Linux 4.2.2
[linux/fpc-iii.git] / arch / x86 / kvm / paging_tmpl.h
blob0f67d7e2480074f9d313e0f6af43bd9b64c5a555
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * MMU support
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
22 * We need the mmu code to access both 32-bit and 64-bit guest ptes,
23 * so the code in this file is compiled twice, once per pte size.
27 * This is used to catch non optimized PT_GUEST_(DIRTY|ACCESS)_SHIFT macro
28 * uses for EPT without A/D paging type.
30 extern u64 __pure __using_nonexistent_pte_bit(void)
31 __compiletime_error("wrong use of PT_GUEST_(DIRTY|ACCESS)_SHIFT");
33 #if PTTYPE == 64
34 #define pt_element_t u64
35 #define guest_walker guest_walker64
36 #define FNAME(name) paging##64_##name
37 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
38 #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
39 #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
40 #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
41 #define PT_LEVEL_BITS PT64_LEVEL_BITS
42 #define PT_GUEST_ACCESSED_MASK PT_ACCESSED_MASK
43 #define PT_GUEST_DIRTY_MASK PT_DIRTY_MASK
44 #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
45 #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
46 #ifdef CONFIG_X86_64
47 #define PT_MAX_FULL_LEVELS 4
48 #define CMPXCHG cmpxchg
49 #else
50 #define CMPXCHG cmpxchg64
51 #define PT_MAX_FULL_LEVELS 2
52 #endif
53 #elif PTTYPE == 32
54 #define pt_element_t u32
55 #define guest_walker guest_walker32
56 #define FNAME(name) paging##32_##name
57 #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
58 #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
59 #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
60 #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
61 #define PT_LEVEL_BITS PT32_LEVEL_BITS
62 #define PT_MAX_FULL_LEVELS 2
63 #define PT_GUEST_ACCESSED_MASK PT_ACCESSED_MASK
64 #define PT_GUEST_DIRTY_MASK PT_DIRTY_MASK
65 #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
66 #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
67 #define CMPXCHG cmpxchg
68 #elif PTTYPE == PTTYPE_EPT
69 #define pt_element_t u64
70 #define guest_walker guest_walkerEPT
71 #define FNAME(name) ept_##name
72 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
73 #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
74 #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
75 #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
76 #define PT_LEVEL_BITS PT64_LEVEL_BITS
77 #define PT_GUEST_ACCESSED_MASK 0
78 #define PT_GUEST_DIRTY_MASK 0
79 #define PT_GUEST_DIRTY_SHIFT __using_nonexistent_pte_bit()
80 #define PT_GUEST_ACCESSED_SHIFT __using_nonexistent_pte_bit()
81 #define CMPXCHG cmpxchg64
82 #define PT_MAX_FULL_LEVELS 4
83 #else
84 #error Invalid PTTYPE value
85 #endif
87 #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
88 #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL)
91 * The guest_walker structure emulates the behavior of the hardware page
92 * table walker.
94 struct guest_walker {
95 int level;
96 unsigned max_level;
97 gfn_t table_gfn[PT_MAX_FULL_LEVELS];
98 pt_element_t ptes[PT_MAX_FULL_LEVELS];
99 pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
100 gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
101 pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS];
102 bool pte_writable[PT_MAX_FULL_LEVELS];
103 unsigned pt_access;
104 unsigned pte_access;
105 gfn_t gfn;
106 struct x86_exception fault;
109 static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
111 return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
114 static inline void FNAME(protect_clean_gpte)(unsigned *access, unsigned gpte)
116 unsigned mask;
118 /* dirty bit is not supported, so no need to track it */
119 if (!PT_GUEST_DIRTY_MASK)
120 return;
122 BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
124 mask = (unsigned)~ACC_WRITE_MASK;
125 /* Allow write access to dirty gptes */
126 mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) &
127 PT_WRITABLE_MASK;
128 *access &= mask;
131 static bool FNAME(is_rsvd_bits_set)(struct kvm_mmu *mmu, u64 gpte, int level)
133 int bit7 = (gpte >> 7) & 1, low6 = gpte & 0x3f;
135 return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) |
136 ((mmu->bad_mt_xwr & (1ull << low6)) != 0);
139 static inline int FNAME(is_present_gpte)(unsigned long pte)
141 #if PTTYPE != PTTYPE_EPT
142 return is_present_gpte(pte);
143 #else
144 return pte & 7;
145 #endif
148 static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
149 pt_element_t __user *ptep_user, unsigned index,
150 pt_element_t orig_pte, pt_element_t new_pte)
152 int npages;
153 pt_element_t ret;
154 pt_element_t *table;
155 struct page *page;
157 npages = get_user_pages_fast((unsigned long)ptep_user, 1, 1, &page);
158 /* Check if the user is doing something meaningless. */
159 if (unlikely(npages != 1))
160 return -EFAULT;
162 table = kmap_atomic(page);
163 ret = CMPXCHG(&table[index], orig_pte, new_pte);
164 kunmap_atomic(table);
166 kvm_release_page_dirty(page);
168 return (ret != orig_pte);
171 static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
172 struct kvm_mmu_page *sp, u64 *spte,
173 u64 gpte)
175 if (FNAME(is_rsvd_bits_set)(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
176 goto no_present;
178 if (!FNAME(is_present_gpte)(gpte))
179 goto no_present;
181 /* if accessed bit is not supported prefetch non accessed gpte */
182 if (PT_GUEST_ACCESSED_MASK && !(gpte & PT_GUEST_ACCESSED_MASK))
183 goto no_present;
185 return false;
187 no_present:
188 drop_spte(vcpu->kvm, spte);
189 return true;
192 static inline unsigned FNAME(gpte_access)(struct kvm_vcpu *vcpu, u64 gpte)
194 unsigned access;
195 #if PTTYPE == PTTYPE_EPT
196 access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) |
197 ((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) |
198 ACC_USER_MASK;
199 #else
200 access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
201 access &= ~(gpte >> PT64_NX_SHIFT);
202 #endif
204 return access;
207 static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu,
208 struct kvm_mmu *mmu,
209 struct guest_walker *walker,
210 int write_fault)
212 unsigned level, index;
213 pt_element_t pte, orig_pte;
214 pt_element_t __user *ptep_user;
215 gfn_t table_gfn;
216 int ret;
218 /* dirty/accessed bits are not supported, so no need to update them */
219 if (!PT_GUEST_DIRTY_MASK)
220 return 0;
222 for (level = walker->max_level; level >= walker->level; --level) {
223 pte = orig_pte = walker->ptes[level - 1];
224 table_gfn = walker->table_gfn[level - 1];
225 ptep_user = walker->ptep_user[level - 1];
226 index = offset_in_page(ptep_user) / sizeof(pt_element_t);
227 if (!(pte & PT_GUEST_ACCESSED_MASK)) {
228 trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte));
229 pte |= PT_GUEST_ACCESSED_MASK;
231 if (level == walker->level && write_fault &&
232 !(pte & PT_GUEST_DIRTY_MASK)) {
233 trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
234 pte |= PT_GUEST_DIRTY_MASK;
236 if (pte == orig_pte)
237 continue;
240 * If the slot is read-only, simply do not process the accessed
241 * and dirty bits. This is the correct thing to do if the slot
242 * is ROM, and page tables in read-as-ROM/write-as-MMIO slots
243 * are only supported if the accessed and dirty bits are already
244 * set in the ROM (so that MMIO writes are never needed).
246 * Note that NPT does not allow this at all and faults, since
247 * it always wants nested page table entries for the guest
248 * page tables to be writable. And EPT works but will simply
249 * overwrite the read-only memory to set the accessed and dirty
250 * bits.
252 if (unlikely(!walker->pte_writable[level - 1]))
253 continue;
255 ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index, orig_pte, pte);
256 if (ret)
257 return ret;
259 kvm_vcpu_mark_page_dirty(vcpu, table_gfn);
260 walker->ptes[level] = pte;
262 return 0;
266 * Fetch a guest pte for a guest virtual address
268 static int FNAME(walk_addr_generic)(struct guest_walker *walker,
269 struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
270 gva_t addr, u32 access)
272 int ret;
273 pt_element_t pte;
274 pt_element_t __user *uninitialized_var(ptep_user);
275 gfn_t table_gfn;
276 unsigned index, pt_access, pte_access, accessed_dirty;
277 gpa_t pte_gpa;
278 int offset;
279 const int write_fault = access & PFERR_WRITE_MASK;
280 const int user_fault = access & PFERR_USER_MASK;
281 const int fetch_fault = access & PFERR_FETCH_MASK;
282 u16 errcode = 0;
283 gpa_t real_gpa;
284 gfn_t gfn;
286 trace_kvm_mmu_pagetable_walk(addr, access);
287 retry_walk:
288 walker->level = mmu->root_level;
289 pte = mmu->get_cr3(vcpu);
291 #if PTTYPE == 64
292 if (walker->level == PT32E_ROOT_LEVEL) {
293 pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3);
294 trace_kvm_mmu_paging_element(pte, walker->level);
295 if (!FNAME(is_present_gpte)(pte))
296 goto error;
297 --walker->level;
299 #endif
300 walker->max_level = walker->level;
301 ASSERT(!(is_long_mode(vcpu) && !is_pae(vcpu)));
303 accessed_dirty = PT_GUEST_ACCESSED_MASK;
304 pt_access = pte_access = ACC_ALL;
305 ++walker->level;
307 do {
308 gfn_t real_gfn;
309 unsigned long host_addr;
311 pt_access &= pte_access;
312 --walker->level;
314 index = PT_INDEX(addr, walker->level);
316 table_gfn = gpte_to_gfn(pte);
317 offset = index * sizeof(pt_element_t);
318 pte_gpa = gfn_to_gpa(table_gfn) + offset;
319 walker->table_gfn[walker->level - 1] = table_gfn;
320 walker->pte_gpa[walker->level - 1] = pte_gpa;
322 real_gfn = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn),
323 PFERR_USER_MASK|PFERR_WRITE_MASK,
324 &walker->fault);
327 * FIXME: This can happen if emulation (for of an INS/OUTS
328 * instruction) triggers a nested page fault. The exit
329 * qualification / exit info field will incorrectly have
330 * "guest page access" as the nested page fault's cause,
331 * instead of "guest page structure access". To fix this,
332 * the x86_exception struct should be augmented with enough
333 * information to fix the exit_qualification or exit_info_1
334 * fields.
336 if (unlikely(real_gfn == UNMAPPED_GVA))
337 return 0;
339 real_gfn = gpa_to_gfn(real_gfn);
341 host_addr = kvm_vcpu_gfn_to_hva_prot(vcpu, real_gfn,
342 &walker->pte_writable[walker->level - 1]);
343 if (unlikely(kvm_is_error_hva(host_addr)))
344 goto error;
346 ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
347 if (unlikely(__copy_from_user(&pte, ptep_user, sizeof(pte))))
348 goto error;
349 walker->ptep_user[walker->level - 1] = ptep_user;
351 trace_kvm_mmu_paging_element(pte, walker->level);
353 if (unlikely(!FNAME(is_present_gpte)(pte)))
354 goto error;
356 if (unlikely(FNAME(is_rsvd_bits_set)(mmu, pte,
357 walker->level))) {
358 errcode |= PFERR_RSVD_MASK | PFERR_PRESENT_MASK;
359 goto error;
362 accessed_dirty &= pte;
363 pte_access = pt_access & FNAME(gpte_access)(vcpu, pte);
365 walker->ptes[walker->level - 1] = pte;
366 } while (!is_last_gpte(mmu, walker->level, pte));
368 if (unlikely(permission_fault(vcpu, mmu, pte_access, access))) {
369 errcode |= PFERR_PRESENT_MASK;
370 goto error;
373 gfn = gpte_to_gfn_lvl(pte, walker->level);
374 gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT;
376 if (PTTYPE == 32 && walker->level == PT_DIRECTORY_LEVEL && is_cpuid_PSE36())
377 gfn += pse36_gfn_delta(pte);
379 real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn), access, &walker->fault);
380 if (real_gpa == UNMAPPED_GVA)
381 return 0;
383 walker->gfn = real_gpa >> PAGE_SHIFT;
385 if (!write_fault)
386 FNAME(protect_clean_gpte)(&pte_access, pte);
387 else
389 * On a write fault, fold the dirty bit into accessed_dirty.
390 * For modes without A/D bits support accessed_dirty will be
391 * always clear.
393 accessed_dirty &= pte >>
394 (PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT);
396 if (unlikely(!accessed_dirty)) {
397 ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker, write_fault);
398 if (unlikely(ret < 0))
399 goto error;
400 else if (ret)
401 goto retry_walk;
404 walker->pt_access = pt_access;
405 walker->pte_access = pte_access;
406 pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
407 __func__, (u64)pte, pte_access, pt_access);
408 return 1;
410 error:
411 errcode |= write_fault | user_fault;
412 if (fetch_fault && (mmu->nx ||
413 kvm_read_cr4_bits(vcpu, X86_CR4_SMEP)))
414 errcode |= PFERR_FETCH_MASK;
416 walker->fault.vector = PF_VECTOR;
417 walker->fault.error_code_valid = true;
418 walker->fault.error_code = errcode;
420 #if PTTYPE == PTTYPE_EPT
422 * Use PFERR_RSVD_MASK in error_code to to tell if EPT
423 * misconfiguration requires to be injected. The detection is
424 * done by is_rsvd_bits_set() above.
426 * We set up the value of exit_qualification to inject:
427 * [2:0] - Derive from [2:0] of real exit_qualification at EPT violation
428 * [5:3] - Calculated by the page walk of the guest EPT page tables
429 * [7:8] - Derived from [7:8] of real exit_qualification
431 * The other bits are set to 0.
433 if (!(errcode & PFERR_RSVD_MASK)) {
434 vcpu->arch.exit_qualification &= 0x187;
435 vcpu->arch.exit_qualification |= ((pt_access & pte) & 0x7) << 3;
437 #endif
438 walker->fault.address = addr;
439 walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
441 trace_kvm_mmu_walker_error(walker->fault.error_code);
442 return 0;
445 static int FNAME(walk_addr)(struct guest_walker *walker,
446 struct kvm_vcpu *vcpu, gva_t addr, u32 access)
448 return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.mmu, addr,
449 access);
452 #if PTTYPE != PTTYPE_EPT
453 static int FNAME(walk_addr_nested)(struct guest_walker *walker,
454 struct kvm_vcpu *vcpu, gva_t addr,
455 u32 access)
457 return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu,
458 addr, access);
460 #endif
462 static bool
463 FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
464 u64 *spte, pt_element_t gpte, bool no_dirty_log)
466 unsigned pte_access;
467 gfn_t gfn;
468 pfn_t pfn;
470 if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
471 return false;
473 pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
475 gfn = gpte_to_gfn(gpte);
476 pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte);
477 FNAME(protect_clean_gpte)(&pte_access, gpte);
478 pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn,
479 no_dirty_log && (pte_access & ACC_WRITE_MASK));
480 if (is_error_pfn(pfn))
481 return false;
484 * we call mmu_set_spte() with host_writable = true because
485 * pte_prefetch_gfn_to_pfn always gets a writable pfn.
487 mmu_set_spte(vcpu, spte, pte_access, 0, NULL, PT_PAGE_TABLE_LEVEL,
488 gfn, pfn, true, true);
490 return true;
493 static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
494 u64 *spte, const void *pte)
496 pt_element_t gpte = *(const pt_element_t *)pte;
498 FNAME(prefetch_gpte)(vcpu, sp, spte, gpte, false);
501 static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
502 struct guest_walker *gw, int level)
504 pt_element_t curr_pte;
505 gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
506 u64 mask;
507 int r, index;
509 if (level == PT_PAGE_TABLE_LEVEL) {
510 mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
511 base_gpa = pte_gpa & ~mask;
512 index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
514 r = kvm_vcpu_read_guest_atomic(vcpu, base_gpa,
515 gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
516 curr_pte = gw->prefetch_ptes[index];
517 } else
518 r = kvm_vcpu_read_guest_atomic(vcpu, pte_gpa,
519 &curr_pte, sizeof(curr_pte));
521 return r || curr_pte != gw->ptes[level - 1];
524 static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
525 u64 *sptep)
527 struct kvm_mmu_page *sp;
528 pt_element_t *gptep = gw->prefetch_ptes;
529 u64 *spte;
530 int i;
532 sp = page_header(__pa(sptep));
534 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
535 return;
537 if (sp->role.direct)
538 return __direct_pte_prefetch(vcpu, sp, sptep);
540 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
541 spte = sp->spt + i;
543 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
544 if (spte == sptep)
545 continue;
547 if (is_shadow_present_pte(*spte))
548 continue;
550 if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i], true))
551 break;
556 * Fetch a shadow pte for a specific level in the paging hierarchy.
557 * If the guest tries to write a write-protected page, we need to
558 * emulate this operation, return 1 to indicate this case.
560 static int FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
561 struct guest_walker *gw,
562 int write_fault, int hlevel,
563 pfn_t pfn, bool map_writable, bool prefault)
565 struct kvm_mmu_page *sp = NULL;
566 struct kvm_shadow_walk_iterator it;
567 unsigned direct_access, access = gw->pt_access;
568 int top_level, emulate = 0;
570 direct_access = gw->pte_access;
572 top_level = vcpu->arch.mmu.root_level;
573 if (top_level == PT32E_ROOT_LEVEL)
574 top_level = PT32_ROOT_LEVEL;
576 * Verify that the top-level gpte is still there. Since the page
577 * is a root page, it is either write protected (and cannot be
578 * changed from now on) or it is invalid (in which case, we don't
579 * really care if it changes underneath us after this point).
581 if (FNAME(gpte_changed)(vcpu, gw, top_level))
582 goto out_gpte_changed;
584 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
585 goto out_gpte_changed;
587 for (shadow_walk_init(&it, vcpu, addr);
588 shadow_walk_okay(&it) && it.level > gw->level;
589 shadow_walk_next(&it)) {
590 gfn_t table_gfn;
592 clear_sp_write_flooding_count(it.sptep);
593 drop_large_spte(vcpu, it.sptep);
595 sp = NULL;
596 if (!is_shadow_present_pte(*it.sptep)) {
597 table_gfn = gw->table_gfn[it.level - 2];
598 sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1,
599 false, access, it.sptep);
603 * Verify that the gpte in the page we've just write
604 * protected is still there.
606 if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
607 goto out_gpte_changed;
609 if (sp)
610 link_shadow_page(it.sptep, sp, PT_GUEST_ACCESSED_MASK);
613 for (;
614 shadow_walk_okay(&it) && it.level > hlevel;
615 shadow_walk_next(&it)) {
616 gfn_t direct_gfn;
618 clear_sp_write_flooding_count(it.sptep);
619 validate_direct_spte(vcpu, it.sptep, direct_access);
621 drop_large_spte(vcpu, it.sptep);
623 if (is_shadow_present_pte(*it.sptep))
624 continue;
626 direct_gfn = gw->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
628 sp = kvm_mmu_get_page(vcpu, direct_gfn, addr, it.level-1,
629 true, direct_access, it.sptep);
630 link_shadow_page(it.sptep, sp, PT_GUEST_ACCESSED_MASK);
633 clear_sp_write_flooding_count(it.sptep);
634 mmu_set_spte(vcpu, it.sptep, gw->pte_access, write_fault, &emulate,
635 it.level, gw->gfn, pfn, prefault, map_writable);
636 FNAME(pte_prefetch)(vcpu, gw, it.sptep);
638 return emulate;
640 out_gpte_changed:
641 if (sp)
642 kvm_mmu_put_page(sp, it.sptep);
643 kvm_release_pfn_clean(pfn);
644 return 0;
648 * To see whether the mapped gfn can write its page table in the current
649 * mapping.
651 * It is the helper function of FNAME(page_fault). When guest uses large page
652 * size to map the writable gfn which is used as current page table, we should
653 * force kvm to use small page size to map it because new shadow page will be
654 * created when kvm establishes shadow page table that stop kvm using large
655 * page size. Do it early can avoid unnecessary #PF and emulation.
657 * @write_fault_to_shadow_pgtable will return true if the fault gfn is
658 * currently used as its page table.
660 * Note: the PDPT page table is not checked for PAE-32 bit guest. It is ok
661 * since the PDPT is always shadowed, that means, we can not use large page
662 * size to map the gfn which is used as PDPT.
664 static bool
665 FNAME(is_self_change_mapping)(struct kvm_vcpu *vcpu,
666 struct guest_walker *walker, int user_fault,
667 bool *write_fault_to_shadow_pgtable)
669 int level;
670 gfn_t mask = ~(KVM_PAGES_PER_HPAGE(walker->level) - 1);
671 bool self_changed = false;
673 if (!(walker->pte_access & ACC_WRITE_MASK ||
674 (!is_write_protection(vcpu) && !user_fault)))
675 return false;
677 for (level = walker->level; level <= walker->max_level; level++) {
678 gfn_t gfn = walker->gfn ^ walker->table_gfn[level - 1];
680 self_changed |= !(gfn & mask);
681 *write_fault_to_shadow_pgtable |= !gfn;
684 return self_changed;
688 * Page fault handler. There are several causes for a page fault:
689 * - there is no shadow pte for the guest pte
690 * - write access through a shadow pte marked read only so that we can set
691 * the dirty bit
692 * - write access to a shadow pte marked read only so we can update the page
693 * dirty bitmap, when userspace requests it
694 * - mmio access; in this case we will never install a present shadow pte
695 * - normal guest page fault due to the guest pte marked not present, not
696 * writable, or not executable
698 * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
699 * a negative value on error.
701 static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, u32 error_code,
702 bool prefault)
704 int write_fault = error_code & PFERR_WRITE_MASK;
705 int user_fault = error_code & PFERR_USER_MASK;
706 struct guest_walker walker;
707 int r;
708 pfn_t pfn;
709 int level = PT_PAGE_TABLE_LEVEL;
710 int force_pt_level;
711 unsigned long mmu_seq;
712 bool map_writable, is_self_change_mapping;
714 pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
716 if (unlikely(error_code & PFERR_RSVD_MASK)) {
717 r = handle_mmio_page_fault(vcpu, addr, error_code,
718 mmu_is_nested(vcpu));
719 if (likely(r != RET_MMIO_PF_INVALID))
720 return r;
723 * page fault with PFEC.RSVD = 1 is caused by shadow
724 * page fault, should not be used to walk guest page
725 * table.
727 error_code &= ~PFERR_RSVD_MASK;
730 r = mmu_topup_memory_caches(vcpu);
731 if (r)
732 return r;
735 * Look up the guest pte for the faulting address.
737 r = FNAME(walk_addr)(&walker, vcpu, addr, error_code);
740 * The page is not mapped by the guest. Let the guest handle it.
742 if (!r) {
743 pgprintk("%s: guest page fault\n", __func__);
744 if (!prefault)
745 inject_page_fault(vcpu, &walker.fault);
747 return 0;
750 vcpu->arch.write_fault_to_shadow_pgtable = false;
752 is_self_change_mapping = FNAME(is_self_change_mapping)(vcpu,
753 &walker, user_fault, &vcpu->arch.write_fault_to_shadow_pgtable);
755 if (walker.level >= PT_DIRECTORY_LEVEL)
756 force_pt_level = mapping_level_dirty_bitmap(vcpu, walker.gfn)
757 || is_self_change_mapping;
758 else
759 force_pt_level = 1;
760 if (!force_pt_level) {
761 level = min(walker.level, mapping_level(vcpu, walker.gfn));
762 walker.gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE(level) - 1);
765 mmu_seq = vcpu->kvm->mmu_notifier_seq;
766 smp_rmb();
768 if (try_async_pf(vcpu, prefault, walker.gfn, addr, &pfn, write_fault,
769 &map_writable))
770 return 0;
772 if (handle_abnormal_pfn(vcpu, mmu_is_nested(vcpu) ? 0 : addr,
773 walker.gfn, pfn, walker.pte_access, &r))
774 return r;
777 * Do not change pte_access if the pfn is a mmio page, otherwise
778 * we will cache the incorrect access into mmio spte.
780 if (write_fault && !(walker.pte_access & ACC_WRITE_MASK) &&
781 !is_write_protection(vcpu) && !user_fault &&
782 !is_noslot_pfn(pfn)) {
783 walker.pte_access |= ACC_WRITE_MASK;
784 walker.pte_access &= ~ACC_USER_MASK;
787 * If we converted a user page to a kernel page,
788 * so that the kernel can write to it when cr0.wp=0,
789 * then we should prevent the kernel from executing it
790 * if SMEP is enabled.
792 if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
793 walker.pte_access &= ~ACC_EXEC_MASK;
796 spin_lock(&vcpu->kvm->mmu_lock);
797 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
798 goto out_unlock;
800 kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT);
801 make_mmu_pages_available(vcpu);
802 if (!force_pt_level)
803 transparent_hugepage_adjust(vcpu, &walker.gfn, &pfn, &level);
804 r = FNAME(fetch)(vcpu, addr, &walker, write_fault,
805 level, pfn, map_writable, prefault);
806 ++vcpu->stat.pf_fixed;
807 kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT);
808 spin_unlock(&vcpu->kvm->mmu_lock);
810 return r;
812 out_unlock:
813 spin_unlock(&vcpu->kvm->mmu_lock);
814 kvm_release_pfn_clean(pfn);
815 return 0;
818 static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp)
820 int offset = 0;
822 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
824 if (PTTYPE == 32)
825 offset = sp->role.quadrant << PT64_LEVEL_BITS;
827 return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
830 static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva)
832 struct kvm_shadow_walk_iterator iterator;
833 struct kvm_mmu_page *sp;
834 int level;
835 u64 *sptep;
837 vcpu_clear_mmio_info(vcpu, gva);
840 * No need to check return value here, rmap_can_add() can
841 * help us to skip pte prefetch later.
843 mmu_topup_memory_caches(vcpu);
845 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
846 WARN_ON(1);
847 return;
850 spin_lock(&vcpu->kvm->mmu_lock);
851 for_each_shadow_entry(vcpu, gva, iterator) {
852 level = iterator.level;
853 sptep = iterator.sptep;
855 sp = page_header(__pa(sptep));
856 if (is_last_spte(*sptep, level)) {
857 pt_element_t gpte;
858 gpa_t pte_gpa;
860 if (!sp->unsync)
861 break;
863 pte_gpa = FNAME(get_level1_sp_gpa)(sp);
864 pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
866 if (mmu_page_zap_pte(vcpu->kvm, sp, sptep))
867 kvm_flush_remote_tlbs(vcpu->kvm);
869 if (!rmap_can_add(vcpu))
870 break;
872 if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
873 sizeof(pt_element_t)))
874 break;
876 FNAME(update_pte)(vcpu, sp, sptep, &gpte);
879 if (!is_shadow_present_pte(*sptep) || !sp->unsync_children)
880 break;
882 spin_unlock(&vcpu->kvm->mmu_lock);
885 static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr, u32 access,
886 struct x86_exception *exception)
888 struct guest_walker walker;
889 gpa_t gpa = UNMAPPED_GVA;
890 int r;
892 r = FNAME(walk_addr)(&walker, vcpu, vaddr, access);
894 if (r) {
895 gpa = gfn_to_gpa(walker.gfn);
896 gpa |= vaddr & ~PAGE_MASK;
897 } else if (exception)
898 *exception = walker.fault;
900 return gpa;
903 #if PTTYPE != PTTYPE_EPT
904 static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gva_t vaddr,
905 u32 access,
906 struct x86_exception *exception)
908 struct guest_walker walker;
909 gpa_t gpa = UNMAPPED_GVA;
910 int r;
912 r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access);
914 if (r) {
915 gpa = gfn_to_gpa(walker.gfn);
916 gpa |= vaddr & ~PAGE_MASK;
917 } else if (exception)
918 *exception = walker.fault;
920 return gpa;
922 #endif
925 * Using the cached information from sp->gfns is safe because:
926 * - The spte has a reference to the struct page, so the pfn for a given gfn
927 * can't change unless all sptes pointing to it are nuked first.
929 * Note:
930 * We should flush all tlbs if spte is dropped even though guest is
931 * responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page
932 * and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't
933 * used by guest then tlbs are not flushed, so guest is allowed to access the
934 * freed pages.
935 * And we increase kvm->tlbs_dirty to delay tlbs flush in this case.
937 static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
939 int i, nr_present = 0;
940 bool host_writable;
941 gpa_t first_pte_gpa;
943 /* direct kvm_mmu_page can not be unsync. */
944 BUG_ON(sp->role.direct);
946 first_pte_gpa = FNAME(get_level1_sp_gpa)(sp);
948 for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
949 unsigned pte_access;
950 pt_element_t gpte;
951 gpa_t pte_gpa;
952 gfn_t gfn;
954 if (!sp->spt[i])
955 continue;
957 pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
959 if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
960 sizeof(pt_element_t)))
961 return -EINVAL;
963 if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) {
964 vcpu->kvm->tlbs_dirty++;
965 continue;
968 gfn = gpte_to_gfn(gpte);
969 pte_access = sp->role.access;
970 pte_access &= FNAME(gpte_access)(vcpu, gpte);
971 FNAME(protect_clean_gpte)(&pte_access, gpte);
973 if (sync_mmio_spte(vcpu, &sp->spt[i], gfn, pte_access,
974 &nr_present))
975 continue;
977 if (gfn != sp->gfns[i]) {
978 drop_spte(vcpu->kvm, &sp->spt[i]);
979 vcpu->kvm->tlbs_dirty++;
980 continue;
983 nr_present++;
985 host_writable = sp->spt[i] & SPTE_HOST_WRITEABLE;
987 set_spte(vcpu, &sp->spt[i], pte_access,
988 PT_PAGE_TABLE_LEVEL, gfn,
989 spte_to_pfn(sp->spt[i]), true, false,
990 host_writable);
993 return !nr_present;
996 #undef pt_element_t
997 #undef guest_walker
998 #undef FNAME
999 #undef PT_BASE_ADDR_MASK
1000 #undef PT_INDEX
1001 #undef PT_LVL_ADDR_MASK
1002 #undef PT_LVL_OFFSET_MASK
1003 #undef PT_LEVEL_BITS
1004 #undef PT_MAX_FULL_LEVELS
1005 #undef gpte_to_gfn
1006 #undef gpte_to_gfn_lvl
1007 #undef CMPXCHG
1008 #undef PT_GUEST_ACCESSED_MASK
1009 #undef PT_GUEST_DIRTY_MASK
1010 #undef PT_GUEST_DIRTY_SHIFT
1011 #undef PT_GUEST_ACCESSED_SHIFT