_var_mtrr_msr(vcpu
, msr
, data
);
390 update_mtrr(vcpu
, msr
);
394 int kvm_mtrr_get_msr(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
398 /* MSR_MTRRcap is a readonly MSR. */
399 if (msr
== MSR_MTRRcap
) {
404 * VCNT = KVM_NR_VAR_MTRR
406 *pdata
= 0x500 | KVM_NR_VAR_MTRR
;
410 if (!msr_mtrr_valid(msr
))
413 index
= fixed_msr_to_range_index(msr
);
415 *pdata
= *(u64
*)&vcpu
->arch
.mtrr_state
.fixed_ranges
[index
];
416 else if (msr
== MSR_MTRRdefType
)
417 *pdata
= vcpu
->arch
.mtrr_state
.deftype
;
418 else if (msr
== MSR_IA32_CR_PAT
)
419 *pdata
= vcpu
->arch
.pat
;
420 else { /* Variable MTRRs */
423 index
= (msr
- 0x200) / 2;
424 is_mtrr_mask
= msr
- 0x200 - 2 * index
;
426 *pdata
= vcpu
->arch
.mtrr_state
.var_ranges
[index
].base
;
428 *pdata
= vcpu
->arch
.mtrr_state
.var_ranges
[index
].mask
;
434 void kvm_vcpu_mtrr_init(struct kvm_vcpu
*vcpu
)
436 INIT_LIST_HEAD(&vcpu
->arch
.mtrr_state
.head
);
441 struct kvm_mtrr
*mtrr_state
;
447 /* mtrr is completely disabled? */
449 /* [start, end) is not fully covered in MTRRs? */
452 /* private fields. */
454 /* used for fixed MTRRs. */
460 /* used for var MTRRs. */
462 struct kvm_mtrr_range
*range
;
463 /* max address has been covered in var MTRRs. */
471 static bool mtrr_lookup_fixed_start(struct mtrr_iter
*iter
)
475 if (!fixed_mtrr_is_enabled(iter
->mtrr_state
))
478 seg
= fixed_mtrr_addr_to_seg(iter
->start
);
483 index
= fixed_mtrr_addr_seg_to_range_index(iter
->start
, seg
);
489 static bool match_var_range(struct mtrr_iter
*iter
,
490 struct kvm_mtrr_range
*range
)
494 var_mtrr_range(range
, &start
, &end
);
495 if (!(start
>= iter
->end
|| end
<= iter
->start
)) {
499 * the function is called when we do kvm_mtrr.head walking.
500 * Range has the minimum base address which interleaves
501 * [looker->start_max, looker->end).
503 iter
->partial_map
|= iter
->start_max
< start
;
505 /* update the max address has been covered. */
506 iter
->start_max
= max(iter
->start_max
, end
);
513 static void __mtrr_lookup_var_next(struct mtrr_iter
*iter
)
515 struct kvm_mtrr
*mtrr_state
= iter
->mtrr_state
;
517 list_for_each_entry_continue(iter
->range
, &mtrr_state
->head
, node
)
518 if (match_var_range(iter
, iter
->range
))
522 iter
->partial_map
|= iter
->start_max
< iter
->end
;
525 static void mtrr_lookup_var_start(struct mtrr_iter
*iter
)
527 struct kvm_mtrr
*mtrr_state
= iter
->mtrr_state
;
530 iter
->start_max
= iter
->start
;
531 iter
->range
= list_prepare_entry(iter
->range
, &mtrr_state
->head
, node
);
533 __mtrr_lookup_var_next(iter
);
536 static void mtrr_lookup_fixed_next(struct mtrr_iter
*iter
)
538 /* terminate the lookup. */
539 if (fixed_mtrr_range_end_addr(iter
->seg
, iter
->index
) >= iter
->end
) {
547 /* have looked up for all fixed MTRRs. */
548 if (iter
->index
>= ARRAY_SIZE(iter
->mtrr_state
->fixed_ranges
))
549 return mtrr_lookup_var_start(iter
);
551 /* switch to next segment. */
552 if (iter
->index
> fixed_mtrr_seg_end_range_index(iter
->seg
))
556 static void mtrr_lookup_var_next(struct mtrr_iter
*iter
)
558 __mtrr_lookup_var_next(iter
);
561 static void mtrr_lookup_start(struct mtrr_iter
*iter
)
563 if (!mtrr_is_enabled(iter
->mtrr_state
)) {
564 iter
->mtrr_disabled
= true;
568 if (!mtrr_lookup_fixed_start(iter
))
569 mtrr_lookup_var_start(iter
);
572 static void mtrr_lookup_init(struct mtrr_iter
*iter
,
573 struct kvm_mtrr
*mtrr_state
, u64 start
, u64 end
)
575 iter
->mtrr_state
= mtrr_state
;
578 iter
->mtrr_disabled
= false;
579 iter
->partial_map
= false;
583 mtrr_lookup_start(iter
);
586 static bool mtrr_lookup_okay(struct mtrr_iter
*iter
)
589 iter
->mem_type
= iter
->mtrr_state
->fixed_ranges
[iter
->index
];
594 iter
->mem_type
= iter
->range
->base
& 0xff;
601 static void mtrr_lookup_next(struct mtrr_iter
*iter
)
604 mtrr_lookup_fixed_next(iter
);
606 mtrr_lookup_var_next(iter
);
609 #define mtrr_for_each_mem_type(_iter_, _mtrr_, _gpa_start_, _gpa_end_) \
610 for (mtrr_lookup_init(_iter_, _mtrr_, _gpa_start_, _gpa_end_); \
611 mtrr_lookup_okay(_iter_); mtrr_lookup_next(_iter_))
613 u8
kvm_mtrr_get_guest_memory_type(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
615 struct kvm_mtrr
*mtrr_state
= &vcpu
->arch
.mtrr_state
;
616 struct mtrr_iter iter
;
619 const int wt_wb_mask
= (1 << MTRR_TYPE_WRBACK
)
620 | (1 << MTRR_TYPE_WRTHROUGH
);
622 start
= gfn_to_gpa(gfn
);
623 end
= start
+ PAGE_SIZE
;
625 mtrr_for_each_mem_type(&iter
, mtrr_state
, start
, end
) {
626 int curr_type
= iter
.mem_type
;
629 * Please refer to Intel SDM Volume 3: 11.11.4.1 MTRR
639 * If two or more variable memory ranges match and the
640 * memory types are identical, then that memory type is
643 if (type
== curr_type
)
647 * If two or more variable memory ranges match and one of
648 * the memory types is UC, the UC memory type used.
650 if (curr_type
== MTRR_TYPE_UNCACHABLE
)
651 return MTRR_TYPE_UNCACHABLE
;
654 * If two or more variable memory ranges match and the
655 * memory types are WT and WB, the WT memory type is used.
657 if (((1 << type
) & wt_wb_mask
) &&
658 ((1 << curr_type
) & wt_wb_mask
)) {
659 type
= MTRR_TYPE_WRTHROUGH
;
664 * For overlaps not defined by the above rules, processor
665 * behavior is undefined.
668 /* We use WB for this undefined behavior. :( */
669 return MTRR_TYPE_WRBACK
;
672 if (iter
.mtrr_disabled
)
673 return mtrr_disabled_type();
675 /* not contained in any MTRRs. */
677 return mtrr_default_type(mtrr_state
);
680 * We just check one page, partially covered by MTRRs is
683 WARN_ON(iter
.partial_map
);
687 EXPORT_SYMBOL_GPL(kvm_mtrr_get_guest_memory_type
);
689 bool kvm_mtrr_check_gfn_range_consistency(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
692 struct kvm_mtrr
*mtrr_state
= &vcpu
->arch
.mtrr_state
;
693 struct mtrr_iter iter
;
697 start
= gfn_to_gpa(gfn
);
698 end
= gfn_to_gpa(gfn
+ page_num
);
699 mtrr_for_each_mem_type(&iter
, mtrr_state
, start
, end
) {
701 type
= iter
.mem_type
;
705 if (type
!= iter
.mem_type
)
709 if (iter
.mtrr_disabled
)
712 if (!iter
.partial_map
)
718 return type
== mtrr_default_type(mtrr_state
);