2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
22 * We need the mmu code to access both 32-bit and 64-bit guest ptes,
23 * so the code in this file is compiled twice, once per pte size.
27 * This is used to catch non optimized PT_GUEST_(DIRTY|ACCESS)_SHIFT macro
28 * uses for EPT without A/D paging type.
30 extern u64 __pure
__using_nonexistent_pte_bit(void)
31 __compiletime_error("wrong use of PT_GUEST_(DIRTY|ACCESS)_SHIFT");
34 #define pt_element_t u64
35 #define guest_walker guest_walker64
36 #define FNAME(name) paging##64_##name
37 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
38 #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
39 #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
40 #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
41 #define PT_LEVEL_BITS PT64_LEVEL_BITS
42 #define PT_GUEST_ACCESSED_MASK PT_ACCESSED_MASK
43 #define PT_GUEST_DIRTY_MASK PT_DIRTY_MASK
44 #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
45 #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
47 #define PT_MAX_FULL_LEVELS 4
48 #define CMPXCHG cmpxchg
50 #define CMPXCHG cmpxchg64
51 #define PT_MAX_FULL_LEVELS 2
54 #define pt_element_t u32
55 #define guest_walker guest_walker32
56 #define FNAME(name) paging##32_##name
57 #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
58 #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
59 #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
60 #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
61 #define PT_LEVEL_BITS PT32_LEVEL_BITS
62 #define PT_MAX_FULL_LEVELS 2
63 #define PT_GUEST_ACCESSED_MASK PT_ACCESSED_MASK
64 #define PT_GUEST_DIRTY_MASK PT_DIRTY_MASK
65 #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
66 #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
67 #define CMPXCHG cmpxchg
68 #elif PTTYPE == PTTYPE_EPT
69 #define pt_element_t u64
70 #define guest_walker guest_walkerEPT
71 #define FNAME(name) ept_##name
72 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
73 #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
74 #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
75 #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
76 #define PT_LEVEL_BITS PT64_LEVEL_BITS
77 #define PT_GUEST_ACCESSED_MASK 0
78 #define PT_GUEST_DIRTY_MASK 0
79 #define PT_GUEST_DIRTY_SHIFT __using_nonexistent_pte_bit()
80 #define PT_GUEST_ACCESSED_SHIFT __using_nonexistent_pte_bit()
81 #define CMPXCHG cmpxchg64
82 #define PT_MAX_FULL_LEVELS 4
84 #error Invalid PTTYPE value
87 #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
88 #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL)
91 * The guest_walker structure emulates the behavior of the hardware page
97 gfn_t table_gfn
[PT_MAX_FULL_LEVELS
];
98 pt_element_t ptes
[PT_MAX_FULL_LEVELS
];
99 pt_element_t prefetch_ptes
[PTE_PREFETCH_NUM
];
100 gpa_t pte_gpa
[PT_MAX_FULL_LEVELS
];
101 pt_element_t __user
*ptep_user
[PT_MAX_FULL_LEVELS
];
102 bool pte_writable
[PT_MAX_FULL_LEVELS
];
106 struct x86_exception fault
;
109 static gfn_t
gpte_to_gfn_lvl(pt_element_t gpte
, int lvl
)
111 return (gpte
& PT_LVL_ADDR_MASK(lvl
)) >> PAGE_SHIFT
;
114 static inline void FNAME(protect_clean_gpte
)(unsigned *access
, unsigned gpte
)
118 /* dirty bit is not supported, so no need to track it */
119 if (!PT_GUEST_DIRTY_MASK
)
122 BUILD_BUG_ON(PT_WRITABLE_MASK
!= ACC_WRITE_MASK
);
124 mask
= (unsigned)~ACC_WRITE_MASK
;
125 /* Allow write access to dirty gptes */
126 mask
|= (gpte
>> (PT_GUEST_DIRTY_SHIFT
- PT_WRITABLE_SHIFT
)) &
131 static bool FNAME(is_rsvd_bits_set
)(struct kvm_mmu
*mmu
, u64 gpte
, int level
)
133 int bit7
= (gpte
>> 7) & 1, low6
= gpte
& 0x3f;
135 return (gpte
& mmu
->rsvd_bits_mask
[bit7
][level
-1]) |
136 ((mmu
->bad_mt_xwr
& (1ull << low6
)) != 0);
139 static inline int FNAME(is_present_gpte
)(unsigned long pte
)
141 #if PTTYPE != PTTYPE_EPT
142 return is_present_gpte(pte
);
148 static int FNAME(cmpxchg_gpte
)(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
,
149 pt_element_t __user
*ptep_user
, unsigned index
,
150 pt_element_t orig_pte
, pt_element_t new_pte
)
157 npages
= get_user_pages_fast((unsigned long)ptep_user
, 1, 1, &page
);
158 /* Check if the user is doing something meaningless. */
159 if (unlikely(npages
!= 1))
162 table
= kmap_atomic(page
);
163 ret
= CMPXCHG(&table
[index
], orig_pte
, new_pte
);
164 kunmap_atomic(table
);
166 kvm_release_page_dirty(page
);
168 return (ret
!= orig_pte
);
171 static bool FNAME(prefetch_invalid_gpte
)(struct kvm_vcpu
*vcpu
,
172 struct kvm_mmu_page
*sp
, u64
*spte
,
175 if (FNAME(is_rsvd_bits_set
)(&vcpu
->arch
.mmu
, gpte
, PT_PAGE_TABLE_LEVEL
))
178 if (!FNAME(is_present_gpte
)(gpte
))
181 /* if accessed bit is not supported prefetch non accessed gpte */
182 if (PT_GUEST_ACCESSED_MASK
&& !(gpte
& PT_GUEST_ACCESSED_MASK
))
188 drop_spte(vcpu
->kvm
, spte
);
192 static inline unsigned FNAME(gpte_access
)(struct kvm_vcpu
*vcpu
, u64 gpte
)
195 #if PTTYPE == PTTYPE_EPT
196 access
= ((gpte
& VMX_EPT_WRITABLE_MASK
) ? ACC_WRITE_MASK
: 0) |
197 ((gpte
& VMX_EPT_EXECUTABLE_MASK
) ? ACC_EXEC_MASK
: 0) |
200 access
= (gpte
& (PT_WRITABLE_MASK
| PT_USER_MASK
)) | ACC_EXEC_MASK
;
201 access
&= ~(gpte
>> PT64_NX_SHIFT
);
207 static int FNAME(update_accessed_dirty_bits
)(struct kvm_vcpu
*vcpu
,
209 struct guest_walker
*walker
,
212 unsigned level
, index
;
213 pt_element_t pte
, orig_pte
;
214 pt_element_t __user
*ptep_user
;
218 /* dirty/accessed bits are not supported, so no need to update them */
219 if (!PT_GUEST_DIRTY_MASK
)
222 for (level
= walker
->max_level
; level
>= walker
->level
; --level
) {
223 pte
= orig_pte
= walker
->ptes
[level
- 1];
224 table_gfn
= walker
->table_gfn
[level
- 1];
225 ptep_user
= walker
->ptep_user
[level
- 1];
226 index
= offset_in_page(ptep_user
) / sizeof(pt_element_t
);
227 if (!(pte
& PT_GUEST_ACCESSED_MASK
)) {
228 trace_kvm_mmu_set_accessed_bit(table_gfn
, index
, sizeof(pte
));
229 pte
|= PT_GUEST_ACCESSED_MASK
;
231 if (level
== walker
->level
&& write_fault
&&
232 !(pte
& PT_GUEST_DIRTY_MASK
)) {
233 trace_kvm_mmu_set_dirty_bit(table_gfn
, index
, sizeof(pte
));
234 pte
|= PT_GUEST_DIRTY_MASK
;
240 * If the slot is read-only, simply do not process the accessed
241 * and dirty bits. This is the correct thing to do if the slot
242 * is ROM, and page tables in read-as-ROM/write-as-MMIO slots
243 * are only supported if the accessed and dirty bits are already
244 * set in the ROM (so that MMIO writes are never needed).
246 * Note that NPT does not allow this at all and faults, since
247 * it always wants nested page table entries for the guest
248 * page tables to be writable. And EPT works but will simply
249 * overwrite the read-only memory to set the accessed and dirty
252 if (unlikely(!walker
->pte_writable
[level
- 1]))
255 ret
= FNAME(cmpxchg_gpte
)(vcpu
, mmu
, ptep_user
, index
, orig_pte
, pte
);
259 kvm_vcpu_mark_page_dirty(vcpu
, table_gfn
);
260 walker
->ptes
[level
] = pte
;
266 * Fetch a guest pte for a guest virtual address
268 static int FNAME(walk_addr_generic
)(struct guest_walker
*walker
,
269 struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
,
270 gva_t addr
, u32 access
)
274 pt_element_t __user
*uninitialized_var(ptep_user
);
276 unsigned index
, pt_access
, pte_access
, accessed_dirty
;
279 const int write_fault
= access
& PFERR_WRITE_MASK
;
280 const int user_fault
= access
& PFERR_USER_MASK
;
281 const int fetch_fault
= access
& PFERR_FETCH_MASK
;
286 trace_kvm_mmu_pagetable_walk(addr
, access
);
288 walker
->level
= mmu
->root_level
;
289 pte
= mmu
->get_cr3(vcpu
);
292 if (walker
->level
== PT32E_ROOT_LEVEL
) {
293 pte
= mmu
->get_pdptr(vcpu
, (addr
>> 30) & 3);
294 trace_kvm_mmu_paging_element(pte
, walker
->level
);
295 if (!FNAME(is_present_gpte
)(pte
))
300 walker
->max_level
= walker
->level
;
301 ASSERT(!(is_long_mode(vcpu
) && !is_pae(vcpu
)));
303 accessed_dirty
= PT_GUEST_ACCESSED_MASK
;
304 pt_access
= pte_access
= ACC_ALL
;
309 unsigned long host_addr
;
311 pt_access
&= pte_access
;
314 index
= PT_INDEX(addr
, walker
->level
);
316 table_gfn
= gpte_to_gfn(pte
);
317 offset
= index
* sizeof(pt_element_t
);
318 pte_gpa
= gfn_to_gpa(table_gfn
) + offset
;
319 walker
->table_gfn
[walker
->level
- 1] = table_gfn
;
320 walker
->pte_gpa
[walker
->level
- 1] = pte_gpa
;
322 real_gfn
= mmu
->translate_gpa(vcpu
, gfn_to_gpa(table_gfn
),
323 PFERR_USER_MASK
|PFERR_WRITE_MASK
,
327 * FIXME: This can happen if emulation (for of an INS/OUTS
328 * instruction) triggers a nested page fault. The exit
329 * qualification / exit info field will incorrectly have
330 * "guest page access" as the nested page fault's cause,
331 * instead of "guest page structure access". To fix this,
332 * the x86_exception struct should be augmented with enough
333 * information to fix the exit_qualification or exit_info_1
336 if (unlikely(real_gfn
== UNMAPPED_GVA
))
339 real_gfn
= gpa_to_gfn(real_gfn
);
341 host_addr
= kvm_vcpu_gfn_to_hva_prot(vcpu
, real_gfn
,
342 &walker
->pte_writable
[walker
->level
- 1]);
343 if (unlikely(kvm_is_error_hva(host_addr
)))
346 ptep_user
= (pt_element_t __user
*)((void *)host_addr
+ offset
);
347 if (unlikely(__copy_from_user(&pte
, ptep_user
, sizeof(pte
))))
349 walker
->ptep_user
[walker
->level
- 1] = ptep_user
;
351 trace_kvm_mmu_paging_element(pte
, walker
->level
);
353 if (unlikely(!FNAME(is_present_gpte
)(pte
)))
356 if (unlikely(FNAME(is_rsvd_bits_set
)(mmu
, pte
,
358 errcode
|= PFERR_RSVD_MASK
| PFERR_PRESENT_MASK
;
362 accessed_dirty
&= pte
;
363 pte_access
= pt_access
& FNAME(gpte_access
)(vcpu
, pte
);
365 walker
->ptes
[walker
->level
- 1] = pte
;
366 } while (!is_last_gpte(mmu
, walker
->level
, pte
));
368 if (unlikely(permission_fault(vcpu
, mmu
, pte_access
, access
))) {
369 errcode
|= PFERR_PRESENT_MASK
;
373 gfn
= gpte_to_gfn_lvl(pte
, walker
->level
);
374 gfn
+= (addr
& PT_LVL_OFFSET_MASK(walker
->level
)) >> PAGE_SHIFT
;
376 if (PTTYPE
== 32 && walker
->level
== PT_DIRECTORY_LEVEL
&& is_cpuid_PSE36())
377 gfn
+= pse36_gfn_delta(pte
);
379 real_gpa
= mmu
->translate_gpa(vcpu
, gfn_to_gpa(gfn
), access
, &walker
->fault
);
380 if (real_gpa
== UNMAPPED_GVA
)
383 walker
->gfn
= real_gpa
>> PAGE_SHIFT
;
386 FNAME(protect_clean_gpte
)(&pte_access
, pte
);
389 * On a write fault, fold the dirty bit into accessed_dirty.
390 * For modes without A/D bits support accessed_dirty will be
393 accessed_dirty
&= pte
>>
394 (PT_GUEST_DIRTY_SHIFT
- PT_GUEST_ACCESSED_SHIFT
);
396 if (unlikely(!accessed_dirty
)) {
397 ret
= FNAME(update_accessed_dirty_bits
)(vcpu
, mmu
, walker
, write_fault
);
398 if (unlikely(ret
< 0))
404 walker
->pt_access
= pt_access
;
405 walker
->pte_access
= pte_access
;
406 pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
407 __func__
, (u64
)pte
, pte_access
, pt_access
);
411 errcode
|= write_fault
| user_fault
;
412 if (fetch_fault
&& (mmu
->nx
||
413 kvm_read_cr4_bits(vcpu
, X86_CR4_SMEP
)))
414 errcode
|= PFERR_FETCH_MASK
;
416 walker
->fault
.vector
= PF_VECTOR
;
417 walker
->fault
.error_code_valid
= true;
418 walker
->fault
.error_code
= errcode
;
420 #if PTTYPE == PTTYPE_EPT
422 * Use PFERR_RSVD_MASK in error_code to to tell if EPT
423 * misconfiguration requires to be injected. The detection is
424 * done by is_rsvd_bits_set() above.
426 * We set up the value of exit_qualification to inject:
427 * [2:0] - Derive from [2:0] of real exit_qualification at EPT violation
428 * [5:3] - Calculated by the page walk of the guest EPT page tables
429 * [7:8] - Derived from [7:8] of real exit_qualification
431 * The other bits are set to 0.
433 if (!(errcode
& PFERR_RSVD_MASK
)) {
434 vcpu
->arch
.exit_qualification
&= 0x187;
435 vcpu
->arch
.exit_qualification
|= ((pt_access
& pte
) & 0x7) << 3;
438 walker
->fault
.address
= addr
;
439 walker
->fault
.nested_page_fault
= mmu
!= vcpu
->arch
.walk_mmu
;
441 trace_kvm_mmu_walker_error(walker
->fault
.error_code
);
445 static int FNAME(walk_addr
)(struct guest_walker
*walker
,
446 struct kvm_vcpu
*vcpu
, gva_t addr
, u32 access
)
448 return FNAME(walk_addr_generic
)(walker
, vcpu
, &vcpu
->arch
.mmu
, addr
,
452 #if PTTYPE != PTTYPE_EPT
453 static int FNAME(walk_addr_nested
)(struct guest_walker
*walker
,
454 struct kvm_vcpu
*vcpu
, gva_t addr
,
457 return FNAME(walk_addr_generic
)(walker
, vcpu
, &vcpu
->arch
.nested_mmu
,
463 FNAME(prefetch_gpte
)(struct kvm_vcpu
*vcpu
, struct kvm_mmu_page
*sp
,
464 u64
*spte
, pt_element_t gpte
, bool no_dirty_log
)
470 if (FNAME(prefetch_invalid_gpte
)(vcpu
, sp
, spte
, gpte
))
473 pgprintk("%s: gpte %llx spte %p\n", __func__
, (u64
)gpte
, spte
);
475 gfn
= gpte_to_gfn(gpte
);
476 pte_access
= sp
->role
.access
& FNAME(gpte_access
)(vcpu
, gpte
);
477 FNAME(protect_clean_gpte
)(&pte_access
, gpte
);
478 pfn
= pte_prefetch_gfn_to_pfn(vcpu
, gfn
,
479 no_dirty_log
&& (pte_access
& ACC_WRITE_MASK
));
480 if (is_error_pfn(pfn
))
484 * we call mmu_set_spte() with host_writable = true because
485 * pte_prefetch_gfn_to_pfn always gets a writable pfn.
487 mmu_set_spte(vcpu
, spte
, pte_access
, 0, NULL
, PT_PAGE_TABLE_LEVEL
,
488 gfn
, pfn
, true, true);
493 static void FNAME(update_pte
)(struct kvm_vcpu
*vcpu
, struct kvm_mmu_page
*sp
,
494 u64
*spte
, const void *pte
)
496 pt_element_t gpte
= *(const pt_element_t
*)pte
;
498 FNAME(prefetch_gpte
)(vcpu
, sp
, spte
, gpte
, false);
501 static bool FNAME(gpte_changed
)(struct kvm_vcpu
*vcpu
,
502 struct guest_walker
*gw
, int level
)
504 pt_element_t curr_pte
;
505 gpa_t base_gpa
, pte_gpa
= gw
->pte_gpa
[level
- 1];
509 if (level
== PT_PAGE_TABLE_LEVEL
) {
510 mask
= PTE_PREFETCH_NUM
* sizeof(pt_element_t
) - 1;
511 base_gpa
= pte_gpa
& ~mask
;
512 index
= (pte_gpa
- base_gpa
) / sizeof(pt_element_t
);
514 r
= kvm_vcpu_read_guest_atomic(vcpu
, base_gpa
,
515 gw
->prefetch_ptes
, sizeof(gw
->prefetch_ptes
));
516 curr_pte
= gw
->prefetch_ptes
[index
];
518 r
= kvm_vcpu_read_guest_atomic(vcpu
, pte_gpa
,
519 &curr_pte
, sizeof(curr_pte
));
521 return r
|| curr_pte
!= gw
->ptes
[level
- 1];
524 static void FNAME(pte_prefetch
)(struct kvm_vcpu
*vcpu
, struct guest_walker
*gw
,
527 struct kvm_mmu_page
*sp
;
528 pt_element_t
*gptep
= gw
->prefetch_ptes
;
532 sp
= page_header(__pa(sptep
));
534 if (sp
->role
.level
> PT_PAGE_TABLE_LEVEL
)
538 return __direct_pte_prefetch(vcpu
, sp
, sptep
);
540 i
= (sptep
- sp
->spt
) & ~(PTE_PREFETCH_NUM
- 1);
543 for (i
= 0; i
< PTE_PREFETCH_NUM
; i
++, spte
++) {
547 if (is_shadow_present_pte(*spte
))
550 if (!FNAME(prefetch_gpte
)(vcpu
, sp
, spte
, gptep
[i
], true))
556 * Fetch a shadow pte for a specific level in the paging hierarchy.
557 * If the guest tries to write a write-protected page, we need to
558 * emulate this operation, return 1 to indicate this case.
560 static int FNAME(fetch
)(struct kvm_vcpu
*vcpu
, gva_t addr
,
561 struct guest_walker
*gw
,
562 int write_fault
, int hlevel
,
563 pfn_t pfn
, bool map_writable
, bool prefault
)
565 struct kvm_mmu_page
*sp
= NULL
;
566 struct kvm_shadow_walk_iterator it
;
567 unsigned direct_access
, access
= gw
->pt_access
;
568 int top_level
, emulate
= 0;
570 direct_access
= gw
->pte_access
;
572 top_level
= vcpu
->arch
.mmu
.root_level
;
573 if (top_level
== PT32E_ROOT_LEVEL
)
574 top_level
= PT32_ROOT_LEVEL
;
576 * Verify that the top-level gpte is still there. Since the page
577 * is a root page, it is either write protected (and cannot be
578 * changed from now on) or it is invalid (in which case, we don't
579 * really care if it changes underneath us after this point).
581 if (FNAME(gpte_changed
)(vcpu
, gw
, top_level
))
582 goto out_gpte_changed
;
584 if (!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
585 goto out_gpte_changed
;
587 for (shadow_walk_init(&it
, vcpu
, addr
);
588 shadow_walk_okay(&it
) && it
.level
> gw
->level
;
589 shadow_walk_next(&it
)) {
592 clear_sp_write_flooding_count(it
.sptep
);
593 drop_large_spte(vcpu
, it
.sptep
);
596 if (!is_shadow_present_pte(*it
.sptep
)) {
597 table_gfn
= gw
->table_gfn
[it
.level
- 2];
598 sp
= kvm_mmu_get_page(vcpu
, table_gfn
, addr
, it
.level
-1,
599 false, access
, it
.sptep
);
603 * Verify that the gpte in the page we've just write
604 * protected is still there.
606 if (FNAME(gpte_changed
)(vcpu
, gw
, it
.level
- 1))
607 goto out_gpte_changed
;
610 link_shadow_page(it
.sptep
, sp
, PT_GUEST_ACCESSED_MASK
);
614 shadow_walk_okay(&it
) && it
.level
> hlevel
;
615 shadow_walk_next(&it
)) {
618 clear_sp_write_flooding_count(it
.sptep
);
619 validate_direct_spte(vcpu
, it
.sptep
, direct_access
);
621 drop_large_spte(vcpu
, it
.sptep
);
623 if (is_shadow_present_pte(*it
.sptep
))
626 direct_gfn
= gw
->gfn
& ~(KVM_PAGES_PER_HPAGE(it
.level
) - 1);
628 sp
= kvm_mmu_get_page(vcpu
, direct_gfn
, addr
, it
.level
-1,
629 true, direct_access
, it
.sptep
);
630 link_shadow_page(it
.sptep
, sp
, PT_GUEST_ACCESSED_MASK
);
633 clear_sp_write_flooding_count(it
.sptep
);
634 mmu_set_spte(vcpu
, it
.sptep
, gw
->pte_access
, write_fault
, &emulate
,
635 it
.level
, gw
->gfn
, pfn
, prefault
, map_writable
);
636 FNAME(pte_prefetch
)(vcpu
, gw
, it
.sptep
);
642 kvm_mmu_put_page(sp
, it
.sptep
);
643 kvm_release_pfn_clean(pfn
);
648 * To see whether the mapped gfn can write its page table in the current
651 * It is the helper function of FNAME(page_fault). When guest uses large page
652 * size to map the writable gfn which is used as current page table, we should
653 * force kvm to use small page size to map it because new shadow page will be
654 * created when kvm establishes shadow page table that stop kvm using large
655 * page size. Do it early can avoid unnecessary #PF and emulation.
657 * @write_fault_to_shadow_pgtable will return true if the fault gfn is
658 * currently used as its page table.
660 * Note: the PDPT page table is not checked for PAE-32 bit guest. It is ok
661 * since the PDPT is always shadowed, that means, we can not use large page
662 * size to map the gfn which is used as PDPT.
665 FNAME(is_self_change_mapping
)(struct kvm_vcpu
*vcpu
,
666 struct guest_walker
*walker
, int user_fault
,
667 bool *write_fault_to_shadow_pgtable
)
670 gfn_t mask
= ~(KVM_PAGES_PER_HPAGE(walker
->level
) - 1);
671 bool self_changed
= false;
673 if (!(walker
->pte_access
& ACC_WRITE_MASK
||
674 (!is_write_protection(vcpu
) && !user_fault
)))
677 for (level
= walker
->level
; level
<= walker
->max_level
; level
++) {
678 gfn_t gfn
= walker
->gfn
^ walker
->table_gfn
[level
- 1];
680 self_changed
|= !(gfn
& mask
);
681 *write_fault_to_shadow_pgtable
|= !gfn
;
688 * Page fault handler. There are several causes for a page fault:
689 * - there is no shadow pte for the guest pte
690 * - write access through a shadow pte marked read only so that we can set
692 * - write access to a shadow pte marked read only so we can update the page
693 * dirty bitmap, when userspace requests it
694 * - mmio access; in this case we will never install a present shadow pte
695 * - normal guest page fault due to the guest pte marked not present, not
696 * writable, or not executable
698 * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
699 * a negative value on error.
701 static int FNAME(page_fault
)(struct kvm_vcpu
*vcpu
, gva_t addr
, u32 error_code
,
704 int write_fault
= error_code
& PFERR_WRITE_MASK
;
705 int user_fault
= error_code
& PFERR_USER_MASK
;
706 struct guest_walker walker
;
709 int level
= PT_PAGE_TABLE_LEVEL
;
711 unsigned long mmu_seq
;
712 bool map_writable
, is_self_change_mapping
;
714 pgprintk("%s: addr %lx err %x\n", __func__
, addr
, error_code
);
716 if (unlikely(error_code
& PFERR_RSVD_MASK
)) {
717 r
= handle_mmio_page_fault(vcpu
, addr
, error_code
,
718 mmu_is_nested(vcpu
));
719 if (likely(r
!= RET_MMIO_PF_INVALID
))
723 * page fault with PFEC.RSVD = 1 is caused by shadow
724 * page fault, should not be used to walk guest page
727 error_code
&= ~PFERR_RSVD_MASK
;
730 r
= mmu_topup_memory_caches(vcpu
);
735 * Look up the guest pte for the faulting address.
737 r
= FNAME(walk_addr
)(&walker
, vcpu
, addr
, error_code
);
740 * The page is not mapped by the guest. Let the guest handle it.
743 pgprintk("%s: guest page fault\n", __func__
);
745 inject_page_fault(vcpu
, &walker
.fault
);
750 vcpu
->arch
.write_fault_to_shadow_pgtable
= false;
752 is_self_change_mapping
= FNAME(is_self_change_mapping
)(vcpu
,
753 &walker
, user_fault
, &vcpu
->arch
.write_fault_to_shadow_pgtable
);
755 if (walker
.level
>= PT_DIRECTORY_LEVEL
)
756 force_pt_level
= mapping_level_dirty_bitmap(vcpu
, walker
.gfn
)
757 || is_self_change_mapping
;
760 if (!force_pt_level
) {
761 level
= min(walker
.level
, mapping_level(vcpu
, walker
.gfn
));
762 walker
.gfn
= walker
.gfn
& ~(KVM_PAGES_PER_HPAGE(level
) - 1);
765 mmu_seq
= vcpu
->kvm
->mmu_notifier_seq
;
768 if (try_async_pf(vcpu
, prefault
, walker
.gfn
, addr
, &pfn
, write_fault
,
772 if (handle_abnormal_pfn(vcpu
, mmu_is_nested(vcpu
) ? 0 : addr
,
773 walker
.gfn
, pfn
, walker
.pte_access
, &r
))
777 * Do not change pte_access if the pfn is a mmio page, otherwise
778 * we will cache the incorrect access into mmio spte.
780 if (write_fault
&& !(walker
.pte_access
& ACC_WRITE_MASK
) &&
781 !is_write_protection(vcpu
) && !user_fault
&&
782 !is_noslot_pfn(pfn
)) {
783 walker
.pte_access
|= ACC_WRITE_MASK
;
784 walker
.pte_access
&= ~ACC_USER_MASK
;
787 * If we converted a user page to a kernel page,
788 * so that the kernel can write to it when cr0.wp=0,
789 * then we should prevent the kernel from executing it
790 * if SMEP is enabled.
792 if (kvm_read_cr4_bits(vcpu
, X86_CR4_SMEP
))
793 walker
.pte_access
&= ~ACC_EXEC_MASK
;
796 spin_lock(&vcpu
->kvm
->mmu_lock
);
797 if (mmu_notifier_retry(vcpu
->kvm
, mmu_seq
))
800 kvm_mmu_audit(vcpu
, AUDIT_PRE_PAGE_FAULT
);
801 make_mmu_pages_available(vcpu
);
803 transparent_hugepage_adjust(vcpu
, &walker
.gfn
, &pfn
, &level
);
804 r
= FNAME(fetch
)(vcpu
, addr
, &walker
, write_fault
,
805 level
, pfn
, map_writable
, prefault
);
806 ++vcpu
->stat
.pf_fixed
;
807 kvm_mmu_audit(vcpu
, AUDIT_POST_PAGE_FAULT
);
808 spin_unlock(&vcpu
->kvm
->mmu_lock
);
813 spin_unlock(&vcpu
->kvm
->mmu_lock
);
814 kvm_release_pfn_clean(pfn
);
818 static gpa_t
FNAME(get_level1_sp_gpa
)(struct kvm_mmu_page
*sp
)
822 WARN_ON(sp
->role
.level
!= PT_PAGE_TABLE_LEVEL
);
825 offset
= sp
->role
.quadrant
<< PT64_LEVEL_BITS
;
827 return gfn_to_gpa(sp
->gfn
) + offset
* sizeof(pt_element_t
);
830 static void FNAME(invlpg
)(struct kvm_vcpu
*vcpu
, gva_t gva
)
832 struct kvm_shadow_walk_iterator iterator
;
833 struct kvm_mmu_page
*sp
;
837 vcpu_clear_mmio_info(vcpu
, gva
);
840 * No need to check return value here, rmap_can_add() can
841 * help us to skip pte prefetch later.
843 mmu_topup_memory_caches(vcpu
);
845 if (!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
)) {
850 spin_lock(&vcpu
->kvm
->mmu_lock
);
851 for_each_shadow_entry(vcpu
, gva
, iterator
) {
852 level
= iterator
.level
;
853 sptep
= iterator
.sptep
;
855 sp
= page_header(__pa(sptep
));
856 if (is_last_spte(*sptep
, level
)) {
863 pte_gpa
= FNAME(get_level1_sp_gpa
)(sp
);
864 pte_gpa
+= (sptep
- sp
->spt
) * sizeof(pt_element_t
);
866 if (mmu_page_zap_pte(vcpu
->kvm
, sp
, sptep
))
867 kvm_flush_remote_tlbs(vcpu
->kvm
);
869 if (!rmap_can_add(vcpu
))
872 if (kvm_vcpu_read_guest_atomic(vcpu
, pte_gpa
, &gpte
,
873 sizeof(pt_element_t
)))
876 FNAME(update_pte
)(vcpu
, sp
, sptep
, &gpte
);
879 if (!is_shadow_present_pte(*sptep
) || !sp
->unsync_children
)
882 spin_unlock(&vcpu
->kvm
->mmu_lock
);
885 static gpa_t
FNAME(gva_to_gpa
)(struct kvm_vcpu
*vcpu
, gva_t vaddr
, u32 access
,
886 struct x86_exception
*exception
)
888 struct guest_walker walker
;
889 gpa_t gpa
= UNMAPPED_GVA
;
892 r
= FNAME(walk_addr
)(&walker
, vcpu
, vaddr
, access
);
895 gpa
= gfn_to_gpa(walker
.gfn
);
896 gpa
|= vaddr
& ~PAGE_MASK
;
897 } else if (exception
)
898 *exception
= walker
.fault
;
903 #if PTTYPE != PTTYPE_EPT
904 static gpa_t
FNAME(gva_to_gpa_nested
)(struct kvm_vcpu
*vcpu
, gva_t vaddr
,
906 struct x86_exception
*exception
)
908 struct guest_walker walker
;
909 gpa_t gpa
= UNMAPPED_GVA
;
912 r
= FNAME(walk_addr_nested
)(&walker
, vcpu
, vaddr
, access
);
915 gpa
= gfn_to_gpa(walker
.gfn
);
916 gpa
|= vaddr
& ~PAGE_MASK
;
917 } else if (exception
)
918 *exception
= walker
.fault
;
925 * Using the cached information from sp->gfns is safe because:
926 * - The spte has a reference to the struct page, so the pfn for a given gfn
927 * can't change unless all sptes pointing to it are nuked first.
930 * We should flush all tlbs if spte is dropped even though guest is
931 * responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page
932 * and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't
933 * used by guest then tlbs are not flushed, so guest is allowed to access the
935 * And we increase kvm->tlbs_dirty to delay tlbs flush in this case.
937 static int FNAME(sync_page
)(struct kvm_vcpu
*vcpu
, struct kvm_mmu_page
*sp
)
939 int i
, nr_present
= 0;
943 /* direct kvm_mmu_page can not be unsync. */
944 BUG_ON(sp
->role
.direct
);
946 first_pte_gpa
= FNAME(get_level1_sp_gpa
)(sp
);
948 for (i
= 0; i
< PT64_ENT_PER_PAGE
; i
++) {
957 pte_gpa
= first_pte_gpa
+ i
* sizeof(pt_element_t
);
959 if (kvm_vcpu_read_guest_atomic(vcpu
, pte_gpa
, &gpte
,
960 sizeof(pt_element_t
)))
963 if (FNAME(prefetch_invalid_gpte
)(vcpu
, sp
, &sp
->spt
[i
], gpte
)) {
964 vcpu
->kvm
->tlbs_dirty
++;
968 gfn
= gpte_to_gfn(gpte
);
969 pte_access
= sp
->role
.access
;
970 pte_access
&= FNAME(gpte_access
)(vcpu
, gpte
);
971 FNAME(protect_clean_gpte
)(&pte_access
, gpte
);
973 if (sync_mmio_spte(vcpu
, &sp
->spt
[i
], gfn
, pte_access
,
977 if (gfn
!= sp
->gfns
[i
]) {
978 drop_spte(vcpu
->kvm
, &sp
->spt
[i
]);
979 vcpu
->kvm
->tlbs_dirty
++;
985 host_writable
= sp
->spt
[i
] & SPTE_HOST_WRITEABLE
;
987 set_spte(vcpu
, &sp
->spt
[i
], pte_access
,
988 PT_PAGE_TABLE_LEVEL
, gfn
,
989 spte_to_pfn(sp
->spt
[i
]), true, false,
999 #undef PT_BASE_ADDR_MASK
1001 #undef PT_LVL_ADDR_MASK
1002 #undef PT_LVL_OFFSET_MASK
1003 #undef PT_LEVEL_BITS
1004 #undef PT_MAX_FULL_LEVELS
1006 #undef gpte_to_gfn_lvl
1008 #undef PT_GUEST_ACCESSED_MASK
1009 #undef PT_GUEST_DIRTY_MASK
1010 #undef PT_GUEST_DIRTY_SHIFT
1011 #undef PT_GUEST_ACCESSED_SHIFT