Linux 4.2.2
[linux/fpc-iii.git] / arch / x86 / kvm / svm.c
blob8e0c0844c6b9681e31e64bdeba0f1822108bec3e
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * AMD SVM support
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 * Authors:
10 * Yaniv Kamay <yaniv@qumranet.com>
11 * Avi Kivity <avi@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
17 #include <linux/kvm_host.h>
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22 #include "x86.h"
23 #include "cpuid.h"
24 #include "pmu.h"
26 #include <linux/module.h>
27 #include <linux/mod_devicetable.h>
28 #include <linux/kernel.h>
29 #include <linux/vmalloc.h>
30 #include <linux/highmem.h>
31 #include <linux/sched.h>
32 #include <linux/trace_events.h>
33 #include <linux/slab.h>
35 #include <asm/perf_event.h>
36 #include <asm/tlbflush.h>
37 #include <asm/desc.h>
38 #include <asm/debugreg.h>
39 #include <asm/kvm_para.h>
41 #include <asm/virtext.h>
42 #include "trace.h"
44 #define __ex(x) __kvm_handle_fault_on_reboot(x)
46 MODULE_AUTHOR("Qumranet");
47 MODULE_LICENSE("GPL");
49 static const struct x86_cpu_id svm_cpu_id[] = {
50 X86_FEATURE_MATCH(X86_FEATURE_SVM),
53 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
55 #define IOPM_ALLOC_ORDER 2
56 #define MSRPM_ALLOC_ORDER 1
58 #define SEG_TYPE_LDT 2
59 #define SEG_TYPE_BUSY_TSS16 3
61 #define SVM_FEATURE_NPT (1 << 0)
62 #define SVM_FEATURE_LBRV (1 << 1)
63 #define SVM_FEATURE_SVML (1 << 2)
64 #define SVM_FEATURE_NRIP (1 << 3)
65 #define SVM_FEATURE_TSC_RATE (1 << 4)
66 #define SVM_FEATURE_VMCB_CLEAN (1 << 5)
67 #define SVM_FEATURE_FLUSH_ASID (1 << 6)
68 #define SVM_FEATURE_DECODE_ASSIST (1 << 7)
69 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
71 #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
72 #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
73 #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
75 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
77 #define TSC_RATIO_RSVD 0xffffff0000000000ULL
78 #define TSC_RATIO_MIN 0x0000000000000001ULL
79 #define TSC_RATIO_MAX 0x000000ffffffffffULL
81 static bool erratum_383_found __read_mostly;
83 static const u32 host_save_user_msrs[] = {
84 #ifdef CONFIG_X86_64
85 MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
86 MSR_FS_BASE,
87 #endif
88 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
91 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
93 struct kvm_vcpu;
95 struct nested_state {
96 struct vmcb *hsave;
97 u64 hsave_msr;
98 u64 vm_cr_msr;
99 u64 vmcb;
101 /* These are the merged vectors */
102 u32 *msrpm;
104 /* gpa pointers to the real vectors */
105 u64 vmcb_msrpm;
106 u64 vmcb_iopm;
108 /* A VMEXIT is required but not yet emulated */
109 bool exit_required;
111 /* cache for intercepts of the guest */
112 u32 intercept_cr;
113 u32 intercept_dr;
114 u32 intercept_exceptions;
115 u64 intercept;
117 /* Nested Paging related state */
118 u64 nested_cr3;
121 #define MSRPM_OFFSETS 16
122 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
125 * Set osvw_len to higher value when updated Revision Guides
126 * are published and we know what the new status bits are
128 static uint64_t osvw_len = 4, osvw_status;
130 struct vcpu_svm {
131 struct kvm_vcpu vcpu;
132 struct vmcb *vmcb;
133 unsigned long vmcb_pa;
134 struct svm_cpu_data *svm_data;
135 uint64_t asid_generation;
136 uint64_t sysenter_esp;
137 uint64_t sysenter_eip;
139 u64 next_rip;
141 u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
142 struct {
143 u16 fs;
144 u16 gs;
145 u16 ldt;
146 u64 gs_base;
147 } host;
149 u32 *msrpm;
151 ulong nmi_iret_rip;
153 struct nested_state nested;
155 bool nmi_singlestep;
157 unsigned int3_injected;
158 unsigned long int3_rip;
159 u32 apf_reason;
161 u64 tsc_ratio;
164 static DEFINE_PER_CPU(u64, current_tsc_ratio);
165 #define TSC_RATIO_DEFAULT 0x0100000000ULL
167 #define MSR_INVALID 0xffffffffU
169 static const struct svm_direct_access_msrs {
170 u32 index; /* Index of the MSR */
171 bool always; /* True if intercept is always on */
172 } direct_access_msrs[] = {
173 { .index = MSR_STAR, .always = true },
174 { .index = MSR_IA32_SYSENTER_CS, .always = true },
175 #ifdef CONFIG_X86_64
176 { .index = MSR_GS_BASE, .always = true },
177 { .index = MSR_FS_BASE, .always = true },
178 { .index = MSR_KERNEL_GS_BASE, .always = true },
179 { .index = MSR_LSTAR, .always = true },
180 { .index = MSR_CSTAR, .always = true },
181 { .index = MSR_SYSCALL_MASK, .always = true },
182 #endif
183 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
184 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
185 { .index = MSR_IA32_LASTINTFROMIP, .always = false },
186 { .index = MSR_IA32_LASTINTTOIP, .always = false },
187 { .index = MSR_INVALID, .always = false },
190 /* enable NPT for AMD64 and X86 with PAE */
191 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
192 static bool npt_enabled = true;
193 #else
194 static bool npt_enabled;
195 #endif
197 /* allow nested paging (virtualized MMU) for all guests */
198 static int npt = true;
199 module_param(npt, int, S_IRUGO);
201 /* allow nested virtualization in KVM/SVM */
202 static int nested = true;
203 module_param(nested, int, S_IRUGO);
205 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
206 static void svm_complete_interrupts(struct vcpu_svm *svm);
208 static int nested_svm_exit_handled(struct vcpu_svm *svm);
209 static int nested_svm_intercept(struct vcpu_svm *svm);
210 static int nested_svm_vmexit(struct vcpu_svm *svm);
211 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
212 bool has_error_code, u32 error_code);
213 static u64 __scale_tsc(u64 ratio, u64 tsc);
215 enum {
216 VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
217 pause filter count */
218 VMCB_PERM_MAP, /* IOPM Base and MSRPM Base */
219 VMCB_ASID, /* ASID */
220 VMCB_INTR, /* int_ctl, int_vector */
221 VMCB_NPT, /* npt_en, nCR3, gPAT */
222 VMCB_CR, /* CR0, CR3, CR4, EFER */
223 VMCB_DR, /* DR6, DR7 */
224 VMCB_DT, /* GDT, IDT */
225 VMCB_SEG, /* CS, DS, SS, ES, CPL */
226 VMCB_CR2, /* CR2 only */
227 VMCB_LBR, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
228 VMCB_DIRTY_MAX,
231 /* TPR and CR2 are always written before VMRUN */
232 #define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2))
234 static inline void mark_all_dirty(struct vmcb *vmcb)
236 vmcb->control.clean = 0;
239 static inline void mark_all_clean(struct vmcb *vmcb)
241 vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
242 & ~VMCB_ALWAYS_DIRTY_MASK;
245 static inline void mark_dirty(struct vmcb *vmcb, int bit)
247 vmcb->control.clean &= ~(1 << bit);
250 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
252 return container_of(vcpu, struct vcpu_svm, vcpu);
255 static void recalc_intercepts(struct vcpu_svm *svm)
257 struct vmcb_control_area *c, *h;
258 struct nested_state *g;
260 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
262 if (!is_guest_mode(&svm->vcpu))
263 return;
265 c = &svm->vmcb->control;
266 h = &svm->nested.hsave->control;
267 g = &svm->nested;
269 c->intercept_cr = h->intercept_cr | g->intercept_cr;
270 c->intercept_dr = h->intercept_dr | g->intercept_dr;
271 c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
272 c->intercept = h->intercept | g->intercept;
275 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
277 if (is_guest_mode(&svm->vcpu))
278 return svm->nested.hsave;
279 else
280 return svm->vmcb;
283 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
285 struct vmcb *vmcb = get_host_vmcb(svm);
287 vmcb->control.intercept_cr |= (1U << bit);
289 recalc_intercepts(svm);
292 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
294 struct vmcb *vmcb = get_host_vmcb(svm);
296 vmcb->control.intercept_cr &= ~(1U << bit);
298 recalc_intercepts(svm);
301 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
303 struct vmcb *vmcb = get_host_vmcb(svm);
305 return vmcb->control.intercept_cr & (1U << bit);
308 static inline void set_dr_intercepts(struct vcpu_svm *svm)
310 struct vmcb *vmcb = get_host_vmcb(svm);
312 vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
313 | (1 << INTERCEPT_DR1_READ)
314 | (1 << INTERCEPT_DR2_READ)
315 | (1 << INTERCEPT_DR3_READ)
316 | (1 << INTERCEPT_DR4_READ)
317 | (1 << INTERCEPT_DR5_READ)
318 | (1 << INTERCEPT_DR6_READ)
319 | (1 << INTERCEPT_DR7_READ)
320 | (1 << INTERCEPT_DR0_WRITE)
321 | (1 << INTERCEPT_DR1_WRITE)
322 | (1 << INTERCEPT_DR2_WRITE)
323 | (1 << INTERCEPT_DR3_WRITE)
324 | (1 << INTERCEPT_DR4_WRITE)
325 | (1 << INTERCEPT_DR5_WRITE)
326 | (1 << INTERCEPT_DR6_WRITE)
327 | (1 << INTERCEPT_DR7_WRITE);
329 recalc_intercepts(svm);
332 static inline void clr_dr_intercepts(struct vcpu_svm *svm)
334 struct vmcb *vmcb = get_host_vmcb(svm);
336 vmcb->control.intercept_dr = 0;
338 recalc_intercepts(svm);
341 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
343 struct vmcb *vmcb = get_host_vmcb(svm);
345 vmcb->control.intercept_exceptions |= (1U << bit);
347 recalc_intercepts(svm);
350 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
352 struct vmcb *vmcb = get_host_vmcb(svm);
354 vmcb->control.intercept_exceptions &= ~(1U << bit);
356 recalc_intercepts(svm);
359 static inline void set_intercept(struct vcpu_svm *svm, int bit)
361 struct vmcb *vmcb = get_host_vmcb(svm);
363 vmcb->control.intercept |= (1ULL << bit);
365 recalc_intercepts(svm);
368 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
370 struct vmcb *vmcb = get_host_vmcb(svm);
372 vmcb->control.intercept &= ~(1ULL << bit);
374 recalc_intercepts(svm);
377 static inline void enable_gif(struct vcpu_svm *svm)
379 svm->vcpu.arch.hflags |= HF_GIF_MASK;
382 static inline void disable_gif(struct vcpu_svm *svm)
384 svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
387 static inline bool gif_set(struct vcpu_svm *svm)
389 return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
392 static unsigned long iopm_base;
394 struct kvm_ldttss_desc {
395 u16 limit0;
396 u16 base0;
397 unsigned base1:8, type:5, dpl:2, p:1;
398 unsigned limit1:4, zero0:3, g:1, base2:8;
399 u32 base3;
400 u32 zero1;
401 } __attribute__((packed));
403 struct svm_cpu_data {
404 int cpu;
406 u64 asid_generation;
407 u32 max_asid;
408 u32 next_asid;
409 struct kvm_ldttss_desc *tss_desc;
411 struct page *save_area;
414 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
416 struct svm_init_data {
417 int cpu;
418 int r;
421 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
423 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
424 #define MSRS_RANGE_SIZE 2048
425 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
427 static u32 svm_msrpm_offset(u32 msr)
429 u32 offset;
430 int i;
432 for (i = 0; i < NUM_MSR_MAPS; i++) {
433 if (msr < msrpm_ranges[i] ||
434 msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
435 continue;
437 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
438 offset += (i * MSRS_RANGE_SIZE); /* add range offset */
440 /* Now we have the u8 offset - but need the u32 offset */
441 return offset / 4;
444 /* MSR not in any range */
445 return MSR_INVALID;
448 #define MAX_INST_SIZE 15
450 static inline void clgi(void)
452 asm volatile (__ex(SVM_CLGI));
455 static inline void stgi(void)
457 asm volatile (__ex(SVM_STGI));
460 static inline void invlpga(unsigned long addr, u32 asid)
462 asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
465 static int get_npt_level(void)
467 #ifdef CONFIG_X86_64
468 return PT64_ROOT_LEVEL;
469 #else
470 return PT32E_ROOT_LEVEL;
471 #endif
474 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
476 vcpu->arch.efer = efer;
477 if (!npt_enabled && !(efer & EFER_LMA))
478 efer &= ~EFER_LME;
480 to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
481 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
484 static int is_external_interrupt(u32 info)
486 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
487 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
490 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
492 struct vcpu_svm *svm = to_svm(vcpu);
493 u32 ret = 0;
495 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
496 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
497 return ret;
500 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
502 struct vcpu_svm *svm = to_svm(vcpu);
504 if (mask == 0)
505 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
506 else
507 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
511 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
513 struct vcpu_svm *svm = to_svm(vcpu);
515 if (svm->vmcb->control.next_rip != 0) {
516 WARN_ON(!static_cpu_has(X86_FEATURE_NRIPS));
517 svm->next_rip = svm->vmcb->control.next_rip;
520 if (!svm->next_rip) {
521 if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
522 EMULATE_DONE)
523 printk(KERN_DEBUG "%s: NOP\n", __func__);
524 return;
526 if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
527 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
528 __func__, kvm_rip_read(vcpu), svm->next_rip);
530 kvm_rip_write(vcpu, svm->next_rip);
531 svm_set_interrupt_shadow(vcpu, 0);
534 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
535 bool has_error_code, u32 error_code,
536 bool reinject)
538 struct vcpu_svm *svm = to_svm(vcpu);
541 * If we are within a nested VM we'd better #VMEXIT and let the guest
542 * handle the exception
544 if (!reinject &&
545 nested_svm_check_exception(svm, nr, has_error_code, error_code))
546 return;
548 if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
549 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
552 * For guest debugging where we have to reinject #BP if some
553 * INT3 is guest-owned:
554 * Emulate nRIP by moving RIP forward. Will fail if injection
555 * raises a fault that is not intercepted. Still better than
556 * failing in all cases.
558 skip_emulated_instruction(&svm->vcpu);
559 rip = kvm_rip_read(&svm->vcpu);
560 svm->int3_rip = rip + svm->vmcb->save.cs.base;
561 svm->int3_injected = rip - old_rip;
564 svm->vmcb->control.event_inj = nr
565 | SVM_EVTINJ_VALID
566 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
567 | SVM_EVTINJ_TYPE_EXEPT;
568 svm->vmcb->control.event_inj_err = error_code;
571 static void svm_init_erratum_383(void)
573 u32 low, high;
574 int err;
575 u64 val;
577 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
578 return;
580 /* Use _safe variants to not break nested virtualization */
581 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
582 if (err)
583 return;
585 val |= (1ULL << 47);
587 low = lower_32_bits(val);
588 high = upper_32_bits(val);
590 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
592 erratum_383_found = true;
595 static void svm_init_osvw(struct kvm_vcpu *vcpu)
598 * Guests should see errata 400 and 415 as fixed (assuming that
599 * HLT and IO instructions are intercepted).
601 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
602 vcpu->arch.osvw.status = osvw_status & ~(6ULL);
605 * By increasing VCPU's osvw.length to 3 we are telling the guest that
606 * all osvw.status bits inside that length, including bit 0 (which is
607 * reserved for erratum 298), are valid. However, if host processor's
608 * osvw_len is 0 then osvw_status[0] carries no information. We need to
609 * be conservative here and therefore we tell the guest that erratum 298
610 * is present (because we really don't know).
612 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
613 vcpu->arch.osvw.status |= 1;
616 static int has_svm(void)
618 const char *msg;
620 if (!cpu_has_svm(&msg)) {
621 printk(KERN_INFO "has_svm: %s\n", msg);
622 return 0;
625 return 1;
628 static void svm_hardware_disable(void)
630 /* Make sure we clean up behind us */
631 if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
632 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
634 cpu_svm_disable();
636 amd_pmu_disable_virt();
639 static int svm_hardware_enable(void)
642 struct svm_cpu_data *sd;
643 uint64_t efer;
644 struct desc_ptr gdt_descr;
645 struct desc_struct *gdt;
646 int me = raw_smp_processor_id();
648 rdmsrl(MSR_EFER, efer);
649 if (efer & EFER_SVME)
650 return -EBUSY;
652 if (!has_svm()) {
653 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
654 return -EINVAL;
656 sd = per_cpu(svm_data, me);
657 if (!sd) {
658 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
659 return -EINVAL;
662 sd->asid_generation = 1;
663 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
664 sd->next_asid = sd->max_asid + 1;
666 native_store_gdt(&gdt_descr);
667 gdt = (struct desc_struct *)gdt_descr.address;
668 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
670 wrmsrl(MSR_EFER, efer | EFER_SVME);
672 wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
674 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
675 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
676 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
681 * Get OSVW bits.
683 * Note that it is possible to have a system with mixed processor
684 * revisions and therefore different OSVW bits. If bits are not the same
685 * on different processors then choose the worst case (i.e. if erratum
686 * is present on one processor and not on another then assume that the
687 * erratum is present everywhere).
689 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
690 uint64_t len, status = 0;
691 int err;
693 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
694 if (!err)
695 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
696 &err);
698 if (err)
699 osvw_status = osvw_len = 0;
700 else {
701 if (len < osvw_len)
702 osvw_len = len;
703 osvw_status |= status;
704 osvw_status &= (1ULL << osvw_len) - 1;
706 } else
707 osvw_status = osvw_len = 0;
709 svm_init_erratum_383();
711 amd_pmu_enable_virt();
713 return 0;
716 static void svm_cpu_uninit(int cpu)
718 struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
720 if (!sd)
721 return;
723 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
724 __free_page(sd->save_area);
725 kfree(sd);
728 static int svm_cpu_init(int cpu)
730 struct svm_cpu_data *sd;
731 int r;
733 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
734 if (!sd)
735 return -ENOMEM;
736 sd->cpu = cpu;
737 sd->save_area = alloc_page(GFP_KERNEL);
738 r = -ENOMEM;
739 if (!sd->save_area)
740 goto err_1;
742 per_cpu(svm_data, cpu) = sd;
744 return 0;
746 err_1:
747 kfree(sd);
748 return r;
752 static bool valid_msr_intercept(u32 index)
754 int i;
756 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
757 if (direct_access_msrs[i].index == index)
758 return true;
760 return false;
763 static void set_msr_interception(u32 *msrpm, unsigned msr,
764 int read, int write)
766 u8 bit_read, bit_write;
767 unsigned long tmp;
768 u32 offset;
771 * If this warning triggers extend the direct_access_msrs list at the
772 * beginning of the file
774 WARN_ON(!valid_msr_intercept(msr));
776 offset = svm_msrpm_offset(msr);
777 bit_read = 2 * (msr & 0x0f);
778 bit_write = 2 * (msr & 0x0f) + 1;
779 tmp = msrpm[offset];
781 BUG_ON(offset == MSR_INVALID);
783 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
784 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
786 msrpm[offset] = tmp;
789 static void svm_vcpu_init_msrpm(u32 *msrpm)
791 int i;
793 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
795 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
796 if (!direct_access_msrs[i].always)
797 continue;
799 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
803 static void add_msr_offset(u32 offset)
805 int i;
807 for (i = 0; i < MSRPM_OFFSETS; ++i) {
809 /* Offset already in list? */
810 if (msrpm_offsets[i] == offset)
811 return;
813 /* Slot used by another offset? */
814 if (msrpm_offsets[i] != MSR_INVALID)
815 continue;
817 /* Add offset to list */
818 msrpm_offsets[i] = offset;
820 return;
824 * If this BUG triggers the msrpm_offsets table has an overflow. Just
825 * increase MSRPM_OFFSETS in this case.
827 BUG();
830 static void init_msrpm_offsets(void)
832 int i;
834 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
836 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
837 u32 offset;
839 offset = svm_msrpm_offset(direct_access_msrs[i].index);
840 BUG_ON(offset == MSR_INVALID);
842 add_msr_offset(offset);
846 static void svm_enable_lbrv(struct vcpu_svm *svm)
848 u32 *msrpm = svm->msrpm;
850 svm->vmcb->control.lbr_ctl = 1;
851 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
852 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
853 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
854 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
857 static void svm_disable_lbrv(struct vcpu_svm *svm)
859 u32 *msrpm = svm->msrpm;
861 svm->vmcb->control.lbr_ctl = 0;
862 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
863 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
864 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
865 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
868 #define MTRR_TYPE_UC_MINUS 7
869 #define MTRR2PROTVAL_INVALID 0xff
871 static u8 mtrr2protval[8];
873 static u8 fallback_mtrr_type(int mtrr)
876 * WT and WP aren't always available in the host PAT. Treat
877 * them as UC and UC- respectively. Everything else should be
878 * there.
880 switch (mtrr)
882 case MTRR_TYPE_WRTHROUGH:
883 return MTRR_TYPE_UNCACHABLE;
884 case MTRR_TYPE_WRPROT:
885 return MTRR_TYPE_UC_MINUS;
886 default:
887 BUG();
891 static void build_mtrr2protval(void)
893 int i;
894 u64 pat;
896 for (i = 0; i < 8; i++)
897 mtrr2protval[i] = MTRR2PROTVAL_INVALID;
899 /* Ignore the invalid MTRR types. */
900 mtrr2protval[2] = 0;
901 mtrr2protval[3] = 0;
904 * Use host PAT value to figure out the mapping from guest MTRR
905 * values to nested page table PAT/PCD/PWT values. We do not
906 * want to change the host PAT value every time we enter the
907 * guest.
909 rdmsrl(MSR_IA32_CR_PAT, pat);
910 for (i = 0; i < 8; i++) {
911 u8 mtrr = pat >> (8 * i);
913 if (mtrr2protval[mtrr] == MTRR2PROTVAL_INVALID)
914 mtrr2protval[mtrr] = __cm_idx2pte(i);
917 for (i = 0; i < 8; i++) {
918 if (mtrr2protval[i] == MTRR2PROTVAL_INVALID) {
919 u8 fallback = fallback_mtrr_type(i);
920 mtrr2protval[i] = mtrr2protval[fallback];
921 BUG_ON(mtrr2protval[i] == MTRR2PROTVAL_INVALID);
926 static __init int svm_hardware_setup(void)
928 int cpu;
929 struct page *iopm_pages;
930 void *iopm_va;
931 int r;
933 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
935 if (!iopm_pages)
936 return -ENOMEM;
938 iopm_va = page_address(iopm_pages);
939 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
940 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
942 init_msrpm_offsets();
944 if (boot_cpu_has(X86_FEATURE_NX))
945 kvm_enable_efer_bits(EFER_NX);
947 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
948 kvm_enable_efer_bits(EFER_FFXSR);
950 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
951 u64 max;
953 kvm_has_tsc_control = true;
956 * Make sure the user can only configure tsc_khz values that
957 * fit into a signed integer.
958 * A min value is not calculated needed because it will always
959 * be 1 on all machines and a value of 0 is used to disable
960 * tsc-scaling for the vcpu.
962 max = min(0x7fffffffULL, __scale_tsc(tsc_khz, TSC_RATIO_MAX));
964 kvm_max_guest_tsc_khz = max;
967 if (nested) {
968 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
969 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
972 for_each_possible_cpu(cpu) {
973 r = svm_cpu_init(cpu);
974 if (r)
975 goto err;
978 if (!boot_cpu_has(X86_FEATURE_NPT))
979 npt_enabled = false;
981 if (npt_enabled && !npt) {
982 printk(KERN_INFO "kvm: Nested Paging disabled\n");
983 npt_enabled = false;
986 if (npt_enabled) {
987 printk(KERN_INFO "kvm: Nested Paging enabled\n");
988 kvm_enable_tdp();
989 } else
990 kvm_disable_tdp();
992 build_mtrr2protval();
993 return 0;
995 err:
996 __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
997 iopm_base = 0;
998 return r;
1001 static __exit void svm_hardware_unsetup(void)
1003 int cpu;
1005 for_each_possible_cpu(cpu)
1006 svm_cpu_uninit(cpu);
1008 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
1009 iopm_base = 0;
1012 static void init_seg(struct vmcb_seg *seg)
1014 seg->selector = 0;
1015 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1016 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1017 seg->limit = 0xffff;
1018 seg->base = 0;
1021 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1023 seg->selector = 0;
1024 seg->attrib = SVM_SELECTOR_P_MASK | type;
1025 seg->limit = 0xffff;
1026 seg->base = 0;
1029 static u64 __scale_tsc(u64 ratio, u64 tsc)
1031 u64 mult, frac, _tsc;
1033 mult = ratio >> 32;
1034 frac = ratio & ((1ULL << 32) - 1);
1036 _tsc = tsc;
1037 _tsc *= mult;
1038 _tsc += (tsc >> 32) * frac;
1039 _tsc += ((tsc & ((1ULL << 32) - 1)) * frac) >> 32;
1041 return _tsc;
1044 static u64 svm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1046 struct vcpu_svm *svm = to_svm(vcpu);
1047 u64 _tsc = tsc;
1049 if (svm->tsc_ratio != TSC_RATIO_DEFAULT)
1050 _tsc = __scale_tsc(svm->tsc_ratio, tsc);
1052 return _tsc;
1055 static void svm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1057 struct vcpu_svm *svm = to_svm(vcpu);
1058 u64 ratio;
1059 u64 khz;
1061 /* Guest TSC same frequency as host TSC? */
1062 if (!scale) {
1063 svm->tsc_ratio = TSC_RATIO_DEFAULT;
1064 return;
1067 /* TSC scaling supported? */
1068 if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1069 if (user_tsc_khz > tsc_khz) {
1070 vcpu->arch.tsc_catchup = 1;
1071 vcpu->arch.tsc_always_catchup = 1;
1072 } else
1073 WARN(1, "user requested TSC rate below hardware speed\n");
1074 return;
1077 khz = user_tsc_khz;
1079 /* TSC scaling required - calculate ratio */
1080 ratio = khz << 32;
1081 do_div(ratio, tsc_khz);
1083 if (ratio == 0 || ratio & TSC_RATIO_RSVD) {
1084 WARN_ONCE(1, "Invalid TSC ratio - virtual-tsc-khz=%u\n",
1085 user_tsc_khz);
1086 return;
1088 svm->tsc_ratio = ratio;
1091 static u64 svm_read_tsc_offset(struct kvm_vcpu *vcpu)
1093 struct vcpu_svm *svm = to_svm(vcpu);
1095 return svm->vmcb->control.tsc_offset;
1098 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1100 struct vcpu_svm *svm = to_svm(vcpu);
1101 u64 g_tsc_offset = 0;
1103 if (is_guest_mode(vcpu)) {
1104 g_tsc_offset = svm->vmcb->control.tsc_offset -
1105 svm->nested.hsave->control.tsc_offset;
1106 svm->nested.hsave->control.tsc_offset = offset;
1107 } else
1108 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1109 svm->vmcb->control.tsc_offset,
1110 offset);
1112 svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1114 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1117 static void svm_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
1119 struct vcpu_svm *svm = to_svm(vcpu);
1121 if (host) {
1122 if (svm->tsc_ratio != TSC_RATIO_DEFAULT)
1123 WARN_ON(adjustment < 0);
1124 adjustment = svm_scale_tsc(vcpu, (u64)adjustment);
1127 svm->vmcb->control.tsc_offset += adjustment;
1128 if (is_guest_mode(vcpu))
1129 svm->nested.hsave->control.tsc_offset += adjustment;
1130 else
1131 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1132 svm->vmcb->control.tsc_offset - adjustment,
1133 svm->vmcb->control.tsc_offset);
1135 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1138 static u64 svm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1140 u64 tsc;
1142 tsc = svm_scale_tsc(vcpu, native_read_tsc());
1144 return target_tsc - tsc;
1147 static void svm_set_guest_pat(struct vcpu_svm *svm, u64 *g_pat)
1149 struct kvm_vcpu *vcpu = &svm->vcpu;
1151 /* Unlike Intel, AMD takes the guest's CR0.CD into account.
1153 * AMD does not have IPAT. To emulate it for the case of guests
1154 * with no assigned devices, just set everything to WB. If guests
1155 * have assigned devices, however, we cannot force WB for RAM
1156 * pages only, so use the guest PAT directly.
1158 if (!kvm_arch_has_assigned_device(vcpu->kvm))
1159 *g_pat = 0x0606060606060606;
1160 else
1161 *g_pat = vcpu->arch.pat;
1164 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
1166 u8 mtrr;
1169 * 1. MMIO: trust guest MTRR, so same as item 3.
1170 * 2. No passthrough: always map as WB, and force guest PAT to WB as well
1171 * 3. Passthrough: can't guarantee the result, try to trust guest.
1173 if (!is_mmio && !kvm_arch_has_assigned_device(vcpu->kvm))
1174 return 0;
1176 mtrr = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
1177 return mtrr2protval[mtrr];
1180 static void init_vmcb(struct vcpu_svm *svm, bool init_event)
1182 struct vmcb_control_area *control = &svm->vmcb->control;
1183 struct vmcb_save_area *save = &svm->vmcb->save;
1185 svm->vcpu.fpu_active = 1;
1186 svm->vcpu.arch.hflags = 0;
1188 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1189 set_cr_intercept(svm, INTERCEPT_CR3_READ);
1190 set_cr_intercept(svm, INTERCEPT_CR4_READ);
1191 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1192 set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1193 set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1194 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1196 set_dr_intercepts(svm);
1198 set_exception_intercept(svm, PF_VECTOR);
1199 set_exception_intercept(svm, UD_VECTOR);
1200 set_exception_intercept(svm, MC_VECTOR);
1202 set_intercept(svm, INTERCEPT_INTR);
1203 set_intercept(svm, INTERCEPT_NMI);
1204 set_intercept(svm, INTERCEPT_SMI);
1205 set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1206 set_intercept(svm, INTERCEPT_RDPMC);
1207 set_intercept(svm, INTERCEPT_CPUID);
1208 set_intercept(svm, INTERCEPT_INVD);
1209 set_intercept(svm, INTERCEPT_HLT);
1210 set_intercept(svm, INTERCEPT_INVLPG);
1211 set_intercept(svm, INTERCEPT_INVLPGA);
1212 set_intercept(svm, INTERCEPT_IOIO_PROT);
1213 set_intercept(svm, INTERCEPT_MSR_PROT);
1214 set_intercept(svm, INTERCEPT_TASK_SWITCH);
1215 set_intercept(svm, INTERCEPT_SHUTDOWN);
1216 set_intercept(svm, INTERCEPT_VMRUN);
1217 set_intercept(svm, INTERCEPT_VMMCALL);
1218 set_intercept(svm, INTERCEPT_VMLOAD);
1219 set_intercept(svm, INTERCEPT_VMSAVE);
1220 set_intercept(svm, INTERCEPT_STGI);
1221 set_intercept(svm, INTERCEPT_CLGI);
1222 set_intercept(svm, INTERCEPT_SKINIT);
1223 set_intercept(svm, INTERCEPT_WBINVD);
1224 set_intercept(svm, INTERCEPT_MONITOR);
1225 set_intercept(svm, INTERCEPT_MWAIT);
1226 set_intercept(svm, INTERCEPT_XSETBV);
1228 control->iopm_base_pa = iopm_base;
1229 control->msrpm_base_pa = __pa(svm->msrpm);
1230 control->int_ctl = V_INTR_MASKING_MASK;
1232 init_seg(&save->es);
1233 init_seg(&save->ss);
1234 init_seg(&save->ds);
1235 init_seg(&save->fs);
1236 init_seg(&save->gs);
1238 save->cs.selector = 0xf000;
1239 save->cs.base = 0xffff0000;
1240 /* Executable/Readable Code Segment */
1241 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1242 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1243 save->cs.limit = 0xffff;
1245 save->gdtr.limit = 0xffff;
1246 save->idtr.limit = 0xffff;
1248 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1249 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1251 if (!init_event)
1252 svm_set_efer(&svm->vcpu, 0);
1253 save->dr6 = 0xffff0ff0;
1254 kvm_set_rflags(&svm->vcpu, 2);
1255 save->rip = 0x0000fff0;
1256 svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1259 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1260 * It also updates the guest-visible cr0 value.
1262 (void)kvm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1264 save->cr4 = X86_CR4_PAE;
1265 /* rdx = ?? */
1267 if (npt_enabled) {
1268 /* Setup VMCB for Nested Paging */
1269 control->nested_ctl = 1;
1270 clr_intercept(svm, INTERCEPT_INVLPG);
1271 clr_exception_intercept(svm, PF_VECTOR);
1272 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1273 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1274 save->g_pat = svm->vcpu.arch.pat;
1275 svm_set_guest_pat(svm, &save->g_pat);
1276 save->cr3 = 0;
1277 save->cr4 = 0;
1279 svm->asid_generation = 0;
1281 svm->nested.vmcb = 0;
1282 svm->vcpu.arch.hflags = 0;
1284 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1285 control->pause_filter_count = 3000;
1286 set_intercept(svm, INTERCEPT_PAUSE);
1289 mark_all_dirty(svm->vmcb);
1291 enable_gif(svm);
1294 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1296 struct vcpu_svm *svm = to_svm(vcpu);
1297 u32 dummy;
1298 u32 eax = 1;
1300 if (!init_event) {
1301 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1302 MSR_IA32_APICBASE_ENABLE;
1303 if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
1304 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1306 init_vmcb(svm, init_event);
1308 kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy);
1309 kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
1312 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1314 struct vcpu_svm *svm;
1315 struct page *page;
1316 struct page *msrpm_pages;
1317 struct page *hsave_page;
1318 struct page *nested_msrpm_pages;
1319 int err;
1321 svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1322 if (!svm) {
1323 err = -ENOMEM;
1324 goto out;
1327 svm->tsc_ratio = TSC_RATIO_DEFAULT;
1329 err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1330 if (err)
1331 goto free_svm;
1333 err = -ENOMEM;
1334 page = alloc_page(GFP_KERNEL);
1335 if (!page)
1336 goto uninit;
1338 msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1339 if (!msrpm_pages)
1340 goto free_page1;
1342 nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1343 if (!nested_msrpm_pages)
1344 goto free_page2;
1346 hsave_page = alloc_page(GFP_KERNEL);
1347 if (!hsave_page)
1348 goto free_page3;
1350 svm->nested.hsave = page_address(hsave_page);
1352 svm->msrpm = page_address(msrpm_pages);
1353 svm_vcpu_init_msrpm(svm->msrpm);
1355 svm->nested.msrpm = page_address(nested_msrpm_pages);
1356 svm_vcpu_init_msrpm(svm->nested.msrpm);
1358 svm->vmcb = page_address(page);
1359 clear_page(svm->vmcb);
1360 svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
1361 svm->asid_generation = 0;
1362 init_vmcb(svm, false);
1364 svm_init_osvw(&svm->vcpu);
1366 return &svm->vcpu;
1368 free_page3:
1369 __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1370 free_page2:
1371 __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1372 free_page1:
1373 __free_page(page);
1374 uninit:
1375 kvm_vcpu_uninit(&svm->vcpu);
1376 free_svm:
1377 kmem_cache_free(kvm_vcpu_cache, svm);
1378 out:
1379 return ERR_PTR(err);
1382 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1384 struct vcpu_svm *svm = to_svm(vcpu);
1386 __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
1387 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1388 __free_page(virt_to_page(svm->nested.hsave));
1389 __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1390 kvm_vcpu_uninit(vcpu);
1391 kmem_cache_free(kvm_vcpu_cache, svm);
1394 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1396 struct vcpu_svm *svm = to_svm(vcpu);
1397 int i;
1399 if (unlikely(cpu != vcpu->cpu)) {
1400 svm->asid_generation = 0;
1401 mark_all_dirty(svm->vmcb);
1404 #ifdef CONFIG_X86_64
1405 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1406 #endif
1407 savesegment(fs, svm->host.fs);
1408 savesegment(gs, svm->host.gs);
1409 svm->host.ldt = kvm_read_ldt();
1411 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1412 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1414 if (static_cpu_has(X86_FEATURE_TSCRATEMSR) &&
1415 svm->tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1416 __this_cpu_write(current_tsc_ratio, svm->tsc_ratio);
1417 wrmsrl(MSR_AMD64_TSC_RATIO, svm->tsc_ratio);
1421 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1423 struct vcpu_svm *svm = to_svm(vcpu);
1424 int i;
1426 ++vcpu->stat.host_state_reload;
1427 kvm_load_ldt(svm->host.ldt);
1428 #ifdef CONFIG_X86_64
1429 loadsegment(fs, svm->host.fs);
1430 wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
1431 load_gs_index(svm->host.gs);
1432 #else
1433 #ifdef CONFIG_X86_32_LAZY_GS
1434 loadsegment(gs, svm->host.gs);
1435 #endif
1436 #endif
1437 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1438 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1441 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1443 return to_svm(vcpu)->vmcb->save.rflags;
1446 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1449 * Any change of EFLAGS.VM is accompained by a reload of SS
1450 * (caused by either a task switch or an inter-privilege IRET),
1451 * so we do not need to update the CPL here.
1453 to_svm(vcpu)->vmcb->save.rflags = rflags;
1456 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1458 switch (reg) {
1459 case VCPU_EXREG_PDPTR:
1460 BUG_ON(!npt_enabled);
1461 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1462 break;
1463 default:
1464 BUG();
1468 static void svm_set_vintr(struct vcpu_svm *svm)
1470 set_intercept(svm, INTERCEPT_VINTR);
1473 static void svm_clear_vintr(struct vcpu_svm *svm)
1475 clr_intercept(svm, INTERCEPT_VINTR);
1478 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1480 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1482 switch (seg) {
1483 case VCPU_SREG_CS: return &save->cs;
1484 case VCPU_SREG_DS: return &save->ds;
1485 case VCPU_SREG_ES: return &save->es;
1486 case VCPU_SREG_FS: return &save->fs;
1487 case VCPU_SREG_GS: return &save->gs;
1488 case VCPU_SREG_SS: return &save->ss;
1489 case VCPU_SREG_TR: return &save->tr;
1490 case VCPU_SREG_LDTR: return &save->ldtr;
1492 BUG();
1493 return NULL;
1496 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1498 struct vmcb_seg *s = svm_seg(vcpu, seg);
1500 return s->base;
1503 static void svm_get_segment(struct kvm_vcpu *vcpu,
1504 struct kvm_segment *var, int seg)
1506 struct vmcb_seg *s = svm_seg(vcpu, seg);
1508 var->base = s->base;
1509 var->limit = s->limit;
1510 var->selector = s->selector;
1511 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1512 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1513 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1514 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1515 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1516 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1517 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1520 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1521 * However, the SVM spec states that the G bit is not observed by the
1522 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1523 * So let's synthesize a legal G bit for all segments, this helps
1524 * running KVM nested. It also helps cross-vendor migration, because
1525 * Intel's vmentry has a check on the 'G' bit.
1527 var->g = s->limit > 0xfffff;
1530 * AMD's VMCB does not have an explicit unusable field, so emulate it
1531 * for cross vendor migration purposes by "not present"
1533 var->unusable = !var->present || (var->type == 0);
1535 switch (seg) {
1536 case VCPU_SREG_TR:
1538 * Work around a bug where the busy flag in the tr selector
1539 * isn't exposed
1541 var->type |= 0x2;
1542 break;
1543 case VCPU_SREG_DS:
1544 case VCPU_SREG_ES:
1545 case VCPU_SREG_FS:
1546 case VCPU_SREG_GS:
1548 * The accessed bit must always be set in the segment
1549 * descriptor cache, although it can be cleared in the
1550 * descriptor, the cached bit always remains at 1. Since
1551 * Intel has a check on this, set it here to support
1552 * cross-vendor migration.
1554 if (!var->unusable)
1555 var->type |= 0x1;
1556 break;
1557 case VCPU_SREG_SS:
1559 * On AMD CPUs sometimes the DB bit in the segment
1560 * descriptor is left as 1, although the whole segment has
1561 * been made unusable. Clear it here to pass an Intel VMX
1562 * entry check when cross vendor migrating.
1564 if (var->unusable)
1565 var->db = 0;
1566 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1567 break;
1571 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1573 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1575 return save->cpl;
1578 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1580 struct vcpu_svm *svm = to_svm(vcpu);
1582 dt->size = svm->vmcb->save.idtr.limit;
1583 dt->address = svm->vmcb->save.idtr.base;
1586 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1588 struct vcpu_svm *svm = to_svm(vcpu);
1590 svm->vmcb->save.idtr.limit = dt->size;
1591 svm->vmcb->save.idtr.base = dt->address ;
1592 mark_dirty(svm->vmcb, VMCB_DT);
1595 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1597 struct vcpu_svm *svm = to_svm(vcpu);
1599 dt->size = svm->vmcb->save.gdtr.limit;
1600 dt->address = svm->vmcb->save.gdtr.base;
1603 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1605 struct vcpu_svm *svm = to_svm(vcpu);
1607 svm->vmcb->save.gdtr.limit = dt->size;
1608 svm->vmcb->save.gdtr.base = dt->address ;
1609 mark_dirty(svm->vmcb, VMCB_DT);
1612 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1616 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
1620 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1624 static void update_cr0_intercept(struct vcpu_svm *svm)
1626 ulong gcr0 = svm->vcpu.arch.cr0;
1627 u64 *hcr0 = &svm->vmcb->save.cr0;
1629 if (!svm->vcpu.fpu_active)
1630 *hcr0 |= SVM_CR0_SELECTIVE_MASK;
1631 else
1632 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1633 | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1635 mark_dirty(svm->vmcb, VMCB_CR);
1637 if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1638 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1639 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1640 } else {
1641 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1642 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1646 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1648 struct vcpu_svm *svm = to_svm(vcpu);
1650 #ifdef CONFIG_X86_64
1651 if (vcpu->arch.efer & EFER_LME) {
1652 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1653 vcpu->arch.efer |= EFER_LMA;
1654 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1657 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1658 vcpu->arch.efer &= ~EFER_LMA;
1659 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1662 #endif
1663 vcpu->arch.cr0 = cr0;
1665 if (!npt_enabled)
1666 cr0 |= X86_CR0_PG | X86_CR0_WP;
1668 if (!vcpu->fpu_active)
1669 cr0 |= X86_CR0_TS;
1671 * re-enable caching here because the QEMU bios
1672 * does not do it - this results in some delay at
1673 * reboot
1675 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1676 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1677 svm->vmcb->save.cr0 = cr0;
1678 mark_dirty(svm->vmcb, VMCB_CR);
1679 update_cr0_intercept(svm);
1682 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1684 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1685 unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1687 if (cr4 & X86_CR4_VMXE)
1688 return 1;
1690 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1691 svm_flush_tlb(vcpu);
1693 vcpu->arch.cr4 = cr4;
1694 if (!npt_enabled)
1695 cr4 |= X86_CR4_PAE;
1696 cr4 |= host_cr4_mce;
1697 to_svm(vcpu)->vmcb->save.cr4 = cr4;
1698 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1699 return 0;
1702 static void svm_set_segment(struct kvm_vcpu *vcpu,
1703 struct kvm_segment *var, int seg)
1705 struct vcpu_svm *svm = to_svm(vcpu);
1706 struct vmcb_seg *s = svm_seg(vcpu, seg);
1708 s->base = var->base;
1709 s->limit = var->limit;
1710 s->selector = var->selector;
1711 if (var->unusable)
1712 s->attrib = 0;
1713 else {
1714 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1715 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1716 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1717 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1718 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1719 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1720 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1721 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1725 * This is always accurate, except if SYSRET returned to a segment
1726 * with SS.DPL != 3. Intel does not have this quirk, and always
1727 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1728 * would entail passing the CPL to userspace and back.
1730 if (seg == VCPU_SREG_SS)
1731 svm->vmcb->save.cpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1733 mark_dirty(svm->vmcb, VMCB_SEG);
1736 static void update_db_bp_intercept(struct kvm_vcpu *vcpu)
1738 struct vcpu_svm *svm = to_svm(vcpu);
1740 clr_exception_intercept(svm, DB_VECTOR);
1741 clr_exception_intercept(svm, BP_VECTOR);
1743 if (svm->nmi_singlestep)
1744 set_exception_intercept(svm, DB_VECTOR);
1746 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1747 if (vcpu->guest_debug &
1748 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1749 set_exception_intercept(svm, DB_VECTOR);
1750 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1751 set_exception_intercept(svm, BP_VECTOR);
1752 } else
1753 vcpu->guest_debug = 0;
1756 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1758 if (sd->next_asid > sd->max_asid) {
1759 ++sd->asid_generation;
1760 sd->next_asid = 1;
1761 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1764 svm->asid_generation = sd->asid_generation;
1765 svm->vmcb->control.asid = sd->next_asid++;
1767 mark_dirty(svm->vmcb, VMCB_ASID);
1770 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
1772 return to_svm(vcpu)->vmcb->save.dr6;
1775 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
1777 struct vcpu_svm *svm = to_svm(vcpu);
1779 svm->vmcb->save.dr6 = value;
1780 mark_dirty(svm->vmcb, VMCB_DR);
1783 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1785 struct vcpu_svm *svm = to_svm(vcpu);
1787 get_debugreg(vcpu->arch.db[0], 0);
1788 get_debugreg(vcpu->arch.db[1], 1);
1789 get_debugreg(vcpu->arch.db[2], 2);
1790 get_debugreg(vcpu->arch.db[3], 3);
1791 vcpu->arch.dr6 = svm_get_dr6(vcpu);
1792 vcpu->arch.dr7 = svm->vmcb->save.dr7;
1794 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1795 set_dr_intercepts(svm);
1798 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1800 struct vcpu_svm *svm = to_svm(vcpu);
1802 svm->vmcb->save.dr7 = value;
1803 mark_dirty(svm->vmcb, VMCB_DR);
1806 static int pf_interception(struct vcpu_svm *svm)
1808 u64 fault_address = svm->vmcb->control.exit_info_2;
1809 u32 error_code;
1810 int r = 1;
1812 switch (svm->apf_reason) {
1813 default:
1814 error_code = svm->vmcb->control.exit_info_1;
1816 trace_kvm_page_fault(fault_address, error_code);
1817 if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1818 kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1819 r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
1820 svm->vmcb->control.insn_bytes,
1821 svm->vmcb->control.insn_len);
1822 break;
1823 case KVM_PV_REASON_PAGE_NOT_PRESENT:
1824 svm->apf_reason = 0;
1825 local_irq_disable();
1826 kvm_async_pf_task_wait(fault_address);
1827 local_irq_enable();
1828 break;
1829 case KVM_PV_REASON_PAGE_READY:
1830 svm->apf_reason = 0;
1831 local_irq_disable();
1832 kvm_async_pf_task_wake(fault_address);
1833 local_irq_enable();
1834 break;
1836 return r;
1839 static int db_interception(struct vcpu_svm *svm)
1841 struct kvm_run *kvm_run = svm->vcpu.run;
1843 if (!(svm->vcpu.guest_debug &
1844 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1845 !svm->nmi_singlestep) {
1846 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1847 return 1;
1850 if (svm->nmi_singlestep) {
1851 svm->nmi_singlestep = false;
1852 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1853 svm->vmcb->save.rflags &=
1854 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1855 update_db_bp_intercept(&svm->vcpu);
1858 if (svm->vcpu.guest_debug &
1859 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1860 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1861 kvm_run->debug.arch.pc =
1862 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1863 kvm_run->debug.arch.exception = DB_VECTOR;
1864 return 0;
1867 return 1;
1870 static int bp_interception(struct vcpu_svm *svm)
1872 struct kvm_run *kvm_run = svm->vcpu.run;
1874 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1875 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1876 kvm_run->debug.arch.exception = BP_VECTOR;
1877 return 0;
1880 static int ud_interception(struct vcpu_svm *svm)
1882 int er;
1884 er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
1885 if (er != EMULATE_DONE)
1886 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1887 return 1;
1890 static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1892 struct vcpu_svm *svm = to_svm(vcpu);
1894 clr_exception_intercept(svm, NM_VECTOR);
1896 svm->vcpu.fpu_active = 1;
1897 update_cr0_intercept(svm);
1900 static int nm_interception(struct vcpu_svm *svm)
1902 svm_fpu_activate(&svm->vcpu);
1903 return 1;
1906 static bool is_erratum_383(void)
1908 int err, i;
1909 u64 value;
1911 if (!erratum_383_found)
1912 return false;
1914 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1915 if (err)
1916 return false;
1918 /* Bit 62 may or may not be set for this mce */
1919 value &= ~(1ULL << 62);
1921 if (value != 0xb600000000010015ULL)
1922 return false;
1924 /* Clear MCi_STATUS registers */
1925 for (i = 0; i < 6; ++i)
1926 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1928 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1929 if (!err) {
1930 u32 low, high;
1932 value &= ~(1ULL << 2);
1933 low = lower_32_bits(value);
1934 high = upper_32_bits(value);
1936 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1939 /* Flush tlb to evict multi-match entries */
1940 __flush_tlb_all();
1942 return true;
1945 static void svm_handle_mce(struct vcpu_svm *svm)
1947 if (is_erratum_383()) {
1949 * Erratum 383 triggered. Guest state is corrupt so kill the
1950 * guest.
1952 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1954 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1956 return;
1960 * On an #MC intercept the MCE handler is not called automatically in
1961 * the host. So do it by hand here.
1963 asm volatile (
1964 "int $0x12\n");
1965 /* not sure if we ever come back to this point */
1967 return;
1970 static int mc_interception(struct vcpu_svm *svm)
1972 return 1;
1975 static int shutdown_interception(struct vcpu_svm *svm)
1977 struct kvm_run *kvm_run = svm->vcpu.run;
1980 * VMCB is undefined after a SHUTDOWN intercept
1981 * so reinitialize it.
1983 clear_page(svm->vmcb);
1984 init_vmcb(svm, false);
1986 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1987 return 0;
1990 static int io_interception(struct vcpu_svm *svm)
1992 struct kvm_vcpu *vcpu = &svm->vcpu;
1993 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1994 int size, in, string;
1995 unsigned port;
1997 ++svm->vcpu.stat.io_exits;
1998 string = (io_info & SVM_IOIO_STR_MASK) != 0;
1999 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2000 if (string || in)
2001 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
2003 port = io_info >> 16;
2004 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2005 svm->next_rip = svm->vmcb->control.exit_info_2;
2006 skip_emulated_instruction(&svm->vcpu);
2008 return kvm_fast_pio_out(vcpu, size, port);
2011 static int nmi_interception(struct vcpu_svm *svm)
2013 return 1;
2016 static int intr_interception(struct vcpu_svm *svm)
2018 ++svm->vcpu.stat.irq_exits;
2019 return 1;
2022 static int nop_on_interception(struct vcpu_svm *svm)
2024 return 1;
2027 static int halt_interception(struct vcpu_svm *svm)
2029 svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
2030 return kvm_emulate_halt(&svm->vcpu);
2033 static int vmmcall_interception(struct vcpu_svm *svm)
2035 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2036 kvm_emulate_hypercall(&svm->vcpu);
2037 return 1;
2040 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
2042 struct vcpu_svm *svm = to_svm(vcpu);
2044 return svm->nested.nested_cr3;
2047 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
2049 struct vcpu_svm *svm = to_svm(vcpu);
2050 u64 cr3 = svm->nested.nested_cr3;
2051 u64 pdpte;
2052 int ret;
2054 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(cr3), &pdpte,
2055 offset_in_page(cr3) + index * 8, 8);
2056 if (ret)
2057 return 0;
2058 return pdpte;
2061 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
2062 unsigned long root)
2064 struct vcpu_svm *svm = to_svm(vcpu);
2066 svm->vmcb->control.nested_cr3 = root;
2067 mark_dirty(svm->vmcb, VMCB_NPT);
2068 svm_flush_tlb(vcpu);
2071 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
2072 struct x86_exception *fault)
2074 struct vcpu_svm *svm = to_svm(vcpu);
2076 if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
2078 * TODO: track the cause of the nested page fault, and
2079 * correctly fill in the high bits of exit_info_1.
2081 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
2082 svm->vmcb->control.exit_code_hi = 0;
2083 svm->vmcb->control.exit_info_1 = (1ULL << 32);
2084 svm->vmcb->control.exit_info_2 = fault->address;
2087 svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
2088 svm->vmcb->control.exit_info_1 |= fault->error_code;
2091 * The present bit is always zero for page structure faults on real
2092 * hardware.
2094 if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
2095 svm->vmcb->control.exit_info_1 &= ~1;
2097 nested_svm_vmexit(svm);
2100 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
2102 WARN_ON(mmu_is_nested(vcpu));
2103 kvm_init_shadow_mmu(vcpu);
2104 vcpu->arch.mmu.set_cr3 = nested_svm_set_tdp_cr3;
2105 vcpu->arch.mmu.get_cr3 = nested_svm_get_tdp_cr3;
2106 vcpu->arch.mmu.get_pdptr = nested_svm_get_tdp_pdptr;
2107 vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
2108 vcpu->arch.mmu.shadow_root_level = get_npt_level();
2109 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
2112 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
2114 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
2117 static int nested_svm_check_permissions(struct vcpu_svm *svm)
2119 if (!(svm->vcpu.arch.efer & EFER_SVME)
2120 || !is_paging(&svm->vcpu)) {
2121 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2122 return 1;
2125 if (svm->vmcb->save.cpl) {
2126 kvm_inject_gp(&svm->vcpu, 0);
2127 return 1;
2130 return 0;
2133 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
2134 bool has_error_code, u32 error_code)
2136 int vmexit;
2138 if (!is_guest_mode(&svm->vcpu))
2139 return 0;
2141 svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
2142 svm->vmcb->control.exit_code_hi = 0;
2143 svm->vmcb->control.exit_info_1 = error_code;
2144 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
2146 vmexit = nested_svm_intercept(svm);
2147 if (vmexit == NESTED_EXIT_DONE)
2148 svm->nested.exit_required = true;
2150 return vmexit;
2153 /* This function returns true if it is save to enable the irq window */
2154 static inline bool nested_svm_intr(struct vcpu_svm *svm)
2156 if (!is_guest_mode(&svm->vcpu))
2157 return true;
2159 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2160 return true;
2162 if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
2163 return false;
2166 * if vmexit was already requested (by intercepted exception
2167 * for instance) do not overwrite it with "external interrupt"
2168 * vmexit.
2170 if (svm->nested.exit_required)
2171 return false;
2173 svm->vmcb->control.exit_code = SVM_EXIT_INTR;
2174 svm->vmcb->control.exit_info_1 = 0;
2175 svm->vmcb->control.exit_info_2 = 0;
2177 if (svm->nested.intercept & 1ULL) {
2179 * The #vmexit can't be emulated here directly because this
2180 * code path runs with irqs and preemption disabled. A
2181 * #vmexit emulation might sleep. Only signal request for
2182 * the #vmexit here.
2184 svm->nested.exit_required = true;
2185 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
2186 return false;
2189 return true;
2192 /* This function returns true if it is save to enable the nmi window */
2193 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
2195 if (!is_guest_mode(&svm->vcpu))
2196 return true;
2198 if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
2199 return true;
2201 svm->vmcb->control.exit_code = SVM_EXIT_NMI;
2202 svm->nested.exit_required = true;
2204 return false;
2207 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
2209 struct page *page;
2211 might_sleep();
2213 page = kvm_vcpu_gfn_to_page(&svm->vcpu, gpa >> PAGE_SHIFT);
2214 if (is_error_page(page))
2215 goto error;
2217 *_page = page;
2219 return kmap(page);
2221 error:
2222 kvm_inject_gp(&svm->vcpu, 0);
2224 return NULL;
2227 static void nested_svm_unmap(struct page *page)
2229 kunmap(page);
2230 kvm_release_page_dirty(page);
2233 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
2235 unsigned port, size, iopm_len;
2236 u16 val, mask;
2237 u8 start_bit;
2238 u64 gpa;
2240 if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
2241 return NESTED_EXIT_HOST;
2243 port = svm->vmcb->control.exit_info_1 >> 16;
2244 size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
2245 SVM_IOIO_SIZE_SHIFT;
2246 gpa = svm->nested.vmcb_iopm + (port / 8);
2247 start_bit = port % 8;
2248 iopm_len = (start_bit + size > 8) ? 2 : 1;
2249 mask = (0xf >> (4 - size)) << start_bit;
2250 val = 0;
2252 if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
2253 return NESTED_EXIT_DONE;
2255 return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2258 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2260 u32 offset, msr, value;
2261 int write, mask;
2263 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2264 return NESTED_EXIT_HOST;
2266 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2267 offset = svm_msrpm_offset(msr);
2268 write = svm->vmcb->control.exit_info_1 & 1;
2269 mask = 1 << ((2 * (msr & 0xf)) + write);
2271 if (offset == MSR_INVALID)
2272 return NESTED_EXIT_DONE;
2274 /* Offset is in 32 bit units but need in 8 bit units */
2275 offset *= 4;
2277 if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
2278 return NESTED_EXIT_DONE;
2280 return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2283 static int nested_svm_exit_special(struct vcpu_svm *svm)
2285 u32 exit_code = svm->vmcb->control.exit_code;
2287 switch (exit_code) {
2288 case SVM_EXIT_INTR:
2289 case SVM_EXIT_NMI:
2290 case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2291 return NESTED_EXIT_HOST;
2292 case SVM_EXIT_NPF:
2293 /* For now we are always handling NPFs when using them */
2294 if (npt_enabled)
2295 return NESTED_EXIT_HOST;
2296 break;
2297 case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2298 /* When we're shadowing, trap PFs, but not async PF */
2299 if (!npt_enabled && svm->apf_reason == 0)
2300 return NESTED_EXIT_HOST;
2301 break;
2302 case SVM_EXIT_EXCP_BASE + NM_VECTOR:
2303 nm_interception(svm);
2304 break;
2305 default:
2306 break;
2309 return NESTED_EXIT_CONTINUE;
2313 * If this function returns true, this #vmexit was already handled
2315 static int nested_svm_intercept(struct vcpu_svm *svm)
2317 u32 exit_code = svm->vmcb->control.exit_code;
2318 int vmexit = NESTED_EXIT_HOST;
2320 switch (exit_code) {
2321 case SVM_EXIT_MSR:
2322 vmexit = nested_svm_exit_handled_msr(svm);
2323 break;
2324 case SVM_EXIT_IOIO:
2325 vmexit = nested_svm_intercept_ioio(svm);
2326 break;
2327 case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
2328 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
2329 if (svm->nested.intercept_cr & bit)
2330 vmexit = NESTED_EXIT_DONE;
2331 break;
2333 case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2334 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2335 if (svm->nested.intercept_dr & bit)
2336 vmexit = NESTED_EXIT_DONE;
2337 break;
2339 case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2340 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2341 if (svm->nested.intercept_exceptions & excp_bits)
2342 vmexit = NESTED_EXIT_DONE;
2343 /* async page fault always cause vmexit */
2344 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2345 svm->apf_reason != 0)
2346 vmexit = NESTED_EXIT_DONE;
2347 break;
2349 case SVM_EXIT_ERR: {
2350 vmexit = NESTED_EXIT_DONE;
2351 break;
2353 default: {
2354 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2355 if (svm->nested.intercept & exit_bits)
2356 vmexit = NESTED_EXIT_DONE;
2360 return vmexit;
2363 static int nested_svm_exit_handled(struct vcpu_svm *svm)
2365 int vmexit;
2367 vmexit = nested_svm_intercept(svm);
2369 if (vmexit == NESTED_EXIT_DONE)
2370 nested_svm_vmexit(svm);
2372 return vmexit;
2375 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2377 struct vmcb_control_area *dst = &dst_vmcb->control;
2378 struct vmcb_control_area *from = &from_vmcb->control;
2380 dst->intercept_cr = from->intercept_cr;
2381 dst->intercept_dr = from->intercept_dr;
2382 dst->intercept_exceptions = from->intercept_exceptions;
2383 dst->intercept = from->intercept;
2384 dst->iopm_base_pa = from->iopm_base_pa;
2385 dst->msrpm_base_pa = from->msrpm_base_pa;
2386 dst->tsc_offset = from->tsc_offset;
2387 dst->asid = from->asid;
2388 dst->tlb_ctl = from->tlb_ctl;
2389 dst->int_ctl = from->int_ctl;
2390 dst->int_vector = from->int_vector;
2391 dst->int_state = from->int_state;
2392 dst->exit_code = from->exit_code;
2393 dst->exit_code_hi = from->exit_code_hi;
2394 dst->exit_info_1 = from->exit_info_1;
2395 dst->exit_info_2 = from->exit_info_2;
2396 dst->exit_int_info = from->exit_int_info;
2397 dst->exit_int_info_err = from->exit_int_info_err;
2398 dst->nested_ctl = from->nested_ctl;
2399 dst->event_inj = from->event_inj;
2400 dst->event_inj_err = from->event_inj_err;
2401 dst->nested_cr3 = from->nested_cr3;
2402 dst->lbr_ctl = from->lbr_ctl;
2405 static int nested_svm_vmexit(struct vcpu_svm *svm)
2407 struct vmcb *nested_vmcb;
2408 struct vmcb *hsave = svm->nested.hsave;
2409 struct vmcb *vmcb = svm->vmcb;
2410 struct page *page;
2412 trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2413 vmcb->control.exit_info_1,
2414 vmcb->control.exit_info_2,
2415 vmcb->control.exit_int_info,
2416 vmcb->control.exit_int_info_err,
2417 KVM_ISA_SVM);
2419 nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2420 if (!nested_vmcb)
2421 return 1;
2423 /* Exit Guest-Mode */
2424 leave_guest_mode(&svm->vcpu);
2425 svm->nested.vmcb = 0;
2427 /* Give the current vmcb to the guest */
2428 disable_gif(svm);
2430 nested_vmcb->save.es = vmcb->save.es;
2431 nested_vmcb->save.cs = vmcb->save.cs;
2432 nested_vmcb->save.ss = vmcb->save.ss;
2433 nested_vmcb->save.ds = vmcb->save.ds;
2434 nested_vmcb->save.gdtr = vmcb->save.gdtr;
2435 nested_vmcb->save.idtr = vmcb->save.idtr;
2436 nested_vmcb->save.efer = svm->vcpu.arch.efer;
2437 nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu);
2438 nested_vmcb->save.cr3 = kvm_read_cr3(&svm->vcpu);
2439 nested_vmcb->save.cr2 = vmcb->save.cr2;
2440 nested_vmcb->save.cr4 = svm->vcpu.arch.cr4;
2441 nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
2442 nested_vmcb->save.rip = vmcb->save.rip;
2443 nested_vmcb->save.rsp = vmcb->save.rsp;
2444 nested_vmcb->save.rax = vmcb->save.rax;
2445 nested_vmcb->save.dr7 = vmcb->save.dr7;
2446 nested_vmcb->save.dr6 = vmcb->save.dr6;
2447 nested_vmcb->save.cpl = vmcb->save.cpl;
2449 nested_vmcb->control.int_ctl = vmcb->control.int_ctl;
2450 nested_vmcb->control.int_vector = vmcb->control.int_vector;
2451 nested_vmcb->control.int_state = vmcb->control.int_state;
2452 nested_vmcb->control.exit_code = vmcb->control.exit_code;
2453 nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
2454 nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
2455 nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
2456 nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
2457 nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2458 nested_vmcb->control.next_rip = vmcb->control.next_rip;
2461 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2462 * to make sure that we do not lose injected events. So check event_inj
2463 * here and copy it to exit_int_info if it is valid.
2464 * Exit_int_info and event_inj can't be both valid because the case
2465 * below only happens on a VMRUN instruction intercept which has
2466 * no valid exit_int_info set.
2468 if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2469 struct vmcb_control_area *nc = &nested_vmcb->control;
2471 nc->exit_int_info = vmcb->control.event_inj;
2472 nc->exit_int_info_err = vmcb->control.event_inj_err;
2475 nested_vmcb->control.tlb_ctl = 0;
2476 nested_vmcb->control.event_inj = 0;
2477 nested_vmcb->control.event_inj_err = 0;
2479 /* We always set V_INTR_MASKING and remember the old value in hflags */
2480 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2481 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2483 /* Restore the original control entries */
2484 copy_vmcb_control_area(vmcb, hsave);
2486 kvm_clear_exception_queue(&svm->vcpu);
2487 kvm_clear_interrupt_queue(&svm->vcpu);
2489 svm->nested.nested_cr3 = 0;
2491 /* Restore selected save entries */
2492 svm->vmcb->save.es = hsave->save.es;
2493 svm->vmcb->save.cs = hsave->save.cs;
2494 svm->vmcb->save.ss = hsave->save.ss;
2495 svm->vmcb->save.ds = hsave->save.ds;
2496 svm->vmcb->save.gdtr = hsave->save.gdtr;
2497 svm->vmcb->save.idtr = hsave->save.idtr;
2498 kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
2499 svm_set_efer(&svm->vcpu, hsave->save.efer);
2500 svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2501 svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2502 if (npt_enabled) {
2503 svm->vmcb->save.cr3 = hsave->save.cr3;
2504 svm->vcpu.arch.cr3 = hsave->save.cr3;
2505 } else {
2506 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2508 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2509 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2510 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2511 svm->vmcb->save.dr7 = 0;
2512 svm->vmcb->save.cpl = 0;
2513 svm->vmcb->control.exit_int_info = 0;
2515 mark_all_dirty(svm->vmcb);
2517 nested_svm_unmap(page);
2519 nested_svm_uninit_mmu_context(&svm->vcpu);
2520 kvm_mmu_reset_context(&svm->vcpu);
2521 kvm_mmu_load(&svm->vcpu);
2523 return 0;
2526 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2529 * This function merges the msr permission bitmaps of kvm and the
2530 * nested vmcb. It is optimized in that it only merges the parts where
2531 * the kvm msr permission bitmap may contain zero bits
2533 int i;
2535 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2536 return true;
2538 for (i = 0; i < MSRPM_OFFSETS; i++) {
2539 u32 value, p;
2540 u64 offset;
2542 if (msrpm_offsets[i] == 0xffffffff)
2543 break;
2545 p = msrpm_offsets[i];
2546 offset = svm->nested.vmcb_msrpm + (p * 4);
2548 if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
2549 return false;
2551 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2554 svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2556 return true;
2559 static bool nested_vmcb_checks(struct vmcb *vmcb)
2561 if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2562 return false;
2564 if (vmcb->control.asid == 0)
2565 return false;
2567 if (vmcb->control.nested_ctl && !npt_enabled)
2568 return false;
2570 return true;
2573 static bool nested_svm_vmrun(struct vcpu_svm *svm)
2575 struct vmcb *nested_vmcb;
2576 struct vmcb *hsave = svm->nested.hsave;
2577 struct vmcb *vmcb = svm->vmcb;
2578 struct page *page;
2579 u64 vmcb_gpa;
2581 vmcb_gpa = svm->vmcb->save.rax;
2583 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2584 if (!nested_vmcb)
2585 return false;
2587 if (!nested_vmcb_checks(nested_vmcb)) {
2588 nested_vmcb->control.exit_code = SVM_EXIT_ERR;
2589 nested_vmcb->control.exit_code_hi = 0;
2590 nested_vmcb->control.exit_info_1 = 0;
2591 nested_vmcb->control.exit_info_2 = 0;
2593 nested_svm_unmap(page);
2595 return false;
2598 trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2599 nested_vmcb->save.rip,
2600 nested_vmcb->control.int_ctl,
2601 nested_vmcb->control.event_inj,
2602 nested_vmcb->control.nested_ctl);
2604 trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
2605 nested_vmcb->control.intercept_cr >> 16,
2606 nested_vmcb->control.intercept_exceptions,
2607 nested_vmcb->control.intercept);
2609 /* Clear internal status */
2610 kvm_clear_exception_queue(&svm->vcpu);
2611 kvm_clear_interrupt_queue(&svm->vcpu);
2614 * Save the old vmcb, so we don't need to pick what we save, but can
2615 * restore everything when a VMEXIT occurs
2617 hsave->save.es = vmcb->save.es;
2618 hsave->save.cs = vmcb->save.cs;
2619 hsave->save.ss = vmcb->save.ss;
2620 hsave->save.ds = vmcb->save.ds;
2621 hsave->save.gdtr = vmcb->save.gdtr;
2622 hsave->save.idtr = vmcb->save.idtr;
2623 hsave->save.efer = svm->vcpu.arch.efer;
2624 hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);
2625 hsave->save.cr4 = svm->vcpu.arch.cr4;
2626 hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
2627 hsave->save.rip = kvm_rip_read(&svm->vcpu);
2628 hsave->save.rsp = vmcb->save.rsp;
2629 hsave->save.rax = vmcb->save.rax;
2630 if (npt_enabled)
2631 hsave->save.cr3 = vmcb->save.cr3;
2632 else
2633 hsave->save.cr3 = kvm_read_cr3(&svm->vcpu);
2635 copy_vmcb_control_area(hsave, vmcb);
2637 if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
2638 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2639 else
2640 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2642 if (nested_vmcb->control.nested_ctl) {
2643 kvm_mmu_unload(&svm->vcpu);
2644 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2645 nested_svm_init_mmu_context(&svm->vcpu);
2648 /* Load the nested guest state */
2649 svm->vmcb->save.es = nested_vmcb->save.es;
2650 svm->vmcb->save.cs = nested_vmcb->save.cs;
2651 svm->vmcb->save.ss = nested_vmcb->save.ss;
2652 svm->vmcb->save.ds = nested_vmcb->save.ds;
2653 svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2654 svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2655 kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
2656 svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2657 svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2658 svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2659 if (npt_enabled) {
2660 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2661 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2662 } else
2663 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2665 /* Guest paging mode is active - reset mmu */
2666 kvm_mmu_reset_context(&svm->vcpu);
2668 svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2669 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2670 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2671 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2673 /* In case we don't even reach vcpu_run, the fields are not updated */
2674 svm->vmcb->save.rax = nested_vmcb->save.rax;
2675 svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2676 svm->vmcb->save.rip = nested_vmcb->save.rip;
2677 svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2678 svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2679 svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2681 svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2682 svm->nested.vmcb_iopm = nested_vmcb->control.iopm_base_pa & ~0x0fffULL;
2684 /* cache intercepts */
2685 svm->nested.intercept_cr = nested_vmcb->control.intercept_cr;
2686 svm->nested.intercept_dr = nested_vmcb->control.intercept_dr;
2687 svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2688 svm->nested.intercept = nested_vmcb->control.intercept;
2690 svm_flush_tlb(&svm->vcpu);
2691 svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2692 if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2693 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2694 else
2695 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2697 if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2698 /* We only want the cr8 intercept bits of the guest */
2699 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
2700 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2703 /* We don't want to see VMMCALLs from a nested guest */
2704 clr_intercept(svm, INTERCEPT_VMMCALL);
2706 svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2707 svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2708 svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2709 svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2710 svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2711 svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2713 nested_svm_unmap(page);
2715 /* Enter Guest-Mode */
2716 enter_guest_mode(&svm->vcpu);
2719 * Merge guest and host intercepts - must be called with vcpu in
2720 * guest-mode to take affect here
2722 recalc_intercepts(svm);
2724 svm->nested.vmcb = vmcb_gpa;
2726 enable_gif(svm);
2728 mark_all_dirty(svm->vmcb);
2730 return true;
2733 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2735 to_vmcb->save.fs = from_vmcb->save.fs;
2736 to_vmcb->save.gs = from_vmcb->save.gs;
2737 to_vmcb->save.tr = from_vmcb->save.tr;
2738 to_vmcb->save.ldtr = from_vmcb->save.ldtr;
2739 to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
2740 to_vmcb->save.star = from_vmcb->save.star;
2741 to_vmcb->save.lstar = from_vmcb->save.lstar;
2742 to_vmcb->save.cstar = from_vmcb->save.cstar;
2743 to_vmcb->save.sfmask = from_vmcb->save.sfmask;
2744 to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
2745 to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
2746 to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
2749 static int vmload_interception(struct vcpu_svm *svm)
2751 struct vmcb *nested_vmcb;
2752 struct page *page;
2754 if (nested_svm_check_permissions(svm))
2755 return 1;
2757 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2758 if (!nested_vmcb)
2759 return 1;
2761 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2762 skip_emulated_instruction(&svm->vcpu);
2764 nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2765 nested_svm_unmap(page);
2767 return 1;
2770 static int vmsave_interception(struct vcpu_svm *svm)
2772 struct vmcb *nested_vmcb;
2773 struct page *page;
2775 if (nested_svm_check_permissions(svm))
2776 return 1;
2778 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2779 if (!nested_vmcb)
2780 return 1;
2782 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2783 skip_emulated_instruction(&svm->vcpu);
2785 nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2786 nested_svm_unmap(page);
2788 return 1;
2791 static int vmrun_interception(struct vcpu_svm *svm)
2793 if (nested_svm_check_permissions(svm))
2794 return 1;
2796 /* Save rip after vmrun instruction */
2797 kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
2799 if (!nested_svm_vmrun(svm))
2800 return 1;
2802 if (!nested_svm_vmrun_msrpm(svm))
2803 goto failed;
2805 return 1;
2807 failed:
2809 svm->vmcb->control.exit_code = SVM_EXIT_ERR;
2810 svm->vmcb->control.exit_code_hi = 0;
2811 svm->vmcb->control.exit_info_1 = 0;
2812 svm->vmcb->control.exit_info_2 = 0;
2814 nested_svm_vmexit(svm);
2816 return 1;
2819 static int stgi_interception(struct vcpu_svm *svm)
2821 if (nested_svm_check_permissions(svm))
2822 return 1;
2824 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2825 skip_emulated_instruction(&svm->vcpu);
2826 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2828 enable_gif(svm);
2830 return 1;
2833 static int clgi_interception(struct vcpu_svm *svm)
2835 if (nested_svm_check_permissions(svm))
2836 return 1;
2838 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2839 skip_emulated_instruction(&svm->vcpu);
2841 disable_gif(svm);
2843 /* After a CLGI no interrupts should come */
2844 svm_clear_vintr(svm);
2845 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2847 mark_dirty(svm->vmcb, VMCB_INTR);
2849 return 1;
2852 static int invlpga_interception(struct vcpu_svm *svm)
2854 struct kvm_vcpu *vcpu = &svm->vcpu;
2856 trace_kvm_invlpga(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RCX),
2857 kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
2859 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2860 kvm_mmu_invlpg(vcpu, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
2862 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2863 skip_emulated_instruction(&svm->vcpu);
2864 return 1;
2867 static int skinit_interception(struct vcpu_svm *svm)
2869 trace_kvm_skinit(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
2871 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2872 return 1;
2875 static int wbinvd_interception(struct vcpu_svm *svm)
2877 kvm_emulate_wbinvd(&svm->vcpu);
2878 return 1;
2881 static int xsetbv_interception(struct vcpu_svm *svm)
2883 u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
2884 u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
2886 if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
2887 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2888 skip_emulated_instruction(&svm->vcpu);
2891 return 1;
2894 static int task_switch_interception(struct vcpu_svm *svm)
2896 u16 tss_selector;
2897 int reason;
2898 int int_type = svm->vmcb->control.exit_int_info &
2899 SVM_EXITINTINFO_TYPE_MASK;
2900 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2901 uint32_t type =
2902 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2903 uint32_t idt_v =
2904 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2905 bool has_error_code = false;
2906 u32 error_code = 0;
2908 tss_selector = (u16)svm->vmcb->control.exit_info_1;
2910 if (svm->vmcb->control.exit_info_2 &
2911 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2912 reason = TASK_SWITCH_IRET;
2913 else if (svm->vmcb->control.exit_info_2 &
2914 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2915 reason = TASK_SWITCH_JMP;
2916 else if (idt_v)
2917 reason = TASK_SWITCH_GATE;
2918 else
2919 reason = TASK_SWITCH_CALL;
2921 if (reason == TASK_SWITCH_GATE) {
2922 switch (type) {
2923 case SVM_EXITINTINFO_TYPE_NMI:
2924 svm->vcpu.arch.nmi_injected = false;
2925 break;
2926 case SVM_EXITINTINFO_TYPE_EXEPT:
2927 if (svm->vmcb->control.exit_info_2 &
2928 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2929 has_error_code = true;
2930 error_code =
2931 (u32)svm->vmcb->control.exit_info_2;
2933 kvm_clear_exception_queue(&svm->vcpu);
2934 break;
2935 case SVM_EXITINTINFO_TYPE_INTR:
2936 kvm_clear_interrupt_queue(&svm->vcpu);
2937 break;
2938 default:
2939 break;
2943 if (reason != TASK_SWITCH_GATE ||
2944 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2945 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2946 (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2947 skip_emulated_instruction(&svm->vcpu);
2949 if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2950 int_vec = -1;
2952 if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
2953 has_error_code, error_code) == EMULATE_FAIL) {
2954 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2955 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
2956 svm->vcpu.run->internal.ndata = 0;
2957 return 0;
2959 return 1;
2962 static int cpuid_interception(struct vcpu_svm *svm)
2964 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2965 kvm_emulate_cpuid(&svm->vcpu);
2966 return 1;
2969 static int iret_interception(struct vcpu_svm *svm)
2971 ++svm->vcpu.stat.nmi_window_exits;
2972 clr_intercept(svm, INTERCEPT_IRET);
2973 svm->vcpu.arch.hflags |= HF_IRET_MASK;
2974 svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
2975 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2976 return 1;
2979 static int invlpg_interception(struct vcpu_svm *svm)
2981 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2982 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2984 kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
2985 skip_emulated_instruction(&svm->vcpu);
2986 return 1;
2989 static int emulate_on_interception(struct vcpu_svm *svm)
2991 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2994 static int rdpmc_interception(struct vcpu_svm *svm)
2996 int err;
2998 if (!static_cpu_has(X86_FEATURE_NRIPS))
2999 return emulate_on_interception(svm);
3001 err = kvm_rdpmc(&svm->vcpu);
3002 kvm_complete_insn_gp(&svm->vcpu, err);
3004 return 1;
3007 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
3008 unsigned long val)
3010 unsigned long cr0 = svm->vcpu.arch.cr0;
3011 bool ret = false;
3012 u64 intercept;
3014 intercept = svm->nested.intercept;
3016 if (!is_guest_mode(&svm->vcpu) ||
3017 (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
3018 return false;
3020 cr0 &= ~SVM_CR0_SELECTIVE_MASK;
3021 val &= ~SVM_CR0_SELECTIVE_MASK;
3023 if (cr0 ^ val) {
3024 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
3025 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
3028 return ret;
3031 #define CR_VALID (1ULL << 63)
3033 static int cr_interception(struct vcpu_svm *svm)
3035 int reg, cr;
3036 unsigned long val;
3037 int err;
3039 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3040 return emulate_on_interception(svm);
3042 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
3043 return emulate_on_interception(svm);
3045 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3046 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
3047 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
3048 else
3049 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
3051 err = 0;
3052 if (cr >= 16) { /* mov to cr */
3053 cr -= 16;
3054 val = kvm_register_read(&svm->vcpu, reg);
3055 switch (cr) {
3056 case 0:
3057 if (!check_selective_cr0_intercepted(svm, val))
3058 err = kvm_set_cr0(&svm->vcpu, val);
3059 else
3060 return 1;
3062 break;
3063 case 3:
3064 err = kvm_set_cr3(&svm->vcpu, val);
3065 break;
3066 case 4:
3067 err = kvm_set_cr4(&svm->vcpu, val);
3068 break;
3069 case 8:
3070 err = kvm_set_cr8(&svm->vcpu, val);
3071 break;
3072 default:
3073 WARN(1, "unhandled write to CR%d", cr);
3074 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3075 return 1;
3077 } else { /* mov from cr */
3078 switch (cr) {
3079 case 0:
3080 val = kvm_read_cr0(&svm->vcpu);
3081 break;
3082 case 2:
3083 val = svm->vcpu.arch.cr2;
3084 break;
3085 case 3:
3086 val = kvm_read_cr3(&svm->vcpu);
3087 break;
3088 case 4:
3089 val = kvm_read_cr4(&svm->vcpu);
3090 break;
3091 case 8:
3092 val = kvm_get_cr8(&svm->vcpu);
3093 break;
3094 default:
3095 WARN(1, "unhandled read from CR%d", cr);
3096 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3097 return 1;
3099 kvm_register_write(&svm->vcpu, reg, val);
3101 kvm_complete_insn_gp(&svm->vcpu, err);
3103 return 1;
3106 static int dr_interception(struct vcpu_svm *svm)
3108 int reg, dr;
3109 unsigned long val;
3111 if (svm->vcpu.guest_debug == 0) {
3113 * No more DR vmexits; force a reload of the debug registers
3114 * and reenter on this instruction. The next vmexit will
3115 * retrieve the full state of the debug registers.
3117 clr_dr_intercepts(svm);
3118 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
3119 return 1;
3122 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
3123 return emulate_on_interception(svm);
3125 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3126 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
3128 if (dr >= 16) { /* mov to DRn */
3129 if (!kvm_require_dr(&svm->vcpu, dr - 16))
3130 return 1;
3131 val = kvm_register_read(&svm->vcpu, reg);
3132 kvm_set_dr(&svm->vcpu, dr - 16, val);
3133 } else {
3134 if (!kvm_require_dr(&svm->vcpu, dr))
3135 return 1;
3136 kvm_get_dr(&svm->vcpu, dr, &val);
3137 kvm_register_write(&svm->vcpu, reg, val);
3140 skip_emulated_instruction(&svm->vcpu);
3142 return 1;
3145 static int cr8_write_interception(struct vcpu_svm *svm)
3147 struct kvm_run *kvm_run = svm->vcpu.run;
3148 int r;
3150 u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
3151 /* instruction emulation calls kvm_set_cr8() */
3152 r = cr_interception(svm);
3153 if (irqchip_in_kernel(svm->vcpu.kvm))
3154 return r;
3155 if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
3156 return r;
3157 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
3158 return 0;
3161 static u64 svm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
3163 struct vmcb *vmcb = get_host_vmcb(to_svm(vcpu));
3164 return vmcb->control.tsc_offset +
3165 svm_scale_tsc(vcpu, host_tsc);
3168 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3170 struct vcpu_svm *svm = to_svm(vcpu);
3172 switch (msr_info->index) {
3173 case MSR_IA32_TSC: {
3174 msr_info->data = svm->vmcb->control.tsc_offset +
3175 svm_scale_tsc(vcpu, native_read_tsc());
3177 break;
3179 case MSR_STAR:
3180 msr_info->data = svm->vmcb->save.star;
3181 break;
3182 #ifdef CONFIG_X86_64
3183 case MSR_LSTAR:
3184 msr_info->data = svm->vmcb->save.lstar;
3185 break;
3186 case MSR_CSTAR:
3187 msr_info->data = svm->vmcb->save.cstar;
3188 break;
3189 case MSR_KERNEL_GS_BASE:
3190 msr_info->data = svm->vmcb->save.kernel_gs_base;
3191 break;
3192 case MSR_SYSCALL_MASK:
3193 msr_info->data = svm->vmcb->save.sfmask;
3194 break;
3195 #endif
3196 case MSR_IA32_SYSENTER_CS:
3197 msr_info->data = svm->vmcb->save.sysenter_cs;
3198 break;
3199 case MSR_IA32_SYSENTER_EIP:
3200 msr_info->data = svm->sysenter_eip;
3201 break;
3202 case MSR_IA32_SYSENTER_ESP:
3203 msr_info->data = svm->sysenter_esp;
3204 break;
3206 * Nobody will change the following 5 values in the VMCB so we can
3207 * safely return them on rdmsr. They will always be 0 until LBRV is
3208 * implemented.
3210 case MSR_IA32_DEBUGCTLMSR:
3211 msr_info->data = svm->vmcb->save.dbgctl;
3212 break;
3213 case MSR_IA32_LASTBRANCHFROMIP:
3214 msr_info->data = svm->vmcb->save.br_from;
3215 break;
3216 case MSR_IA32_LASTBRANCHTOIP:
3217 msr_info->data = svm->vmcb->save.br_to;
3218 break;
3219 case MSR_IA32_LASTINTFROMIP:
3220 msr_info->data = svm->vmcb->save.last_excp_from;
3221 break;
3222 case MSR_IA32_LASTINTTOIP:
3223 msr_info->data = svm->vmcb->save.last_excp_to;
3224 break;
3225 case MSR_VM_HSAVE_PA:
3226 msr_info->data = svm->nested.hsave_msr;
3227 break;
3228 case MSR_VM_CR:
3229 msr_info->data = svm->nested.vm_cr_msr;
3230 break;
3231 case MSR_IA32_UCODE_REV:
3232 msr_info->data = 0x01000065;
3233 break;
3234 default:
3235 return kvm_get_msr_common(vcpu, msr_info);
3237 return 0;
3240 static int rdmsr_interception(struct vcpu_svm *svm)
3242 u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3243 struct msr_data msr_info;
3245 msr_info.index = ecx;
3246 msr_info.host_initiated = false;
3247 if (svm_get_msr(&svm->vcpu, &msr_info)) {
3248 trace_kvm_msr_read_ex(ecx);
3249 kvm_inject_gp(&svm->vcpu, 0);
3250 } else {
3251 trace_kvm_msr_read(ecx, msr_info.data);
3253 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX,
3254 msr_info.data & 0xffffffff);
3255 kvm_register_write(&svm->vcpu, VCPU_REGS_RDX,
3256 msr_info.data >> 32);
3257 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3258 skip_emulated_instruction(&svm->vcpu);
3260 return 1;
3263 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
3265 struct vcpu_svm *svm = to_svm(vcpu);
3266 int svm_dis, chg_mask;
3268 if (data & ~SVM_VM_CR_VALID_MASK)
3269 return 1;
3271 chg_mask = SVM_VM_CR_VALID_MASK;
3273 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3274 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3276 svm->nested.vm_cr_msr &= ~chg_mask;
3277 svm->nested.vm_cr_msr |= (data & chg_mask);
3279 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3281 /* check for svm_disable while efer.svme is set */
3282 if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3283 return 1;
3285 return 0;
3288 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
3290 struct vcpu_svm *svm = to_svm(vcpu);
3292 u32 ecx = msr->index;
3293 u64 data = msr->data;
3294 switch (ecx) {
3295 case MSR_IA32_TSC:
3296 kvm_write_tsc(vcpu, msr);
3297 break;
3298 case MSR_STAR:
3299 svm->vmcb->save.star = data;
3300 break;
3301 #ifdef CONFIG_X86_64
3302 case MSR_LSTAR:
3303 svm->vmcb->save.lstar = data;
3304 break;
3305 case MSR_CSTAR:
3306 svm->vmcb->save.cstar = data;
3307 break;
3308 case MSR_KERNEL_GS_BASE:
3309 svm->vmcb->save.kernel_gs_base = data;
3310 break;
3311 case MSR_SYSCALL_MASK:
3312 svm->vmcb->save.sfmask = data;
3313 break;
3314 #endif
3315 case MSR_IA32_SYSENTER_CS:
3316 svm->vmcb->save.sysenter_cs = data;
3317 break;
3318 case MSR_IA32_SYSENTER_EIP:
3319 svm->sysenter_eip = data;
3320 svm->vmcb->save.sysenter_eip = data;
3321 break;
3322 case MSR_IA32_SYSENTER_ESP:
3323 svm->sysenter_esp = data;
3324 svm->vmcb->save.sysenter_esp = data;
3325 break;
3326 case MSR_IA32_DEBUGCTLMSR:
3327 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
3328 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3329 __func__, data);
3330 break;
3332 if (data & DEBUGCTL_RESERVED_BITS)
3333 return 1;
3335 svm->vmcb->save.dbgctl = data;
3336 mark_dirty(svm->vmcb, VMCB_LBR);
3337 if (data & (1ULL<<0))
3338 svm_enable_lbrv(svm);
3339 else
3340 svm_disable_lbrv(svm);
3341 break;
3342 case MSR_VM_HSAVE_PA:
3343 svm->nested.hsave_msr = data;
3344 break;
3345 case MSR_VM_CR:
3346 return svm_set_vm_cr(vcpu, data);
3347 case MSR_VM_IGNNE:
3348 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3349 break;
3350 case MSR_IA32_CR_PAT:
3351 if (npt_enabled) {
3352 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
3353 return 1;
3354 vcpu->arch.pat = data;
3355 svm_set_guest_pat(svm, &svm->vmcb->save.g_pat);
3356 mark_dirty(svm->vmcb, VMCB_NPT);
3357 break;
3359 /* fall through */
3360 default:
3361 return kvm_set_msr_common(vcpu, msr);
3363 return 0;
3366 static int wrmsr_interception(struct vcpu_svm *svm)
3368 struct msr_data msr;
3369 u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3370 u64 data = kvm_read_edx_eax(&svm->vcpu);
3372 msr.data = data;
3373 msr.index = ecx;
3374 msr.host_initiated = false;
3376 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3377 if (kvm_set_msr(&svm->vcpu, &msr)) {
3378 trace_kvm_msr_write_ex(ecx, data);
3379 kvm_inject_gp(&svm->vcpu, 0);
3380 } else {
3381 trace_kvm_msr_write(ecx, data);
3382 skip_emulated_instruction(&svm->vcpu);
3384 return 1;
3387 static int msr_interception(struct vcpu_svm *svm)
3389 if (svm->vmcb->control.exit_info_1)
3390 return wrmsr_interception(svm);
3391 else
3392 return rdmsr_interception(svm);
3395 static int interrupt_window_interception(struct vcpu_svm *svm)
3397 struct kvm_run *kvm_run = svm->vcpu.run;
3399 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3400 svm_clear_vintr(svm);
3401 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3402 mark_dirty(svm->vmcb, VMCB_INTR);
3403 ++svm->vcpu.stat.irq_window_exits;
3405 * If the user space waits to inject interrupts, exit as soon as
3406 * possible
3408 if (!irqchip_in_kernel(svm->vcpu.kvm) &&
3409 kvm_run->request_interrupt_window &&
3410 !kvm_cpu_has_interrupt(&svm->vcpu)) {
3411 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3412 return 0;
3415 return 1;
3418 static int pause_interception(struct vcpu_svm *svm)
3420 kvm_vcpu_on_spin(&(svm->vcpu));
3421 return 1;
3424 static int nop_interception(struct vcpu_svm *svm)
3426 skip_emulated_instruction(&(svm->vcpu));
3427 return 1;
3430 static int monitor_interception(struct vcpu_svm *svm)
3432 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
3433 return nop_interception(svm);
3436 static int mwait_interception(struct vcpu_svm *svm)
3438 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
3439 return nop_interception(svm);
3442 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
3443 [SVM_EXIT_READ_CR0] = cr_interception,
3444 [SVM_EXIT_READ_CR3] = cr_interception,
3445 [SVM_EXIT_READ_CR4] = cr_interception,
3446 [SVM_EXIT_READ_CR8] = cr_interception,
3447 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception,
3448 [SVM_EXIT_WRITE_CR0] = cr_interception,
3449 [SVM_EXIT_WRITE_CR3] = cr_interception,
3450 [SVM_EXIT_WRITE_CR4] = cr_interception,
3451 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
3452 [SVM_EXIT_READ_DR0] = dr_interception,
3453 [SVM_EXIT_READ_DR1] = dr_interception,
3454 [SVM_EXIT_READ_DR2] = dr_interception,
3455 [SVM_EXIT_READ_DR3] = dr_interception,
3456 [SVM_EXIT_READ_DR4] = dr_interception,
3457 [SVM_EXIT_READ_DR5] = dr_interception,
3458 [SVM_EXIT_READ_DR6] = dr_interception,
3459 [SVM_EXIT_READ_DR7] = dr_interception,
3460 [SVM_EXIT_WRITE_DR0] = dr_interception,
3461 [SVM_EXIT_WRITE_DR1] = dr_interception,
3462 [SVM_EXIT_WRITE_DR2] = dr_interception,
3463 [SVM_EXIT_WRITE_DR3] = dr_interception,
3464 [SVM_EXIT_WRITE_DR4] = dr_interception,
3465 [SVM_EXIT_WRITE_DR5] = dr_interception,
3466 [SVM_EXIT_WRITE_DR6] = dr_interception,
3467 [SVM_EXIT_WRITE_DR7] = dr_interception,
3468 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
3469 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
3470 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
3471 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
3472 [SVM_EXIT_EXCP_BASE + NM_VECTOR] = nm_interception,
3473 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
3474 [SVM_EXIT_INTR] = intr_interception,
3475 [SVM_EXIT_NMI] = nmi_interception,
3476 [SVM_EXIT_SMI] = nop_on_interception,
3477 [SVM_EXIT_INIT] = nop_on_interception,
3478 [SVM_EXIT_VINTR] = interrupt_window_interception,
3479 [SVM_EXIT_RDPMC] = rdpmc_interception,
3480 [SVM_EXIT_CPUID] = cpuid_interception,
3481 [SVM_EXIT_IRET] = iret_interception,
3482 [SVM_EXIT_INVD] = emulate_on_interception,
3483 [SVM_EXIT_PAUSE] = pause_interception,
3484 [SVM_EXIT_HLT] = halt_interception,
3485 [SVM_EXIT_INVLPG] = invlpg_interception,
3486 [SVM_EXIT_INVLPGA] = invlpga_interception,
3487 [SVM_EXIT_IOIO] = io_interception,
3488 [SVM_EXIT_MSR] = msr_interception,
3489 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
3490 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
3491 [SVM_EXIT_VMRUN] = vmrun_interception,
3492 [SVM_EXIT_VMMCALL] = vmmcall_interception,
3493 [SVM_EXIT_VMLOAD] = vmload_interception,
3494 [SVM_EXIT_VMSAVE] = vmsave_interception,
3495 [SVM_EXIT_STGI] = stgi_interception,
3496 [SVM_EXIT_CLGI] = clgi_interception,
3497 [SVM_EXIT_SKINIT] = skinit_interception,
3498 [SVM_EXIT_WBINVD] = wbinvd_interception,
3499 [SVM_EXIT_MONITOR] = monitor_interception,
3500 [SVM_EXIT_MWAIT] = mwait_interception,
3501 [SVM_EXIT_XSETBV] = xsetbv_interception,
3502 [SVM_EXIT_NPF] = pf_interception,
3503 [SVM_EXIT_RSM] = emulate_on_interception,
3506 static void dump_vmcb(struct kvm_vcpu *vcpu)
3508 struct vcpu_svm *svm = to_svm(vcpu);
3509 struct vmcb_control_area *control = &svm->vmcb->control;
3510 struct vmcb_save_area *save = &svm->vmcb->save;
3512 pr_err("VMCB Control Area:\n");
3513 pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
3514 pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
3515 pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
3516 pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
3517 pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
3518 pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
3519 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3520 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3521 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3522 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3523 pr_err("%-20s%d\n", "asid:", control->asid);
3524 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3525 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3526 pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3527 pr_err("%-20s%08x\n", "int_state:", control->int_state);
3528 pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3529 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3530 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3531 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3532 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3533 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3534 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3535 pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3536 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3537 pr_err("%-20s%lld\n", "lbr_ctl:", control->lbr_ctl);
3538 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3539 pr_err("VMCB State Save Area:\n");
3540 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3541 "es:",
3542 save->es.selector, save->es.attrib,
3543 save->es.limit, save->es.base);
3544 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3545 "cs:",
3546 save->cs.selector, save->cs.attrib,
3547 save->cs.limit, save->cs.base);
3548 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3549 "ss:",
3550 save->ss.selector, save->ss.attrib,
3551 save->ss.limit, save->ss.base);
3552 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3553 "ds:",
3554 save->ds.selector, save->ds.attrib,
3555 save->ds.limit, save->ds.base);
3556 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3557 "fs:",
3558 save->fs.selector, save->fs.attrib,
3559 save->fs.limit, save->fs.base);
3560 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3561 "gs:",
3562 save->gs.selector, save->gs.attrib,
3563 save->gs.limit, save->gs.base);
3564 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3565 "gdtr:",
3566 save->gdtr.selector, save->gdtr.attrib,
3567 save->gdtr.limit, save->gdtr.base);
3568 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3569 "ldtr:",
3570 save->ldtr.selector, save->ldtr.attrib,
3571 save->ldtr.limit, save->ldtr.base);
3572 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3573 "idtr:",
3574 save->idtr.selector, save->idtr.attrib,
3575 save->idtr.limit, save->idtr.base);
3576 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3577 "tr:",
3578 save->tr.selector, save->tr.attrib,
3579 save->tr.limit, save->tr.base);
3580 pr_err("cpl: %d efer: %016llx\n",
3581 save->cpl, save->efer);
3582 pr_err("%-15s %016llx %-13s %016llx\n",
3583 "cr0:", save->cr0, "cr2:", save->cr2);
3584 pr_err("%-15s %016llx %-13s %016llx\n",
3585 "cr3:", save->cr3, "cr4:", save->cr4);
3586 pr_err("%-15s %016llx %-13s %016llx\n",
3587 "dr6:", save->dr6, "dr7:", save->dr7);
3588 pr_err("%-15s %016llx %-13s %016llx\n",
3589 "rip:", save->rip, "rflags:", save->rflags);
3590 pr_err("%-15s %016llx %-13s %016llx\n",
3591 "rsp:", save->rsp, "rax:", save->rax);
3592 pr_err("%-15s %016llx %-13s %016llx\n",
3593 "star:", save->star, "lstar:", save->lstar);
3594 pr_err("%-15s %016llx %-13s %016llx\n",
3595 "cstar:", save->cstar, "sfmask:", save->sfmask);
3596 pr_err("%-15s %016llx %-13s %016llx\n",
3597 "kernel_gs_base:", save->kernel_gs_base,
3598 "sysenter_cs:", save->sysenter_cs);
3599 pr_err("%-15s %016llx %-13s %016llx\n",
3600 "sysenter_esp:", save->sysenter_esp,
3601 "sysenter_eip:", save->sysenter_eip);
3602 pr_err("%-15s %016llx %-13s %016llx\n",
3603 "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3604 pr_err("%-15s %016llx %-13s %016llx\n",
3605 "br_from:", save->br_from, "br_to:", save->br_to);
3606 pr_err("%-15s %016llx %-13s %016llx\n",
3607 "excp_from:", save->last_excp_from,
3608 "excp_to:", save->last_excp_to);
3611 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
3613 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3615 *info1 = control->exit_info_1;
3616 *info2 = control->exit_info_2;
3619 static int handle_exit(struct kvm_vcpu *vcpu)
3621 struct vcpu_svm *svm = to_svm(vcpu);
3622 struct kvm_run *kvm_run = vcpu->run;
3623 u32 exit_code = svm->vmcb->control.exit_code;
3625 if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
3626 vcpu->arch.cr0 = svm->vmcb->save.cr0;
3627 if (npt_enabled)
3628 vcpu->arch.cr3 = svm->vmcb->save.cr3;
3630 if (unlikely(svm->nested.exit_required)) {
3631 nested_svm_vmexit(svm);
3632 svm->nested.exit_required = false;
3634 return 1;
3637 if (is_guest_mode(vcpu)) {
3638 int vmexit;
3640 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
3641 svm->vmcb->control.exit_info_1,
3642 svm->vmcb->control.exit_info_2,
3643 svm->vmcb->control.exit_int_info,
3644 svm->vmcb->control.exit_int_info_err,
3645 KVM_ISA_SVM);
3647 vmexit = nested_svm_exit_special(svm);
3649 if (vmexit == NESTED_EXIT_CONTINUE)
3650 vmexit = nested_svm_exit_handled(svm);
3652 if (vmexit == NESTED_EXIT_DONE)
3653 return 1;
3656 svm_complete_interrupts(svm);
3658 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3659 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3660 kvm_run->fail_entry.hardware_entry_failure_reason
3661 = svm->vmcb->control.exit_code;
3662 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
3663 dump_vmcb(vcpu);
3664 return 0;
3667 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3668 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3669 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3670 exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3671 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
3672 "exit_code 0x%x\n",
3673 __func__, svm->vmcb->control.exit_int_info,
3674 exit_code);
3676 if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
3677 || !svm_exit_handlers[exit_code]) {
3678 WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code);
3679 kvm_queue_exception(vcpu, UD_VECTOR);
3680 return 1;
3683 return svm_exit_handlers[exit_code](svm);
3686 static void reload_tss(struct kvm_vcpu *vcpu)
3688 int cpu = raw_smp_processor_id();
3690 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3691 sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3692 load_TR_desc();
3695 static void pre_svm_run(struct vcpu_svm *svm)
3697 int cpu = raw_smp_processor_id();
3699 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3701 /* FIXME: handle wraparound of asid_generation */
3702 if (svm->asid_generation != sd->asid_generation)
3703 new_asid(svm, sd);
3706 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3708 struct vcpu_svm *svm = to_svm(vcpu);
3710 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3711 vcpu->arch.hflags |= HF_NMI_MASK;
3712 set_intercept(svm, INTERCEPT_IRET);
3713 ++vcpu->stat.nmi_injections;
3716 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
3718 struct vmcb_control_area *control;
3720 control = &svm->vmcb->control;
3721 control->int_vector = irq;
3722 control->int_ctl &= ~V_INTR_PRIO_MASK;
3723 control->int_ctl |= V_IRQ_MASK |
3724 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
3725 mark_dirty(svm->vmcb, VMCB_INTR);
3728 static void svm_set_irq(struct kvm_vcpu *vcpu)
3730 struct vcpu_svm *svm = to_svm(vcpu);
3732 BUG_ON(!(gif_set(svm)));
3734 trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3735 ++vcpu->stat.irq_injections;
3737 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3738 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3741 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3743 struct vcpu_svm *svm = to_svm(vcpu);
3745 if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3746 return;
3748 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3750 if (irr == -1)
3751 return;
3753 if (tpr >= irr)
3754 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3757 static void svm_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
3759 return;
3762 static int svm_vm_has_apicv(struct kvm *kvm)
3764 return 0;
3767 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
3769 return;
3772 static void svm_sync_pir_to_irr(struct kvm_vcpu *vcpu)
3774 return;
3777 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
3779 struct vcpu_svm *svm = to_svm(vcpu);
3780 struct vmcb *vmcb = svm->vmcb;
3781 int ret;
3782 ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
3783 !(svm->vcpu.arch.hflags & HF_NMI_MASK);
3784 ret = ret && gif_set(svm) && nested_svm_nmi(svm);
3786 return ret;
3789 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3791 struct vcpu_svm *svm = to_svm(vcpu);
3793 return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3796 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3798 struct vcpu_svm *svm = to_svm(vcpu);
3800 if (masked) {
3801 svm->vcpu.arch.hflags |= HF_NMI_MASK;
3802 set_intercept(svm, INTERCEPT_IRET);
3803 } else {
3804 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3805 clr_intercept(svm, INTERCEPT_IRET);
3809 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
3811 struct vcpu_svm *svm = to_svm(vcpu);
3812 struct vmcb *vmcb = svm->vmcb;
3813 int ret;
3815 if (!gif_set(svm) ||
3816 (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
3817 return 0;
3819 ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
3821 if (is_guest_mode(vcpu))
3822 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
3824 return ret;
3827 static void enable_irq_window(struct kvm_vcpu *vcpu)
3829 struct vcpu_svm *svm = to_svm(vcpu);
3832 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3833 * 1, because that's a separate STGI/VMRUN intercept. The next time we
3834 * get that intercept, this function will be called again though and
3835 * we'll get the vintr intercept.
3837 if (gif_set(svm) && nested_svm_intr(svm)) {
3838 svm_set_vintr(svm);
3839 svm_inject_irq(svm, 0x0);
3843 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3845 struct vcpu_svm *svm = to_svm(vcpu);
3847 if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3848 == HF_NMI_MASK)
3849 return; /* IRET will cause a vm exit */
3852 * Something prevents NMI from been injected. Single step over possible
3853 * problem (IRET or exception injection or interrupt shadow)
3855 svm->nmi_singlestep = true;
3856 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3857 update_db_bp_intercept(vcpu);
3860 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3862 return 0;
3865 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
3867 struct vcpu_svm *svm = to_svm(vcpu);
3869 if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3870 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3871 else
3872 svm->asid_generation--;
3875 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3879 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3881 struct vcpu_svm *svm = to_svm(vcpu);
3883 if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3884 return;
3886 if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
3887 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3888 kvm_set_cr8(vcpu, cr8);
3892 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3894 struct vcpu_svm *svm = to_svm(vcpu);
3895 u64 cr8;
3897 if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3898 return;
3900 cr8 = kvm_get_cr8(vcpu);
3901 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3902 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3905 static void svm_complete_interrupts(struct vcpu_svm *svm)
3907 u8 vector;
3908 int type;
3909 u32 exitintinfo = svm->vmcb->control.exit_int_info;
3910 unsigned int3_injected = svm->int3_injected;
3912 svm->int3_injected = 0;
3915 * If we've made progress since setting HF_IRET_MASK, we've
3916 * executed an IRET and can allow NMI injection.
3918 if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
3919 && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
3920 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3921 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3924 svm->vcpu.arch.nmi_injected = false;
3925 kvm_clear_exception_queue(&svm->vcpu);
3926 kvm_clear_interrupt_queue(&svm->vcpu);
3928 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3929 return;
3931 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3933 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3934 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3936 switch (type) {
3937 case SVM_EXITINTINFO_TYPE_NMI:
3938 svm->vcpu.arch.nmi_injected = true;
3939 break;
3940 case SVM_EXITINTINFO_TYPE_EXEPT:
3942 * In case of software exceptions, do not reinject the vector,
3943 * but re-execute the instruction instead. Rewind RIP first
3944 * if we emulated INT3 before.
3946 if (kvm_exception_is_soft(vector)) {
3947 if (vector == BP_VECTOR && int3_injected &&
3948 kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3949 kvm_rip_write(&svm->vcpu,
3950 kvm_rip_read(&svm->vcpu) -
3951 int3_injected);
3952 break;
3954 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3955 u32 err = svm->vmcb->control.exit_int_info_err;
3956 kvm_requeue_exception_e(&svm->vcpu, vector, err);
3958 } else
3959 kvm_requeue_exception(&svm->vcpu, vector);
3960 break;
3961 case SVM_EXITINTINFO_TYPE_INTR:
3962 kvm_queue_interrupt(&svm->vcpu, vector, false);
3963 break;
3964 default:
3965 break;
3969 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3971 struct vcpu_svm *svm = to_svm(vcpu);
3972 struct vmcb_control_area *control = &svm->vmcb->control;
3974 control->exit_int_info = control->event_inj;
3975 control->exit_int_info_err = control->event_inj_err;
3976 control->event_inj = 0;
3977 svm_complete_interrupts(svm);
3980 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
3982 struct vcpu_svm *svm = to_svm(vcpu);
3984 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3985 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3986 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3989 * A vmexit emulation is required before the vcpu can be executed
3990 * again.
3992 if (unlikely(svm->nested.exit_required))
3993 return;
3995 pre_svm_run(svm);
3997 sync_lapic_to_cr8(vcpu);
3999 svm->vmcb->save.cr2 = vcpu->arch.cr2;
4001 clgi();
4003 local_irq_enable();
4005 asm volatile (
4006 "push %%" _ASM_BP "; \n\t"
4007 "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
4008 "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
4009 "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
4010 "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
4011 "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
4012 "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
4013 #ifdef CONFIG_X86_64
4014 "mov %c[r8](%[svm]), %%r8 \n\t"
4015 "mov %c[r9](%[svm]), %%r9 \n\t"
4016 "mov %c[r10](%[svm]), %%r10 \n\t"
4017 "mov %c[r11](%[svm]), %%r11 \n\t"
4018 "mov %c[r12](%[svm]), %%r12 \n\t"
4019 "mov %c[r13](%[svm]), %%r13 \n\t"
4020 "mov %c[r14](%[svm]), %%r14 \n\t"
4021 "mov %c[r15](%[svm]), %%r15 \n\t"
4022 #endif
4024 /* Enter guest mode */
4025 "push %%" _ASM_AX " \n\t"
4026 "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
4027 __ex(SVM_VMLOAD) "\n\t"
4028 __ex(SVM_VMRUN) "\n\t"
4029 __ex(SVM_VMSAVE) "\n\t"
4030 "pop %%" _ASM_AX " \n\t"
4032 /* Save guest registers, load host registers */
4033 "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
4034 "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
4035 "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
4036 "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
4037 "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
4038 "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
4039 #ifdef CONFIG_X86_64
4040 "mov %%r8, %c[r8](%[svm]) \n\t"
4041 "mov %%r9, %c[r9](%[svm]) \n\t"
4042 "mov %%r10, %c[r10](%[svm]) \n\t"
4043 "mov %%r11, %c[r11](%[svm]) \n\t"
4044 "mov %%r12, %c[r12](%[svm]) \n\t"
4045 "mov %%r13, %c[r13](%[svm]) \n\t"
4046 "mov %%r14, %c[r14](%[svm]) \n\t"
4047 "mov %%r15, %c[r15](%[svm]) \n\t"
4048 #endif
4049 "pop %%" _ASM_BP
4051 : [svm]"a"(svm),
4052 [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
4053 [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
4054 [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
4055 [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
4056 [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
4057 [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
4058 [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
4059 #ifdef CONFIG_X86_64
4060 , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
4061 [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
4062 [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
4063 [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
4064 [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
4065 [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
4066 [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
4067 [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
4068 #endif
4069 : "cc", "memory"
4070 #ifdef CONFIG_X86_64
4071 , "rbx", "rcx", "rdx", "rsi", "rdi"
4072 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
4073 #else
4074 , "ebx", "ecx", "edx", "esi", "edi"
4075 #endif
4078 #ifdef CONFIG_X86_64
4079 wrmsrl(MSR_GS_BASE, svm->host.gs_base);
4080 #else
4081 loadsegment(fs, svm->host.fs);
4082 #ifndef CONFIG_X86_32_LAZY_GS
4083 loadsegment(gs, svm->host.gs);
4084 #endif
4085 #endif
4087 reload_tss(vcpu);
4089 local_irq_disable();
4091 vcpu->arch.cr2 = svm->vmcb->save.cr2;
4092 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
4093 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
4094 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
4096 trace_kvm_exit(svm->vmcb->control.exit_code, vcpu, KVM_ISA_SVM);
4098 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4099 kvm_before_handle_nmi(&svm->vcpu);
4101 stgi();
4103 /* Any pending NMI will happen here */
4105 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4106 kvm_after_handle_nmi(&svm->vcpu);
4108 sync_cr8_to_lapic(vcpu);
4110 svm->next_rip = 0;
4112 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
4114 /* if exit due to PF check for async PF */
4115 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
4116 svm->apf_reason = kvm_read_and_reset_pf_reason();
4118 if (npt_enabled) {
4119 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
4120 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
4124 * We need to handle MC intercepts here before the vcpu has a chance to
4125 * change the physical cpu
4127 if (unlikely(svm->vmcb->control.exit_code ==
4128 SVM_EXIT_EXCP_BASE + MC_VECTOR))
4129 svm_handle_mce(svm);
4131 mark_all_clean(svm->vmcb);
4134 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
4136 struct vcpu_svm *svm = to_svm(vcpu);
4138 svm->vmcb->save.cr3 = root;
4139 mark_dirty(svm->vmcb, VMCB_CR);
4140 svm_flush_tlb(vcpu);
4143 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
4145 struct vcpu_svm *svm = to_svm(vcpu);
4147 svm->vmcb->control.nested_cr3 = root;
4148 mark_dirty(svm->vmcb, VMCB_NPT);
4150 /* Also sync guest cr3 here in case we live migrate */
4151 svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
4152 mark_dirty(svm->vmcb, VMCB_CR);
4154 svm_flush_tlb(vcpu);
4157 static int is_disabled(void)
4159 u64 vm_cr;
4161 rdmsrl(MSR_VM_CR, vm_cr);
4162 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
4163 return 1;
4165 return 0;
4168 static void
4169 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4172 * Patch in the VMMCALL instruction:
4174 hypercall[0] = 0x0f;
4175 hypercall[1] = 0x01;
4176 hypercall[2] = 0xd9;
4179 static void svm_check_processor_compat(void *rtn)
4181 *(int *)rtn = 0;
4184 static bool svm_cpu_has_accelerated_tpr(void)
4186 return false;
4189 static bool svm_has_high_real_mode_segbase(void)
4191 return true;
4194 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
4198 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
4200 switch (func) {
4201 case 0x80000001:
4202 if (nested)
4203 entry->ecx |= (1 << 2); /* Set SVM bit */
4204 break;
4205 case 0x8000000A:
4206 entry->eax = 1; /* SVM revision 1 */
4207 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
4208 ASID emulation to nested SVM */
4209 entry->ecx = 0; /* Reserved */
4210 entry->edx = 0; /* Per default do not support any
4211 additional features */
4213 /* Support next_rip if host supports it */
4214 if (boot_cpu_has(X86_FEATURE_NRIPS))
4215 entry->edx |= SVM_FEATURE_NRIP;
4217 /* Support NPT for the guest if enabled */
4218 if (npt_enabled)
4219 entry->edx |= SVM_FEATURE_NPT;
4221 break;
4225 static int svm_get_lpage_level(void)
4227 return PT_PDPE_LEVEL;
4230 static bool svm_rdtscp_supported(void)
4232 return false;
4235 static bool svm_invpcid_supported(void)
4237 return false;
4240 static bool svm_mpx_supported(void)
4242 return false;
4245 static bool svm_xsaves_supported(void)
4247 return false;
4250 static bool svm_has_wbinvd_exit(void)
4252 return true;
4255 static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
4257 struct vcpu_svm *svm = to_svm(vcpu);
4259 set_exception_intercept(svm, NM_VECTOR);
4260 update_cr0_intercept(svm);
4263 #define PRE_EX(exit) { .exit_code = (exit), \
4264 .stage = X86_ICPT_PRE_EXCEPT, }
4265 #define POST_EX(exit) { .exit_code = (exit), \
4266 .stage = X86_ICPT_POST_EXCEPT, }
4267 #define POST_MEM(exit) { .exit_code = (exit), \
4268 .stage = X86_ICPT_POST_MEMACCESS, }
4270 static const struct __x86_intercept {
4271 u32 exit_code;
4272 enum x86_intercept_stage stage;
4273 } x86_intercept_map[] = {
4274 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
4275 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
4276 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
4277 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
4278 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
4279 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
4280 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
4281 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
4282 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
4283 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
4284 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
4285 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
4286 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
4287 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
4288 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
4289 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
4290 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
4291 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
4292 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
4293 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
4294 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
4295 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
4296 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
4297 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
4298 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
4299 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
4300 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
4301 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
4302 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
4303 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
4304 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
4305 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
4306 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
4307 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
4308 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
4309 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
4310 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
4311 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
4312 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
4313 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
4314 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
4315 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
4316 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
4317 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
4318 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
4319 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
4322 #undef PRE_EX
4323 #undef POST_EX
4324 #undef POST_MEM
4326 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4327 struct x86_instruction_info *info,
4328 enum x86_intercept_stage stage)
4330 struct vcpu_svm *svm = to_svm(vcpu);
4331 int vmexit, ret = X86EMUL_CONTINUE;
4332 struct __x86_intercept icpt_info;
4333 struct vmcb *vmcb = svm->vmcb;
4335 if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4336 goto out;
4338 icpt_info = x86_intercept_map[info->intercept];
4340 if (stage != icpt_info.stage)
4341 goto out;
4343 switch (icpt_info.exit_code) {
4344 case SVM_EXIT_READ_CR0:
4345 if (info->intercept == x86_intercept_cr_read)
4346 icpt_info.exit_code += info->modrm_reg;
4347 break;
4348 case SVM_EXIT_WRITE_CR0: {
4349 unsigned long cr0, val;
4350 u64 intercept;
4352 if (info->intercept == x86_intercept_cr_write)
4353 icpt_info.exit_code += info->modrm_reg;
4355 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4356 info->intercept == x86_intercept_clts)
4357 break;
4359 intercept = svm->nested.intercept;
4361 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
4362 break;
4364 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4365 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
4367 if (info->intercept == x86_intercept_lmsw) {
4368 cr0 &= 0xfUL;
4369 val &= 0xfUL;
4370 /* lmsw can't clear PE - catch this here */
4371 if (cr0 & X86_CR0_PE)
4372 val |= X86_CR0_PE;
4375 if (cr0 ^ val)
4376 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4378 break;
4380 case SVM_EXIT_READ_DR0:
4381 case SVM_EXIT_WRITE_DR0:
4382 icpt_info.exit_code += info->modrm_reg;
4383 break;
4384 case SVM_EXIT_MSR:
4385 if (info->intercept == x86_intercept_wrmsr)
4386 vmcb->control.exit_info_1 = 1;
4387 else
4388 vmcb->control.exit_info_1 = 0;
4389 break;
4390 case SVM_EXIT_PAUSE:
4392 * We get this for NOP only, but pause
4393 * is rep not, check this here
4395 if (info->rep_prefix != REPE_PREFIX)
4396 goto out;
4397 case SVM_EXIT_IOIO: {
4398 u64 exit_info;
4399 u32 bytes;
4401 if (info->intercept == x86_intercept_in ||
4402 info->intercept == x86_intercept_ins) {
4403 exit_info = ((info->src_val & 0xffff) << 16) |
4404 SVM_IOIO_TYPE_MASK;
4405 bytes = info->dst_bytes;
4406 } else {
4407 exit_info = (info->dst_val & 0xffff) << 16;
4408 bytes = info->src_bytes;
4411 if (info->intercept == x86_intercept_outs ||
4412 info->intercept == x86_intercept_ins)
4413 exit_info |= SVM_IOIO_STR_MASK;
4415 if (info->rep_prefix)
4416 exit_info |= SVM_IOIO_REP_MASK;
4418 bytes = min(bytes, 4u);
4420 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4422 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4424 vmcb->control.exit_info_1 = exit_info;
4425 vmcb->control.exit_info_2 = info->next_rip;
4427 break;
4429 default:
4430 break;
4433 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4434 if (static_cpu_has(X86_FEATURE_NRIPS))
4435 vmcb->control.next_rip = info->next_rip;
4436 vmcb->control.exit_code = icpt_info.exit_code;
4437 vmexit = nested_svm_exit_handled(svm);
4439 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4440 : X86EMUL_CONTINUE;
4442 out:
4443 return ret;
4446 static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
4448 local_irq_enable();
4451 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
4455 static struct kvm_x86_ops svm_x86_ops = {
4456 .cpu_has_kvm_support = has_svm,
4457 .disabled_by_bios = is_disabled,
4458 .hardware_setup = svm_hardware_setup,
4459 .hardware_unsetup = svm_hardware_unsetup,
4460 .check_processor_compatibility = svm_check_processor_compat,
4461 .hardware_enable = svm_hardware_enable,
4462 .hardware_disable = svm_hardware_disable,
4463 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4464 .cpu_has_high_real_mode_segbase = svm_has_high_real_mode_segbase,
4466 .vcpu_create = svm_create_vcpu,
4467 .vcpu_free = svm_free_vcpu,
4468 .vcpu_reset = svm_vcpu_reset,
4470 .prepare_guest_switch = svm_prepare_guest_switch,
4471 .vcpu_load = svm_vcpu_load,
4472 .vcpu_put = svm_vcpu_put,
4474 .update_db_bp_intercept = update_db_bp_intercept,
4475 .get_msr = svm_get_msr,
4476 .set_msr = svm_set_msr,
4477 .get_segment_base = svm_get_segment_base,
4478 .get_segment = svm_get_segment,
4479 .set_segment = svm_set_segment,
4480 .get_cpl = svm_get_cpl,
4481 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4482 .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
4483 .decache_cr3 = svm_decache_cr3,
4484 .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
4485 .set_cr0 = svm_set_cr0,
4486 .set_cr3 = svm_set_cr3,
4487 .set_cr4 = svm_set_cr4,
4488 .set_efer = svm_set_efer,
4489 .get_idt = svm_get_idt,
4490 .set_idt = svm_set_idt,
4491 .get_gdt = svm_get_gdt,
4492 .set_gdt = svm_set_gdt,
4493 .get_dr6 = svm_get_dr6,
4494 .set_dr6 = svm_set_dr6,
4495 .set_dr7 = svm_set_dr7,
4496 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4497 .cache_reg = svm_cache_reg,
4498 .get_rflags = svm_get_rflags,
4499 .set_rflags = svm_set_rflags,
4500 .fpu_activate = svm_fpu_activate,
4501 .fpu_deactivate = svm_fpu_deactivate,
4503 .tlb_flush = svm_flush_tlb,
4505 .run = svm_vcpu_run,
4506 .handle_exit = handle_exit,
4507 .skip_emulated_instruction = skip_emulated_instruction,
4508 .set_interrupt_shadow = svm_set_interrupt_shadow,
4509 .get_interrupt_shadow = svm_get_interrupt_shadow,
4510 .patch_hypercall = svm_patch_hypercall,
4511 .set_irq = svm_set_irq,
4512 .set_nmi = svm_inject_nmi,
4513 .queue_exception = svm_queue_exception,
4514 .cancel_injection = svm_cancel_injection,
4515 .interrupt_allowed = svm_interrupt_allowed,
4516 .nmi_allowed = svm_nmi_allowed,
4517 .get_nmi_mask = svm_get_nmi_mask,
4518 .set_nmi_mask = svm_set_nmi_mask,
4519 .enable_nmi_window = enable_nmi_window,
4520 .enable_irq_window = enable_irq_window,
4521 .update_cr8_intercept = update_cr8_intercept,
4522 .set_virtual_x2apic_mode = svm_set_virtual_x2apic_mode,
4523 .vm_has_apicv = svm_vm_has_apicv,
4524 .load_eoi_exitmap = svm_load_eoi_exitmap,
4525 .sync_pir_to_irr = svm_sync_pir_to_irr,
4527 .set_tss_addr = svm_set_tss_addr,
4528 .get_tdp_level = get_npt_level,
4529 .get_mt_mask = svm_get_mt_mask,
4531 .get_exit_info = svm_get_exit_info,
4533 .get_lpage_level = svm_get_lpage_level,
4535 .cpuid_update = svm_cpuid_update,
4537 .rdtscp_supported = svm_rdtscp_supported,
4538 .invpcid_supported = svm_invpcid_supported,
4539 .mpx_supported = svm_mpx_supported,
4540 .xsaves_supported = svm_xsaves_supported,
4542 .set_supported_cpuid = svm_set_supported_cpuid,
4544 .has_wbinvd_exit = svm_has_wbinvd_exit,
4546 .set_tsc_khz = svm_set_tsc_khz,
4547 .read_tsc_offset = svm_read_tsc_offset,
4548 .write_tsc_offset = svm_write_tsc_offset,
4549 .adjust_tsc_offset = svm_adjust_tsc_offset,
4550 .compute_tsc_offset = svm_compute_tsc_offset,
4551 .read_l1_tsc = svm_read_l1_tsc,
4553 .set_tdp_cr3 = set_tdp_cr3,
4555 .check_intercept = svm_check_intercept,
4556 .handle_external_intr = svm_handle_external_intr,
4558 .sched_in = svm_sched_in,
4560 .pmu_ops = &amd_pmu_ops,
4563 static int __init svm_init(void)
4565 return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
4566 __alignof__(struct vcpu_svm), THIS_MODULE);
4569 static void __exit svm_exit(void)
4571 kvm_exit();
4574 module_init(svm_init)
4575 module_exit(svm_exit)