2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
22 #include <linux/kvm_host.h>
27 #include "kvm_cache_regs.h"
30 #include "assigned-dev.h"
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
37 #include <linux/vmalloc.h>
38 #include <linux/module.h>
39 #include <linux/mman.h>
40 #include <linux/highmem.h>
41 #include <linux/iommu.h>
42 #include <linux/intel-iommu.h>
43 #include <linux/cpufreq.h>
44 #include <linux/user-return-notifier.h>
45 #include <linux/srcu.h>
46 #include <linux/slab.h>
47 #include <linux/perf_event.h>
48 #include <linux/uaccess.h>
49 #include <linux/hash.h>
50 #include <linux/pci.h>
51 #include <linux/timekeeper_internal.h>
52 #include <linux/pvclock_gtod.h>
53 #include <trace/events/kvm.h>
55 #define CREATE_TRACE_POINTS
58 #include <asm/debugreg.h>
62 #include <linux/kernel_stat.h>
63 #include <asm/fpu/internal.h> /* Ugh! */
64 #include <asm/pvclock.h>
65 #include <asm/div64.h>
67 #define MAX_IO_MSRS 256
68 #define KVM_MAX_MCE_BANKS 32
69 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
71 #define emul_to_vcpu(ctxt) \
72 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
75 * - enable syscall per default because its emulated by KVM
76 * - enable LME and LMA per default on 64 bit KVM
80 u64 __read_mostly efer_reserved_bits
= ~((u64
)(EFER_SCE
| EFER_LME
| EFER_LMA
));
82 static u64 __read_mostly efer_reserved_bits
= ~((u64
)EFER_SCE
);
85 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
86 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
88 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
);
89 static void process_nmi(struct kvm_vcpu
*vcpu
);
90 static void __kvm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
);
92 struct kvm_x86_ops
*kvm_x86_ops
;
93 EXPORT_SYMBOL_GPL(kvm_x86_ops
);
95 static bool ignore_msrs
= 0;
96 module_param(ignore_msrs
, bool, S_IRUGO
| S_IWUSR
);
98 unsigned int min_timer_period_us
= 500;
99 module_param(min_timer_period_us
, uint
, S_IRUGO
| S_IWUSR
);
101 static bool __read_mostly kvmclock_periodic_sync
= true;
102 module_param(kvmclock_periodic_sync
, bool, S_IRUGO
);
104 bool kvm_has_tsc_control
;
105 EXPORT_SYMBOL_GPL(kvm_has_tsc_control
);
106 u32 kvm_max_guest_tsc_khz
;
107 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz
);
109 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
110 static u32 tsc_tolerance_ppm
= 250;
111 module_param(tsc_tolerance_ppm
, uint
, S_IRUGO
| S_IWUSR
);
113 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
114 unsigned int lapic_timer_advance_ns
= 0;
115 module_param(lapic_timer_advance_ns
, uint
, S_IRUGO
| S_IWUSR
);
117 static bool backwards_tsc_observed
= false;
119 #define KVM_NR_SHARED_MSRS 16
121 struct kvm_shared_msrs_global
{
123 u32 msrs
[KVM_NR_SHARED_MSRS
];
126 struct kvm_shared_msrs
{
127 struct user_return_notifier urn
;
129 struct kvm_shared_msr_values
{
132 } values
[KVM_NR_SHARED_MSRS
];
135 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global
;
136 static struct kvm_shared_msrs __percpu
*shared_msrs
;
138 struct kvm_stats_debugfs_item debugfs_entries
[] = {
139 { "pf_fixed", VCPU_STAT(pf_fixed
) },
140 { "pf_guest", VCPU_STAT(pf_guest
) },
141 { "tlb_flush", VCPU_STAT(tlb_flush
) },
142 { "invlpg", VCPU_STAT(invlpg
) },
143 { "exits", VCPU_STAT(exits
) },
144 { "io_exits", VCPU_STAT(io_exits
) },
145 { "mmio_exits", VCPU_STAT(mmio_exits
) },
146 { "signal_exits", VCPU_STAT(signal_exits
) },
147 { "irq_window", VCPU_STAT(irq_window_exits
) },
148 { "nmi_window", VCPU_STAT(nmi_window_exits
) },
149 { "halt_exits", VCPU_STAT(halt_exits
) },
150 { "halt_successful_poll", VCPU_STAT(halt_successful_poll
) },
151 { "halt_wakeup", VCPU_STAT(halt_wakeup
) },
152 { "hypercalls", VCPU_STAT(hypercalls
) },
153 { "request_irq", VCPU_STAT(request_irq_exits
) },
154 { "irq_exits", VCPU_STAT(irq_exits
) },
155 { "host_state_reload", VCPU_STAT(host_state_reload
) },
156 { "efer_reload", VCPU_STAT(efer_reload
) },
157 { "fpu_reload", VCPU_STAT(fpu_reload
) },
158 { "insn_emulation", VCPU_STAT(insn_emulation
) },
159 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail
) },
160 { "irq_injections", VCPU_STAT(irq_injections
) },
161 { "nmi_injections", VCPU_STAT(nmi_injections
) },
162 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped
) },
163 { "mmu_pte_write", VM_STAT(mmu_pte_write
) },
164 { "mmu_pte_updated", VM_STAT(mmu_pte_updated
) },
165 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped
) },
166 { "mmu_flooded", VM_STAT(mmu_flooded
) },
167 { "mmu_recycled", VM_STAT(mmu_recycled
) },
168 { "mmu_cache_miss", VM_STAT(mmu_cache_miss
) },
169 { "mmu_unsync", VM_STAT(mmu_unsync
) },
170 { "remote_tlb_flush", VM_STAT(remote_tlb_flush
) },
171 { "largepages", VM_STAT(lpages
) },
175 u64 __read_mostly host_xcr0
;
177 static int emulator_fix_hypercall(struct x86_emulate_ctxt
*ctxt
);
179 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu
*vcpu
)
182 for (i
= 0; i
< roundup_pow_of_two(ASYNC_PF_PER_VCPU
); i
++)
183 vcpu
->arch
.apf
.gfns
[i
] = ~0;
186 static void kvm_on_user_return(struct user_return_notifier
*urn
)
189 struct kvm_shared_msrs
*locals
190 = container_of(urn
, struct kvm_shared_msrs
, urn
);
191 struct kvm_shared_msr_values
*values
;
193 for (slot
= 0; slot
< shared_msrs_global
.nr
; ++slot
) {
194 values
= &locals
->values
[slot
];
195 if (values
->host
!= values
->curr
) {
196 wrmsrl(shared_msrs_global
.msrs
[slot
], values
->host
);
197 values
->curr
= values
->host
;
200 locals
->registered
= false;
201 user_return_notifier_unregister(urn
);
204 static void shared_msr_update(unsigned slot
, u32 msr
)
207 unsigned int cpu
= smp_processor_id();
208 struct kvm_shared_msrs
*smsr
= per_cpu_ptr(shared_msrs
, cpu
);
210 /* only read, and nobody should modify it at this time,
211 * so don't need lock */
212 if (slot
>= shared_msrs_global
.nr
) {
213 printk(KERN_ERR
"kvm: invalid MSR slot!");
216 rdmsrl_safe(msr
, &value
);
217 smsr
->values
[slot
].host
= value
;
218 smsr
->values
[slot
].curr
= value
;
221 void kvm_define_shared_msr(unsigned slot
, u32 msr
)
223 BUG_ON(slot
>= KVM_NR_SHARED_MSRS
);
224 if (slot
>= shared_msrs_global
.nr
)
225 shared_msrs_global
.nr
= slot
+ 1;
226 shared_msrs_global
.msrs
[slot
] = msr
;
227 /* we need ensured the shared_msr_global have been updated */
230 EXPORT_SYMBOL_GPL(kvm_define_shared_msr
);
232 static void kvm_shared_msr_cpu_online(void)
236 for (i
= 0; i
< shared_msrs_global
.nr
; ++i
)
237 shared_msr_update(i
, shared_msrs_global
.msrs
[i
]);
240 int kvm_set_shared_msr(unsigned slot
, u64 value
, u64 mask
)
242 unsigned int cpu
= smp_processor_id();
243 struct kvm_shared_msrs
*smsr
= per_cpu_ptr(shared_msrs
, cpu
);
246 if (((value
^ smsr
->values
[slot
].curr
) & mask
) == 0)
248 smsr
->values
[slot
].curr
= value
;
249 err
= wrmsrl_safe(shared_msrs_global
.msrs
[slot
], value
);
253 if (!smsr
->registered
) {
254 smsr
->urn
.on_user_return
= kvm_on_user_return
;
255 user_return_notifier_register(&smsr
->urn
);
256 smsr
->registered
= true;
260 EXPORT_SYMBOL_GPL(kvm_set_shared_msr
);
262 static void drop_user_return_notifiers(void)
264 unsigned int cpu
= smp_processor_id();
265 struct kvm_shared_msrs
*smsr
= per_cpu_ptr(shared_msrs
, cpu
);
267 if (smsr
->registered
)
268 kvm_on_user_return(&smsr
->urn
);
271 u64
kvm_get_apic_base(struct kvm_vcpu
*vcpu
)
273 return vcpu
->arch
.apic_base
;
275 EXPORT_SYMBOL_GPL(kvm_get_apic_base
);
277 int kvm_set_apic_base(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
279 u64 old_state
= vcpu
->arch
.apic_base
&
280 (MSR_IA32_APICBASE_ENABLE
| X2APIC_ENABLE
);
281 u64 new_state
= msr_info
->data
&
282 (MSR_IA32_APICBASE_ENABLE
| X2APIC_ENABLE
);
283 u64 reserved_bits
= ((~0ULL) << cpuid_maxphyaddr(vcpu
)) |
284 0x2ff | (guest_cpuid_has_x2apic(vcpu
) ? 0 : X2APIC_ENABLE
);
286 if (!msr_info
->host_initiated
&&
287 ((msr_info
->data
& reserved_bits
) != 0 ||
288 new_state
== X2APIC_ENABLE
||
289 (new_state
== MSR_IA32_APICBASE_ENABLE
&&
290 old_state
== (MSR_IA32_APICBASE_ENABLE
| X2APIC_ENABLE
)) ||
291 (new_state
== (MSR_IA32_APICBASE_ENABLE
| X2APIC_ENABLE
) &&
295 kvm_lapic_set_base(vcpu
, msr_info
->data
);
298 EXPORT_SYMBOL_GPL(kvm_set_apic_base
);
300 asmlinkage __visible
void kvm_spurious_fault(void)
302 /* Fault while not rebooting. We want the trace. */
305 EXPORT_SYMBOL_GPL(kvm_spurious_fault
);
307 #define EXCPT_BENIGN 0
308 #define EXCPT_CONTRIBUTORY 1
311 static int exception_class(int vector
)
321 return EXCPT_CONTRIBUTORY
;
328 #define EXCPT_FAULT 0
330 #define EXCPT_ABORT 2
331 #define EXCPT_INTERRUPT 3
333 static int exception_type(int vector
)
337 if (WARN_ON(vector
> 31 || vector
== NMI_VECTOR
))
338 return EXCPT_INTERRUPT
;
342 /* #DB is trap, as instruction watchpoints are handled elsewhere */
343 if (mask
& ((1 << DB_VECTOR
) | (1 << BP_VECTOR
) | (1 << OF_VECTOR
)))
346 if (mask
& ((1 << DF_VECTOR
) | (1 << MC_VECTOR
)))
349 /* Reserved exceptions will result in fault */
353 static void kvm_multiple_exception(struct kvm_vcpu
*vcpu
,
354 unsigned nr
, bool has_error
, u32 error_code
,
360 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
362 if (!vcpu
->arch
.exception
.pending
) {
364 if (has_error
&& !is_protmode(vcpu
))
366 vcpu
->arch
.exception
.pending
= true;
367 vcpu
->arch
.exception
.has_error_code
= has_error
;
368 vcpu
->arch
.exception
.nr
= nr
;
369 vcpu
->arch
.exception
.error_code
= error_code
;
370 vcpu
->arch
.exception
.reinject
= reinject
;
374 /* to check exception */
375 prev_nr
= vcpu
->arch
.exception
.nr
;
376 if (prev_nr
== DF_VECTOR
) {
377 /* triple fault -> shutdown */
378 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
381 class1
= exception_class(prev_nr
);
382 class2
= exception_class(nr
);
383 if ((class1
== EXCPT_CONTRIBUTORY
&& class2
== EXCPT_CONTRIBUTORY
)
384 || (class1
== EXCPT_PF
&& class2
!= EXCPT_BENIGN
)) {
385 /* generate double fault per SDM Table 5-5 */
386 vcpu
->arch
.exception
.pending
= true;
387 vcpu
->arch
.exception
.has_error_code
= true;
388 vcpu
->arch
.exception
.nr
= DF_VECTOR
;
389 vcpu
->arch
.exception
.error_code
= 0;
391 /* replace previous exception with a new one in a hope
392 that instruction re-execution will regenerate lost
397 void kvm_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
399 kvm_multiple_exception(vcpu
, nr
, false, 0, false);
401 EXPORT_SYMBOL_GPL(kvm_queue_exception
);
403 void kvm_requeue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
405 kvm_multiple_exception(vcpu
, nr
, false, 0, true);
407 EXPORT_SYMBOL_GPL(kvm_requeue_exception
);
409 void kvm_complete_insn_gp(struct kvm_vcpu
*vcpu
, int err
)
412 kvm_inject_gp(vcpu
, 0);
414 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
416 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp
);
418 void kvm_inject_page_fault(struct kvm_vcpu
*vcpu
, struct x86_exception
*fault
)
420 ++vcpu
->stat
.pf_guest
;
421 vcpu
->arch
.cr2
= fault
->address
;
422 kvm_queue_exception_e(vcpu
, PF_VECTOR
, fault
->error_code
);
424 EXPORT_SYMBOL_GPL(kvm_inject_page_fault
);
426 static bool kvm_propagate_fault(struct kvm_vcpu
*vcpu
, struct x86_exception
*fault
)
428 if (mmu_is_nested(vcpu
) && !fault
->nested_page_fault
)
429 vcpu
->arch
.nested_mmu
.inject_page_fault(vcpu
, fault
);
431 vcpu
->arch
.mmu
.inject_page_fault(vcpu
, fault
);
433 return fault
->nested_page_fault
;
436 void kvm_inject_nmi(struct kvm_vcpu
*vcpu
)
438 atomic_inc(&vcpu
->arch
.nmi_queued
);
439 kvm_make_request(KVM_REQ_NMI
, vcpu
);
441 EXPORT_SYMBOL_GPL(kvm_inject_nmi
);
443 void kvm_queue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
445 kvm_multiple_exception(vcpu
, nr
, true, error_code
, false);
447 EXPORT_SYMBOL_GPL(kvm_queue_exception_e
);
449 void kvm_requeue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
451 kvm_multiple_exception(vcpu
, nr
, true, error_code
, true);
453 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e
);
456 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
457 * a #GP and return false.
459 bool kvm_require_cpl(struct kvm_vcpu
*vcpu
, int required_cpl
)
461 if (kvm_x86_ops
->get_cpl(vcpu
) <= required_cpl
)
463 kvm_queue_exception_e(vcpu
, GP_VECTOR
, 0);
466 EXPORT_SYMBOL_GPL(kvm_require_cpl
);
468 bool kvm_require_dr(struct kvm_vcpu
*vcpu
, int dr
)
470 if ((dr
!= 4 && dr
!= 5) || !kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
473 kvm_queue_exception(vcpu
, UD_VECTOR
);
476 EXPORT_SYMBOL_GPL(kvm_require_dr
);
479 * This function will be used to read from the physical memory of the currently
480 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
481 * can read from guest physical or from the guest's guest physical memory.
483 int kvm_read_guest_page_mmu(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
,
484 gfn_t ngfn
, void *data
, int offset
, int len
,
487 struct x86_exception exception
;
491 ngpa
= gfn_to_gpa(ngfn
);
492 real_gfn
= mmu
->translate_gpa(vcpu
, ngpa
, access
, &exception
);
493 if (real_gfn
== UNMAPPED_GVA
)
496 real_gfn
= gpa_to_gfn(real_gfn
);
498 return kvm_vcpu_read_guest_page(vcpu
, real_gfn
, data
, offset
, len
);
500 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu
);
502 static int kvm_read_nested_guest_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
503 void *data
, int offset
, int len
, u32 access
)
505 return kvm_read_guest_page_mmu(vcpu
, vcpu
->arch
.walk_mmu
, gfn
,
506 data
, offset
, len
, access
);
510 * Load the pae pdptrs. Return true is they are all valid.
512 int load_pdptrs(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
, unsigned long cr3
)
514 gfn_t pdpt_gfn
= cr3
>> PAGE_SHIFT
;
515 unsigned offset
= ((cr3
& (PAGE_SIZE
-1)) >> 5) << 2;
518 u64 pdpte
[ARRAY_SIZE(mmu
->pdptrs
)];
520 ret
= kvm_read_guest_page_mmu(vcpu
, mmu
, pdpt_gfn
, pdpte
,
521 offset
* sizeof(u64
), sizeof(pdpte
),
522 PFERR_USER_MASK
|PFERR_WRITE_MASK
);
527 for (i
= 0; i
< ARRAY_SIZE(pdpte
); ++i
) {
528 if (is_present_gpte(pdpte
[i
]) &&
529 (pdpte
[i
] & vcpu
->arch
.mmu
.rsvd_bits_mask
[0][2])) {
536 memcpy(mmu
->pdptrs
, pdpte
, sizeof(mmu
->pdptrs
));
537 __set_bit(VCPU_EXREG_PDPTR
,
538 (unsigned long *)&vcpu
->arch
.regs_avail
);
539 __set_bit(VCPU_EXREG_PDPTR
,
540 (unsigned long *)&vcpu
->arch
.regs_dirty
);
545 EXPORT_SYMBOL_GPL(load_pdptrs
);
547 static bool pdptrs_changed(struct kvm_vcpu
*vcpu
)
549 u64 pdpte
[ARRAY_SIZE(vcpu
->arch
.walk_mmu
->pdptrs
)];
555 if (is_long_mode(vcpu
) || !is_pae(vcpu
))
558 if (!test_bit(VCPU_EXREG_PDPTR
,
559 (unsigned long *)&vcpu
->arch
.regs_avail
))
562 gfn
= (kvm_read_cr3(vcpu
) & ~31u) >> PAGE_SHIFT
;
563 offset
= (kvm_read_cr3(vcpu
) & ~31u) & (PAGE_SIZE
- 1);
564 r
= kvm_read_nested_guest_page(vcpu
, gfn
, pdpte
, offset
, sizeof(pdpte
),
565 PFERR_USER_MASK
| PFERR_WRITE_MASK
);
568 changed
= memcmp(pdpte
, vcpu
->arch
.walk_mmu
->pdptrs
, sizeof(pdpte
)) != 0;
574 int kvm_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
576 unsigned long old_cr0
= kvm_read_cr0(vcpu
);
577 unsigned long update_bits
= X86_CR0_PG
| X86_CR0_WP
;
582 if (cr0
& 0xffffffff00000000UL
)
586 cr0
&= ~CR0_RESERVED_BITS
;
588 if ((cr0
& X86_CR0_NW
) && !(cr0
& X86_CR0_CD
))
591 if ((cr0
& X86_CR0_PG
) && !(cr0
& X86_CR0_PE
))
594 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
)) {
596 if ((vcpu
->arch
.efer
& EFER_LME
)) {
601 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
606 if (is_pae(vcpu
) && !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
,
611 if (!(cr0
& X86_CR0_PG
) && kvm_read_cr4_bits(vcpu
, X86_CR4_PCIDE
))
614 kvm_x86_ops
->set_cr0(vcpu
, cr0
);
616 if ((cr0
^ old_cr0
) & X86_CR0_PG
) {
617 kvm_clear_async_pf_completion_queue(vcpu
);
618 kvm_async_pf_hash_reset(vcpu
);
621 if ((cr0
^ old_cr0
) & update_bits
)
622 kvm_mmu_reset_context(vcpu
);
624 if ((cr0
^ old_cr0
) & X86_CR0_CD
)
625 kvm_zap_gfn_range(vcpu
->kvm
, 0, ~0ULL);
629 EXPORT_SYMBOL_GPL(kvm_set_cr0
);
631 void kvm_lmsw(struct kvm_vcpu
*vcpu
, unsigned long msw
)
633 (void)kvm_set_cr0(vcpu
, kvm_read_cr0_bits(vcpu
, ~0x0eul
) | (msw
& 0x0f));
635 EXPORT_SYMBOL_GPL(kvm_lmsw
);
637 static void kvm_load_guest_xcr0(struct kvm_vcpu
*vcpu
)
639 if (kvm_read_cr4_bits(vcpu
, X86_CR4_OSXSAVE
) &&
640 !vcpu
->guest_xcr0_loaded
) {
641 /* kvm_set_xcr() also depends on this */
642 xsetbv(XCR_XFEATURE_ENABLED_MASK
, vcpu
->arch
.xcr0
);
643 vcpu
->guest_xcr0_loaded
= 1;
647 static void kvm_put_guest_xcr0(struct kvm_vcpu
*vcpu
)
649 if (vcpu
->guest_xcr0_loaded
) {
650 if (vcpu
->arch
.xcr0
!= host_xcr0
)
651 xsetbv(XCR_XFEATURE_ENABLED_MASK
, host_xcr0
);
652 vcpu
->guest_xcr0_loaded
= 0;
656 static int __kvm_set_xcr(struct kvm_vcpu
*vcpu
, u32 index
, u64 xcr
)
659 u64 old_xcr0
= vcpu
->arch
.xcr0
;
662 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
663 if (index
!= XCR_XFEATURE_ENABLED_MASK
)
665 if (!(xcr0
& XSTATE_FP
))
667 if ((xcr0
& XSTATE_YMM
) && !(xcr0
& XSTATE_SSE
))
671 * Do not allow the guest to set bits that we do not support
672 * saving. However, xcr0 bit 0 is always set, even if the
673 * emulated CPU does not support XSAVE (see fx_init).
675 valid_bits
= vcpu
->arch
.guest_supported_xcr0
| XSTATE_FP
;
676 if (xcr0
& ~valid_bits
)
679 if ((!(xcr0
& XSTATE_BNDREGS
)) != (!(xcr0
& XSTATE_BNDCSR
)))
682 if (xcr0
& XSTATE_AVX512
) {
683 if (!(xcr0
& XSTATE_YMM
))
685 if ((xcr0
& XSTATE_AVX512
) != XSTATE_AVX512
)
688 kvm_put_guest_xcr0(vcpu
);
689 vcpu
->arch
.xcr0
= xcr0
;
691 if ((xcr0
^ old_xcr0
) & XSTATE_EXTEND_MASK
)
692 kvm_update_cpuid(vcpu
);
696 int kvm_set_xcr(struct kvm_vcpu
*vcpu
, u32 index
, u64 xcr
)
698 if (kvm_x86_ops
->get_cpl(vcpu
) != 0 ||
699 __kvm_set_xcr(vcpu
, index
, xcr
)) {
700 kvm_inject_gp(vcpu
, 0);
705 EXPORT_SYMBOL_GPL(kvm_set_xcr
);
707 int kvm_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
709 unsigned long old_cr4
= kvm_read_cr4(vcpu
);
710 unsigned long pdptr_bits
= X86_CR4_PGE
| X86_CR4_PSE
| X86_CR4_PAE
|
711 X86_CR4_SMEP
| X86_CR4_SMAP
;
713 if (cr4
& CR4_RESERVED_BITS
)
716 if (!guest_cpuid_has_xsave(vcpu
) && (cr4
& X86_CR4_OSXSAVE
))
719 if (!guest_cpuid_has_smep(vcpu
) && (cr4
& X86_CR4_SMEP
))
722 if (!guest_cpuid_has_smap(vcpu
) && (cr4
& X86_CR4_SMAP
))
725 if (!guest_cpuid_has_fsgsbase(vcpu
) && (cr4
& X86_CR4_FSGSBASE
))
728 if (is_long_mode(vcpu
)) {
729 if (!(cr4
& X86_CR4_PAE
))
731 } else if (is_paging(vcpu
) && (cr4
& X86_CR4_PAE
)
732 && ((cr4
^ old_cr4
) & pdptr_bits
)
733 && !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
,
737 if ((cr4
& X86_CR4_PCIDE
) && !(old_cr4
& X86_CR4_PCIDE
)) {
738 if (!guest_cpuid_has_pcid(vcpu
))
741 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
742 if ((kvm_read_cr3(vcpu
) & X86_CR3_PCID_MASK
) || !is_long_mode(vcpu
))
746 if (kvm_x86_ops
->set_cr4(vcpu
, cr4
))
749 if (((cr4
^ old_cr4
) & pdptr_bits
) ||
750 (!(cr4
& X86_CR4_PCIDE
) && (old_cr4
& X86_CR4_PCIDE
)))
751 kvm_mmu_reset_context(vcpu
);
753 if ((cr4
^ old_cr4
) & X86_CR4_OSXSAVE
)
754 kvm_update_cpuid(vcpu
);
758 EXPORT_SYMBOL_GPL(kvm_set_cr4
);
760 int kvm_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
763 cr3
&= ~CR3_PCID_INVD
;
766 if (cr3
== kvm_read_cr3(vcpu
) && !pdptrs_changed(vcpu
)) {
767 kvm_mmu_sync_roots(vcpu
);
768 kvm_make_request(KVM_REQ_TLB_FLUSH
, vcpu
);
772 if (is_long_mode(vcpu
)) {
773 if (cr3
& CR3_L_MODE_RESERVED_BITS
)
775 } else if (is_pae(vcpu
) && is_paging(vcpu
) &&
776 !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
, cr3
))
779 vcpu
->arch
.cr3
= cr3
;
780 __set_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
);
781 kvm_mmu_new_cr3(vcpu
);
784 EXPORT_SYMBOL_GPL(kvm_set_cr3
);
786 int kvm_set_cr8(struct kvm_vcpu
*vcpu
, unsigned long cr8
)
788 if (cr8
& CR8_RESERVED_BITS
)
790 if (irqchip_in_kernel(vcpu
->kvm
))
791 kvm_lapic_set_tpr(vcpu
, cr8
);
793 vcpu
->arch
.cr8
= cr8
;
796 EXPORT_SYMBOL_GPL(kvm_set_cr8
);
798 unsigned long kvm_get_cr8(struct kvm_vcpu
*vcpu
)
800 if (irqchip_in_kernel(vcpu
->kvm
))
801 return kvm_lapic_get_cr8(vcpu
);
803 return vcpu
->arch
.cr8
;
805 EXPORT_SYMBOL_GPL(kvm_get_cr8
);
807 static void kvm_update_dr0123(struct kvm_vcpu
*vcpu
)
811 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)) {
812 for (i
= 0; i
< KVM_NR_DB_REGS
; i
++)
813 vcpu
->arch
.eff_db
[i
] = vcpu
->arch
.db
[i
];
814 vcpu
->arch
.switch_db_regs
|= KVM_DEBUGREG_RELOAD
;
818 static void kvm_update_dr6(struct kvm_vcpu
*vcpu
)
820 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
))
821 kvm_x86_ops
->set_dr6(vcpu
, vcpu
->arch
.dr6
);
824 static void kvm_update_dr7(struct kvm_vcpu
*vcpu
)
828 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)
829 dr7
= vcpu
->arch
.guest_debug_dr7
;
831 dr7
= vcpu
->arch
.dr7
;
832 kvm_x86_ops
->set_dr7(vcpu
, dr7
);
833 vcpu
->arch
.switch_db_regs
&= ~KVM_DEBUGREG_BP_ENABLED
;
834 if (dr7
& DR7_BP_EN_MASK
)
835 vcpu
->arch
.switch_db_regs
|= KVM_DEBUGREG_BP_ENABLED
;
838 static u64
kvm_dr6_fixed(struct kvm_vcpu
*vcpu
)
840 u64 fixed
= DR6_FIXED_1
;
842 if (!guest_cpuid_has_rtm(vcpu
))
847 static int __kvm_set_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long val
)
851 vcpu
->arch
.db
[dr
] = val
;
852 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
))
853 vcpu
->arch
.eff_db
[dr
] = val
;
858 if (val
& 0xffffffff00000000ULL
)
860 vcpu
->arch
.dr6
= (val
& DR6_VOLATILE
) | kvm_dr6_fixed(vcpu
);
861 kvm_update_dr6(vcpu
);
866 if (val
& 0xffffffff00000000ULL
)
868 vcpu
->arch
.dr7
= (val
& DR7_VOLATILE
) | DR7_FIXED_1
;
869 kvm_update_dr7(vcpu
);
876 int kvm_set_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long val
)
878 if (__kvm_set_dr(vcpu
, dr
, val
)) {
879 kvm_inject_gp(vcpu
, 0);
884 EXPORT_SYMBOL_GPL(kvm_set_dr
);
886 int kvm_get_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long *val
)
890 *val
= vcpu
->arch
.db
[dr
];
895 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)
896 *val
= vcpu
->arch
.dr6
;
898 *val
= kvm_x86_ops
->get_dr6(vcpu
);
903 *val
= vcpu
->arch
.dr7
;
908 EXPORT_SYMBOL_GPL(kvm_get_dr
);
910 bool kvm_rdpmc(struct kvm_vcpu
*vcpu
)
912 u32 ecx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
916 err
= kvm_pmu_rdpmc(vcpu
, ecx
, &data
);
919 kvm_register_write(vcpu
, VCPU_REGS_RAX
, (u32
)data
);
920 kvm_register_write(vcpu
, VCPU_REGS_RDX
, data
>> 32);
923 EXPORT_SYMBOL_GPL(kvm_rdpmc
);
926 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
927 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
929 * This list is modified at module load time to reflect the
930 * capabilities of the host cpu. This capabilities test skips MSRs that are
931 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
932 * may depend on host virtualization features rather than host cpu features.
935 static u32 msrs_to_save
[] = {
936 MSR_IA32_SYSENTER_CS
, MSR_IA32_SYSENTER_ESP
, MSR_IA32_SYSENTER_EIP
,
939 MSR_CSTAR
, MSR_KERNEL_GS_BASE
, MSR_SYSCALL_MASK
, MSR_LSTAR
,
941 MSR_IA32_TSC
, MSR_IA32_CR_PAT
, MSR_VM_HSAVE_PA
,
942 MSR_IA32_FEATURE_CONTROL
, MSR_IA32_BNDCFGS
945 static unsigned num_msrs_to_save
;
947 static u32 emulated_msrs
[] = {
948 MSR_KVM_SYSTEM_TIME
, MSR_KVM_WALL_CLOCK
,
949 MSR_KVM_SYSTEM_TIME_NEW
, MSR_KVM_WALL_CLOCK_NEW
,
950 HV_X64_MSR_GUEST_OS_ID
, HV_X64_MSR_HYPERCALL
,
951 HV_X64_MSR_TIME_REF_COUNT
, HV_X64_MSR_REFERENCE_TSC
,
952 HV_X64_MSR_APIC_ASSIST_PAGE
, MSR_KVM_ASYNC_PF_EN
, MSR_KVM_STEAL_TIME
,
956 MSR_IA32_TSCDEADLINE
,
957 MSR_IA32_MISC_ENABLE
,
963 static unsigned num_emulated_msrs
;
965 bool kvm_valid_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
967 if (efer
& efer_reserved_bits
)
970 if (efer
& EFER_FFXSR
) {
971 struct kvm_cpuid_entry2
*feat
;
973 feat
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
974 if (!feat
|| !(feat
->edx
& bit(X86_FEATURE_FXSR_OPT
)))
978 if (efer
& EFER_SVME
) {
979 struct kvm_cpuid_entry2
*feat
;
981 feat
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
982 if (!feat
|| !(feat
->ecx
& bit(X86_FEATURE_SVM
)))
988 EXPORT_SYMBOL_GPL(kvm_valid_efer
);
990 static int set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
992 u64 old_efer
= vcpu
->arch
.efer
;
994 if (!kvm_valid_efer(vcpu
, efer
))
998 && (vcpu
->arch
.efer
& EFER_LME
) != (efer
& EFER_LME
))
1002 efer
|= vcpu
->arch
.efer
& EFER_LMA
;
1004 kvm_x86_ops
->set_efer(vcpu
, efer
);
1006 /* Update reserved bits */
1007 if ((efer
^ old_efer
) & EFER_NX
)
1008 kvm_mmu_reset_context(vcpu
);
1013 void kvm_enable_efer_bits(u64 mask
)
1015 efer_reserved_bits
&= ~mask
;
1017 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits
);
1020 * Writes msr value into into the appropriate "register".
1021 * Returns 0 on success, non-0 otherwise.
1022 * Assumes vcpu_load() was already called.
1024 int kvm_set_msr(struct kvm_vcpu
*vcpu
, struct msr_data
*msr
)
1026 switch (msr
->index
) {
1029 case MSR_KERNEL_GS_BASE
:
1032 if (is_noncanonical_address(msr
->data
))
1035 case MSR_IA32_SYSENTER_EIP
:
1036 case MSR_IA32_SYSENTER_ESP
:
1038 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1039 * non-canonical address is written on Intel but not on
1040 * AMD (which ignores the top 32-bits, because it does
1041 * not implement 64-bit SYSENTER).
1043 * 64-bit code should hence be able to write a non-canonical
1044 * value on AMD. Making the address canonical ensures that
1045 * vmentry does not fail on Intel after writing a non-canonical
1046 * value, and that something deterministic happens if the guest
1047 * invokes 64-bit SYSENTER.
1049 msr
->data
= get_canonical(msr
->data
);
1051 return kvm_x86_ops
->set_msr(vcpu
, msr
);
1053 EXPORT_SYMBOL_GPL(kvm_set_msr
);
1056 * Adapt set_msr() to msr_io()'s calling convention
1058 static int do_get_msr(struct kvm_vcpu
*vcpu
, unsigned index
, u64
*data
)
1060 struct msr_data msr
;
1064 msr
.host_initiated
= true;
1065 r
= kvm_get_msr(vcpu
, &msr
);
1073 static int do_set_msr(struct kvm_vcpu
*vcpu
, unsigned index
, u64
*data
)
1075 struct msr_data msr
;
1079 msr
.host_initiated
= true;
1080 return kvm_set_msr(vcpu
, &msr
);
1083 #ifdef CONFIG_X86_64
1084 struct pvclock_gtod_data
{
1087 struct { /* extract of a clocksource struct */
1099 static struct pvclock_gtod_data pvclock_gtod_data
;
1101 static void update_pvclock_gtod(struct timekeeper
*tk
)
1103 struct pvclock_gtod_data
*vdata
= &pvclock_gtod_data
;
1106 boot_ns
= ktime_to_ns(ktime_add(tk
->tkr_mono
.base
, tk
->offs_boot
));
1108 write_seqcount_begin(&vdata
->seq
);
1110 /* copy pvclock gtod data */
1111 vdata
->clock
.vclock_mode
= tk
->tkr_mono
.clock
->archdata
.vclock_mode
;
1112 vdata
->clock
.cycle_last
= tk
->tkr_mono
.cycle_last
;
1113 vdata
->clock
.mask
= tk
->tkr_mono
.mask
;
1114 vdata
->clock
.mult
= tk
->tkr_mono
.mult
;
1115 vdata
->clock
.shift
= tk
->tkr_mono
.shift
;
1117 vdata
->boot_ns
= boot_ns
;
1118 vdata
->nsec_base
= tk
->tkr_mono
.xtime_nsec
;
1120 write_seqcount_end(&vdata
->seq
);
1124 void kvm_set_pending_timer(struct kvm_vcpu
*vcpu
)
1127 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1128 * vcpu_enter_guest. This function is only called from
1129 * the physical CPU that is running vcpu.
1131 kvm_make_request(KVM_REQ_PENDING_TIMER
, vcpu
);
1134 static void kvm_write_wall_clock(struct kvm
*kvm
, gpa_t wall_clock
)
1138 struct pvclock_wall_clock wc
;
1139 struct timespec boot
;
1144 r
= kvm_read_guest(kvm
, wall_clock
, &version
, sizeof(version
));
1149 ++version
; /* first time write, random junk */
1153 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
1156 * The guest calculates current wall clock time by adding
1157 * system time (updated by kvm_guest_time_update below) to the
1158 * wall clock specified here. guest system time equals host
1159 * system time for us, thus we must fill in host boot time here.
1163 if (kvm
->arch
.kvmclock_offset
) {
1164 struct timespec ts
= ns_to_timespec(kvm
->arch
.kvmclock_offset
);
1165 boot
= timespec_sub(boot
, ts
);
1167 wc
.sec
= boot
.tv_sec
;
1168 wc
.nsec
= boot
.tv_nsec
;
1169 wc
.version
= version
;
1171 kvm_write_guest(kvm
, wall_clock
, &wc
, sizeof(wc
));
1174 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
1177 static uint32_t div_frac(uint32_t dividend
, uint32_t divisor
)
1179 uint32_t quotient
, remainder
;
1181 /* Don't try to replace with do_div(), this one calculates
1182 * "(dividend << 32) / divisor" */
1184 : "=a" (quotient
), "=d" (remainder
)
1185 : "0" (0), "1" (dividend
), "r" (divisor
) );
1189 static void kvm_get_time_scale(uint32_t scaled_khz
, uint32_t base_khz
,
1190 s8
*pshift
, u32
*pmultiplier
)
1197 tps64
= base_khz
* 1000LL;
1198 scaled64
= scaled_khz
* 1000LL;
1199 while (tps64
> scaled64
*2 || tps64
& 0xffffffff00000000ULL
) {
1204 tps32
= (uint32_t)tps64
;
1205 while (tps32
<= scaled64
|| scaled64
& 0xffffffff00000000ULL
) {
1206 if (scaled64
& 0xffffffff00000000ULL
|| tps32
& 0x80000000)
1214 *pmultiplier
= div_frac(scaled64
, tps32
);
1216 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1217 __func__
, base_khz
, scaled_khz
, shift
, *pmultiplier
);
1220 static inline u64
get_kernel_ns(void)
1222 return ktime_get_boot_ns();
1225 #ifdef CONFIG_X86_64
1226 static atomic_t kvm_guest_has_master_clock
= ATOMIC_INIT(0);
1229 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz
);
1230 static unsigned long max_tsc_khz
;
1232 static inline u64
nsec_to_cycles(struct kvm_vcpu
*vcpu
, u64 nsec
)
1234 return pvclock_scale_delta(nsec
, vcpu
->arch
.virtual_tsc_mult
,
1235 vcpu
->arch
.virtual_tsc_shift
);
1238 static u32
adjust_tsc_khz(u32 khz
, s32 ppm
)
1240 u64 v
= (u64
)khz
* (1000000 + ppm
);
1245 static void kvm_set_tsc_khz(struct kvm_vcpu
*vcpu
, u32 this_tsc_khz
)
1247 u32 thresh_lo
, thresh_hi
;
1248 int use_scaling
= 0;
1250 /* tsc_khz can be zero if TSC calibration fails */
1251 if (this_tsc_khz
== 0)
1254 /* Compute a scale to convert nanoseconds in TSC cycles */
1255 kvm_get_time_scale(this_tsc_khz
, NSEC_PER_SEC
/ 1000,
1256 &vcpu
->arch
.virtual_tsc_shift
,
1257 &vcpu
->arch
.virtual_tsc_mult
);
1258 vcpu
->arch
.virtual_tsc_khz
= this_tsc_khz
;
1261 * Compute the variation in TSC rate which is acceptable
1262 * within the range of tolerance and decide if the
1263 * rate being applied is within that bounds of the hardware
1264 * rate. If so, no scaling or compensation need be done.
1266 thresh_lo
= adjust_tsc_khz(tsc_khz
, -tsc_tolerance_ppm
);
1267 thresh_hi
= adjust_tsc_khz(tsc_khz
, tsc_tolerance_ppm
);
1268 if (this_tsc_khz
< thresh_lo
|| this_tsc_khz
> thresh_hi
) {
1269 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz
, thresh_lo
, thresh_hi
);
1272 kvm_x86_ops
->set_tsc_khz(vcpu
, this_tsc_khz
, use_scaling
);
1275 static u64
compute_guest_tsc(struct kvm_vcpu
*vcpu
, s64 kernel_ns
)
1277 u64 tsc
= pvclock_scale_delta(kernel_ns
-vcpu
->arch
.this_tsc_nsec
,
1278 vcpu
->arch
.virtual_tsc_mult
,
1279 vcpu
->arch
.virtual_tsc_shift
);
1280 tsc
+= vcpu
->arch
.this_tsc_write
;
1284 static void kvm_track_tsc_matching(struct kvm_vcpu
*vcpu
)
1286 #ifdef CONFIG_X86_64
1288 struct kvm_arch
*ka
= &vcpu
->kvm
->arch
;
1289 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
1291 vcpus_matched
= (ka
->nr_vcpus_matched_tsc
+ 1 ==
1292 atomic_read(&vcpu
->kvm
->online_vcpus
));
1295 * Once the masterclock is enabled, always perform request in
1296 * order to update it.
1298 * In order to enable masterclock, the host clocksource must be TSC
1299 * and the vcpus need to have matched TSCs. When that happens,
1300 * perform request to enable masterclock.
1302 if (ka
->use_master_clock
||
1303 (gtod
->clock
.vclock_mode
== VCLOCK_TSC
&& vcpus_matched
))
1304 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
);
1306 trace_kvm_track_tsc(vcpu
->vcpu_id
, ka
->nr_vcpus_matched_tsc
,
1307 atomic_read(&vcpu
->kvm
->online_vcpus
),
1308 ka
->use_master_clock
, gtod
->clock
.vclock_mode
);
1312 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu
*vcpu
, s64 offset
)
1314 u64 curr_offset
= kvm_x86_ops
->read_tsc_offset(vcpu
);
1315 vcpu
->arch
.ia32_tsc_adjust_msr
+= offset
- curr_offset
;
1318 void kvm_write_tsc(struct kvm_vcpu
*vcpu
, struct msr_data
*msr
)
1320 struct kvm
*kvm
= vcpu
->kvm
;
1321 u64 offset
, ns
, elapsed
;
1322 unsigned long flags
;
1325 bool already_matched
;
1326 u64 data
= msr
->data
;
1328 raw_spin_lock_irqsave(&kvm
->arch
.tsc_write_lock
, flags
);
1329 offset
= kvm_x86_ops
->compute_tsc_offset(vcpu
, data
);
1330 ns
= get_kernel_ns();
1331 elapsed
= ns
- kvm
->arch
.last_tsc_nsec
;
1333 if (vcpu
->arch
.virtual_tsc_khz
) {
1336 /* n.b - signed multiplication and division required */
1337 usdiff
= data
- kvm
->arch
.last_tsc_write
;
1338 #ifdef CONFIG_X86_64
1339 usdiff
= (usdiff
* 1000) / vcpu
->arch
.virtual_tsc_khz
;
1341 /* do_div() only does unsigned */
1342 asm("1: idivl %[divisor]\n"
1343 "2: xor %%edx, %%edx\n"
1344 " movl $0, %[faulted]\n"
1346 ".section .fixup,\"ax\"\n"
1347 "4: movl $1, %[faulted]\n"
1351 _ASM_EXTABLE(1b
, 4b
)
1353 : "=A"(usdiff
), [faulted
] "=r" (faulted
)
1354 : "A"(usdiff
* 1000), [divisor
] "rm"(vcpu
->arch
.virtual_tsc_khz
));
1357 do_div(elapsed
, 1000);
1362 /* idivl overflow => difference is larger than USEC_PER_SEC */
1364 usdiff
= USEC_PER_SEC
;
1366 usdiff
= USEC_PER_SEC
; /* disable TSC match window below */
1369 * Special case: TSC write with a small delta (1 second) of virtual
1370 * cycle time against real time is interpreted as an attempt to
1371 * synchronize the CPU.
1373 * For a reliable TSC, we can match TSC offsets, and for an unstable
1374 * TSC, we add elapsed time in this computation. We could let the
1375 * compensation code attempt to catch up if we fall behind, but
1376 * it's better to try to match offsets from the beginning.
1378 if (usdiff
< USEC_PER_SEC
&&
1379 vcpu
->arch
.virtual_tsc_khz
== kvm
->arch
.last_tsc_khz
) {
1380 if (!check_tsc_unstable()) {
1381 offset
= kvm
->arch
.cur_tsc_offset
;
1382 pr_debug("kvm: matched tsc offset for %llu\n", data
);
1384 u64 delta
= nsec_to_cycles(vcpu
, elapsed
);
1386 offset
= kvm_x86_ops
->compute_tsc_offset(vcpu
, data
);
1387 pr_debug("kvm: adjusted tsc offset by %llu\n", delta
);
1390 already_matched
= (vcpu
->arch
.this_tsc_generation
== kvm
->arch
.cur_tsc_generation
);
1393 * We split periods of matched TSC writes into generations.
1394 * For each generation, we track the original measured
1395 * nanosecond time, offset, and write, so if TSCs are in
1396 * sync, we can match exact offset, and if not, we can match
1397 * exact software computation in compute_guest_tsc()
1399 * These values are tracked in kvm->arch.cur_xxx variables.
1401 kvm
->arch
.cur_tsc_generation
++;
1402 kvm
->arch
.cur_tsc_nsec
= ns
;
1403 kvm
->arch
.cur_tsc_write
= data
;
1404 kvm
->arch
.cur_tsc_offset
= offset
;
1406 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1407 kvm
->arch
.cur_tsc_generation
, data
);
1411 * We also track th most recent recorded KHZ, write and time to
1412 * allow the matching interval to be extended at each write.
1414 kvm
->arch
.last_tsc_nsec
= ns
;
1415 kvm
->arch
.last_tsc_write
= data
;
1416 kvm
->arch
.last_tsc_khz
= vcpu
->arch
.virtual_tsc_khz
;
1418 vcpu
->arch
.last_guest_tsc
= data
;
1420 /* Keep track of which generation this VCPU has synchronized to */
1421 vcpu
->arch
.this_tsc_generation
= kvm
->arch
.cur_tsc_generation
;
1422 vcpu
->arch
.this_tsc_nsec
= kvm
->arch
.cur_tsc_nsec
;
1423 vcpu
->arch
.this_tsc_write
= kvm
->arch
.cur_tsc_write
;
1425 if (guest_cpuid_has_tsc_adjust(vcpu
) && !msr
->host_initiated
)
1426 update_ia32_tsc_adjust_msr(vcpu
, offset
);
1427 kvm_x86_ops
->write_tsc_offset(vcpu
, offset
);
1428 raw_spin_unlock_irqrestore(&kvm
->arch
.tsc_write_lock
, flags
);
1430 spin_lock(&kvm
->arch
.pvclock_gtod_sync_lock
);
1432 kvm
->arch
.nr_vcpus_matched_tsc
= 0;
1433 } else if (!already_matched
) {
1434 kvm
->arch
.nr_vcpus_matched_tsc
++;
1437 kvm_track_tsc_matching(vcpu
);
1438 spin_unlock(&kvm
->arch
.pvclock_gtod_sync_lock
);
1441 EXPORT_SYMBOL_GPL(kvm_write_tsc
);
1443 #ifdef CONFIG_X86_64
1445 static cycle_t
read_tsc(void)
1451 * Empirically, a fence (of type that depends on the CPU)
1452 * before rdtsc is enough to ensure that rdtsc is ordered
1453 * with respect to loads. The various CPU manuals are unclear
1454 * as to whether rdtsc can be reordered with later loads,
1455 * but no one has ever seen it happen.
1458 ret
= (cycle_t
)vget_cycles();
1460 last
= pvclock_gtod_data
.clock
.cycle_last
;
1462 if (likely(ret
>= last
))
1466 * GCC likes to generate cmov here, but this branch is extremely
1467 * predictable (it's just a funciton of time and the likely is
1468 * very likely) and there's a data dependence, so force GCC
1469 * to generate a branch instead. I don't barrier() because
1470 * we don't actually need a barrier, and if this function
1471 * ever gets inlined it will generate worse code.
1477 static inline u64
vgettsc(cycle_t
*cycle_now
)
1480 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
1482 *cycle_now
= read_tsc();
1484 v
= (*cycle_now
- gtod
->clock
.cycle_last
) & gtod
->clock
.mask
;
1485 return v
* gtod
->clock
.mult
;
1488 static int do_monotonic_boot(s64
*t
, cycle_t
*cycle_now
)
1490 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
1496 seq
= read_seqcount_begin(>od
->seq
);
1497 mode
= gtod
->clock
.vclock_mode
;
1498 ns
= gtod
->nsec_base
;
1499 ns
+= vgettsc(cycle_now
);
1500 ns
>>= gtod
->clock
.shift
;
1501 ns
+= gtod
->boot_ns
;
1502 } while (unlikely(read_seqcount_retry(>od
->seq
, seq
)));
1508 /* returns true if host is using tsc clocksource */
1509 static bool kvm_get_time_and_clockread(s64
*kernel_ns
, cycle_t
*cycle_now
)
1511 /* checked again under seqlock below */
1512 if (pvclock_gtod_data
.clock
.vclock_mode
!= VCLOCK_TSC
)
1515 return do_monotonic_boot(kernel_ns
, cycle_now
) == VCLOCK_TSC
;
1521 * Assuming a stable TSC across physical CPUS, and a stable TSC
1522 * across virtual CPUs, the following condition is possible.
1523 * Each numbered line represents an event visible to both
1524 * CPUs at the next numbered event.
1526 * "timespecX" represents host monotonic time. "tscX" represents
1529 * VCPU0 on CPU0 | VCPU1 on CPU1
1531 * 1. read timespec0,tsc0
1532 * 2. | timespec1 = timespec0 + N
1534 * 3. transition to guest | transition to guest
1535 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1536 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1537 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1539 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1542 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1544 * - 0 < N - M => M < N
1546 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1547 * always the case (the difference between two distinct xtime instances
1548 * might be smaller then the difference between corresponding TSC reads,
1549 * when updating guest vcpus pvclock areas).
1551 * To avoid that problem, do not allow visibility of distinct
1552 * system_timestamp/tsc_timestamp values simultaneously: use a master
1553 * copy of host monotonic time values. Update that master copy
1556 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1560 static void pvclock_update_vm_gtod_copy(struct kvm
*kvm
)
1562 #ifdef CONFIG_X86_64
1563 struct kvm_arch
*ka
= &kvm
->arch
;
1565 bool host_tsc_clocksource
, vcpus_matched
;
1567 vcpus_matched
= (ka
->nr_vcpus_matched_tsc
+ 1 ==
1568 atomic_read(&kvm
->online_vcpus
));
1571 * If the host uses TSC clock, then passthrough TSC as stable
1574 host_tsc_clocksource
= kvm_get_time_and_clockread(
1575 &ka
->master_kernel_ns
,
1576 &ka
->master_cycle_now
);
1578 ka
->use_master_clock
= host_tsc_clocksource
&& vcpus_matched
1579 && !backwards_tsc_observed
1580 && !ka
->boot_vcpu_runs_old_kvmclock
;
1582 if (ka
->use_master_clock
)
1583 atomic_set(&kvm_guest_has_master_clock
, 1);
1585 vclock_mode
= pvclock_gtod_data
.clock
.vclock_mode
;
1586 trace_kvm_update_master_clock(ka
->use_master_clock
, vclock_mode
,
1591 static void kvm_gen_update_masterclock(struct kvm
*kvm
)
1593 #ifdef CONFIG_X86_64
1595 struct kvm_vcpu
*vcpu
;
1596 struct kvm_arch
*ka
= &kvm
->arch
;
1598 spin_lock(&ka
->pvclock_gtod_sync_lock
);
1599 kvm_make_mclock_inprogress_request(kvm
);
1600 /* no guest entries from this point */
1601 pvclock_update_vm_gtod_copy(kvm
);
1603 kvm_for_each_vcpu(i
, vcpu
, kvm
)
1604 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
1606 /* guest entries allowed */
1607 kvm_for_each_vcpu(i
, vcpu
, kvm
)
1608 clear_bit(KVM_REQ_MCLOCK_INPROGRESS
, &vcpu
->requests
);
1610 spin_unlock(&ka
->pvclock_gtod_sync_lock
);
1614 static int kvm_guest_time_update(struct kvm_vcpu
*v
)
1616 unsigned long flags
, this_tsc_khz
;
1617 struct kvm_vcpu_arch
*vcpu
= &v
->arch
;
1618 struct kvm_arch
*ka
= &v
->kvm
->arch
;
1620 u64 tsc_timestamp
, host_tsc
;
1621 struct pvclock_vcpu_time_info guest_hv_clock
;
1623 bool use_master_clock
;
1629 * If the host uses TSC clock, then passthrough TSC as stable
1632 spin_lock(&ka
->pvclock_gtod_sync_lock
);
1633 use_master_clock
= ka
->use_master_clock
;
1634 if (use_master_clock
) {
1635 host_tsc
= ka
->master_cycle_now
;
1636 kernel_ns
= ka
->master_kernel_ns
;
1638 spin_unlock(&ka
->pvclock_gtod_sync_lock
);
1640 /* Keep irq disabled to prevent changes to the clock */
1641 local_irq_save(flags
);
1642 this_tsc_khz
= __this_cpu_read(cpu_tsc_khz
);
1643 if (unlikely(this_tsc_khz
== 0)) {
1644 local_irq_restore(flags
);
1645 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, v
);
1648 if (!use_master_clock
) {
1649 host_tsc
= native_read_tsc();
1650 kernel_ns
= get_kernel_ns();
1653 tsc_timestamp
= kvm_x86_ops
->read_l1_tsc(v
, host_tsc
);
1656 * We may have to catch up the TSC to match elapsed wall clock
1657 * time for two reasons, even if kvmclock is used.
1658 * 1) CPU could have been running below the maximum TSC rate
1659 * 2) Broken TSC compensation resets the base at each VCPU
1660 * entry to avoid unknown leaps of TSC even when running
1661 * again on the same CPU. This may cause apparent elapsed
1662 * time to disappear, and the guest to stand still or run
1665 if (vcpu
->tsc_catchup
) {
1666 u64 tsc
= compute_guest_tsc(v
, kernel_ns
);
1667 if (tsc
> tsc_timestamp
) {
1668 adjust_tsc_offset_guest(v
, tsc
- tsc_timestamp
);
1669 tsc_timestamp
= tsc
;
1673 local_irq_restore(flags
);
1675 if (!vcpu
->pv_time_enabled
)
1678 if (unlikely(vcpu
->hw_tsc_khz
!= this_tsc_khz
)) {
1679 kvm_get_time_scale(NSEC_PER_SEC
/ 1000, this_tsc_khz
,
1680 &vcpu
->hv_clock
.tsc_shift
,
1681 &vcpu
->hv_clock
.tsc_to_system_mul
);
1682 vcpu
->hw_tsc_khz
= this_tsc_khz
;
1685 /* With all the info we got, fill in the values */
1686 vcpu
->hv_clock
.tsc_timestamp
= tsc_timestamp
;
1687 vcpu
->hv_clock
.system_time
= kernel_ns
+ v
->kvm
->arch
.kvmclock_offset
;
1688 vcpu
->last_guest_tsc
= tsc_timestamp
;
1690 if (unlikely(kvm_read_guest_cached(v
->kvm
, &vcpu
->pv_time
,
1691 &guest_hv_clock
, sizeof(guest_hv_clock
))))
1694 /* This VCPU is paused, but it's legal for a guest to read another
1695 * VCPU's kvmclock, so we really have to follow the specification where
1696 * it says that version is odd if data is being modified, and even after
1699 * Version field updates must be kept separate. This is because
1700 * kvm_write_guest_cached might use a "rep movs" instruction, and
1701 * writes within a string instruction are weakly ordered. So there
1702 * are three writes overall.
1704 * As a small optimization, only write the version field in the first
1705 * and third write. The vcpu->pv_time cache is still valid, because the
1706 * version field is the first in the struct.
1708 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info
, version
) != 0);
1710 vcpu
->hv_clock
.version
= guest_hv_clock
.version
+ 1;
1711 kvm_write_guest_cached(v
->kvm
, &vcpu
->pv_time
,
1713 sizeof(vcpu
->hv_clock
.version
));
1717 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1718 pvclock_flags
= (guest_hv_clock
.flags
& PVCLOCK_GUEST_STOPPED
);
1720 if (vcpu
->pvclock_set_guest_stopped_request
) {
1721 pvclock_flags
|= PVCLOCK_GUEST_STOPPED
;
1722 vcpu
->pvclock_set_guest_stopped_request
= false;
1725 pvclock_flags
|= PVCLOCK_COUNTS_FROM_ZERO
;
1727 /* If the host uses TSC clocksource, then it is stable */
1728 if (use_master_clock
)
1729 pvclock_flags
|= PVCLOCK_TSC_STABLE_BIT
;
1731 vcpu
->hv_clock
.flags
= pvclock_flags
;
1733 trace_kvm_pvclock_update(v
->vcpu_id
, &vcpu
->hv_clock
);
1735 kvm_write_guest_cached(v
->kvm
, &vcpu
->pv_time
,
1737 sizeof(vcpu
->hv_clock
));
1741 vcpu
->hv_clock
.version
++;
1742 kvm_write_guest_cached(v
->kvm
, &vcpu
->pv_time
,
1744 sizeof(vcpu
->hv_clock
.version
));
1749 * kvmclock updates which are isolated to a given vcpu, such as
1750 * vcpu->cpu migration, should not allow system_timestamp from
1751 * the rest of the vcpus to remain static. Otherwise ntp frequency
1752 * correction applies to one vcpu's system_timestamp but not
1755 * So in those cases, request a kvmclock update for all vcpus.
1756 * We need to rate-limit these requests though, as they can
1757 * considerably slow guests that have a large number of vcpus.
1758 * The time for a remote vcpu to update its kvmclock is bound
1759 * by the delay we use to rate-limit the updates.
1762 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1764 static void kvmclock_update_fn(struct work_struct
*work
)
1767 struct delayed_work
*dwork
= to_delayed_work(work
);
1768 struct kvm_arch
*ka
= container_of(dwork
, struct kvm_arch
,
1769 kvmclock_update_work
);
1770 struct kvm
*kvm
= container_of(ka
, struct kvm
, arch
);
1771 struct kvm_vcpu
*vcpu
;
1773 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
1774 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
1775 kvm_vcpu_kick(vcpu
);
1779 static void kvm_gen_kvmclock_update(struct kvm_vcpu
*v
)
1781 struct kvm
*kvm
= v
->kvm
;
1783 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, v
);
1784 schedule_delayed_work(&kvm
->arch
.kvmclock_update_work
,
1785 KVMCLOCK_UPDATE_DELAY
);
1788 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1790 static void kvmclock_sync_fn(struct work_struct
*work
)
1792 struct delayed_work
*dwork
= to_delayed_work(work
);
1793 struct kvm_arch
*ka
= container_of(dwork
, struct kvm_arch
,
1794 kvmclock_sync_work
);
1795 struct kvm
*kvm
= container_of(ka
, struct kvm
, arch
);
1797 if (!kvmclock_periodic_sync
)
1800 schedule_delayed_work(&kvm
->arch
.kvmclock_update_work
, 0);
1801 schedule_delayed_work(&kvm
->arch
.kvmclock_sync_work
,
1802 KVMCLOCK_SYNC_PERIOD
);
1805 static int set_msr_mce(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1807 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
1808 unsigned bank_num
= mcg_cap
& 0xff;
1811 case MSR_IA32_MCG_STATUS
:
1812 vcpu
->arch
.mcg_status
= data
;
1814 case MSR_IA32_MCG_CTL
:
1815 if (!(mcg_cap
& MCG_CTL_P
))
1817 if (data
!= 0 && data
!= ~(u64
)0)
1819 vcpu
->arch
.mcg_ctl
= data
;
1822 if (msr
>= MSR_IA32_MC0_CTL
&&
1823 msr
< MSR_IA32_MCx_CTL(bank_num
)) {
1824 u32 offset
= msr
- MSR_IA32_MC0_CTL
;
1825 /* only 0 or all 1s can be written to IA32_MCi_CTL
1826 * some Linux kernels though clear bit 10 in bank 4 to
1827 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1828 * this to avoid an uncatched #GP in the guest
1830 if ((offset
& 0x3) == 0 &&
1831 data
!= 0 && (data
| (1 << 10)) != ~(u64
)0)
1833 vcpu
->arch
.mce_banks
[offset
] = data
;
1841 static int xen_hvm_config(struct kvm_vcpu
*vcpu
, u64 data
)
1843 struct kvm
*kvm
= vcpu
->kvm
;
1844 int lm
= is_long_mode(vcpu
);
1845 u8
*blob_addr
= lm
? (u8
*)(long)kvm
->arch
.xen_hvm_config
.blob_addr_64
1846 : (u8
*)(long)kvm
->arch
.xen_hvm_config
.blob_addr_32
;
1847 u8 blob_size
= lm
? kvm
->arch
.xen_hvm_config
.blob_size_64
1848 : kvm
->arch
.xen_hvm_config
.blob_size_32
;
1849 u32 page_num
= data
& ~PAGE_MASK
;
1850 u64 page_addr
= data
& PAGE_MASK
;
1855 if (page_num
>= blob_size
)
1858 page
= memdup_user(blob_addr
+ (page_num
* PAGE_SIZE
), PAGE_SIZE
);
1863 if (kvm_vcpu_write_guest(vcpu
, page_addr
, page
, PAGE_SIZE
))
1872 static bool kvm_hv_hypercall_enabled(struct kvm
*kvm
)
1874 return kvm
->arch
.hv_hypercall
& HV_X64_MSR_HYPERCALL_ENABLE
;
1877 static bool kvm_hv_msr_partition_wide(u32 msr
)
1881 case HV_X64_MSR_GUEST_OS_ID
:
1882 case HV_X64_MSR_HYPERCALL
:
1883 case HV_X64_MSR_REFERENCE_TSC
:
1884 case HV_X64_MSR_TIME_REF_COUNT
:
1892 static int set_msr_hyperv_pw(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1894 struct kvm
*kvm
= vcpu
->kvm
;
1897 case HV_X64_MSR_GUEST_OS_ID
:
1898 kvm
->arch
.hv_guest_os_id
= data
;
1899 /* setting guest os id to zero disables hypercall page */
1900 if (!kvm
->arch
.hv_guest_os_id
)
1901 kvm
->arch
.hv_hypercall
&= ~HV_X64_MSR_HYPERCALL_ENABLE
;
1903 case HV_X64_MSR_HYPERCALL
: {
1908 /* if guest os id is not set hypercall should remain disabled */
1909 if (!kvm
->arch
.hv_guest_os_id
)
1911 if (!(data
& HV_X64_MSR_HYPERCALL_ENABLE
)) {
1912 kvm
->arch
.hv_hypercall
= data
;
1915 gfn
= data
>> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT
;
1916 addr
= gfn_to_hva(kvm
, gfn
);
1917 if (kvm_is_error_hva(addr
))
1919 kvm_x86_ops
->patch_hypercall(vcpu
, instructions
);
1920 ((unsigned char *)instructions
)[3] = 0xc3; /* ret */
1921 if (__copy_to_user((void __user
*)addr
, instructions
, 4))
1923 kvm
->arch
.hv_hypercall
= data
;
1924 mark_page_dirty(kvm
, gfn
);
1927 case HV_X64_MSR_REFERENCE_TSC
: {
1929 HV_REFERENCE_TSC_PAGE tsc_ref
;
1930 memset(&tsc_ref
, 0, sizeof(tsc_ref
));
1931 kvm
->arch
.hv_tsc_page
= data
;
1932 if (!(data
& HV_X64_MSR_TSC_REFERENCE_ENABLE
))
1934 gfn
= data
>> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT
;
1935 if (kvm_write_guest(kvm
, gfn
<< HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT
,
1936 &tsc_ref
, sizeof(tsc_ref
)))
1938 mark_page_dirty(kvm
, gfn
);
1942 vcpu_unimpl(vcpu
, "HYPER-V unimplemented wrmsr: 0x%x "
1943 "data 0x%llx\n", msr
, data
);
1949 static int set_msr_hyperv(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1952 case HV_X64_MSR_APIC_ASSIST_PAGE
: {
1956 if (!(data
& HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE
)) {
1957 vcpu
->arch
.hv_vapic
= data
;
1958 if (kvm_lapic_enable_pv_eoi(vcpu
, 0))
1962 gfn
= data
>> HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT
;
1963 addr
= kvm_vcpu_gfn_to_hva(vcpu
, gfn
);
1964 if (kvm_is_error_hva(addr
))
1966 if (__clear_user((void __user
*)addr
, PAGE_SIZE
))
1968 vcpu
->arch
.hv_vapic
= data
;
1969 kvm_vcpu_mark_page_dirty(vcpu
, gfn
);
1970 if (kvm_lapic_enable_pv_eoi(vcpu
, gfn_to_gpa(gfn
) | KVM_MSR_ENABLED
))
1974 case HV_X64_MSR_EOI
:
1975 return kvm_hv_vapic_msr_write(vcpu
, APIC_EOI
, data
);
1976 case HV_X64_MSR_ICR
:
1977 return kvm_hv_vapic_msr_write(vcpu
, APIC_ICR
, data
);
1978 case HV_X64_MSR_TPR
:
1979 return kvm_hv_vapic_msr_write(vcpu
, APIC_TASKPRI
, data
);
1981 vcpu_unimpl(vcpu
, "HYPER-V unimplemented wrmsr: 0x%x "
1982 "data 0x%llx\n", msr
, data
);
1989 static int kvm_pv_enable_async_pf(struct kvm_vcpu
*vcpu
, u64 data
)
1991 gpa_t gpa
= data
& ~0x3f;
1993 /* Bits 2:5 are reserved, Should be zero */
1997 vcpu
->arch
.apf
.msr_val
= data
;
1999 if (!(data
& KVM_ASYNC_PF_ENABLED
)) {
2000 kvm_clear_async_pf_completion_queue(vcpu
);
2001 kvm_async_pf_hash_reset(vcpu
);
2005 if (kvm_gfn_to_hva_cache_init(vcpu
->kvm
, &vcpu
->arch
.apf
.data
, gpa
,
2009 vcpu
->arch
.apf
.send_user_only
= !(data
& KVM_ASYNC_PF_SEND_ALWAYS
);
2010 kvm_async_pf_wakeup_all(vcpu
);
2014 static void kvmclock_reset(struct kvm_vcpu
*vcpu
)
2016 vcpu
->arch
.pv_time_enabled
= false;
2019 static void accumulate_steal_time(struct kvm_vcpu
*vcpu
)
2023 if (!(vcpu
->arch
.st
.msr_val
& KVM_MSR_ENABLED
))
2026 delta
= current
->sched_info
.run_delay
- vcpu
->arch
.st
.last_steal
;
2027 vcpu
->arch
.st
.last_steal
= current
->sched_info
.run_delay
;
2028 vcpu
->arch
.st
.accum_steal
= delta
;
2031 static void record_steal_time(struct kvm_vcpu
*vcpu
)
2033 if (!(vcpu
->arch
.st
.msr_val
& KVM_MSR_ENABLED
))
2036 if (unlikely(kvm_read_guest_cached(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
2037 &vcpu
->arch
.st
.steal
, sizeof(struct kvm_steal_time
))))
2040 vcpu
->arch
.st
.steal
.steal
+= vcpu
->arch
.st
.accum_steal
;
2041 vcpu
->arch
.st
.steal
.version
+= 2;
2042 vcpu
->arch
.st
.accum_steal
= 0;
2044 kvm_write_guest_cached(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
2045 &vcpu
->arch
.st
.steal
, sizeof(struct kvm_steal_time
));
2048 int kvm_set_msr_common(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
2051 u32 msr
= msr_info
->index
;
2052 u64 data
= msr_info
->data
;
2055 case MSR_AMD64_NB_CFG
:
2056 case MSR_IA32_UCODE_REV
:
2057 case MSR_IA32_UCODE_WRITE
:
2058 case MSR_VM_HSAVE_PA
:
2059 case MSR_AMD64_PATCH_LOADER
:
2060 case MSR_AMD64_BU_CFG2
:
2064 return set_efer(vcpu
, data
);
2066 data
&= ~(u64
)0x40; /* ignore flush filter disable */
2067 data
&= ~(u64
)0x100; /* ignore ignne emulation enable */
2068 data
&= ~(u64
)0x8; /* ignore TLB cache disable */
2069 data
&= ~(u64
)0x40000; /* ignore Mc status write enable */
2071 vcpu_unimpl(vcpu
, "unimplemented HWCR wrmsr: 0x%llx\n",
2076 case MSR_FAM10H_MMIO_CONF_BASE
:
2078 vcpu_unimpl(vcpu
, "unimplemented MMIO_CONF_BASE wrmsr: "
2083 case MSR_IA32_DEBUGCTLMSR
:
2085 /* We support the non-activated case already */
2087 } else if (data
& ~(DEBUGCTLMSR_LBR
| DEBUGCTLMSR_BTF
)) {
2088 /* Values other than LBR and BTF are vendor-specific,
2089 thus reserved and should throw a #GP */
2092 vcpu_unimpl(vcpu
, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2095 case 0x200 ... 0x2ff:
2096 return kvm_mtrr_set_msr(vcpu
, msr
, data
);
2097 case MSR_IA32_APICBASE
:
2098 return kvm_set_apic_base(vcpu
, msr_info
);
2099 case APIC_BASE_MSR
... APIC_BASE_MSR
+ 0x3ff:
2100 return kvm_x2apic_msr_write(vcpu
, msr
, data
);
2101 case MSR_IA32_TSCDEADLINE
:
2102 kvm_set_lapic_tscdeadline_msr(vcpu
, data
);
2104 case MSR_IA32_TSC_ADJUST
:
2105 if (guest_cpuid_has_tsc_adjust(vcpu
)) {
2106 if (!msr_info
->host_initiated
) {
2107 s64 adj
= data
- vcpu
->arch
.ia32_tsc_adjust_msr
;
2108 adjust_tsc_offset_guest(vcpu
, adj
);
2110 vcpu
->arch
.ia32_tsc_adjust_msr
= data
;
2113 case MSR_IA32_MISC_ENABLE
:
2114 vcpu
->arch
.ia32_misc_enable_msr
= data
;
2116 case MSR_IA32_SMBASE
:
2117 if (!msr_info
->host_initiated
)
2119 vcpu
->arch
.smbase
= data
;
2121 case MSR_KVM_WALL_CLOCK_NEW
:
2122 case MSR_KVM_WALL_CLOCK
:
2123 vcpu
->kvm
->arch
.wall_clock
= data
;
2124 kvm_write_wall_clock(vcpu
->kvm
, data
);
2126 case MSR_KVM_SYSTEM_TIME_NEW
:
2127 case MSR_KVM_SYSTEM_TIME
: {
2129 struct kvm_arch
*ka
= &vcpu
->kvm
->arch
;
2131 kvmclock_reset(vcpu
);
2133 if (vcpu
->vcpu_id
== 0 && !msr_info
->host_initiated
) {
2134 bool tmp
= (msr
== MSR_KVM_SYSTEM_TIME
);
2136 if (ka
->boot_vcpu_runs_old_kvmclock
!= tmp
)
2137 set_bit(KVM_REQ_MASTERCLOCK_UPDATE
,
2140 ka
->boot_vcpu_runs_old_kvmclock
= tmp
;
2142 ka
->kvmclock_offset
= -get_kernel_ns();
2145 vcpu
->arch
.time
= data
;
2146 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE
, vcpu
);
2148 /* we verify if the enable bit is set... */
2152 gpa_offset
= data
& ~(PAGE_MASK
| 1);
2154 if (kvm_gfn_to_hva_cache_init(vcpu
->kvm
,
2155 &vcpu
->arch
.pv_time
, data
& ~1ULL,
2156 sizeof(struct pvclock_vcpu_time_info
)))
2157 vcpu
->arch
.pv_time_enabled
= false;
2159 vcpu
->arch
.pv_time_enabled
= true;
2163 case MSR_KVM_ASYNC_PF_EN
:
2164 if (kvm_pv_enable_async_pf(vcpu
, data
))
2167 case MSR_KVM_STEAL_TIME
:
2169 if (unlikely(!sched_info_on()))
2172 if (data
& KVM_STEAL_RESERVED_MASK
)
2175 if (kvm_gfn_to_hva_cache_init(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
2176 data
& KVM_STEAL_VALID_BITS
,
2177 sizeof(struct kvm_steal_time
)))
2180 vcpu
->arch
.st
.msr_val
= data
;
2182 if (!(data
& KVM_MSR_ENABLED
))
2185 vcpu
->arch
.st
.last_steal
= current
->sched_info
.run_delay
;
2188 accumulate_steal_time(vcpu
);
2191 kvm_make_request(KVM_REQ_STEAL_UPDATE
, vcpu
);
2194 case MSR_KVM_PV_EOI_EN
:
2195 if (kvm_lapic_enable_pv_eoi(vcpu
, data
))
2199 case MSR_IA32_MCG_CTL
:
2200 case MSR_IA32_MCG_STATUS
:
2201 case MSR_IA32_MC0_CTL
... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS
) - 1:
2202 return set_msr_mce(vcpu
, msr
, data
);
2204 case MSR_K7_PERFCTR0
... MSR_K7_PERFCTR3
:
2205 case MSR_P6_PERFCTR0
... MSR_P6_PERFCTR1
:
2206 pr
= true; /* fall through */
2207 case MSR_K7_EVNTSEL0
... MSR_K7_EVNTSEL3
:
2208 case MSR_P6_EVNTSEL0
... MSR_P6_EVNTSEL1
:
2209 if (kvm_pmu_is_valid_msr(vcpu
, msr
))
2210 return kvm_pmu_set_msr(vcpu
, msr_info
);
2212 if (pr
|| data
!= 0)
2213 vcpu_unimpl(vcpu
, "disabled perfctr wrmsr: "
2214 "0x%x data 0x%llx\n", msr
, data
);
2216 case MSR_K7_CLK_CTL
:
2218 * Ignore all writes to this no longer documented MSR.
2219 * Writes are only relevant for old K7 processors,
2220 * all pre-dating SVM, but a recommended workaround from
2221 * AMD for these chips. It is possible to specify the
2222 * affected processor models on the command line, hence
2223 * the need to ignore the workaround.
2226 case HV_X64_MSR_GUEST_OS_ID
... HV_X64_MSR_SINT15
:
2227 if (kvm_hv_msr_partition_wide(msr
)) {
2229 mutex_lock(&vcpu
->kvm
->lock
);
2230 r
= set_msr_hyperv_pw(vcpu
, msr
, data
);
2231 mutex_unlock(&vcpu
->kvm
->lock
);
2234 return set_msr_hyperv(vcpu
, msr
, data
);
2236 case MSR_IA32_BBL_CR_CTL3
:
2237 /* Drop writes to this legacy MSR -- see rdmsr
2238 * counterpart for further detail.
2240 vcpu_unimpl(vcpu
, "ignored wrmsr: 0x%x data %llx\n", msr
, data
);
2242 case MSR_AMD64_OSVW_ID_LENGTH
:
2243 if (!guest_cpuid_has_osvw(vcpu
))
2245 vcpu
->arch
.osvw
.length
= data
;
2247 case MSR_AMD64_OSVW_STATUS
:
2248 if (!guest_cpuid_has_osvw(vcpu
))
2250 vcpu
->arch
.osvw
.status
= data
;
2253 if (msr
&& (msr
== vcpu
->kvm
->arch
.xen_hvm_config
.msr
))
2254 return xen_hvm_config(vcpu
, data
);
2255 if (kvm_pmu_is_valid_msr(vcpu
, msr
))
2256 return kvm_pmu_set_msr(vcpu
, msr_info
);
2258 vcpu_unimpl(vcpu
, "unhandled wrmsr: 0x%x data %llx\n",
2262 vcpu_unimpl(vcpu
, "ignored wrmsr: 0x%x data %llx\n",
2269 EXPORT_SYMBOL_GPL(kvm_set_msr_common
);
2273 * Reads an msr value (of 'msr_index') into 'pdata'.
2274 * Returns 0 on success, non-0 otherwise.
2275 * Assumes vcpu_load() was already called.
2277 int kvm_get_msr(struct kvm_vcpu
*vcpu
, struct msr_data
*msr
)
2279 return kvm_x86_ops
->get_msr(vcpu
, msr
);
2281 EXPORT_SYMBOL_GPL(kvm_get_msr
);
2283 static int get_msr_mce(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
2286 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
2287 unsigned bank_num
= mcg_cap
& 0xff;
2290 case MSR_IA32_P5_MC_ADDR
:
2291 case MSR_IA32_P5_MC_TYPE
:
2294 case MSR_IA32_MCG_CAP
:
2295 data
= vcpu
->arch
.mcg_cap
;
2297 case MSR_IA32_MCG_CTL
:
2298 if (!(mcg_cap
& MCG_CTL_P
))
2300 data
= vcpu
->arch
.mcg_ctl
;
2302 case MSR_IA32_MCG_STATUS
:
2303 data
= vcpu
->arch
.mcg_status
;
2306 if (msr
>= MSR_IA32_MC0_CTL
&&
2307 msr
< MSR_IA32_MCx_CTL(bank_num
)) {
2308 u32 offset
= msr
- MSR_IA32_MC0_CTL
;
2309 data
= vcpu
->arch
.mce_banks
[offset
];
2318 static int get_msr_hyperv_pw(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
2321 struct kvm
*kvm
= vcpu
->kvm
;
2324 case HV_X64_MSR_GUEST_OS_ID
:
2325 data
= kvm
->arch
.hv_guest_os_id
;
2327 case HV_X64_MSR_HYPERCALL
:
2328 data
= kvm
->arch
.hv_hypercall
;
2330 case HV_X64_MSR_TIME_REF_COUNT
: {
2332 div_u64(get_kernel_ns() + kvm
->arch
.kvmclock_offset
, 100);
2335 case HV_X64_MSR_REFERENCE_TSC
:
2336 data
= kvm
->arch
.hv_tsc_page
;
2339 vcpu_unimpl(vcpu
, "Hyper-V unhandled rdmsr: 0x%x\n", msr
);
2347 static int get_msr_hyperv(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
2352 case HV_X64_MSR_VP_INDEX
: {
2355 kvm_for_each_vcpu(r
, v
, vcpu
->kvm
) {
2363 case HV_X64_MSR_EOI
:
2364 return kvm_hv_vapic_msr_read(vcpu
, APIC_EOI
, pdata
);
2365 case HV_X64_MSR_ICR
:
2366 return kvm_hv_vapic_msr_read(vcpu
, APIC_ICR
, pdata
);
2367 case HV_X64_MSR_TPR
:
2368 return kvm_hv_vapic_msr_read(vcpu
, APIC_TASKPRI
, pdata
);
2369 case HV_X64_MSR_APIC_ASSIST_PAGE
:
2370 data
= vcpu
->arch
.hv_vapic
;
2373 vcpu_unimpl(vcpu
, "Hyper-V unhandled rdmsr: 0x%x\n", msr
);
2380 int kvm_get_msr_common(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
2382 switch (msr_info
->index
) {
2383 case MSR_IA32_PLATFORM_ID
:
2384 case MSR_IA32_EBL_CR_POWERON
:
2385 case MSR_IA32_DEBUGCTLMSR
:
2386 case MSR_IA32_LASTBRANCHFROMIP
:
2387 case MSR_IA32_LASTBRANCHTOIP
:
2388 case MSR_IA32_LASTINTFROMIP
:
2389 case MSR_IA32_LASTINTTOIP
:
2392 case MSR_VM_HSAVE_PA
:
2393 case MSR_K8_INT_PENDING_MSG
:
2394 case MSR_AMD64_NB_CFG
:
2395 case MSR_FAM10H_MMIO_CONF_BASE
:
2396 case MSR_AMD64_BU_CFG2
:
2399 case MSR_K7_EVNTSEL0
... MSR_K7_EVNTSEL3
:
2400 case MSR_K7_PERFCTR0
... MSR_K7_PERFCTR3
:
2401 case MSR_P6_PERFCTR0
... MSR_P6_PERFCTR1
:
2402 case MSR_P6_EVNTSEL0
... MSR_P6_EVNTSEL1
:
2403 if (kvm_pmu_is_valid_msr(vcpu
, msr_info
->index
))
2404 return kvm_pmu_get_msr(vcpu
, msr_info
->index
, &msr_info
->data
);
2407 case MSR_IA32_UCODE_REV
:
2408 msr_info
->data
= 0x100000000ULL
;
2411 case 0x200 ... 0x2ff:
2412 return kvm_mtrr_get_msr(vcpu
, msr_info
->index
, &msr_info
->data
);
2413 case 0xcd: /* fsb frequency */
2417 * MSR_EBC_FREQUENCY_ID
2418 * Conservative value valid for even the basic CPU models.
2419 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2420 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2421 * and 266MHz for model 3, or 4. Set Core Clock
2422 * Frequency to System Bus Frequency Ratio to 1 (bits
2423 * 31:24) even though these are only valid for CPU
2424 * models > 2, however guests may end up dividing or
2425 * multiplying by zero otherwise.
2427 case MSR_EBC_FREQUENCY_ID
:
2428 msr_info
->data
= 1 << 24;
2430 case MSR_IA32_APICBASE
:
2431 msr_info
->data
= kvm_get_apic_base(vcpu
);
2433 case APIC_BASE_MSR
... APIC_BASE_MSR
+ 0x3ff:
2434 return kvm_x2apic_msr_read(vcpu
, msr_info
->index
, &msr_info
->data
);
2436 case MSR_IA32_TSCDEADLINE
:
2437 msr_info
->data
= kvm_get_lapic_tscdeadline_msr(vcpu
);
2439 case MSR_IA32_TSC_ADJUST
:
2440 msr_info
->data
= (u64
)vcpu
->arch
.ia32_tsc_adjust_msr
;
2442 case MSR_IA32_MISC_ENABLE
:
2443 msr_info
->data
= vcpu
->arch
.ia32_misc_enable_msr
;
2445 case MSR_IA32_SMBASE
:
2446 if (!msr_info
->host_initiated
)
2448 msr_info
->data
= vcpu
->arch
.smbase
;
2450 case MSR_IA32_PERF_STATUS
:
2451 /* TSC increment by tick */
2452 msr_info
->data
= 1000ULL;
2453 /* CPU multiplier */
2454 msr_info
->data
|= (((uint64_t)4ULL) << 40);
2457 msr_info
->data
= vcpu
->arch
.efer
;
2459 case MSR_KVM_WALL_CLOCK
:
2460 case MSR_KVM_WALL_CLOCK_NEW
:
2461 msr_info
->data
= vcpu
->kvm
->arch
.wall_clock
;
2463 case MSR_KVM_SYSTEM_TIME
:
2464 case MSR_KVM_SYSTEM_TIME_NEW
:
2465 msr_info
->data
= vcpu
->arch
.time
;
2467 case MSR_KVM_ASYNC_PF_EN
:
2468 msr_info
->data
= vcpu
->arch
.apf
.msr_val
;
2470 case MSR_KVM_STEAL_TIME
:
2471 msr_info
->data
= vcpu
->arch
.st
.msr_val
;
2473 case MSR_KVM_PV_EOI_EN
:
2474 msr_info
->data
= vcpu
->arch
.pv_eoi
.msr_val
;
2476 case MSR_IA32_P5_MC_ADDR
:
2477 case MSR_IA32_P5_MC_TYPE
:
2478 case MSR_IA32_MCG_CAP
:
2479 case MSR_IA32_MCG_CTL
:
2480 case MSR_IA32_MCG_STATUS
:
2481 case MSR_IA32_MC0_CTL
... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS
) - 1:
2482 return get_msr_mce(vcpu
, msr_info
->index
, &msr_info
->data
);
2483 case MSR_K7_CLK_CTL
:
2485 * Provide expected ramp-up count for K7. All other
2486 * are set to zero, indicating minimum divisors for
2489 * This prevents guest kernels on AMD host with CPU
2490 * type 6, model 8 and higher from exploding due to
2491 * the rdmsr failing.
2493 msr_info
->data
= 0x20000000;
2495 case HV_X64_MSR_GUEST_OS_ID
... HV_X64_MSR_SINT15
:
2496 if (kvm_hv_msr_partition_wide(msr_info
->index
)) {
2498 mutex_lock(&vcpu
->kvm
->lock
);
2499 r
= get_msr_hyperv_pw(vcpu
, msr_info
->index
, &msr_info
->data
);
2500 mutex_unlock(&vcpu
->kvm
->lock
);
2503 return get_msr_hyperv(vcpu
, msr_info
->index
, &msr_info
->data
);
2505 case MSR_IA32_BBL_CR_CTL3
:
2506 /* This legacy MSR exists but isn't fully documented in current
2507 * silicon. It is however accessed by winxp in very narrow
2508 * scenarios where it sets bit #19, itself documented as
2509 * a "reserved" bit. Best effort attempt to source coherent
2510 * read data here should the balance of the register be
2511 * interpreted by the guest:
2513 * L2 cache control register 3: 64GB range, 256KB size,
2514 * enabled, latency 0x1, configured
2516 msr_info
->data
= 0xbe702111;
2518 case MSR_AMD64_OSVW_ID_LENGTH
:
2519 if (!guest_cpuid_has_osvw(vcpu
))
2521 msr_info
->data
= vcpu
->arch
.osvw
.length
;
2523 case MSR_AMD64_OSVW_STATUS
:
2524 if (!guest_cpuid_has_osvw(vcpu
))
2526 msr_info
->data
= vcpu
->arch
.osvw
.status
;
2529 if (kvm_pmu_is_valid_msr(vcpu
, msr_info
->index
))
2530 return kvm_pmu_get_msr(vcpu
, msr_info
->index
, &msr_info
->data
);
2532 vcpu_unimpl(vcpu
, "unhandled rdmsr: 0x%x\n", msr_info
->index
);
2535 vcpu_unimpl(vcpu
, "ignored rdmsr: 0x%x\n", msr_info
->index
);
2542 EXPORT_SYMBOL_GPL(kvm_get_msr_common
);
2545 * Read or write a bunch of msrs. All parameters are kernel addresses.
2547 * @return number of msrs set successfully.
2549 static int __msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs
*msrs
,
2550 struct kvm_msr_entry
*entries
,
2551 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
2552 unsigned index
, u64
*data
))
2556 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
2557 for (i
= 0; i
< msrs
->nmsrs
; ++i
)
2558 if (do_msr(vcpu
, entries
[i
].index
, &entries
[i
].data
))
2560 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
2566 * Read or write a bunch of msrs. Parameters are user addresses.
2568 * @return number of msrs set successfully.
2570 static int msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs __user
*user_msrs
,
2571 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
2572 unsigned index
, u64
*data
),
2575 struct kvm_msrs msrs
;
2576 struct kvm_msr_entry
*entries
;
2581 if (copy_from_user(&msrs
, user_msrs
, sizeof msrs
))
2585 if (msrs
.nmsrs
>= MAX_IO_MSRS
)
2588 size
= sizeof(struct kvm_msr_entry
) * msrs
.nmsrs
;
2589 entries
= memdup_user(user_msrs
->entries
, size
);
2590 if (IS_ERR(entries
)) {
2591 r
= PTR_ERR(entries
);
2595 r
= n
= __msr_io(vcpu
, &msrs
, entries
, do_msr
);
2600 if (writeback
&& copy_to_user(user_msrs
->entries
, entries
, size
))
2611 int kvm_vm_ioctl_check_extension(struct kvm
*kvm
, long ext
)
2616 case KVM_CAP_IRQCHIP
:
2618 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL
:
2619 case KVM_CAP_SET_TSS_ADDR
:
2620 case KVM_CAP_EXT_CPUID
:
2621 case KVM_CAP_EXT_EMUL_CPUID
:
2622 case KVM_CAP_CLOCKSOURCE
:
2624 case KVM_CAP_NOP_IO_DELAY
:
2625 case KVM_CAP_MP_STATE
:
2626 case KVM_CAP_SYNC_MMU
:
2627 case KVM_CAP_USER_NMI
:
2628 case KVM_CAP_REINJECT_CONTROL
:
2629 case KVM_CAP_IRQ_INJECT_STATUS
:
2630 case KVM_CAP_IOEVENTFD
:
2631 case KVM_CAP_IOEVENTFD_NO_LENGTH
:
2633 case KVM_CAP_PIT_STATE2
:
2634 case KVM_CAP_SET_IDENTITY_MAP_ADDR
:
2635 case KVM_CAP_XEN_HVM
:
2636 case KVM_CAP_ADJUST_CLOCK
:
2637 case KVM_CAP_VCPU_EVENTS
:
2638 case KVM_CAP_HYPERV
:
2639 case KVM_CAP_HYPERV_VAPIC
:
2640 case KVM_CAP_HYPERV_SPIN
:
2641 case KVM_CAP_PCI_SEGMENT
:
2642 case KVM_CAP_DEBUGREGS
:
2643 case KVM_CAP_X86_ROBUST_SINGLESTEP
:
2645 case KVM_CAP_ASYNC_PF
:
2646 case KVM_CAP_GET_TSC_KHZ
:
2647 case KVM_CAP_KVMCLOCK_CTRL
:
2648 case KVM_CAP_READONLY_MEM
:
2649 case KVM_CAP_HYPERV_TIME
:
2650 case KVM_CAP_IOAPIC_POLARITY_IGNORED
:
2651 case KVM_CAP_TSC_DEADLINE_TIMER
:
2652 case KVM_CAP_ENABLE_CAP_VM
:
2653 case KVM_CAP_DISABLE_QUIRKS
:
2654 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2655 case KVM_CAP_ASSIGN_DEV_IRQ
:
2656 case KVM_CAP_PCI_2_3
:
2660 case KVM_CAP_X86_SMM
:
2661 /* SMBASE is usually relocated above 1M on modern chipsets,
2662 * and SMM handlers might indeed rely on 4G segment limits,
2663 * so do not report SMM to be available if real mode is
2664 * emulated via vm86 mode. Still, do not go to great lengths
2665 * to avoid userspace's usage of the feature, because it is a
2666 * fringe case that is not enabled except via specific settings
2667 * of the module parameters.
2669 r
= kvm_x86_ops
->cpu_has_high_real_mode_segbase();
2671 case KVM_CAP_COALESCED_MMIO
:
2672 r
= KVM_COALESCED_MMIO_PAGE_OFFSET
;
2675 r
= !kvm_x86_ops
->cpu_has_accelerated_tpr();
2677 case KVM_CAP_NR_VCPUS
:
2678 r
= KVM_SOFT_MAX_VCPUS
;
2680 case KVM_CAP_MAX_VCPUS
:
2683 case KVM_CAP_NR_MEMSLOTS
:
2684 r
= KVM_USER_MEM_SLOTS
;
2686 case KVM_CAP_PV_MMU
: /* obsolete */
2689 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2691 r
= iommu_present(&pci_bus_type
);
2695 r
= KVM_MAX_MCE_BANKS
;
2700 case KVM_CAP_TSC_CONTROL
:
2701 r
= kvm_has_tsc_control
;
2711 long kvm_arch_dev_ioctl(struct file
*filp
,
2712 unsigned int ioctl
, unsigned long arg
)
2714 void __user
*argp
= (void __user
*)arg
;
2718 case KVM_GET_MSR_INDEX_LIST
: {
2719 struct kvm_msr_list __user
*user_msr_list
= argp
;
2720 struct kvm_msr_list msr_list
;
2724 if (copy_from_user(&msr_list
, user_msr_list
, sizeof msr_list
))
2727 msr_list
.nmsrs
= num_msrs_to_save
+ num_emulated_msrs
;
2728 if (copy_to_user(user_msr_list
, &msr_list
, sizeof msr_list
))
2731 if (n
< msr_list
.nmsrs
)
2734 if (copy_to_user(user_msr_list
->indices
, &msrs_to_save
,
2735 num_msrs_to_save
* sizeof(u32
)))
2737 if (copy_to_user(user_msr_list
->indices
+ num_msrs_to_save
,
2739 num_emulated_msrs
* sizeof(u32
)))
2744 case KVM_GET_SUPPORTED_CPUID
:
2745 case KVM_GET_EMULATED_CPUID
: {
2746 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
2747 struct kvm_cpuid2 cpuid
;
2750 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
2753 r
= kvm_dev_ioctl_get_cpuid(&cpuid
, cpuid_arg
->entries
,
2759 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
2764 case KVM_X86_GET_MCE_CAP_SUPPORTED
: {
2767 mce_cap
= KVM_MCE_CAP_SUPPORTED
;
2769 if (copy_to_user(argp
, &mce_cap
, sizeof mce_cap
))
2781 static void wbinvd_ipi(void *garbage
)
2786 static bool need_emulate_wbinvd(struct kvm_vcpu
*vcpu
)
2788 return kvm_arch_has_noncoherent_dma(vcpu
->kvm
);
2791 void kvm_arch_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
2793 /* Address WBINVD may be executed by guest */
2794 if (need_emulate_wbinvd(vcpu
)) {
2795 if (kvm_x86_ops
->has_wbinvd_exit())
2796 cpumask_set_cpu(cpu
, vcpu
->arch
.wbinvd_dirty_mask
);
2797 else if (vcpu
->cpu
!= -1 && vcpu
->cpu
!= cpu
)
2798 smp_call_function_single(vcpu
->cpu
,
2799 wbinvd_ipi
, NULL
, 1);
2802 kvm_x86_ops
->vcpu_load(vcpu
, cpu
);
2804 /* Apply any externally detected TSC adjustments (due to suspend) */
2805 if (unlikely(vcpu
->arch
.tsc_offset_adjustment
)) {
2806 adjust_tsc_offset_host(vcpu
, vcpu
->arch
.tsc_offset_adjustment
);
2807 vcpu
->arch
.tsc_offset_adjustment
= 0;
2808 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
2811 if (unlikely(vcpu
->cpu
!= cpu
) || check_tsc_unstable()) {
2812 s64 tsc_delta
= !vcpu
->arch
.last_host_tsc
? 0 :
2813 native_read_tsc() - vcpu
->arch
.last_host_tsc
;
2815 mark_tsc_unstable("KVM discovered backwards TSC");
2816 if (check_tsc_unstable()) {
2817 u64 offset
= kvm_x86_ops
->compute_tsc_offset(vcpu
,
2818 vcpu
->arch
.last_guest_tsc
);
2819 kvm_x86_ops
->write_tsc_offset(vcpu
, offset
);
2820 vcpu
->arch
.tsc_catchup
= 1;
2823 * On a host with synchronized TSC, there is no need to update
2824 * kvmclock on vcpu->cpu migration
2826 if (!vcpu
->kvm
->arch
.use_master_clock
|| vcpu
->cpu
== -1)
2827 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE
, vcpu
);
2828 if (vcpu
->cpu
!= cpu
)
2829 kvm_migrate_timers(vcpu
);
2833 accumulate_steal_time(vcpu
);
2834 kvm_make_request(KVM_REQ_STEAL_UPDATE
, vcpu
);
2837 void kvm_arch_vcpu_put(struct kvm_vcpu
*vcpu
)
2839 kvm_x86_ops
->vcpu_put(vcpu
);
2840 kvm_put_guest_fpu(vcpu
);
2841 vcpu
->arch
.last_host_tsc
= native_read_tsc();
2844 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu
*vcpu
,
2845 struct kvm_lapic_state
*s
)
2847 kvm_x86_ops
->sync_pir_to_irr(vcpu
);
2848 memcpy(s
->regs
, vcpu
->arch
.apic
->regs
, sizeof *s
);
2853 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu
*vcpu
,
2854 struct kvm_lapic_state
*s
)
2856 kvm_apic_post_state_restore(vcpu
, s
);
2857 update_cr8_intercept(vcpu
);
2862 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu
*vcpu
,
2863 struct kvm_interrupt
*irq
)
2865 if (irq
->irq
>= KVM_NR_INTERRUPTS
)
2867 if (irqchip_in_kernel(vcpu
->kvm
))
2870 kvm_queue_interrupt(vcpu
, irq
->irq
, false);
2871 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
2876 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu
*vcpu
)
2878 kvm_inject_nmi(vcpu
);
2883 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu
*vcpu
)
2885 kvm_make_request(KVM_REQ_SMI
, vcpu
);
2890 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu
*vcpu
,
2891 struct kvm_tpr_access_ctl
*tac
)
2895 vcpu
->arch
.tpr_access_reporting
= !!tac
->enabled
;
2899 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu
*vcpu
,
2903 unsigned bank_num
= mcg_cap
& 0xff, bank
;
2906 if (!bank_num
|| bank_num
>= KVM_MAX_MCE_BANKS
)
2908 if (mcg_cap
& ~(KVM_MCE_CAP_SUPPORTED
| 0xff | 0xff0000))
2911 vcpu
->arch
.mcg_cap
= mcg_cap
;
2912 /* Init IA32_MCG_CTL to all 1s */
2913 if (mcg_cap
& MCG_CTL_P
)
2914 vcpu
->arch
.mcg_ctl
= ~(u64
)0;
2915 /* Init IA32_MCi_CTL to all 1s */
2916 for (bank
= 0; bank
< bank_num
; bank
++)
2917 vcpu
->arch
.mce_banks
[bank
*4] = ~(u64
)0;
2922 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu
*vcpu
,
2923 struct kvm_x86_mce
*mce
)
2925 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
2926 unsigned bank_num
= mcg_cap
& 0xff;
2927 u64
*banks
= vcpu
->arch
.mce_banks
;
2929 if (mce
->bank
>= bank_num
|| !(mce
->status
& MCI_STATUS_VAL
))
2932 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2933 * reporting is disabled
2935 if ((mce
->status
& MCI_STATUS_UC
) && (mcg_cap
& MCG_CTL_P
) &&
2936 vcpu
->arch
.mcg_ctl
!= ~(u64
)0)
2938 banks
+= 4 * mce
->bank
;
2940 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2941 * reporting is disabled for the bank
2943 if ((mce
->status
& MCI_STATUS_UC
) && banks
[0] != ~(u64
)0)
2945 if (mce
->status
& MCI_STATUS_UC
) {
2946 if ((vcpu
->arch
.mcg_status
& MCG_STATUS_MCIP
) ||
2947 !kvm_read_cr4_bits(vcpu
, X86_CR4_MCE
)) {
2948 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
2951 if (banks
[1] & MCI_STATUS_VAL
)
2952 mce
->status
|= MCI_STATUS_OVER
;
2953 banks
[2] = mce
->addr
;
2954 banks
[3] = mce
->misc
;
2955 vcpu
->arch
.mcg_status
= mce
->mcg_status
;
2956 banks
[1] = mce
->status
;
2957 kvm_queue_exception(vcpu
, MC_VECTOR
);
2958 } else if (!(banks
[1] & MCI_STATUS_VAL
)
2959 || !(banks
[1] & MCI_STATUS_UC
)) {
2960 if (banks
[1] & MCI_STATUS_VAL
)
2961 mce
->status
|= MCI_STATUS_OVER
;
2962 banks
[2] = mce
->addr
;
2963 banks
[3] = mce
->misc
;
2964 banks
[1] = mce
->status
;
2966 banks
[1] |= MCI_STATUS_OVER
;
2970 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu
*vcpu
,
2971 struct kvm_vcpu_events
*events
)
2974 events
->exception
.injected
=
2975 vcpu
->arch
.exception
.pending
&&
2976 !kvm_exception_is_soft(vcpu
->arch
.exception
.nr
);
2977 events
->exception
.nr
= vcpu
->arch
.exception
.nr
;
2978 events
->exception
.has_error_code
= vcpu
->arch
.exception
.has_error_code
;
2979 events
->exception
.pad
= 0;
2980 events
->exception
.error_code
= vcpu
->arch
.exception
.error_code
;
2982 events
->interrupt
.injected
=
2983 vcpu
->arch
.interrupt
.pending
&& !vcpu
->arch
.interrupt
.soft
;
2984 events
->interrupt
.nr
= vcpu
->arch
.interrupt
.nr
;
2985 events
->interrupt
.soft
= 0;
2986 events
->interrupt
.shadow
= kvm_x86_ops
->get_interrupt_shadow(vcpu
);
2988 events
->nmi
.injected
= vcpu
->arch
.nmi_injected
;
2989 events
->nmi
.pending
= vcpu
->arch
.nmi_pending
!= 0;
2990 events
->nmi
.masked
= kvm_x86_ops
->get_nmi_mask(vcpu
);
2991 events
->nmi
.pad
= 0;
2993 events
->sipi_vector
= 0; /* never valid when reporting to user space */
2995 events
->smi
.smm
= is_smm(vcpu
);
2996 events
->smi
.pending
= vcpu
->arch
.smi_pending
;
2997 events
->smi
.smm_inside_nmi
=
2998 !!(vcpu
->arch
.hflags
& HF_SMM_INSIDE_NMI_MASK
);
2999 events
->smi
.latched_init
= kvm_lapic_latched_init(vcpu
);
3001 events
->flags
= (KVM_VCPUEVENT_VALID_NMI_PENDING
3002 | KVM_VCPUEVENT_VALID_SHADOW
3003 | KVM_VCPUEVENT_VALID_SMM
);
3004 memset(&events
->reserved
, 0, sizeof(events
->reserved
));
3007 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu
*vcpu
,
3008 struct kvm_vcpu_events
*events
)
3010 if (events
->flags
& ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3011 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3012 | KVM_VCPUEVENT_VALID_SHADOW
3013 | KVM_VCPUEVENT_VALID_SMM
))
3017 vcpu
->arch
.exception
.pending
= events
->exception
.injected
;
3018 vcpu
->arch
.exception
.nr
= events
->exception
.nr
;
3019 vcpu
->arch
.exception
.has_error_code
= events
->exception
.has_error_code
;
3020 vcpu
->arch
.exception
.error_code
= events
->exception
.error_code
;
3022 vcpu
->arch
.interrupt
.pending
= events
->interrupt
.injected
;
3023 vcpu
->arch
.interrupt
.nr
= events
->interrupt
.nr
;
3024 vcpu
->arch
.interrupt
.soft
= events
->interrupt
.soft
;
3025 if (events
->flags
& KVM_VCPUEVENT_VALID_SHADOW
)
3026 kvm_x86_ops
->set_interrupt_shadow(vcpu
,
3027 events
->interrupt
.shadow
);
3029 vcpu
->arch
.nmi_injected
= events
->nmi
.injected
;
3030 if (events
->flags
& KVM_VCPUEVENT_VALID_NMI_PENDING
)
3031 vcpu
->arch
.nmi_pending
= events
->nmi
.pending
;
3032 kvm_x86_ops
->set_nmi_mask(vcpu
, events
->nmi
.masked
);
3034 if (events
->flags
& KVM_VCPUEVENT_VALID_SIPI_VECTOR
&&
3035 kvm_vcpu_has_lapic(vcpu
))
3036 vcpu
->arch
.apic
->sipi_vector
= events
->sipi_vector
;
3038 if (events
->flags
& KVM_VCPUEVENT_VALID_SMM
) {
3039 if (events
->smi
.smm
)
3040 vcpu
->arch
.hflags
|= HF_SMM_MASK
;
3042 vcpu
->arch
.hflags
&= ~HF_SMM_MASK
;
3043 vcpu
->arch
.smi_pending
= events
->smi
.pending
;
3044 if (events
->smi
.smm_inside_nmi
)
3045 vcpu
->arch
.hflags
|= HF_SMM_INSIDE_NMI_MASK
;
3047 vcpu
->arch
.hflags
&= ~HF_SMM_INSIDE_NMI_MASK
;
3048 if (kvm_vcpu_has_lapic(vcpu
)) {
3049 if (events
->smi
.latched_init
)
3050 set_bit(KVM_APIC_INIT
, &vcpu
->arch
.apic
->pending_events
);
3052 clear_bit(KVM_APIC_INIT
, &vcpu
->arch
.apic
->pending_events
);
3056 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
3061 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu
*vcpu
,
3062 struct kvm_debugregs
*dbgregs
)
3066 memcpy(dbgregs
->db
, vcpu
->arch
.db
, sizeof(vcpu
->arch
.db
));
3067 kvm_get_dr(vcpu
, 6, &val
);
3069 dbgregs
->dr7
= vcpu
->arch
.dr7
;
3071 memset(&dbgregs
->reserved
, 0, sizeof(dbgregs
->reserved
));
3074 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu
*vcpu
,
3075 struct kvm_debugregs
*dbgregs
)
3080 memcpy(vcpu
->arch
.db
, dbgregs
->db
, sizeof(vcpu
->arch
.db
));
3081 kvm_update_dr0123(vcpu
);
3082 vcpu
->arch
.dr6
= dbgregs
->dr6
;
3083 kvm_update_dr6(vcpu
);
3084 vcpu
->arch
.dr7
= dbgregs
->dr7
;
3085 kvm_update_dr7(vcpu
);
3090 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3092 static void fill_xsave(u8
*dest
, struct kvm_vcpu
*vcpu
)
3094 struct xregs_state
*xsave
= &vcpu
->arch
.guest_fpu
.state
.xsave
;
3095 u64 xstate_bv
= xsave
->header
.xfeatures
;
3099 * Copy legacy XSAVE area, to avoid complications with CPUID
3100 * leaves 0 and 1 in the loop below.
3102 memcpy(dest
, xsave
, XSAVE_HDR_OFFSET
);
3105 *(u64
*)(dest
+ XSAVE_HDR_OFFSET
) = xstate_bv
;
3108 * Copy each region from the possibly compacted offset to the
3109 * non-compacted offset.
3111 valid
= xstate_bv
& ~XSTATE_FPSSE
;
3113 u64 feature
= valid
& -valid
;
3114 int index
= fls64(feature
) - 1;
3115 void *src
= get_xsave_addr(xsave
, feature
);
3118 u32 size
, offset
, ecx
, edx
;
3119 cpuid_count(XSTATE_CPUID
, index
,
3120 &size
, &offset
, &ecx
, &edx
);
3121 memcpy(dest
+ offset
, src
, size
);
3128 static void load_xsave(struct kvm_vcpu
*vcpu
, u8
*src
)
3130 struct xregs_state
*xsave
= &vcpu
->arch
.guest_fpu
.state
.xsave
;
3131 u64 xstate_bv
= *(u64
*)(src
+ XSAVE_HDR_OFFSET
);
3135 * Copy legacy XSAVE area, to avoid complications with CPUID
3136 * leaves 0 and 1 in the loop below.
3138 memcpy(xsave
, src
, XSAVE_HDR_OFFSET
);
3140 /* Set XSTATE_BV and possibly XCOMP_BV. */
3141 xsave
->header
.xfeatures
= xstate_bv
;
3143 xsave
->header
.xcomp_bv
= host_xcr0
| XSTATE_COMPACTION_ENABLED
;
3146 * Copy each region from the non-compacted offset to the
3147 * possibly compacted offset.
3149 valid
= xstate_bv
& ~XSTATE_FPSSE
;
3151 u64 feature
= valid
& -valid
;
3152 int index
= fls64(feature
) - 1;
3153 void *dest
= get_xsave_addr(xsave
, feature
);
3156 u32 size
, offset
, ecx
, edx
;
3157 cpuid_count(XSTATE_CPUID
, index
,
3158 &size
, &offset
, &ecx
, &edx
);
3159 memcpy(dest
, src
+ offset
, size
);
3166 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu
*vcpu
,
3167 struct kvm_xsave
*guest_xsave
)
3169 if (cpu_has_xsave
) {
3170 memset(guest_xsave
, 0, sizeof(struct kvm_xsave
));
3171 fill_xsave((u8
*) guest_xsave
->region
, vcpu
);
3173 memcpy(guest_xsave
->region
,
3174 &vcpu
->arch
.guest_fpu
.state
.fxsave
,
3175 sizeof(struct fxregs_state
));
3176 *(u64
*)&guest_xsave
->region
[XSAVE_HDR_OFFSET
/ sizeof(u32
)] =
3181 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu
*vcpu
,
3182 struct kvm_xsave
*guest_xsave
)
3185 *(u64
*)&guest_xsave
->region
[XSAVE_HDR_OFFSET
/ sizeof(u32
)];
3187 if (cpu_has_xsave
) {
3189 * Here we allow setting states that are not present in
3190 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
3191 * with old userspace.
3193 if (xstate_bv
& ~kvm_supported_xcr0())
3195 load_xsave(vcpu
, (u8
*)guest_xsave
->region
);
3197 if (xstate_bv
& ~XSTATE_FPSSE
)
3199 memcpy(&vcpu
->arch
.guest_fpu
.state
.fxsave
,
3200 guest_xsave
->region
, sizeof(struct fxregs_state
));
3205 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu
*vcpu
,
3206 struct kvm_xcrs
*guest_xcrs
)
3208 if (!cpu_has_xsave
) {
3209 guest_xcrs
->nr_xcrs
= 0;
3213 guest_xcrs
->nr_xcrs
= 1;
3214 guest_xcrs
->flags
= 0;
3215 guest_xcrs
->xcrs
[0].xcr
= XCR_XFEATURE_ENABLED_MASK
;
3216 guest_xcrs
->xcrs
[0].value
= vcpu
->arch
.xcr0
;
3219 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu
*vcpu
,
3220 struct kvm_xcrs
*guest_xcrs
)
3227 if (guest_xcrs
->nr_xcrs
> KVM_MAX_XCRS
|| guest_xcrs
->flags
)
3230 for (i
= 0; i
< guest_xcrs
->nr_xcrs
; i
++)
3231 /* Only support XCR0 currently */
3232 if (guest_xcrs
->xcrs
[i
].xcr
== XCR_XFEATURE_ENABLED_MASK
) {
3233 r
= __kvm_set_xcr(vcpu
, XCR_XFEATURE_ENABLED_MASK
,
3234 guest_xcrs
->xcrs
[i
].value
);
3243 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3244 * stopped by the hypervisor. This function will be called from the host only.
3245 * EINVAL is returned when the host attempts to set the flag for a guest that
3246 * does not support pv clocks.
3248 static int kvm_set_guest_paused(struct kvm_vcpu
*vcpu
)
3250 if (!vcpu
->arch
.pv_time_enabled
)
3252 vcpu
->arch
.pvclock_set_guest_stopped_request
= true;
3253 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
3257 long kvm_arch_vcpu_ioctl(struct file
*filp
,
3258 unsigned int ioctl
, unsigned long arg
)
3260 struct kvm_vcpu
*vcpu
= filp
->private_data
;
3261 void __user
*argp
= (void __user
*)arg
;
3264 struct kvm_lapic_state
*lapic
;
3265 struct kvm_xsave
*xsave
;
3266 struct kvm_xcrs
*xcrs
;
3272 case KVM_GET_LAPIC
: {
3274 if (!vcpu
->arch
.apic
)
3276 u
.lapic
= kzalloc(sizeof(struct kvm_lapic_state
), GFP_KERNEL
);
3281 r
= kvm_vcpu_ioctl_get_lapic(vcpu
, u
.lapic
);
3285 if (copy_to_user(argp
, u
.lapic
, sizeof(struct kvm_lapic_state
)))
3290 case KVM_SET_LAPIC
: {
3292 if (!vcpu
->arch
.apic
)
3294 u
.lapic
= memdup_user(argp
, sizeof(*u
.lapic
));
3295 if (IS_ERR(u
.lapic
))
3296 return PTR_ERR(u
.lapic
);
3298 r
= kvm_vcpu_ioctl_set_lapic(vcpu
, u
.lapic
);
3301 case KVM_INTERRUPT
: {
3302 struct kvm_interrupt irq
;
3305 if (copy_from_user(&irq
, argp
, sizeof irq
))
3307 r
= kvm_vcpu_ioctl_interrupt(vcpu
, &irq
);
3311 r
= kvm_vcpu_ioctl_nmi(vcpu
);
3315 r
= kvm_vcpu_ioctl_smi(vcpu
);
3318 case KVM_SET_CPUID
: {
3319 struct kvm_cpuid __user
*cpuid_arg
= argp
;
3320 struct kvm_cpuid cpuid
;
3323 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
3325 r
= kvm_vcpu_ioctl_set_cpuid(vcpu
, &cpuid
, cpuid_arg
->entries
);
3328 case KVM_SET_CPUID2
: {
3329 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
3330 struct kvm_cpuid2 cpuid
;
3333 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
3335 r
= kvm_vcpu_ioctl_set_cpuid2(vcpu
, &cpuid
,
3336 cpuid_arg
->entries
);
3339 case KVM_GET_CPUID2
: {
3340 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
3341 struct kvm_cpuid2 cpuid
;
3344 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
3346 r
= kvm_vcpu_ioctl_get_cpuid2(vcpu
, &cpuid
,
3347 cpuid_arg
->entries
);
3351 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
3357 r
= msr_io(vcpu
, argp
, do_get_msr
, 1);
3360 r
= msr_io(vcpu
, argp
, do_set_msr
, 0);
3362 case KVM_TPR_ACCESS_REPORTING
: {
3363 struct kvm_tpr_access_ctl tac
;
3366 if (copy_from_user(&tac
, argp
, sizeof tac
))
3368 r
= vcpu_ioctl_tpr_access_reporting(vcpu
, &tac
);
3372 if (copy_to_user(argp
, &tac
, sizeof tac
))
3377 case KVM_SET_VAPIC_ADDR
: {
3378 struct kvm_vapic_addr va
;
3381 if (!irqchip_in_kernel(vcpu
->kvm
))
3384 if (copy_from_user(&va
, argp
, sizeof va
))
3386 r
= kvm_lapic_set_vapic_addr(vcpu
, va
.vapic_addr
);
3389 case KVM_X86_SETUP_MCE
: {
3393 if (copy_from_user(&mcg_cap
, argp
, sizeof mcg_cap
))
3395 r
= kvm_vcpu_ioctl_x86_setup_mce(vcpu
, mcg_cap
);
3398 case KVM_X86_SET_MCE
: {
3399 struct kvm_x86_mce mce
;
3402 if (copy_from_user(&mce
, argp
, sizeof mce
))
3404 r
= kvm_vcpu_ioctl_x86_set_mce(vcpu
, &mce
);
3407 case KVM_GET_VCPU_EVENTS
: {
3408 struct kvm_vcpu_events events
;
3410 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu
, &events
);
3413 if (copy_to_user(argp
, &events
, sizeof(struct kvm_vcpu_events
)))
3418 case KVM_SET_VCPU_EVENTS
: {
3419 struct kvm_vcpu_events events
;
3422 if (copy_from_user(&events
, argp
, sizeof(struct kvm_vcpu_events
)))
3425 r
= kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu
, &events
);
3428 case KVM_GET_DEBUGREGS
: {
3429 struct kvm_debugregs dbgregs
;
3431 kvm_vcpu_ioctl_x86_get_debugregs(vcpu
, &dbgregs
);
3434 if (copy_to_user(argp
, &dbgregs
,
3435 sizeof(struct kvm_debugregs
)))
3440 case KVM_SET_DEBUGREGS
: {
3441 struct kvm_debugregs dbgregs
;
3444 if (copy_from_user(&dbgregs
, argp
,
3445 sizeof(struct kvm_debugregs
)))
3448 r
= kvm_vcpu_ioctl_x86_set_debugregs(vcpu
, &dbgregs
);
3451 case KVM_GET_XSAVE
: {
3452 u
.xsave
= kzalloc(sizeof(struct kvm_xsave
), GFP_KERNEL
);
3457 kvm_vcpu_ioctl_x86_get_xsave(vcpu
, u
.xsave
);
3460 if (copy_to_user(argp
, u
.xsave
, sizeof(struct kvm_xsave
)))
3465 case KVM_SET_XSAVE
: {
3466 u
.xsave
= memdup_user(argp
, sizeof(*u
.xsave
));
3467 if (IS_ERR(u
.xsave
))
3468 return PTR_ERR(u
.xsave
);
3470 r
= kvm_vcpu_ioctl_x86_set_xsave(vcpu
, u
.xsave
);
3473 case KVM_GET_XCRS
: {
3474 u
.xcrs
= kzalloc(sizeof(struct kvm_xcrs
), GFP_KERNEL
);
3479 kvm_vcpu_ioctl_x86_get_xcrs(vcpu
, u
.xcrs
);
3482 if (copy_to_user(argp
, u
.xcrs
,
3483 sizeof(struct kvm_xcrs
)))
3488 case KVM_SET_XCRS
: {
3489 u
.xcrs
= memdup_user(argp
, sizeof(*u
.xcrs
));
3491 return PTR_ERR(u
.xcrs
);
3493 r
= kvm_vcpu_ioctl_x86_set_xcrs(vcpu
, u
.xcrs
);
3496 case KVM_SET_TSC_KHZ
: {
3500 user_tsc_khz
= (u32
)arg
;
3502 if (user_tsc_khz
>= kvm_max_guest_tsc_khz
)
3505 if (user_tsc_khz
== 0)
3506 user_tsc_khz
= tsc_khz
;
3508 kvm_set_tsc_khz(vcpu
, user_tsc_khz
);
3513 case KVM_GET_TSC_KHZ
: {
3514 r
= vcpu
->arch
.virtual_tsc_khz
;
3517 case KVM_KVMCLOCK_CTRL
: {
3518 r
= kvm_set_guest_paused(vcpu
);
3529 int kvm_arch_vcpu_fault(struct kvm_vcpu
*vcpu
, struct vm_fault
*vmf
)
3531 return VM_FAULT_SIGBUS
;
3534 static int kvm_vm_ioctl_set_tss_addr(struct kvm
*kvm
, unsigned long addr
)
3538 if (addr
> (unsigned int)(-3 * PAGE_SIZE
))
3540 ret
= kvm_x86_ops
->set_tss_addr(kvm
, addr
);
3544 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm
*kvm
,
3547 kvm
->arch
.ept_identity_map_addr
= ident_addr
;
3551 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm
*kvm
,
3552 u32 kvm_nr_mmu_pages
)
3554 if (kvm_nr_mmu_pages
< KVM_MIN_ALLOC_MMU_PAGES
)
3557 mutex_lock(&kvm
->slots_lock
);
3559 kvm_mmu_change_mmu_pages(kvm
, kvm_nr_mmu_pages
);
3560 kvm
->arch
.n_requested_mmu_pages
= kvm_nr_mmu_pages
;
3562 mutex_unlock(&kvm
->slots_lock
);
3566 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm
*kvm
)
3568 return kvm
->arch
.n_max_mmu_pages
;
3571 static int kvm_vm_ioctl_get_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
3576 switch (chip
->chip_id
) {
3577 case KVM_IRQCHIP_PIC_MASTER
:
3578 memcpy(&chip
->chip
.pic
,
3579 &pic_irqchip(kvm
)->pics
[0],
3580 sizeof(struct kvm_pic_state
));
3582 case KVM_IRQCHIP_PIC_SLAVE
:
3583 memcpy(&chip
->chip
.pic
,
3584 &pic_irqchip(kvm
)->pics
[1],
3585 sizeof(struct kvm_pic_state
));
3587 case KVM_IRQCHIP_IOAPIC
:
3588 r
= kvm_get_ioapic(kvm
, &chip
->chip
.ioapic
);
3597 static int kvm_vm_ioctl_set_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
3602 switch (chip
->chip_id
) {
3603 case KVM_IRQCHIP_PIC_MASTER
:
3604 spin_lock(&pic_irqchip(kvm
)->lock
);
3605 memcpy(&pic_irqchip(kvm
)->pics
[0],
3607 sizeof(struct kvm_pic_state
));
3608 spin_unlock(&pic_irqchip(kvm
)->lock
);
3610 case KVM_IRQCHIP_PIC_SLAVE
:
3611 spin_lock(&pic_irqchip(kvm
)->lock
);
3612 memcpy(&pic_irqchip(kvm
)->pics
[1],
3614 sizeof(struct kvm_pic_state
));
3615 spin_unlock(&pic_irqchip(kvm
)->lock
);
3617 case KVM_IRQCHIP_IOAPIC
:
3618 r
= kvm_set_ioapic(kvm
, &chip
->chip
.ioapic
);
3624 kvm_pic_update_irq(pic_irqchip(kvm
));
3628 static int kvm_vm_ioctl_get_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
3632 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3633 memcpy(ps
, &kvm
->arch
.vpit
->pit_state
, sizeof(struct kvm_pit_state
));
3634 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3638 static int kvm_vm_ioctl_set_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
3642 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3643 memcpy(&kvm
->arch
.vpit
->pit_state
, ps
, sizeof(struct kvm_pit_state
));
3644 kvm_pit_load_count(kvm
, 0, ps
->channels
[0].count
, 0);
3645 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3649 static int kvm_vm_ioctl_get_pit2(struct kvm
*kvm
, struct kvm_pit_state2
*ps
)
3653 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3654 memcpy(ps
->channels
, &kvm
->arch
.vpit
->pit_state
.channels
,
3655 sizeof(ps
->channels
));
3656 ps
->flags
= kvm
->arch
.vpit
->pit_state
.flags
;
3657 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3658 memset(&ps
->reserved
, 0, sizeof(ps
->reserved
));
3662 static int kvm_vm_ioctl_set_pit2(struct kvm
*kvm
, struct kvm_pit_state2
*ps
)
3664 int r
= 0, start
= 0;
3665 u32 prev_legacy
, cur_legacy
;
3666 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3667 prev_legacy
= kvm
->arch
.vpit
->pit_state
.flags
& KVM_PIT_FLAGS_HPET_LEGACY
;
3668 cur_legacy
= ps
->flags
& KVM_PIT_FLAGS_HPET_LEGACY
;
3669 if (!prev_legacy
&& cur_legacy
)
3671 memcpy(&kvm
->arch
.vpit
->pit_state
.channels
, &ps
->channels
,
3672 sizeof(kvm
->arch
.vpit
->pit_state
.channels
));
3673 kvm
->arch
.vpit
->pit_state
.flags
= ps
->flags
;
3674 kvm_pit_load_count(kvm
, 0, kvm
->arch
.vpit
->pit_state
.channels
[0].count
, start
);
3675 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3679 static int kvm_vm_ioctl_reinject(struct kvm
*kvm
,
3680 struct kvm_reinject_control
*control
)
3682 if (!kvm
->arch
.vpit
)
3684 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3685 kvm
->arch
.vpit
->pit_state
.reinject
= control
->pit_reinject
;
3686 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3691 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3692 * @kvm: kvm instance
3693 * @log: slot id and address to which we copy the log
3695 * Steps 1-4 below provide general overview of dirty page logging. See
3696 * kvm_get_dirty_log_protect() function description for additional details.
3698 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3699 * always flush the TLB (step 4) even if previous step failed and the dirty
3700 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3701 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3702 * writes will be marked dirty for next log read.
3704 * 1. Take a snapshot of the bit and clear it if needed.
3705 * 2. Write protect the corresponding page.
3706 * 3. Copy the snapshot to the userspace.
3707 * 4. Flush TLB's if needed.
3709 int kvm_vm_ioctl_get_dirty_log(struct kvm
*kvm
, struct kvm_dirty_log
*log
)
3711 bool is_dirty
= false;
3714 mutex_lock(&kvm
->slots_lock
);
3717 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3719 if (kvm_x86_ops
->flush_log_dirty
)
3720 kvm_x86_ops
->flush_log_dirty(kvm
);
3722 r
= kvm_get_dirty_log_protect(kvm
, log
, &is_dirty
);
3725 * All the TLBs can be flushed out of mmu lock, see the comments in
3726 * kvm_mmu_slot_remove_write_access().
3728 lockdep_assert_held(&kvm
->slots_lock
);
3730 kvm_flush_remote_tlbs(kvm
);
3732 mutex_unlock(&kvm
->slots_lock
);
3736 int kvm_vm_ioctl_irq_line(struct kvm
*kvm
, struct kvm_irq_level
*irq_event
,
3739 if (!irqchip_in_kernel(kvm
))
3742 irq_event
->status
= kvm_set_irq(kvm
, KVM_USERSPACE_IRQ_SOURCE_ID
,
3743 irq_event
->irq
, irq_event
->level
,
3748 static int kvm_vm_ioctl_enable_cap(struct kvm
*kvm
,
3749 struct kvm_enable_cap
*cap
)
3757 case KVM_CAP_DISABLE_QUIRKS
:
3758 kvm
->arch
.disabled_quirks
= cap
->args
[0];
3768 long kvm_arch_vm_ioctl(struct file
*filp
,
3769 unsigned int ioctl
, unsigned long arg
)
3771 struct kvm
*kvm
= filp
->private_data
;
3772 void __user
*argp
= (void __user
*)arg
;
3775 * This union makes it completely explicit to gcc-3.x
3776 * that these two variables' stack usage should be
3777 * combined, not added together.
3780 struct kvm_pit_state ps
;
3781 struct kvm_pit_state2 ps2
;
3782 struct kvm_pit_config pit_config
;
3786 case KVM_SET_TSS_ADDR
:
3787 r
= kvm_vm_ioctl_set_tss_addr(kvm
, arg
);
3789 case KVM_SET_IDENTITY_MAP_ADDR
: {
3793 if (copy_from_user(&ident_addr
, argp
, sizeof ident_addr
))
3795 r
= kvm_vm_ioctl_set_identity_map_addr(kvm
, ident_addr
);
3798 case KVM_SET_NR_MMU_PAGES
:
3799 r
= kvm_vm_ioctl_set_nr_mmu_pages(kvm
, arg
);
3801 case KVM_GET_NR_MMU_PAGES
:
3802 r
= kvm_vm_ioctl_get_nr_mmu_pages(kvm
);
3804 case KVM_CREATE_IRQCHIP
: {
3805 struct kvm_pic
*vpic
;
3807 mutex_lock(&kvm
->lock
);
3810 goto create_irqchip_unlock
;
3812 if (atomic_read(&kvm
->online_vcpus
))
3813 goto create_irqchip_unlock
;
3815 vpic
= kvm_create_pic(kvm
);
3817 r
= kvm_ioapic_init(kvm
);
3819 mutex_lock(&kvm
->slots_lock
);
3820 kvm_io_bus_unregister_dev(kvm
, KVM_PIO_BUS
,
3822 kvm_io_bus_unregister_dev(kvm
, KVM_PIO_BUS
,
3824 kvm_io_bus_unregister_dev(kvm
, KVM_PIO_BUS
,
3826 mutex_unlock(&kvm
->slots_lock
);
3828 goto create_irqchip_unlock
;
3831 goto create_irqchip_unlock
;
3833 kvm
->arch
.vpic
= vpic
;
3835 r
= kvm_setup_default_irq_routing(kvm
);
3837 mutex_lock(&kvm
->slots_lock
);
3838 mutex_lock(&kvm
->irq_lock
);
3839 kvm_ioapic_destroy(kvm
);
3840 kvm_destroy_pic(kvm
);
3841 mutex_unlock(&kvm
->irq_lock
);
3842 mutex_unlock(&kvm
->slots_lock
);
3844 create_irqchip_unlock
:
3845 mutex_unlock(&kvm
->lock
);
3848 case KVM_CREATE_PIT
:
3849 u
.pit_config
.flags
= KVM_PIT_SPEAKER_DUMMY
;
3851 case KVM_CREATE_PIT2
:
3853 if (copy_from_user(&u
.pit_config
, argp
,
3854 sizeof(struct kvm_pit_config
)))
3857 mutex_lock(&kvm
->slots_lock
);
3860 goto create_pit_unlock
;
3862 kvm
->arch
.vpit
= kvm_create_pit(kvm
, u
.pit_config
.flags
);
3866 mutex_unlock(&kvm
->slots_lock
);
3868 case KVM_GET_IRQCHIP
: {
3869 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3870 struct kvm_irqchip
*chip
;
3872 chip
= memdup_user(argp
, sizeof(*chip
));
3879 if (!irqchip_in_kernel(kvm
))
3880 goto get_irqchip_out
;
3881 r
= kvm_vm_ioctl_get_irqchip(kvm
, chip
);
3883 goto get_irqchip_out
;
3885 if (copy_to_user(argp
, chip
, sizeof *chip
))
3886 goto get_irqchip_out
;
3892 case KVM_SET_IRQCHIP
: {
3893 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3894 struct kvm_irqchip
*chip
;
3896 chip
= memdup_user(argp
, sizeof(*chip
));
3903 if (!irqchip_in_kernel(kvm
))
3904 goto set_irqchip_out
;
3905 r
= kvm_vm_ioctl_set_irqchip(kvm
, chip
);
3907 goto set_irqchip_out
;
3915 if (copy_from_user(&u
.ps
, argp
, sizeof(struct kvm_pit_state
)))
3918 if (!kvm
->arch
.vpit
)
3920 r
= kvm_vm_ioctl_get_pit(kvm
, &u
.ps
);
3924 if (copy_to_user(argp
, &u
.ps
, sizeof(struct kvm_pit_state
)))
3931 if (copy_from_user(&u
.ps
, argp
, sizeof u
.ps
))
3934 if (!kvm
->arch
.vpit
)
3936 r
= kvm_vm_ioctl_set_pit(kvm
, &u
.ps
);
3939 case KVM_GET_PIT2
: {
3941 if (!kvm
->arch
.vpit
)
3943 r
= kvm_vm_ioctl_get_pit2(kvm
, &u
.ps2
);
3947 if (copy_to_user(argp
, &u
.ps2
, sizeof(u
.ps2
)))
3952 case KVM_SET_PIT2
: {
3954 if (copy_from_user(&u
.ps2
, argp
, sizeof(u
.ps2
)))
3957 if (!kvm
->arch
.vpit
)
3959 r
= kvm_vm_ioctl_set_pit2(kvm
, &u
.ps2
);
3962 case KVM_REINJECT_CONTROL
: {
3963 struct kvm_reinject_control control
;
3965 if (copy_from_user(&control
, argp
, sizeof(control
)))
3967 r
= kvm_vm_ioctl_reinject(kvm
, &control
);
3970 case KVM_XEN_HVM_CONFIG
: {
3972 if (copy_from_user(&kvm
->arch
.xen_hvm_config
, argp
,
3973 sizeof(struct kvm_xen_hvm_config
)))
3976 if (kvm
->arch
.xen_hvm_config
.flags
)
3981 case KVM_SET_CLOCK
: {
3982 struct kvm_clock_data user_ns
;
3987 if (copy_from_user(&user_ns
, argp
, sizeof(user_ns
)))
3995 local_irq_disable();
3996 now_ns
= get_kernel_ns();
3997 delta
= user_ns
.clock
- now_ns
;
3999 kvm
->arch
.kvmclock_offset
= delta
;
4000 kvm_gen_update_masterclock(kvm
);
4003 case KVM_GET_CLOCK
: {
4004 struct kvm_clock_data user_ns
;
4007 local_irq_disable();
4008 now_ns
= get_kernel_ns();
4009 user_ns
.clock
= kvm
->arch
.kvmclock_offset
+ now_ns
;
4012 memset(&user_ns
.pad
, 0, sizeof(user_ns
.pad
));
4015 if (copy_to_user(argp
, &user_ns
, sizeof(user_ns
)))
4020 case KVM_ENABLE_CAP
: {
4021 struct kvm_enable_cap cap
;
4024 if (copy_from_user(&cap
, argp
, sizeof(cap
)))
4026 r
= kvm_vm_ioctl_enable_cap(kvm
, &cap
);
4030 r
= kvm_vm_ioctl_assigned_device(kvm
, ioctl
, arg
);
4036 static void kvm_init_msr_list(void)
4041 for (i
= j
= 0; i
< ARRAY_SIZE(msrs_to_save
); i
++) {
4042 if (rdmsr_safe(msrs_to_save
[i
], &dummy
[0], &dummy
[1]) < 0)
4046 * Even MSRs that are valid in the host may not be exposed
4047 * to the guests in some cases. We could work around this
4048 * in VMX with the generic MSR save/load machinery, but it
4049 * is not really worthwhile since it will really only
4050 * happen with nested virtualization.
4052 switch (msrs_to_save
[i
]) {
4053 case MSR_IA32_BNDCFGS
:
4054 if (!kvm_x86_ops
->mpx_supported())
4062 msrs_to_save
[j
] = msrs_to_save
[i
];
4065 num_msrs_to_save
= j
;
4067 for (i
= j
= 0; i
< ARRAY_SIZE(emulated_msrs
); i
++) {
4068 switch (emulated_msrs
[i
]) {
4069 case MSR_IA32_SMBASE
:
4070 if (!kvm_x86_ops
->cpu_has_high_real_mode_segbase())
4078 emulated_msrs
[j
] = emulated_msrs
[i
];
4081 num_emulated_msrs
= j
;
4084 static int vcpu_mmio_write(struct kvm_vcpu
*vcpu
, gpa_t addr
, int len
,
4092 if (!(vcpu
->arch
.apic
&&
4093 !kvm_iodevice_write(vcpu
, &vcpu
->arch
.apic
->dev
, addr
, n
, v
))
4094 && kvm_io_bus_write(vcpu
, KVM_MMIO_BUS
, addr
, n
, v
))
4105 static int vcpu_mmio_read(struct kvm_vcpu
*vcpu
, gpa_t addr
, int len
, void *v
)
4112 if (!(vcpu
->arch
.apic
&&
4113 !kvm_iodevice_read(vcpu
, &vcpu
->arch
.apic
->dev
,
4115 && kvm_io_bus_read(vcpu
, KVM_MMIO_BUS
, addr
, n
, v
))
4117 trace_kvm_mmio(KVM_TRACE_MMIO_READ
, n
, addr
, *(u64
*)v
);
4127 static void kvm_set_segment(struct kvm_vcpu
*vcpu
,
4128 struct kvm_segment
*var
, int seg
)
4130 kvm_x86_ops
->set_segment(vcpu
, var
, seg
);
4133 void kvm_get_segment(struct kvm_vcpu
*vcpu
,
4134 struct kvm_segment
*var
, int seg
)
4136 kvm_x86_ops
->get_segment(vcpu
, var
, seg
);
4139 gpa_t
translate_nested_gpa(struct kvm_vcpu
*vcpu
, gpa_t gpa
, u32 access
,
4140 struct x86_exception
*exception
)
4144 BUG_ON(!mmu_is_nested(vcpu
));
4146 /* NPT walks are always user-walks */
4147 access
|= PFERR_USER_MASK
;
4148 t_gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, gpa
, access
, exception
);
4153 gpa_t
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu
*vcpu
, gva_t gva
,
4154 struct x86_exception
*exception
)
4156 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4157 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
4160 gpa_t
kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu
*vcpu
, gva_t gva
,
4161 struct x86_exception
*exception
)
4163 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4164 access
|= PFERR_FETCH_MASK
;
4165 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
4168 gpa_t
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu
*vcpu
, gva_t gva
,
4169 struct x86_exception
*exception
)
4171 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4172 access
|= PFERR_WRITE_MASK
;
4173 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
4176 /* uses this to access any guest's mapped memory without checking CPL */
4177 gpa_t
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu
*vcpu
, gva_t gva
,
4178 struct x86_exception
*exception
)
4180 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, 0, exception
);
4183 static int kvm_read_guest_virt_helper(gva_t addr
, void *val
, unsigned int bytes
,
4184 struct kvm_vcpu
*vcpu
, u32 access
,
4185 struct x86_exception
*exception
)
4188 int r
= X86EMUL_CONTINUE
;
4191 gpa_t gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, addr
, access
,
4193 unsigned offset
= addr
& (PAGE_SIZE
-1);
4194 unsigned toread
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
4197 if (gpa
== UNMAPPED_GVA
)
4198 return X86EMUL_PROPAGATE_FAULT
;
4199 ret
= kvm_vcpu_read_guest_page(vcpu
, gpa
>> PAGE_SHIFT
, data
,
4202 r
= X86EMUL_IO_NEEDED
;
4214 /* used for instruction fetching */
4215 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt
*ctxt
,
4216 gva_t addr
, void *val
, unsigned int bytes
,
4217 struct x86_exception
*exception
)
4219 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4220 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4224 /* Inline kvm_read_guest_virt_helper for speed. */
4225 gpa_t gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, addr
, access
|PFERR_FETCH_MASK
,
4227 if (unlikely(gpa
== UNMAPPED_GVA
))
4228 return X86EMUL_PROPAGATE_FAULT
;
4230 offset
= addr
& (PAGE_SIZE
-1);
4231 if (WARN_ON(offset
+ bytes
> PAGE_SIZE
))
4232 bytes
= (unsigned)PAGE_SIZE
- offset
;
4233 ret
= kvm_vcpu_read_guest_page(vcpu
, gpa
>> PAGE_SHIFT
, val
,
4235 if (unlikely(ret
< 0))
4236 return X86EMUL_IO_NEEDED
;
4238 return X86EMUL_CONTINUE
;
4241 int kvm_read_guest_virt(struct x86_emulate_ctxt
*ctxt
,
4242 gva_t addr
, void *val
, unsigned int bytes
,
4243 struct x86_exception
*exception
)
4245 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4246 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4248 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
, access
,
4251 EXPORT_SYMBOL_GPL(kvm_read_guest_virt
);
4253 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt
*ctxt
,
4254 gva_t addr
, void *val
, unsigned int bytes
,
4255 struct x86_exception
*exception
)
4257 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4258 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
, 0, exception
);
4261 int kvm_write_guest_virt_system(struct x86_emulate_ctxt
*ctxt
,
4262 gva_t addr
, void *val
,
4264 struct x86_exception
*exception
)
4266 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4268 int r
= X86EMUL_CONTINUE
;
4271 gpa_t gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, addr
,
4274 unsigned offset
= addr
& (PAGE_SIZE
-1);
4275 unsigned towrite
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
4278 if (gpa
== UNMAPPED_GVA
)
4279 return X86EMUL_PROPAGATE_FAULT
;
4280 ret
= kvm_vcpu_write_guest(vcpu
, gpa
, data
, towrite
);
4282 r
= X86EMUL_IO_NEEDED
;
4293 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system
);
4295 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu
*vcpu
, unsigned long gva
,
4296 gpa_t
*gpa
, struct x86_exception
*exception
,
4299 u32 access
= ((kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0)
4300 | (write
? PFERR_WRITE_MASK
: 0);
4302 if (vcpu_match_mmio_gva(vcpu
, gva
)
4303 && !permission_fault(vcpu
, vcpu
->arch
.walk_mmu
,
4304 vcpu
->arch
.access
, access
)) {
4305 *gpa
= vcpu
->arch
.mmio_gfn
<< PAGE_SHIFT
|
4306 (gva
& (PAGE_SIZE
- 1));
4307 trace_vcpu_match_mmio(gva
, *gpa
, write
, false);
4311 *gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
4313 if (*gpa
== UNMAPPED_GVA
)
4316 /* For APIC access vmexit */
4317 if ((*gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
4320 if (vcpu_match_mmio_gpa(vcpu
, *gpa
)) {
4321 trace_vcpu_match_mmio(gva
, *gpa
, write
, true);
4328 int emulator_write_phys(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4329 const void *val
, int bytes
)
4333 ret
= kvm_vcpu_write_guest(vcpu
, gpa
, val
, bytes
);
4336 kvm_mmu_pte_write(vcpu
, gpa
, val
, bytes
);
4340 struct read_write_emulator_ops
{
4341 int (*read_write_prepare
)(struct kvm_vcpu
*vcpu
, void *val
,
4343 int (*read_write_emulate
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4344 void *val
, int bytes
);
4345 int (*read_write_mmio
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4346 int bytes
, void *val
);
4347 int (*read_write_exit_mmio
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4348 void *val
, int bytes
);
4352 static int read_prepare(struct kvm_vcpu
*vcpu
, void *val
, int bytes
)
4354 if (vcpu
->mmio_read_completed
) {
4355 trace_kvm_mmio(KVM_TRACE_MMIO_READ
, bytes
,
4356 vcpu
->mmio_fragments
[0].gpa
, *(u64
*)val
);
4357 vcpu
->mmio_read_completed
= 0;
4364 static int read_emulate(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4365 void *val
, int bytes
)
4367 return !kvm_vcpu_read_guest(vcpu
, gpa
, val
, bytes
);
4370 static int write_emulate(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4371 void *val
, int bytes
)
4373 return emulator_write_phys(vcpu
, gpa
, val
, bytes
);
4376 static int write_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
, int bytes
, void *val
)
4378 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE
, bytes
, gpa
, *(u64
*)val
);
4379 return vcpu_mmio_write(vcpu
, gpa
, bytes
, val
);
4382 static int read_exit_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4383 void *val
, int bytes
)
4385 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED
, bytes
, gpa
, 0);
4386 return X86EMUL_IO_NEEDED
;
4389 static int write_exit_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4390 void *val
, int bytes
)
4392 struct kvm_mmio_fragment
*frag
= &vcpu
->mmio_fragments
[0];
4394 memcpy(vcpu
->run
->mmio
.data
, frag
->data
, min(8u, frag
->len
));
4395 return X86EMUL_CONTINUE
;
4398 static const struct read_write_emulator_ops read_emultor
= {
4399 .read_write_prepare
= read_prepare
,
4400 .read_write_emulate
= read_emulate
,
4401 .read_write_mmio
= vcpu_mmio_read
,
4402 .read_write_exit_mmio
= read_exit_mmio
,
4405 static const struct read_write_emulator_ops write_emultor
= {
4406 .read_write_emulate
= write_emulate
,
4407 .read_write_mmio
= write_mmio
,
4408 .read_write_exit_mmio
= write_exit_mmio
,
4412 static int emulator_read_write_onepage(unsigned long addr
, void *val
,
4414 struct x86_exception
*exception
,
4415 struct kvm_vcpu
*vcpu
,
4416 const struct read_write_emulator_ops
*ops
)
4420 bool write
= ops
->write
;
4421 struct kvm_mmio_fragment
*frag
;
4423 ret
= vcpu_mmio_gva_to_gpa(vcpu
, addr
, &gpa
, exception
, write
);
4426 return X86EMUL_PROPAGATE_FAULT
;
4428 /* For APIC access vmexit */
4432 if (ops
->read_write_emulate(vcpu
, gpa
, val
, bytes
))
4433 return X86EMUL_CONTINUE
;
4437 * Is this MMIO handled locally?
4439 handled
= ops
->read_write_mmio(vcpu
, gpa
, bytes
, val
);
4440 if (handled
== bytes
)
4441 return X86EMUL_CONTINUE
;
4447 WARN_ON(vcpu
->mmio_nr_fragments
>= KVM_MAX_MMIO_FRAGMENTS
);
4448 frag
= &vcpu
->mmio_fragments
[vcpu
->mmio_nr_fragments
++];
4452 return X86EMUL_CONTINUE
;
4455 static int emulator_read_write(struct x86_emulate_ctxt
*ctxt
,
4457 void *val
, unsigned int bytes
,
4458 struct x86_exception
*exception
,
4459 const struct read_write_emulator_ops
*ops
)
4461 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4465 if (ops
->read_write_prepare
&&
4466 ops
->read_write_prepare(vcpu
, val
, bytes
))
4467 return X86EMUL_CONTINUE
;
4469 vcpu
->mmio_nr_fragments
= 0;
4471 /* Crossing a page boundary? */
4472 if (((addr
+ bytes
- 1) ^ addr
) & PAGE_MASK
) {
4475 now
= -addr
& ~PAGE_MASK
;
4476 rc
= emulator_read_write_onepage(addr
, val
, now
, exception
,
4479 if (rc
!= X86EMUL_CONTINUE
)
4482 if (ctxt
->mode
!= X86EMUL_MODE_PROT64
)
4488 rc
= emulator_read_write_onepage(addr
, val
, bytes
, exception
,
4490 if (rc
!= X86EMUL_CONTINUE
)
4493 if (!vcpu
->mmio_nr_fragments
)
4496 gpa
= vcpu
->mmio_fragments
[0].gpa
;
4498 vcpu
->mmio_needed
= 1;
4499 vcpu
->mmio_cur_fragment
= 0;
4501 vcpu
->run
->mmio
.len
= min(8u, vcpu
->mmio_fragments
[0].len
);
4502 vcpu
->run
->mmio
.is_write
= vcpu
->mmio_is_write
= ops
->write
;
4503 vcpu
->run
->exit_reason
= KVM_EXIT_MMIO
;
4504 vcpu
->run
->mmio
.phys_addr
= gpa
;
4506 return ops
->read_write_exit_mmio(vcpu
, gpa
, val
, bytes
);
4509 static int emulator_read_emulated(struct x86_emulate_ctxt
*ctxt
,
4513 struct x86_exception
*exception
)
4515 return emulator_read_write(ctxt
, addr
, val
, bytes
,
4516 exception
, &read_emultor
);
4519 static int emulator_write_emulated(struct x86_emulate_ctxt
*ctxt
,
4523 struct x86_exception
*exception
)
4525 return emulator_read_write(ctxt
, addr
, (void *)val
, bytes
,
4526 exception
, &write_emultor
);
4529 #define CMPXCHG_TYPE(t, ptr, old, new) \
4530 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4532 #ifdef CONFIG_X86_64
4533 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4535 # define CMPXCHG64(ptr, old, new) \
4536 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4539 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt
*ctxt
,
4544 struct x86_exception
*exception
)
4546 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4552 /* guests cmpxchg8b have to be emulated atomically */
4553 if (bytes
> 8 || (bytes
& (bytes
- 1)))
4556 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, addr
, NULL
);
4558 if (gpa
== UNMAPPED_GVA
||
4559 (gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
4562 if (((gpa
+ bytes
- 1) & PAGE_MASK
) != (gpa
& PAGE_MASK
))
4565 page
= kvm_vcpu_gfn_to_page(vcpu
, gpa
>> PAGE_SHIFT
);
4566 if (is_error_page(page
))
4569 kaddr
= kmap_atomic(page
);
4570 kaddr
+= offset_in_page(gpa
);
4573 exchanged
= CMPXCHG_TYPE(u8
, kaddr
, old
, new);
4576 exchanged
= CMPXCHG_TYPE(u16
, kaddr
, old
, new);
4579 exchanged
= CMPXCHG_TYPE(u32
, kaddr
, old
, new);
4582 exchanged
= CMPXCHG64(kaddr
, old
, new);
4587 kunmap_atomic(kaddr
);
4588 kvm_release_page_dirty(page
);
4591 return X86EMUL_CMPXCHG_FAILED
;
4593 kvm_vcpu_mark_page_dirty(vcpu
, gpa
>> PAGE_SHIFT
);
4594 kvm_mmu_pte_write(vcpu
, gpa
, new, bytes
);
4596 return X86EMUL_CONTINUE
;
4599 printk_once(KERN_WARNING
"kvm: emulating exchange as write\n");
4601 return emulator_write_emulated(ctxt
, addr
, new, bytes
, exception
);
4604 static int kernel_pio(struct kvm_vcpu
*vcpu
, void *pd
)
4606 /* TODO: String I/O for in kernel device */
4609 if (vcpu
->arch
.pio
.in
)
4610 r
= kvm_io_bus_read(vcpu
, KVM_PIO_BUS
, vcpu
->arch
.pio
.port
,
4611 vcpu
->arch
.pio
.size
, pd
);
4613 r
= kvm_io_bus_write(vcpu
, KVM_PIO_BUS
,
4614 vcpu
->arch
.pio
.port
, vcpu
->arch
.pio
.size
,
4619 static int emulator_pio_in_out(struct kvm_vcpu
*vcpu
, int size
,
4620 unsigned short port
, void *val
,
4621 unsigned int count
, bool in
)
4623 vcpu
->arch
.pio
.port
= port
;
4624 vcpu
->arch
.pio
.in
= in
;
4625 vcpu
->arch
.pio
.count
= count
;
4626 vcpu
->arch
.pio
.size
= size
;
4628 if (!kernel_pio(vcpu
, vcpu
->arch
.pio_data
)) {
4629 vcpu
->arch
.pio
.count
= 0;
4633 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
4634 vcpu
->run
->io
.direction
= in
? KVM_EXIT_IO_IN
: KVM_EXIT_IO_OUT
;
4635 vcpu
->run
->io
.size
= size
;
4636 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
4637 vcpu
->run
->io
.count
= count
;
4638 vcpu
->run
->io
.port
= port
;
4643 static int emulator_pio_in_emulated(struct x86_emulate_ctxt
*ctxt
,
4644 int size
, unsigned short port
, void *val
,
4647 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4650 if (vcpu
->arch
.pio
.count
)
4653 ret
= emulator_pio_in_out(vcpu
, size
, port
, val
, count
, true);
4656 memcpy(val
, vcpu
->arch
.pio_data
, size
* count
);
4657 trace_kvm_pio(KVM_PIO_IN
, port
, size
, count
, vcpu
->arch
.pio_data
);
4658 vcpu
->arch
.pio
.count
= 0;
4665 static int emulator_pio_out_emulated(struct x86_emulate_ctxt
*ctxt
,
4666 int size
, unsigned short port
,
4667 const void *val
, unsigned int count
)
4669 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4671 memcpy(vcpu
->arch
.pio_data
, val
, size
* count
);
4672 trace_kvm_pio(KVM_PIO_OUT
, port
, size
, count
, vcpu
->arch
.pio_data
);
4673 return emulator_pio_in_out(vcpu
, size
, port
, (void *)val
, count
, false);
4676 static unsigned long get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
4678 return kvm_x86_ops
->get_segment_base(vcpu
, seg
);
4681 static void emulator_invlpg(struct x86_emulate_ctxt
*ctxt
, ulong address
)
4683 kvm_mmu_invlpg(emul_to_vcpu(ctxt
), address
);
4686 int kvm_emulate_wbinvd_noskip(struct kvm_vcpu
*vcpu
)
4688 if (!need_emulate_wbinvd(vcpu
))
4689 return X86EMUL_CONTINUE
;
4691 if (kvm_x86_ops
->has_wbinvd_exit()) {
4692 int cpu
= get_cpu();
4694 cpumask_set_cpu(cpu
, vcpu
->arch
.wbinvd_dirty_mask
);
4695 smp_call_function_many(vcpu
->arch
.wbinvd_dirty_mask
,
4696 wbinvd_ipi
, NULL
, 1);
4698 cpumask_clear(vcpu
->arch
.wbinvd_dirty_mask
);
4701 return X86EMUL_CONTINUE
;
4704 int kvm_emulate_wbinvd(struct kvm_vcpu
*vcpu
)
4706 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
4707 return kvm_emulate_wbinvd_noskip(vcpu
);
4709 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd
);
4713 static void emulator_wbinvd(struct x86_emulate_ctxt
*ctxt
)
4715 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt
));
4718 static int emulator_get_dr(struct x86_emulate_ctxt
*ctxt
, int dr
,
4719 unsigned long *dest
)
4721 return kvm_get_dr(emul_to_vcpu(ctxt
), dr
, dest
);
4724 static int emulator_set_dr(struct x86_emulate_ctxt
*ctxt
, int dr
,
4725 unsigned long value
)
4728 return __kvm_set_dr(emul_to_vcpu(ctxt
), dr
, value
);
4731 static u64
mk_cr_64(u64 curr_cr
, u32 new_val
)
4733 return (curr_cr
& ~((1ULL << 32) - 1)) | new_val
;
4736 static unsigned long emulator_get_cr(struct x86_emulate_ctxt
*ctxt
, int cr
)
4738 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4739 unsigned long value
;
4743 value
= kvm_read_cr0(vcpu
);
4746 value
= vcpu
->arch
.cr2
;
4749 value
= kvm_read_cr3(vcpu
);
4752 value
= kvm_read_cr4(vcpu
);
4755 value
= kvm_get_cr8(vcpu
);
4758 kvm_err("%s: unexpected cr %u\n", __func__
, cr
);
4765 static int emulator_set_cr(struct x86_emulate_ctxt
*ctxt
, int cr
, ulong val
)
4767 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4772 res
= kvm_set_cr0(vcpu
, mk_cr_64(kvm_read_cr0(vcpu
), val
));
4775 vcpu
->arch
.cr2
= val
;
4778 res
= kvm_set_cr3(vcpu
, val
);
4781 res
= kvm_set_cr4(vcpu
, mk_cr_64(kvm_read_cr4(vcpu
), val
));
4784 res
= kvm_set_cr8(vcpu
, val
);
4787 kvm_err("%s: unexpected cr %u\n", __func__
, cr
);
4794 static int emulator_get_cpl(struct x86_emulate_ctxt
*ctxt
)
4796 return kvm_x86_ops
->get_cpl(emul_to_vcpu(ctxt
));
4799 static void emulator_get_gdt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4801 kvm_x86_ops
->get_gdt(emul_to_vcpu(ctxt
), dt
);
4804 static void emulator_get_idt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4806 kvm_x86_ops
->get_idt(emul_to_vcpu(ctxt
), dt
);
4809 static void emulator_set_gdt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4811 kvm_x86_ops
->set_gdt(emul_to_vcpu(ctxt
), dt
);
4814 static void emulator_set_idt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4816 kvm_x86_ops
->set_idt(emul_to_vcpu(ctxt
), dt
);
4819 static unsigned long emulator_get_cached_segment_base(
4820 struct x86_emulate_ctxt
*ctxt
, int seg
)
4822 return get_segment_base(emul_to_vcpu(ctxt
), seg
);
4825 static bool emulator_get_segment(struct x86_emulate_ctxt
*ctxt
, u16
*selector
,
4826 struct desc_struct
*desc
, u32
*base3
,
4829 struct kvm_segment var
;
4831 kvm_get_segment(emul_to_vcpu(ctxt
), &var
, seg
);
4832 *selector
= var
.selector
;
4835 memset(desc
, 0, sizeof(*desc
));
4841 set_desc_limit(desc
, var
.limit
);
4842 set_desc_base(desc
, (unsigned long)var
.base
);
4843 #ifdef CONFIG_X86_64
4845 *base3
= var
.base
>> 32;
4847 desc
->type
= var
.type
;
4849 desc
->dpl
= var
.dpl
;
4850 desc
->p
= var
.present
;
4851 desc
->avl
= var
.avl
;
4859 static void emulator_set_segment(struct x86_emulate_ctxt
*ctxt
, u16 selector
,
4860 struct desc_struct
*desc
, u32 base3
,
4863 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4864 struct kvm_segment var
;
4866 var
.selector
= selector
;
4867 var
.base
= get_desc_base(desc
);
4868 #ifdef CONFIG_X86_64
4869 var
.base
|= ((u64
)base3
) << 32;
4871 var
.limit
= get_desc_limit(desc
);
4873 var
.limit
= (var
.limit
<< 12) | 0xfff;
4874 var
.type
= desc
->type
;
4875 var
.dpl
= desc
->dpl
;
4880 var
.avl
= desc
->avl
;
4881 var
.present
= desc
->p
;
4882 var
.unusable
= !var
.present
;
4885 kvm_set_segment(vcpu
, &var
, seg
);
4889 static int emulator_get_msr(struct x86_emulate_ctxt
*ctxt
,
4890 u32 msr_index
, u64
*pdata
)
4892 struct msr_data msr
;
4895 msr
.index
= msr_index
;
4896 msr
.host_initiated
= false;
4897 r
= kvm_get_msr(emul_to_vcpu(ctxt
), &msr
);
4905 static int emulator_set_msr(struct x86_emulate_ctxt
*ctxt
,
4906 u32 msr_index
, u64 data
)
4908 struct msr_data msr
;
4911 msr
.index
= msr_index
;
4912 msr
.host_initiated
= false;
4913 return kvm_set_msr(emul_to_vcpu(ctxt
), &msr
);
4916 static u64
emulator_get_smbase(struct x86_emulate_ctxt
*ctxt
)
4918 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4920 return vcpu
->arch
.smbase
;
4923 static void emulator_set_smbase(struct x86_emulate_ctxt
*ctxt
, u64 smbase
)
4925 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4927 vcpu
->arch
.smbase
= smbase
;
4930 static int emulator_check_pmc(struct x86_emulate_ctxt
*ctxt
,
4933 return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt
), pmc
);
4936 static int emulator_read_pmc(struct x86_emulate_ctxt
*ctxt
,
4937 u32 pmc
, u64
*pdata
)
4939 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt
), pmc
, pdata
);
4942 static void emulator_halt(struct x86_emulate_ctxt
*ctxt
)
4944 emul_to_vcpu(ctxt
)->arch
.halt_request
= 1;
4947 static void emulator_get_fpu(struct x86_emulate_ctxt
*ctxt
)
4950 kvm_load_guest_fpu(emul_to_vcpu(ctxt
));
4952 * CR0.TS may reference the host fpu state, not the guest fpu state,
4953 * so it may be clear at this point.
4958 static void emulator_put_fpu(struct x86_emulate_ctxt
*ctxt
)
4963 static int emulator_intercept(struct x86_emulate_ctxt
*ctxt
,
4964 struct x86_instruction_info
*info
,
4965 enum x86_intercept_stage stage
)
4967 return kvm_x86_ops
->check_intercept(emul_to_vcpu(ctxt
), info
, stage
);
4970 static void emulator_get_cpuid(struct x86_emulate_ctxt
*ctxt
,
4971 u32
*eax
, u32
*ebx
, u32
*ecx
, u32
*edx
)
4973 kvm_cpuid(emul_to_vcpu(ctxt
), eax
, ebx
, ecx
, edx
);
4976 static ulong
emulator_read_gpr(struct x86_emulate_ctxt
*ctxt
, unsigned reg
)
4978 return kvm_register_read(emul_to_vcpu(ctxt
), reg
);
4981 static void emulator_write_gpr(struct x86_emulate_ctxt
*ctxt
, unsigned reg
, ulong val
)
4983 kvm_register_write(emul_to_vcpu(ctxt
), reg
, val
);
4986 static void emulator_set_nmi_mask(struct x86_emulate_ctxt
*ctxt
, bool masked
)
4988 kvm_x86_ops
->set_nmi_mask(emul_to_vcpu(ctxt
), masked
);
4991 static const struct x86_emulate_ops emulate_ops
= {
4992 .read_gpr
= emulator_read_gpr
,
4993 .write_gpr
= emulator_write_gpr
,
4994 .read_std
= kvm_read_guest_virt_system
,
4995 .write_std
= kvm_write_guest_virt_system
,
4996 .fetch
= kvm_fetch_guest_virt
,
4997 .read_emulated
= emulator_read_emulated
,
4998 .write_emulated
= emulator_write_emulated
,
4999 .cmpxchg_emulated
= emulator_cmpxchg_emulated
,
5000 .invlpg
= emulator_invlpg
,
5001 .pio_in_emulated
= emulator_pio_in_emulated
,
5002 .pio_out_emulated
= emulator_pio_out_emulated
,
5003 .get_segment
= emulator_get_segment
,
5004 .set_segment
= emulator_set_segment
,
5005 .get_cached_segment_base
= emulator_get_cached_segment_base
,
5006 .get_gdt
= emulator_get_gdt
,
5007 .get_idt
= emulator_get_idt
,
5008 .set_gdt
= emulator_set_gdt
,
5009 .set_idt
= emulator_set_idt
,
5010 .get_cr
= emulator_get_cr
,
5011 .set_cr
= emulator_set_cr
,
5012 .cpl
= emulator_get_cpl
,
5013 .get_dr
= emulator_get_dr
,
5014 .set_dr
= emulator_set_dr
,
5015 .get_smbase
= emulator_get_smbase
,
5016 .set_smbase
= emulator_set_smbase
,
5017 .set_msr
= emulator_set_msr
,
5018 .get_msr
= emulator_get_msr
,
5019 .check_pmc
= emulator_check_pmc
,
5020 .read_pmc
= emulator_read_pmc
,
5021 .halt
= emulator_halt
,
5022 .wbinvd
= emulator_wbinvd
,
5023 .fix_hypercall
= emulator_fix_hypercall
,
5024 .get_fpu
= emulator_get_fpu
,
5025 .put_fpu
= emulator_put_fpu
,
5026 .intercept
= emulator_intercept
,
5027 .get_cpuid
= emulator_get_cpuid
,
5028 .set_nmi_mask
= emulator_set_nmi_mask
,
5031 static void toggle_interruptibility(struct kvm_vcpu
*vcpu
, u32 mask
)
5033 u32 int_shadow
= kvm_x86_ops
->get_interrupt_shadow(vcpu
);
5035 * an sti; sti; sequence only disable interrupts for the first
5036 * instruction. So, if the last instruction, be it emulated or
5037 * not, left the system with the INT_STI flag enabled, it
5038 * means that the last instruction is an sti. We should not
5039 * leave the flag on in this case. The same goes for mov ss
5041 if (int_shadow
& mask
)
5043 if (unlikely(int_shadow
|| mask
)) {
5044 kvm_x86_ops
->set_interrupt_shadow(vcpu
, mask
);
5046 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5050 static bool inject_emulated_exception(struct kvm_vcpu
*vcpu
)
5052 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
5053 if (ctxt
->exception
.vector
== PF_VECTOR
)
5054 return kvm_propagate_fault(vcpu
, &ctxt
->exception
);
5056 if (ctxt
->exception
.error_code_valid
)
5057 kvm_queue_exception_e(vcpu
, ctxt
->exception
.vector
,
5058 ctxt
->exception
.error_code
);
5060 kvm_queue_exception(vcpu
, ctxt
->exception
.vector
);
5064 static void init_emulate_ctxt(struct kvm_vcpu
*vcpu
)
5066 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
5069 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
5071 ctxt
->eflags
= kvm_get_rflags(vcpu
);
5072 ctxt
->eip
= kvm_rip_read(vcpu
);
5073 ctxt
->mode
= (!is_protmode(vcpu
)) ? X86EMUL_MODE_REAL
:
5074 (ctxt
->eflags
& X86_EFLAGS_VM
) ? X86EMUL_MODE_VM86
:
5075 (cs_l
&& is_long_mode(vcpu
)) ? X86EMUL_MODE_PROT64
:
5076 cs_db
? X86EMUL_MODE_PROT32
:
5077 X86EMUL_MODE_PROT16
;
5078 BUILD_BUG_ON(HF_GUEST_MASK
!= X86EMUL_GUEST_MASK
);
5079 BUILD_BUG_ON(HF_SMM_MASK
!= X86EMUL_SMM_MASK
);
5080 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK
!= X86EMUL_SMM_INSIDE_NMI_MASK
);
5081 ctxt
->emul_flags
= vcpu
->arch
.hflags
;
5083 init_decode_cache(ctxt
);
5084 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= false;
5087 int kvm_inject_realmode_interrupt(struct kvm_vcpu
*vcpu
, int irq
, int inc_eip
)
5089 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
5092 init_emulate_ctxt(vcpu
);
5096 ctxt
->_eip
= ctxt
->eip
+ inc_eip
;
5097 ret
= emulate_int_real(ctxt
, irq
);
5099 if (ret
!= X86EMUL_CONTINUE
)
5100 return EMULATE_FAIL
;
5102 ctxt
->eip
= ctxt
->_eip
;
5103 kvm_rip_write(vcpu
, ctxt
->eip
);
5104 kvm_set_rflags(vcpu
, ctxt
->eflags
);
5106 if (irq
== NMI_VECTOR
)
5107 vcpu
->arch
.nmi_pending
= 0;
5109 vcpu
->arch
.interrupt
.pending
= false;
5111 return EMULATE_DONE
;
5113 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt
);
5115 static int handle_emulation_failure(struct kvm_vcpu
*vcpu
)
5117 int r
= EMULATE_DONE
;
5119 ++vcpu
->stat
.insn_emulation_fail
;
5120 trace_kvm_emulate_insn_failed(vcpu
);
5121 if (!is_guest_mode(vcpu
) && kvm_x86_ops
->get_cpl(vcpu
) == 0) {
5122 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
5123 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_EMULATION
;
5124 vcpu
->run
->internal
.ndata
= 0;
5127 kvm_queue_exception(vcpu
, UD_VECTOR
);
5132 static bool reexecute_instruction(struct kvm_vcpu
*vcpu
, gva_t cr2
,
5133 bool write_fault_to_shadow_pgtable
,
5139 if (emulation_type
& EMULTYPE_NO_REEXECUTE
)
5142 if (!vcpu
->arch
.mmu
.direct_map
) {
5144 * Write permission should be allowed since only
5145 * write access need to be emulated.
5147 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, cr2
, NULL
);
5150 * If the mapping is invalid in guest, let cpu retry
5151 * it to generate fault.
5153 if (gpa
== UNMAPPED_GVA
)
5158 * Do not retry the unhandleable instruction if it faults on the
5159 * readonly host memory, otherwise it will goto a infinite loop:
5160 * retry instruction -> write #PF -> emulation fail -> retry
5161 * instruction -> ...
5163 pfn
= gfn_to_pfn(vcpu
->kvm
, gpa_to_gfn(gpa
));
5166 * If the instruction failed on the error pfn, it can not be fixed,
5167 * report the error to userspace.
5169 if (is_error_noslot_pfn(pfn
))
5172 kvm_release_pfn_clean(pfn
);
5174 /* The instructions are well-emulated on direct mmu. */
5175 if (vcpu
->arch
.mmu
.direct_map
) {
5176 unsigned int indirect_shadow_pages
;
5178 spin_lock(&vcpu
->kvm
->mmu_lock
);
5179 indirect_shadow_pages
= vcpu
->kvm
->arch
.indirect_shadow_pages
;
5180 spin_unlock(&vcpu
->kvm
->mmu_lock
);
5182 if (indirect_shadow_pages
)
5183 kvm_mmu_unprotect_page(vcpu
->kvm
, gpa_to_gfn(gpa
));
5189 * if emulation was due to access to shadowed page table
5190 * and it failed try to unshadow page and re-enter the
5191 * guest to let CPU execute the instruction.
5193 kvm_mmu_unprotect_page(vcpu
->kvm
, gpa_to_gfn(gpa
));
5196 * If the access faults on its page table, it can not
5197 * be fixed by unprotecting shadow page and it should
5198 * be reported to userspace.
5200 return !write_fault_to_shadow_pgtable
;
5203 static bool retry_instruction(struct x86_emulate_ctxt
*ctxt
,
5204 unsigned long cr2
, int emulation_type
)
5206 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5207 unsigned long last_retry_eip
, last_retry_addr
, gpa
= cr2
;
5209 last_retry_eip
= vcpu
->arch
.last_retry_eip
;
5210 last_retry_addr
= vcpu
->arch
.last_retry_addr
;
5213 * If the emulation is caused by #PF and it is non-page_table
5214 * writing instruction, it means the VM-EXIT is caused by shadow
5215 * page protected, we can zap the shadow page and retry this
5216 * instruction directly.
5218 * Note: if the guest uses a non-page-table modifying instruction
5219 * on the PDE that points to the instruction, then we will unmap
5220 * the instruction and go to an infinite loop. So, we cache the
5221 * last retried eip and the last fault address, if we meet the eip
5222 * and the address again, we can break out of the potential infinite
5225 vcpu
->arch
.last_retry_eip
= vcpu
->arch
.last_retry_addr
= 0;
5227 if (!(emulation_type
& EMULTYPE_RETRY
))
5230 if (x86_page_table_writing_insn(ctxt
))
5233 if (ctxt
->eip
== last_retry_eip
&& last_retry_addr
== cr2
)
5236 vcpu
->arch
.last_retry_eip
= ctxt
->eip
;
5237 vcpu
->arch
.last_retry_addr
= cr2
;
5239 if (!vcpu
->arch
.mmu
.direct_map
)
5240 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, cr2
, NULL
);
5242 kvm_mmu_unprotect_page(vcpu
->kvm
, gpa_to_gfn(gpa
));
5247 static int complete_emulated_mmio(struct kvm_vcpu
*vcpu
);
5248 static int complete_emulated_pio(struct kvm_vcpu
*vcpu
);
5250 static void kvm_smm_changed(struct kvm_vcpu
*vcpu
)
5252 if (!(vcpu
->arch
.hflags
& HF_SMM_MASK
)) {
5253 /* This is a good place to trace that we are exiting SMM. */
5254 trace_kvm_enter_smm(vcpu
->vcpu_id
, vcpu
->arch
.smbase
, false);
5256 if (unlikely(vcpu
->arch
.smi_pending
)) {
5257 kvm_make_request(KVM_REQ_SMI
, vcpu
);
5258 vcpu
->arch
.smi_pending
= 0;
5260 /* Process a latched INIT, if any. */
5261 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5265 kvm_mmu_reset_context(vcpu
);
5268 static void kvm_set_hflags(struct kvm_vcpu
*vcpu
, unsigned emul_flags
)
5270 unsigned changed
= vcpu
->arch
.hflags
^ emul_flags
;
5272 vcpu
->arch
.hflags
= emul_flags
;
5274 if (changed
& HF_SMM_MASK
)
5275 kvm_smm_changed(vcpu
);
5278 static int kvm_vcpu_check_hw_bp(unsigned long addr
, u32 type
, u32 dr7
,
5287 for (i
= 0; i
< 4; i
++, enable
>>= 2, rwlen
>>= 4)
5288 if ((enable
& 3) && (rwlen
& 15) == type
&& db
[i
] == addr
)
5293 static void kvm_vcpu_check_singlestep(struct kvm_vcpu
*vcpu
, unsigned long rflags
, int *r
)
5295 struct kvm_run
*kvm_run
= vcpu
->run
;
5298 * rflags is the old, "raw" value of the flags. The new value has
5299 * not been saved yet.
5301 * This is correct even for TF set by the guest, because "the
5302 * processor will not generate this exception after the instruction
5303 * that sets the TF flag".
5305 if (unlikely(rflags
& X86_EFLAGS_TF
)) {
5306 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
) {
5307 kvm_run
->debug
.arch
.dr6
= DR6_BS
| DR6_FIXED_1
|
5309 kvm_run
->debug
.arch
.pc
= vcpu
->arch
.singlestep_rip
;
5310 kvm_run
->debug
.arch
.exception
= DB_VECTOR
;
5311 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
5312 *r
= EMULATE_USER_EXIT
;
5314 vcpu
->arch
.emulate_ctxt
.eflags
&= ~X86_EFLAGS_TF
;
5316 * "Certain debug exceptions may clear bit 0-3. The
5317 * remaining contents of the DR6 register are never
5318 * cleared by the processor".
5320 vcpu
->arch
.dr6
&= ~15;
5321 vcpu
->arch
.dr6
|= DR6_BS
| DR6_RTM
;
5322 kvm_queue_exception(vcpu
, DB_VECTOR
);
5327 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu
*vcpu
, int *r
)
5329 if (unlikely(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
) &&
5330 (vcpu
->arch
.guest_debug_dr7
& DR7_BP_EN_MASK
)) {
5331 struct kvm_run
*kvm_run
= vcpu
->run
;
5332 unsigned long eip
= kvm_get_linear_rip(vcpu
);
5333 u32 dr6
= kvm_vcpu_check_hw_bp(eip
, 0,
5334 vcpu
->arch
.guest_debug_dr7
,
5338 kvm_run
->debug
.arch
.dr6
= dr6
| DR6_FIXED_1
| DR6_RTM
;
5339 kvm_run
->debug
.arch
.pc
= eip
;
5340 kvm_run
->debug
.arch
.exception
= DB_VECTOR
;
5341 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
5342 *r
= EMULATE_USER_EXIT
;
5347 if (unlikely(vcpu
->arch
.dr7
& DR7_BP_EN_MASK
) &&
5348 !(kvm_get_rflags(vcpu
) & X86_EFLAGS_RF
)) {
5349 unsigned long eip
= kvm_get_linear_rip(vcpu
);
5350 u32 dr6
= kvm_vcpu_check_hw_bp(eip
, 0,
5355 vcpu
->arch
.dr6
&= ~15;
5356 vcpu
->arch
.dr6
|= dr6
| DR6_RTM
;
5357 kvm_queue_exception(vcpu
, DB_VECTOR
);
5366 int x86_emulate_instruction(struct kvm_vcpu
*vcpu
,
5373 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
5374 bool writeback
= true;
5375 bool write_fault_to_spt
= vcpu
->arch
.write_fault_to_shadow_pgtable
;
5378 * Clear write_fault_to_shadow_pgtable here to ensure it is
5381 vcpu
->arch
.write_fault_to_shadow_pgtable
= false;
5382 kvm_clear_exception_queue(vcpu
);
5384 if (!(emulation_type
& EMULTYPE_NO_DECODE
)) {
5385 init_emulate_ctxt(vcpu
);
5388 * We will reenter on the same instruction since
5389 * we do not set complete_userspace_io. This does not
5390 * handle watchpoints yet, those would be handled in
5393 if (kvm_vcpu_check_breakpoint(vcpu
, &r
))
5396 ctxt
->interruptibility
= 0;
5397 ctxt
->have_exception
= false;
5398 ctxt
->exception
.vector
= -1;
5399 ctxt
->perm_ok
= false;
5401 ctxt
->ud
= emulation_type
& EMULTYPE_TRAP_UD
;
5403 r
= x86_decode_insn(ctxt
, insn
, insn_len
);
5405 trace_kvm_emulate_insn_start(vcpu
);
5406 ++vcpu
->stat
.insn_emulation
;
5407 if (r
!= EMULATION_OK
) {
5408 if (emulation_type
& EMULTYPE_TRAP_UD
)
5409 return EMULATE_FAIL
;
5410 if (reexecute_instruction(vcpu
, cr2
, write_fault_to_spt
,
5412 return EMULATE_DONE
;
5413 if (emulation_type
& EMULTYPE_SKIP
)
5414 return EMULATE_FAIL
;
5415 return handle_emulation_failure(vcpu
);
5419 if (emulation_type
& EMULTYPE_SKIP
) {
5420 kvm_rip_write(vcpu
, ctxt
->_eip
);
5421 if (ctxt
->eflags
& X86_EFLAGS_RF
)
5422 kvm_set_rflags(vcpu
, ctxt
->eflags
& ~X86_EFLAGS_RF
);
5423 return EMULATE_DONE
;
5426 if (retry_instruction(ctxt
, cr2
, emulation_type
))
5427 return EMULATE_DONE
;
5429 /* this is needed for vmware backdoor interface to work since it
5430 changes registers values during IO operation */
5431 if (vcpu
->arch
.emulate_regs_need_sync_from_vcpu
) {
5432 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= false;
5433 emulator_invalidate_register_cache(ctxt
);
5437 r
= x86_emulate_insn(ctxt
);
5439 if (r
== EMULATION_INTERCEPTED
)
5440 return EMULATE_DONE
;
5442 if (r
== EMULATION_FAILED
) {
5443 if (reexecute_instruction(vcpu
, cr2
, write_fault_to_spt
,
5445 return EMULATE_DONE
;
5447 return handle_emulation_failure(vcpu
);
5450 if (ctxt
->have_exception
) {
5452 if (inject_emulated_exception(vcpu
))
5454 } else if (vcpu
->arch
.pio
.count
) {
5455 if (!vcpu
->arch
.pio
.in
) {
5456 /* FIXME: return into emulator if single-stepping. */
5457 vcpu
->arch
.pio
.count
= 0;
5460 vcpu
->arch
.complete_userspace_io
= complete_emulated_pio
;
5462 r
= EMULATE_USER_EXIT
;
5463 } else if (vcpu
->mmio_needed
) {
5464 if (!vcpu
->mmio_is_write
)
5466 r
= EMULATE_USER_EXIT
;
5467 vcpu
->arch
.complete_userspace_io
= complete_emulated_mmio
;
5468 } else if (r
== EMULATION_RESTART
)
5474 unsigned long rflags
= kvm_x86_ops
->get_rflags(vcpu
);
5475 toggle_interruptibility(vcpu
, ctxt
->interruptibility
);
5476 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
5477 if (vcpu
->arch
.hflags
!= ctxt
->emul_flags
)
5478 kvm_set_hflags(vcpu
, ctxt
->emul_flags
);
5479 kvm_rip_write(vcpu
, ctxt
->eip
);
5480 if (r
== EMULATE_DONE
)
5481 kvm_vcpu_check_singlestep(vcpu
, rflags
, &r
);
5482 if (!ctxt
->have_exception
||
5483 exception_type(ctxt
->exception
.vector
) == EXCPT_TRAP
)
5484 __kvm_set_rflags(vcpu
, ctxt
->eflags
);
5487 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5488 * do nothing, and it will be requested again as soon as
5489 * the shadow expires. But we still need to check here,
5490 * because POPF has no interrupt shadow.
5492 if (unlikely((ctxt
->eflags
& ~rflags
) & X86_EFLAGS_IF
))
5493 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5495 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= true;
5499 EXPORT_SYMBOL_GPL(x86_emulate_instruction
);
5501 int kvm_fast_pio_out(struct kvm_vcpu
*vcpu
, int size
, unsigned short port
)
5503 unsigned long val
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
5504 int ret
= emulator_pio_out_emulated(&vcpu
->arch
.emulate_ctxt
,
5505 size
, port
, &val
, 1);
5506 /* do not return to emulator after return from userspace */
5507 vcpu
->arch
.pio
.count
= 0;
5510 EXPORT_SYMBOL_GPL(kvm_fast_pio_out
);
5512 static void tsc_bad(void *info
)
5514 __this_cpu_write(cpu_tsc_khz
, 0);
5517 static void tsc_khz_changed(void *data
)
5519 struct cpufreq_freqs
*freq
= data
;
5520 unsigned long khz
= 0;
5524 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
5525 khz
= cpufreq_quick_get(raw_smp_processor_id());
5528 __this_cpu_write(cpu_tsc_khz
, khz
);
5531 static int kvmclock_cpufreq_notifier(struct notifier_block
*nb
, unsigned long val
,
5534 struct cpufreq_freqs
*freq
= data
;
5536 struct kvm_vcpu
*vcpu
;
5537 int i
, send_ipi
= 0;
5540 * We allow guests to temporarily run on slowing clocks,
5541 * provided we notify them after, or to run on accelerating
5542 * clocks, provided we notify them before. Thus time never
5545 * However, we have a problem. We can't atomically update
5546 * the frequency of a given CPU from this function; it is
5547 * merely a notifier, which can be called from any CPU.
5548 * Changing the TSC frequency at arbitrary points in time
5549 * requires a recomputation of local variables related to
5550 * the TSC for each VCPU. We must flag these local variables
5551 * to be updated and be sure the update takes place with the
5552 * new frequency before any guests proceed.
5554 * Unfortunately, the combination of hotplug CPU and frequency
5555 * change creates an intractable locking scenario; the order
5556 * of when these callouts happen is undefined with respect to
5557 * CPU hotplug, and they can race with each other. As such,
5558 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5559 * undefined; you can actually have a CPU frequency change take
5560 * place in between the computation of X and the setting of the
5561 * variable. To protect against this problem, all updates of
5562 * the per_cpu tsc_khz variable are done in an interrupt
5563 * protected IPI, and all callers wishing to update the value
5564 * must wait for a synchronous IPI to complete (which is trivial
5565 * if the caller is on the CPU already). This establishes the
5566 * necessary total order on variable updates.
5568 * Note that because a guest time update may take place
5569 * anytime after the setting of the VCPU's request bit, the
5570 * correct TSC value must be set before the request. However,
5571 * to ensure the update actually makes it to any guest which
5572 * starts running in hardware virtualization between the set
5573 * and the acquisition of the spinlock, we must also ping the
5574 * CPU after setting the request bit.
5578 if (val
== CPUFREQ_PRECHANGE
&& freq
->old
> freq
->new)
5580 if (val
== CPUFREQ_POSTCHANGE
&& freq
->old
< freq
->new)
5583 smp_call_function_single(freq
->cpu
, tsc_khz_changed
, freq
, 1);
5585 spin_lock(&kvm_lock
);
5586 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
5587 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
5588 if (vcpu
->cpu
!= freq
->cpu
)
5590 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
5591 if (vcpu
->cpu
!= smp_processor_id())
5595 spin_unlock(&kvm_lock
);
5597 if (freq
->old
< freq
->new && send_ipi
) {
5599 * We upscale the frequency. Must make the guest
5600 * doesn't see old kvmclock values while running with
5601 * the new frequency, otherwise we risk the guest sees
5602 * time go backwards.
5604 * In case we update the frequency for another cpu
5605 * (which might be in guest context) send an interrupt
5606 * to kick the cpu out of guest context. Next time
5607 * guest context is entered kvmclock will be updated,
5608 * so the guest will not see stale values.
5610 smp_call_function_single(freq
->cpu
, tsc_khz_changed
, freq
, 1);
5615 static struct notifier_block kvmclock_cpufreq_notifier_block
= {
5616 .notifier_call
= kvmclock_cpufreq_notifier
5619 static int kvmclock_cpu_notifier(struct notifier_block
*nfb
,
5620 unsigned long action
, void *hcpu
)
5622 unsigned int cpu
= (unsigned long)hcpu
;
5626 case CPU_DOWN_FAILED
:
5627 smp_call_function_single(cpu
, tsc_khz_changed
, NULL
, 1);
5629 case CPU_DOWN_PREPARE
:
5630 smp_call_function_single(cpu
, tsc_bad
, NULL
, 1);
5636 static struct notifier_block kvmclock_cpu_notifier_block
= {
5637 .notifier_call
= kvmclock_cpu_notifier
,
5638 .priority
= -INT_MAX
5641 static void kvm_timer_init(void)
5645 max_tsc_khz
= tsc_khz
;
5647 cpu_notifier_register_begin();
5648 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
)) {
5649 #ifdef CONFIG_CPU_FREQ
5650 struct cpufreq_policy policy
;
5651 memset(&policy
, 0, sizeof(policy
));
5653 cpufreq_get_policy(&policy
, cpu
);
5654 if (policy
.cpuinfo
.max_freq
)
5655 max_tsc_khz
= policy
.cpuinfo
.max_freq
;
5658 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block
,
5659 CPUFREQ_TRANSITION_NOTIFIER
);
5661 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz
);
5662 for_each_online_cpu(cpu
)
5663 smp_call_function_single(cpu
, tsc_khz_changed
, NULL
, 1);
5665 __register_hotcpu_notifier(&kvmclock_cpu_notifier_block
);
5666 cpu_notifier_register_done();
5670 static DEFINE_PER_CPU(struct kvm_vcpu
*, current_vcpu
);
5672 int kvm_is_in_guest(void)
5674 return __this_cpu_read(current_vcpu
) != NULL
;
5677 static int kvm_is_user_mode(void)
5681 if (__this_cpu_read(current_vcpu
))
5682 user_mode
= kvm_x86_ops
->get_cpl(__this_cpu_read(current_vcpu
));
5684 return user_mode
!= 0;
5687 static unsigned long kvm_get_guest_ip(void)
5689 unsigned long ip
= 0;
5691 if (__this_cpu_read(current_vcpu
))
5692 ip
= kvm_rip_read(__this_cpu_read(current_vcpu
));
5697 static struct perf_guest_info_callbacks kvm_guest_cbs
= {
5698 .is_in_guest
= kvm_is_in_guest
,
5699 .is_user_mode
= kvm_is_user_mode
,
5700 .get_guest_ip
= kvm_get_guest_ip
,
5703 void kvm_before_handle_nmi(struct kvm_vcpu
*vcpu
)
5705 __this_cpu_write(current_vcpu
, vcpu
);
5707 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi
);
5709 void kvm_after_handle_nmi(struct kvm_vcpu
*vcpu
)
5711 __this_cpu_write(current_vcpu
, NULL
);
5713 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi
);
5715 static void kvm_set_mmio_spte_mask(void)
5718 int maxphyaddr
= boot_cpu_data
.x86_phys_bits
;
5721 * Set the reserved bits and the present bit of an paging-structure
5722 * entry to generate page fault with PFER.RSV = 1.
5724 /* Mask the reserved physical address bits. */
5725 mask
= rsvd_bits(maxphyaddr
, 51);
5727 /* Bit 62 is always reserved for 32bit host. */
5728 mask
|= 0x3ull
<< 62;
5730 /* Set the present bit. */
5733 #ifdef CONFIG_X86_64
5735 * If reserved bit is not supported, clear the present bit to disable
5738 if (maxphyaddr
== 52)
5742 kvm_mmu_set_mmio_spte_mask(mask
);
5745 #ifdef CONFIG_X86_64
5746 static void pvclock_gtod_update_fn(struct work_struct
*work
)
5750 struct kvm_vcpu
*vcpu
;
5753 spin_lock(&kvm_lock
);
5754 list_for_each_entry(kvm
, &vm_list
, vm_list
)
5755 kvm_for_each_vcpu(i
, vcpu
, kvm
)
5756 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
);
5757 atomic_set(&kvm_guest_has_master_clock
, 0);
5758 spin_unlock(&kvm_lock
);
5761 static DECLARE_WORK(pvclock_gtod_work
, pvclock_gtod_update_fn
);
5764 * Notification about pvclock gtod data update.
5766 static int pvclock_gtod_notify(struct notifier_block
*nb
, unsigned long unused
,
5769 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
5770 struct timekeeper
*tk
= priv
;
5772 update_pvclock_gtod(tk
);
5774 /* disable master clock if host does not trust, or does not
5775 * use, TSC clocksource
5777 if (gtod
->clock
.vclock_mode
!= VCLOCK_TSC
&&
5778 atomic_read(&kvm_guest_has_master_clock
) != 0)
5779 queue_work(system_long_wq
, &pvclock_gtod_work
);
5784 static struct notifier_block pvclock_gtod_notifier
= {
5785 .notifier_call
= pvclock_gtod_notify
,
5789 int kvm_arch_init(void *opaque
)
5792 struct kvm_x86_ops
*ops
= opaque
;
5795 printk(KERN_ERR
"kvm: already loaded the other module\n");
5800 if (!ops
->cpu_has_kvm_support()) {
5801 printk(KERN_ERR
"kvm: no hardware support\n");
5805 if (ops
->disabled_by_bios()) {
5806 printk(KERN_ERR
"kvm: disabled by bios\n");
5812 shared_msrs
= alloc_percpu(struct kvm_shared_msrs
);
5814 printk(KERN_ERR
"kvm: failed to allocate percpu kvm_shared_msrs\n");
5818 r
= kvm_mmu_module_init();
5820 goto out_free_percpu
;
5822 kvm_set_mmio_spte_mask();
5826 kvm_mmu_set_mask_ptes(PT_USER_MASK
, PT_ACCESSED_MASK
,
5827 PT_DIRTY_MASK
, PT64_NX_MASK
, 0);
5831 perf_register_guest_info_callbacks(&kvm_guest_cbs
);
5834 host_xcr0
= xgetbv(XCR_XFEATURE_ENABLED_MASK
);
5837 #ifdef CONFIG_X86_64
5838 pvclock_gtod_register_notifier(&pvclock_gtod_notifier
);
5844 free_percpu(shared_msrs
);
5849 void kvm_arch_exit(void)
5851 perf_unregister_guest_info_callbacks(&kvm_guest_cbs
);
5853 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
5854 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block
,
5855 CPUFREQ_TRANSITION_NOTIFIER
);
5856 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block
);
5857 #ifdef CONFIG_X86_64
5858 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier
);
5861 kvm_mmu_module_exit();
5862 free_percpu(shared_msrs
);
5865 int kvm_vcpu_halt(struct kvm_vcpu
*vcpu
)
5867 ++vcpu
->stat
.halt_exits
;
5868 if (irqchip_in_kernel(vcpu
->kvm
)) {
5869 vcpu
->arch
.mp_state
= KVM_MP_STATE_HALTED
;
5872 vcpu
->run
->exit_reason
= KVM_EXIT_HLT
;
5876 EXPORT_SYMBOL_GPL(kvm_vcpu_halt
);
5878 int kvm_emulate_halt(struct kvm_vcpu
*vcpu
)
5880 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
5881 return kvm_vcpu_halt(vcpu
);
5883 EXPORT_SYMBOL_GPL(kvm_emulate_halt
);
5885 int kvm_hv_hypercall(struct kvm_vcpu
*vcpu
)
5887 u64 param
, ingpa
, outgpa
, ret
;
5888 uint16_t code
, rep_idx
, rep_cnt
, res
= HV_STATUS_SUCCESS
, rep_done
= 0;
5889 bool fast
, longmode
;
5892 * hypercall generates UD from non zero cpl and real mode
5895 if (kvm_x86_ops
->get_cpl(vcpu
) != 0 || !is_protmode(vcpu
)) {
5896 kvm_queue_exception(vcpu
, UD_VECTOR
);
5900 longmode
= is_64_bit_mode(vcpu
);
5903 param
= ((u64
)kvm_register_read(vcpu
, VCPU_REGS_RDX
) << 32) |
5904 (kvm_register_read(vcpu
, VCPU_REGS_RAX
) & 0xffffffff);
5905 ingpa
= ((u64
)kvm_register_read(vcpu
, VCPU_REGS_RBX
) << 32) |
5906 (kvm_register_read(vcpu
, VCPU_REGS_RCX
) & 0xffffffff);
5907 outgpa
= ((u64
)kvm_register_read(vcpu
, VCPU_REGS_RDI
) << 32) |
5908 (kvm_register_read(vcpu
, VCPU_REGS_RSI
) & 0xffffffff);
5910 #ifdef CONFIG_X86_64
5912 param
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
5913 ingpa
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
5914 outgpa
= kvm_register_read(vcpu
, VCPU_REGS_R8
);
5918 code
= param
& 0xffff;
5919 fast
= (param
>> 16) & 0x1;
5920 rep_cnt
= (param
>> 32) & 0xfff;
5921 rep_idx
= (param
>> 48) & 0xfff;
5923 trace_kvm_hv_hypercall(code
, fast
, rep_cnt
, rep_idx
, ingpa
, outgpa
);
5926 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT
:
5927 kvm_vcpu_on_spin(vcpu
);
5930 res
= HV_STATUS_INVALID_HYPERCALL_CODE
;
5934 ret
= res
| (((u64
)rep_done
& 0xfff) << 32);
5936 kvm_register_write(vcpu
, VCPU_REGS_RAX
, ret
);
5938 kvm_register_write(vcpu
, VCPU_REGS_RDX
, ret
>> 32);
5939 kvm_register_write(vcpu
, VCPU_REGS_RAX
, ret
& 0xffffffff);
5946 * kvm_pv_kick_cpu_op: Kick a vcpu.
5948 * @apicid - apicid of vcpu to be kicked.
5950 static void kvm_pv_kick_cpu_op(struct kvm
*kvm
, unsigned long flags
, int apicid
)
5952 struct kvm_lapic_irq lapic_irq
;
5954 lapic_irq
.shorthand
= 0;
5955 lapic_irq
.dest_mode
= 0;
5956 lapic_irq
.dest_id
= apicid
;
5957 lapic_irq
.msi_redir_hint
= false;
5959 lapic_irq
.delivery_mode
= APIC_DM_REMRD
;
5960 kvm_irq_delivery_to_apic(kvm
, NULL
, &lapic_irq
, NULL
);
5963 int kvm_emulate_hypercall(struct kvm_vcpu
*vcpu
)
5965 unsigned long nr
, a0
, a1
, a2
, a3
, ret
;
5966 int op_64_bit
, r
= 1;
5968 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
5970 if (kvm_hv_hypercall_enabled(vcpu
->kvm
))
5971 return kvm_hv_hypercall(vcpu
);
5973 nr
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
5974 a0
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
5975 a1
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
5976 a2
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
5977 a3
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
5979 trace_kvm_hypercall(nr
, a0
, a1
, a2
, a3
);
5981 op_64_bit
= is_64_bit_mode(vcpu
);
5990 if (kvm_x86_ops
->get_cpl(vcpu
) != 0) {
5996 case KVM_HC_VAPIC_POLL_IRQ
:
5999 case KVM_HC_KICK_CPU
:
6000 kvm_pv_kick_cpu_op(vcpu
->kvm
, a0
, a1
);
6010 kvm_register_write(vcpu
, VCPU_REGS_RAX
, ret
);
6011 ++vcpu
->stat
.hypercalls
;
6014 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall
);
6016 static int emulator_fix_hypercall(struct x86_emulate_ctxt
*ctxt
)
6018 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
6019 char instruction
[3];
6020 unsigned long rip
= kvm_rip_read(vcpu
);
6022 kvm_x86_ops
->patch_hypercall(vcpu
, instruction
);
6024 return emulator_write_emulated(ctxt
, rip
, instruction
, 3, NULL
);
6028 * Check if userspace requested an interrupt window, and that the
6029 * interrupt window is open.
6031 * No need to exit to userspace if we already have an interrupt queued.
6033 static int dm_request_for_irq_injection(struct kvm_vcpu
*vcpu
)
6035 return (!irqchip_in_kernel(vcpu
->kvm
) && !kvm_cpu_has_interrupt(vcpu
) &&
6036 vcpu
->run
->request_interrupt_window
&&
6037 kvm_arch_interrupt_allowed(vcpu
));
6040 static void post_kvm_run_save(struct kvm_vcpu
*vcpu
)
6042 struct kvm_run
*kvm_run
= vcpu
->run
;
6044 kvm_run
->if_flag
= (kvm_get_rflags(vcpu
) & X86_EFLAGS_IF
) != 0;
6045 kvm_run
->flags
= is_smm(vcpu
) ? KVM_RUN_X86_SMM
: 0;
6046 kvm_run
->cr8
= kvm_get_cr8(vcpu
);
6047 kvm_run
->apic_base
= kvm_get_apic_base(vcpu
);
6048 if (irqchip_in_kernel(vcpu
->kvm
))
6049 kvm_run
->ready_for_interrupt_injection
= 1;
6051 kvm_run
->ready_for_interrupt_injection
=
6052 kvm_arch_interrupt_allowed(vcpu
) &&
6053 !kvm_cpu_has_interrupt(vcpu
) &&
6054 !kvm_event_needs_reinjection(vcpu
);
6057 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
)
6061 if (!kvm_x86_ops
->update_cr8_intercept
)
6064 if (!vcpu
->arch
.apic
)
6067 if (!vcpu
->arch
.apic
->vapic_addr
)
6068 max_irr
= kvm_lapic_find_highest_irr(vcpu
);
6075 tpr
= kvm_lapic_get_cr8(vcpu
);
6077 kvm_x86_ops
->update_cr8_intercept(vcpu
, tpr
, max_irr
);
6080 static int inject_pending_event(struct kvm_vcpu
*vcpu
, bool req_int_win
)
6084 /* try to reinject previous events if any */
6085 if (vcpu
->arch
.exception
.pending
) {
6086 trace_kvm_inj_exception(vcpu
->arch
.exception
.nr
,
6087 vcpu
->arch
.exception
.has_error_code
,
6088 vcpu
->arch
.exception
.error_code
);
6090 if (exception_type(vcpu
->arch
.exception
.nr
) == EXCPT_FAULT
)
6091 __kvm_set_rflags(vcpu
, kvm_get_rflags(vcpu
) |
6094 if (vcpu
->arch
.exception
.nr
== DB_VECTOR
&&
6095 (vcpu
->arch
.dr7
& DR7_GD
)) {
6096 vcpu
->arch
.dr7
&= ~DR7_GD
;
6097 kvm_update_dr7(vcpu
);
6100 kvm_x86_ops
->queue_exception(vcpu
, vcpu
->arch
.exception
.nr
,
6101 vcpu
->arch
.exception
.has_error_code
,
6102 vcpu
->arch
.exception
.error_code
,
6103 vcpu
->arch
.exception
.reinject
);
6107 if (vcpu
->arch
.nmi_injected
) {
6108 kvm_x86_ops
->set_nmi(vcpu
);
6112 if (vcpu
->arch
.interrupt
.pending
) {
6113 kvm_x86_ops
->set_irq(vcpu
);
6117 if (is_guest_mode(vcpu
) && kvm_x86_ops
->check_nested_events
) {
6118 r
= kvm_x86_ops
->check_nested_events(vcpu
, req_int_win
);
6123 /* try to inject new event if pending */
6124 if (vcpu
->arch
.nmi_pending
) {
6125 if (kvm_x86_ops
->nmi_allowed(vcpu
)) {
6126 --vcpu
->arch
.nmi_pending
;
6127 vcpu
->arch
.nmi_injected
= true;
6128 kvm_x86_ops
->set_nmi(vcpu
);
6130 } else if (kvm_cpu_has_injectable_intr(vcpu
)) {
6132 * Because interrupts can be injected asynchronously, we are
6133 * calling check_nested_events again here to avoid a race condition.
6134 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6135 * proposal and current concerns. Perhaps we should be setting
6136 * KVM_REQ_EVENT only on certain events and not unconditionally?
6138 if (is_guest_mode(vcpu
) && kvm_x86_ops
->check_nested_events
) {
6139 r
= kvm_x86_ops
->check_nested_events(vcpu
, req_int_win
);
6143 if (kvm_x86_ops
->interrupt_allowed(vcpu
)) {
6144 kvm_queue_interrupt(vcpu
, kvm_cpu_get_interrupt(vcpu
),
6146 kvm_x86_ops
->set_irq(vcpu
);
6152 static void process_nmi(struct kvm_vcpu
*vcpu
)
6157 * x86 is limited to one NMI running, and one NMI pending after it.
6158 * If an NMI is already in progress, limit further NMIs to just one.
6159 * Otherwise, allow two (and we'll inject the first one immediately).
6161 if (kvm_x86_ops
->get_nmi_mask(vcpu
) || vcpu
->arch
.nmi_injected
)
6164 vcpu
->arch
.nmi_pending
+= atomic_xchg(&vcpu
->arch
.nmi_queued
, 0);
6165 vcpu
->arch
.nmi_pending
= min(vcpu
->arch
.nmi_pending
, limit
);
6166 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6169 #define put_smstate(type, buf, offset, val) \
6170 *(type *)((buf) + (offset) - 0x7e00) = val
6172 static u32
process_smi_get_segment_flags(struct kvm_segment
*seg
)
6175 flags
|= seg
->g
<< 23;
6176 flags
|= seg
->db
<< 22;
6177 flags
|= seg
->l
<< 21;
6178 flags
|= seg
->avl
<< 20;
6179 flags
|= seg
->present
<< 15;
6180 flags
|= seg
->dpl
<< 13;
6181 flags
|= seg
->s
<< 12;
6182 flags
|= seg
->type
<< 8;
6186 static void process_smi_save_seg_32(struct kvm_vcpu
*vcpu
, char *buf
, int n
)
6188 struct kvm_segment seg
;
6191 kvm_get_segment(vcpu
, &seg
, n
);
6192 put_smstate(u32
, buf
, 0x7fa8 + n
* 4, seg
.selector
);
6195 offset
= 0x7f84 + n
* 12;
6197 offset
= 0x7f2c + (n
- 3) * 12;
6199 put_smstate(u32
, buf
, offset
+ 8, seg
.base
);
6200 put_smstate(u32
, buf
, offset
+ 4, seg
.limit
);
6201 put_smstate(u32
, buf
, offset
, process_smi_get_segment_flags(&seg
));
6204 static void process_smi_save_seg_64(struct kvm_vcpu
*vcpu
, char *buf
, int n
)
6206 struct kvm_segment seg
;
6210 kvm_get_segment(vcpu
, &seg
, n
);
6211 offset
= 0x7e00 + n
* 16;
6213 flags
= process_smi_get_segment_flags(&seg
) >> 8;
6214 put_smstate(u16
, buf
, offset
, seg
.selector
);
6215 put_smstate(u16
, buf
, offset
+ 2, flags
);
6216 put_smstate(u32
, buf
, offset
+ 4, seg
.limit
);
6217 put_smstate(u64
, buf
, offset
+ 8, seg
.base
);
6220 static void process_smi_save_state_32(struct kvm_vcpu
*vcpu
, char *buf
)
6223 struct kvm_segment seg
;
6227 put_smstate(u32
, buf
, 0x7ffc, kvm_read_cr0(vcpu
));
6228 put_smstate(u32
, buf
, 0x7ff8, kvm_read_cr3(vcpu
));
6229 put_smstate(u32
, buf
, 0x7ff4, kvm_get_rflags(vcpu
));
6230 put_smstate(u32
, buf
, 0x7ff0, kvm_rip_read(vcpu
));
6232 for (i
= 0; i
< 8; i
++)
6233 put_smstate(u32
, buf
, 0x7fd0 + i
* 4, kvm_register_read(vcpu
, i
));
6235 kvm_get_dr(vcpu
, 6, &val
);
6236 put_smstate(u32
, buf
, 0x7fcc, (u32
)val
);
6237 kvm_get_dr(vcpu
, 7, &val
);
6238 put_smstate(u32
, buf
, 0x7fc8, (u32
)val
);
6240 kvm_get_segment(vcpu
, &seg
, VCPU_SREG_TR
);
6241 put_smstate(u32
, buf
, 0x7fc4, seg
.selector
);
6242 put_smstate(u32
, buf
, 0x7f64, seg
.base
);
6243 put_smstate(u32
, buf
, 0x7f60, seg
.limit
);
6244 put_smstate(u32
, buf
, 0x7f5c, process_smi_get_segment_flags(&seg
));
6246 kvm_get_segment(vcpu
, &seg
, VCPU_SREG_LDTR
);
6247 put_smstate(u32
, buf
, 0x7fc0, seg
.selector
);
6248 put_smstate(u32
, buf
, 0x7f80, seg
.base
);
6249 put_smstate(u32
, buf
, 0x7f7c, seg
.limit
);
6250 put_smstate(u32
, buf
, 0x7f78, process_smi_get_segment_flags(&seg
));
6252 kvm_x86_ops
->get_gdt(vcpu
, &dt
);
6253 put_smstate(u32
, buf
, 0x7f74, dt
.address
);
6254 put_smstate(u32
, buf
, 0x7f70, dt
.size
);
6256 kvm_x86_ops
->get_idt(vcpu
, &dt
);
6257 put_smstate(u32
, buf
, 0x7f58, dt
.address
);
6258 put_smstate(u32
, buf
, 0x7f54, dt
.size
);
6260 for (i
= 0; i
< 6; i
++)
6261 process_smi_save_seg_32(vcpu
, buf
, i
);
6263 put_smstate(u32
, buf
, 0x7f14, kvm_read_cr4(vcpu
));
6266 put_smstate(u32
, buf
, 0x7efc, 0x00020000);
6267 put_smstate(u32
, buf
, 0x7ef8, vcpu
->arch
.smbase
);
6270 static void process_smi_save_state_64(struct kvm_vcpu
*vcpu
, char *buf
)
6272 #ifdef CONFIG_X86_64
6274 struct kvm_segment seg
;
6278 for (i
= 0; i
< 16; i
++)
6279 put_smstate(u64
, buf
, 0x7ff8 - i
* 8, kvm_register_read(vcpu
, i
));
6281 put_smstate(u64
, buf
, 0x7f78, kvm_rip_read(vcpu
));
6282 put_smstate(u32
, buf
, 0x7f70, kvm_get_rflags(vcpu
));
6284 kvm_get_dr(vcpu
, 6, &val
);
6285 put_smstate(u64
, buf
, 0x7f68, val
);
6286 kvm_get_dr(vcpu
, 7, &val
);
6287 put_smstate(u64
, buf
, 0x7f60, val
);
6289 put_smstate(u64
, buf
, 0x7f58, kvm_read_cr0(vcpu
));
6290 put_smstate(u64
, buf
, 0x7f50, kvm_read_cr3(vcpu
));
6291 put_smstate(u64
, buf
, 0x7f48, kvm_read_cr4(vcpu
));
6293 put_smstate(u32
, buf
, 0x7f00, vcpu
->arch
.smbase
);
6296 put_smstate(u32
, buf
, 0x7efc, 0x00020064);
6298 put_smstate(u64
, buf
, 0x7ed0, vcpu
->arch
.efer
);
6300 kvm_get_segment(vcpu
, &seg
, VCPU_SREG_TR
);
6301 put_smstate(u16
, buf
, 0x7e90, seg
.selector
);
6302 put_smstate(u16
, buf
, 0x7e92, process_smi_get_segment_flags(&seg
) >> 8);
6303 put_smstate(u32
, buf
, 0x7e94, seg
.limit
);
6304 put_smstate(u64
, buf
, 0x7e98, seg
.base
);
6306 kvm_x86_ops
->get_idt(vcpu
, &dt
);
6307 put_smstate(u32
, buf
, 0x7e84, dt
.size
);
6308 put_smstate(u64
, buf
, 0x7e88, dt
.address
);
6310 kvm_get_segment(vcpu
, &seg
, VCPU_SREG_LDTR
);
6311 put_smstate(u16
, buf
, 0x7e70, seg
.selector
);
6312 put_smstate(u16
, buf
, 0x7e72, process_smi_get_segment_flags(&seg
) >> 8);
6313 put_smstate(u32
, buf
, 0x7e74, seg
.limit
);
6314 put_smstate(u64
, buf
, 0x7e78, seg
.base
);
6316 kvm_x86_ops
->get_gdt(vcpu
, &dt
);
6317 put_smstate(u32
, buf
, 0x7e64, dt
.size
);
6318 put_smstate(u64
, buf
, 0x7e68, dt
.address
);
6320 for (i
= 0; i
< 6; i
++)
6321 process_smi_save_seg_64(vcpu
, buf
, i
);
6327 static void process_smi(struct kvm_vcpu
*vcpu
)
6329 struct kvm_segment cs
, ds
;
6335 vcpu
->arch
.smi_pending
= true;
6339 trace_kvm_enter_smm(vcpu
->vcpu_id
, vcpu
->arch
.smbase
, true);
6340 vcpu
->arch
.hflags
|= HF_SMM_MASK
;
6341 memset(buf
, 0, 512);
6342 if (guest_cpuid_has_longmode(vcpu
))
6343 process_smi_save_state_64(vcpu
, buf
);
6345 process_smi_save_state_32(vcpu
, buf
);
6347 kvm_vcpu_write_guest(vcpu
, vcpu
->arch
.smbase
+ 0xfe00, buf
, sizeof(buf
));
6349 if (kvm_x86_ops
->get_nmi_mask(vcpu
))
6350 vcpu
->arch
.hflags
|= HF_SMM_INSIDE_NMI_MASK
;
6352 kvm_x86_ops
->set_nmi_mask(vcpu
, true);
6354 kvm_set_rflags(vcpu
, X86_EFLAGS_FIXED
);
6355 kvm_rip_write(vcpu
, 0x8000);
6357 cr0
= vcpu
->arch
.cr0
& ~(X86_CR0_PE
| X86_CR0_EM
| X86_CR0_TS
| X86_CR0_PG
);
6358 kvm_x86_ops
->set_cr0(vcpu
, cr0
);
6359 vcpu
->arch
.cr0
= cr0
;
6361 kvm_x86_ops
->set_cr4(vcpu
, 0);
6363 /* Undocumented: IDT limit is set to zero on entry to SMM. */
6364 dt
.address
= dt
.size
= 0;
6365 kvm_x86_ops
->set_idt(vcpu
, &dt
);
6367 __kvm_set_dr(vcpu
, 7, DR7_FIXED_1
);
6369 cs
.selector
= (vcpu
->arch
.smbase
>> 4) & 0xffff;
6370 cs
.base
= vcpu
->arch
.smbase
;
6375 cs
.limit
= ds
.limit
= 0xffffffff;
6376 cs
.type
= ds
.type
= 0x3;
6377 cs
.dpl
= ds
.dpl
= 0;
6382 cs
.avl
= ds
.avl
= 0;
6383 cs
.present
= ds
.present
= 1;
6384 cs
.unusable
= ds
.unusable
= 0;
6385 cs
.padding
= ds
.padding
= 0;
6387 kvm_set_segment(vcpu
, &cs
, VCPU_SREG_CS
);
6388 kvm_set_segment(vcpu
, &ds
, VCPU_SREG_DS
);
6389 kvm_set_segment(vcpu
, &ds
, VCPU_SREG_ES
);
6390 kvm_set_segment(vcpu
, &ds
, VCPU_SREG_FS
);
6391 kvm_set_segment(vcpu
, &ds
, VCPU_SREG_GS
);
6392 kvm_set_segment(vcpu
, &ds
, VCPU_SREG_SS
);
6394 if (guest_cpuid_has_longmode(vcpu
))
6395 kvm_x86_ops
->set_efer(vcpu
, 0);
6397 kvm_update_cpuid(vcpu
);
6398 kvm_mmu_reset_context(vcpu
);
6401 static void vcpu_scan_ioapic(struct kvm_vcpu
*vcpu
)
6403 u64 eoi_exit_bitmap
[4];
6406 if (!kvm_apic_hw_enabled(vcpu
->arch
.apic
))
6409 memset(eoi_exit_bitmap
, 0, 32);
6412 kvm_ioapic_scan_entry(vcpu
, eoi_exit_bitmap
, tmr
);
6413 kvm_x86_ops
->load_eoi_exitmap(vcpu
, eoi_exit_bitmap
);
6414 kvm_apic_update_tmr(vcpu
, tmr
);
6417 static void kvm_vcpu_flush_tlb(struct kvm_vcpu
*vcpu
)
6419 ++vcpu
->stat
.tlb_flush
;
6420 kvm_x86_ops
->tlb_flush(vcpu
);
6423 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu
*vcpu
)
6425 struct page
*page
= NULL
;
6427 if (!irqchip_in_kernel(vcpu
->kvm
))
6430 if (!kvm_x86_ops
->set_apic_access_page_addr
)
6433 page
= gfn_to_page(vcpu
->kvm
, APIC_DEFAULT_PHYS_BASE
>> PAGE_SHIFT
);
6434 if (is_error_page(page
))
6436 kvm_x86_ops
->set_apic_access_page_addr(vcpu
, page_to_phys(page
));
6439 * Do not pin apic access page in memory, the MMU notifier
6440 * will call us again if it is migrated or swapped out.
6444 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page
);
6446 void kvm_arch_mmu_notifier_invalidate_page(struct kvm
*kvm
,
6447 unsigned long address
)
6450 * The physical address of apic access page is stored in the VMCS.
6451 * Update it when it becomes invalid.
6453 if (address
== gfn_to_hva(kvm
, APIC_DEFAULT_PHYS_BASE
>> PAGE_SHIFT
))
6454 kvm_make_all_cpus_request(kvm
, KVM_REQ_APIC_PAGE_RELOAD
);
6458 * Returns 1 to let vcpu_run() continue the guest execution loop without
6459 * exiting to the userspace. Otherwise, the value will be returned to the
6462 static int vcpu_enter_guest(struct kvm_vcpu
*vcpu
)
6465 bool req_int_win
= !irqchip_in_kernel(vcpu
->kvm
) &&
6466 vcpu
->run
->request_interrupt_window
;
6467 bool req_immediate_exit
= false;
6469 if (vcpu
->requests
) {
6470 if (kvm_check_request(KVM_REQ_MMU_RELOAD
, vcpu
))
6471 kvm_mmu_unload(vcpu
);
6472 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER
, vcpu
))
6473 __kvm_migrate_timers(vcpu
);
6474 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
))
6475 kvm_gen_update_masterclock(vcpu
->kvm
);
6476 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE
, vcpu
))
6477 kvm_gen_kvmclock_update(vcpu
);
6478 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE
, vcpu
)) {
6479 r
= kvm_guest_time_update(vcpu
);
6483 if (kvm_check_request(KVM_REQ_MMU_SYNC
, vcpu
))
6484 kvm_mmu_sync_roots(vcpu
);
6485 if (kvm_check_request(KVM_REQ_TLB_FLUSH
, vcpu
))
6486 kvm_vcpu_flush_tlb(vcpu
);
6487 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS
, vcpu
)) {
6488 vcpu
->run
->exit_reason
= KVM_EXIT_TPR_ACCESS
;
6492 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT
, vcpu
)) {
6493 vcpu
->run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
6497 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU
, vcpu
)) {
6498 vcpu
->fpu_active
= 0;
6499 kvm_x86_ops
->fpu_deactivate(vcpu
);
6501 if (kvm_check_request(KVM_REQ_APF_HALT
, vcpu
)) {
6502 /* Page is swapped out. Do synthetic halt */
6503 vcpu
->arch
.apf
.halted
= true;
6507 if (kvm_check_request(KVM_REQ_STEAL_UPDATE
, vcpu
))
6508 record_steal_time(vcpu
);
6509 if (kvm_check_request(KVM_REQ_SMI
, vcpu
))
6511 if (kvm_check_request(KVM_REQ_NMI
, vcpu
))
6513 if (kvm_check_request(KVM_REQ_PMU
, vcpu
))
6514 kvm_pmu_handle_event(vcpu
);
6515 if (kvm_check_request(KVM_REQ_PMI
, vcpu
))
6516 kvm_pmu_deliver_pmi(vcpu
);
6517 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC
, vcpu
))
6518 vcpu_scan_ioapic(vcpu
);
6519 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD
, vcpu
))
6520 kvm_vcpu_reload_apic_access_page(vcpu
);
6523 if (kvm_check_request(KVM_REQ_EVENT
, vcpu
) || req_int_win
) {
6524 kvm_apic_accept_events(vcpu
);
6525 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_INIT_RECEIVED
) {
6530 if (inject_pending_event(vcpu
, req_int_win
) != 0)
6531 req_immediate_exit
= true;
6532 /* enable NMI/IRQ window open exits if needed */
6533 else if (vcpu
->arch
.nmi_pending
)
6534 kvm_x86_ops
->enable_nmi_window(vcpu
);
6535 else if (kvm_cpu_has_injectable_intr(vcpu
) || req_int_win
)
6536 kvm_x86_ops
->enable_irq_window(vcpu
);
6538 if (kvm_lapic_enabled(vcpu
)) {
6540 * Update architecture specific hints for APIC
6541 * virtual interrupt delivery.
6543 if (kvm_x86_ops
->hwapic_irr_update
)
6544 kvm_x86_ops
->hwapic_irr_update(vcpu
,
6545 kvm_lapic_find_highest_irr(vcpu
));
6546 update_cr8_intercept(vcpu
);
6547 kvm_lapic_sync_to_vapic(vcpu
);
6551 r
= kvm_mmu_reload(vcpu
);
6553 goto cancel_injection
;
6558 kvm_x86_ops
->prepare_guest_switch(vcpu
);
6559 if (vcpu
->fpu_active
)
6560 kvm_load_guest_fpu(vcpu
);
6561 kvm_load_guest_xcr0(vcpu
);
6563 vcpu
->mode
= IN_GUEST_MODE
;
6565 srcu_read_unlock(&vcpu
->kvm
->srcu
, vcpu
->srcu_idx
);
6567 /* We should set ->mode before check ->requests,
6568 * see the comment in make_all_cpus_request.
6570 smp_mb__after_srcu_read_unlock();
6572 local_irq_disable();
6574 if (vcpu
->mode
== EXITING_GUEST_MODE
|| vcpu
->requests
6575 || need_resched() || signal_pending(current
)) {
6576 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
6580 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
6582 goto cancel_injection
;
6585 if (req_immediate_exit
)
6586 smp_send_reschedule(vcpu
->cpu
);
6588 __kvm_guest_enter();
6590 if (unlikely(vcpu
->arch
.switch_db_regs
)) {
6592 set_debugreg(vcpu
->arch
.eff_db
[0], 0);
6593 set_debugreg(vcpu
->arch
.eff_db
[1], 1);
6594 set_debugreg(vcpu
->arch
.eff_db
[2], 2);
6595 set_debugreg(vcpu
->arch
.eff_db
[3], 3);
6596 set_debugreg(vcpu
->arch
.dr6
, 6);
6597 vcpu
->arch
.switch_db_regs
&= ~KVM_DEBUGREG_RELOAD
;
6600 trace_kvm_entry(vcpu
->vcpu_id
);
6601 wait_lapic_expire(vcpu
);
6602 kvm_x86_ops
->run(vcpu
);
6605 * Do this here before restoring debug registers on the host. And
6606 * since we do this before handling the vmexit, a DR access vmexit
6607 * can (a) read the correct value of the debug registers, (b) set
6608 * KVM_DEBUGREG_WONT_EXIT again.
6610 if (unlikely(vcpu
->arch
.switch_db_regs
& KVM_DEBUGREG_WONT_EXIT
)) {
6613 WARN_ON(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
);
6614 kvm_x86_ops
->sync_dirty_debug_regs(vcpu
);
6615 for (i
= 0; i
< KVM_NR_DB_REGS
; i
++)
6616 vcpu
->arch
.eff_db
[i
] = vcpu
->arch
.db
[i
];
6620 * If the guest has used debug registers, at least dr7
6621 * will be disabled while returning to the host.
6622 * If we don't have active breakpoints in the host, we don't
6623 * care about the messed up debug address registers. But if
6624 * we have some of them active, restore the old state.
6626 if (hw_breakpoint_active())
6627 hw_breakpoint_restore();
6629 vcpu
->arch
.last_guest_tsc
= kvm_x86_ops
->read_l1_tsc(vcpu
,
6632 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
6635 /* Interrupt is enabled by handle_external_intr() */
6636 kvm_x86_ops
->handle_external_intr(vcpu
);
6641 * We must have an instruction between local_irq_enable() and
6642 * kvm_guest_exit(), so the timer interrupt isn't delayed by
6643 * the interrupt shadow. The stat.exits increment will do nicely.
6644 * But we need to prevent reordering, hence this barrier():
6652 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
6655 * Profile KVM exit RIPs:
6657 if (unlikely(prof_on
== KVM_PROFILING
)) {
6658 unsigned long rip
= kvm_rip_read(vcpu
);
6659 profile_hit(KVM_PROFILING
, (void *)rip
);
6662 if (unlikely(vcpu
->arch
.tsc_always_catchup
))
6663 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
6665 if (vcpu
->arch
.apic_attention
)
6666 kvm_lapic_sync_from_vapic(vcpu
);
6668 r
= kvm_x86_ops
->handle_exit(vcpu
);
6672 kvm_x86_ops
->cancel_injection(vcpu
);
6673 if (unlikely(vcpu
->arch
.apic_attention
))
6674 kvm_lapic_sync_from_vapic(vcpu
);
6679 static inline int vcpu_block(struct kvm
*kvm
, struct kvm_vcpu
*vcpu
)
6681 if (!kvm_arch_vcpu_runnable(vcpu
)) {
6682 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
6683 kvm_vcpu_block(vcpu
);
6684 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
6685 if (!kvm_check_request(KVM_REQ_UNHALT
, vcpu
))
6689 kvm_apic_accept_events(vcpu
);
6690 switch(vcpu
->arch
.mp_state
) {
6691 case KVM_MP_STATE_HALTED
:
6692 vcpu
->arch
.pv
.pv_unhalted
= false;
6693 vcpu
->arch
.mp_state
=
6694 KVM_MP_STATE_RUNNABLE
;
6695 case KVM_MP_STATE_RUNNABLE
:
6696 vcpu
->arch
.apf
.halted
= false;
6698 case KVM_MP_STATE_INIT_RECEIVED
:
6707 static int vcpu_run(struct kvm_vcpu
*vcpu
)
6710 struct kvm
*kvm
= vcpu
->kvm
;
6712 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
6715 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_RUNNABLE
&&
6716 !vcpu
->arch
.apf
.halted
)
6717 r
= vcpu_enter_guest(vcpu
);
6719 r
= vcpu_block(kvm
, vcpu
);
6723 clear_bit(KVM_REQ_PENDING_TIMER
, &vcpu
->requests
);
6724 if (kvm_cpu_has_pending_timer(vcpu
))
6725 kvm_inject_pending_timer_irqs(vcpu
);
6727 if (dm_request_for_irq_injection(vcpu
)) {
6729 vcpu
->run
->exit_reason
= KVM_EXIT_INTR
;
6730 ++vcpu
->stat
.request_irq_exits
;
6734 kvm_check_async_pf_completion(vcpu
);
6736 if (signal_pending(current
)) {
6738 vcpu
->run
->exit_reason
= KVM_EXIT_INTR
;
6739 ++vcpu
->stat
.signal_exits
;
6742 if (need_resched()) {
6743 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
6745 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
6749 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
6754 static inline int complete_emulated_io(struct kvm_vcpu
*vcpu
)
6757 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
6758 r
= emulate_instruction(vcpu
, EMULTYPE_NO_DECODE
);
6759 srcu_read_unlock(&vcpu
->kvm
->srcu
, vcpu
->srcu_idx
);
6760 if (r
!= EMULATE_DONE
)
6765 static int complete_emulated_pio(struct kvm_vcpu
*vcpu
)
6767 BUG_ON(!vcpu
->arch
.pio
.count
);
6769 return complete_emulated_io(vcpu
);
6773 * Implements the following, as a state machine:
6777 * for each mmio piece in the fragment
6785 * for each mmio piece in the fragment
6790 static int complete_emulated_mmio(struct kvm_vcpu
*vcpu
)
6792 struct kvm_run
*run
= vcpu
->run
;
6793 struct kvm_mmio_fragment
*frag
;
6796 BUG_ON(!vcpu
->mmio_needed
);
6798 /* Complete previous fragment */
6799 frag
= &vcpu
->mmio_fragments
[vcpu
->mmio_cur_fragment
];
6800 len
= min(8u, frag
->len
);
6801 if (!vcpu
->mmio_is_write
)
6802 memcpy(frag
->data
, run
->mmio
.data
, len
);
6804 if (frag
->len
<= 8) {
6805 /* Switch to the next fragment. */
6807 vcpu
->mmio_cur_fragment
++;
6809 /* Go forward to the next mmio piece. */
6815 if (vcpu
->mmio_cur_fragment
>= vcpu
->mmio_nr_fragments
) {
6816 vcpu
->mmio_needed
= 0;
6818 /* FIXME: return into emulator if single-stepping. */
6819 if (vcpu
->mmio_is_write
)
6821 vcpu
->mmio_read_completed
= 1;
6822 return complete_emulated_io(vcpu
);
6825 run
->exit_reason
= KVM_EXIT_MMIO
;
6826 run
->mmio
.phys_addr
= frag
->gpa
;
6827 if (vcpu
->mmio_is_write
)
6828 memcpy(run
->mmio
.data
, frag
->data
, min(8u, frag
->len
));
6829 run
->mmio
.len
= min(8u, frag
->len
);
6830 run
->mmio
.is_write
= vcpu
->mmio_is_write
;
6831 vcpu
->arch
.complete_userspace_io
= complete_emulated_mmio
;
6836 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
6838 struct fpu
*fpu
= ¤t
->thread
.fpu
;
6842 fpu__activate_curr(fpu
);
6844 if (vcpu
->sigset_active
)
6845 sigprocmask(SIG_SETMASK
, &vcpu
->sigset
, &sigsaved
);
6847 if (unlikely(vcpu
->arch
.mp_state
== KVM_MP_STATE_UNINITIALIZED
)) {
6848 kvm_vcpu_block(vcpu
);
6849 kvm_apic_accept_events(vcpu
);
6850 clear_bit(KVM_REQ_UNHALT
, &vcpu
->requests
);
6855 /* re-sync apic's tpr */
6856 if (!irqchip_in_kernel(vcpu
->kvm
)) {
6857 if (kvm_set_cr8(vcpu
, kvm_run
->cr8
) != 0) {
6863 if (unlikely(vcpu
->arch
.complete_userspace_io
)) {
6864 int (*cui
)(struct kvm_vcpu
*) = vcpu
->arch
.complete_userspace_io
;
6865 vcpu
->arch
.complete_userspace_io
= NULL
;
6870 WARN_ON(vcpu
->arch
.pio
.count
|| vcpu
->mmio_needed
);
6875 post_kvm_run_save(vcpu
);
6876 if (vcpu
->sigset_active
)
6877 sigprocmask(SIG_SETMASK
, &sigsaved
, NULL
);
6882 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
6884 if (vcpu
->arch
.emulate_regs_need_sync_to_vcpu
) {
6886 * We are here if userspace calls get_regs() in the middle of
6887 * instruction emulation. Registers state needs to be copied
6888 * back from emulation context to vcpu. Userspace shouldn't do
6889 * that usually, but some bad designed PV devices (vmware
6890 * backdoor interface) need this to work
6892 emulator_writeback_register_cache(&vcpu
->arch
.emulate_ctxt
);
6893 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
6895 regs
->rax
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
6896 regs
->rbx
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
6897 regs
->rcx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
6898 regs
->rdx
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
6899 regs
->rsi
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
6900 regs
->rdi
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
6901 regs
->rsp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
6902 regs
->rbp
= kvm_register_read(vcpu
, VCPU_REGS_RBP
);
6903 #ifdef CONFIG_X86_64
6904 regs
->r8
= kvm_register_read(vcpu
, VCPU_REGS_R8
);
6905 regs
->r9
= kvm_register_read(vcpu
, VCPU_REGS_R9
);
6906 regs
->r10
= kvm_register_read(vcpu
, VCPU_REGS_R10
);
6907 regs
->r11
= kvm_register_read(vcpu
, VCPU_REGS_R11
);
6908 regs
->r12
= kvm_register_read(vcpu
, VCPU_REGS_R12
);
6909 regs
->r13
= kvm_register_read(vcpu
, VCPU_REGS_R13
);
6910 regs
->r14
= kvm_register_read(vcpu
, VCPU_REGS_R14
);
6911 regs
->r15
= kvm_register_read(vcpu
, VCPU_REGS_R15
);
6914 regs
->rip
= kvm_rip_read(vcpu
);
6915 regs
->rflags
= kvm_get_rflags(vcpu
);
6920 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
6922 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= true;
6923 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
6925 kvm_register_write(vcpu
, VCPU_REGS_RAX
, regs
->rax
);
6926 kvm_register_write(vcpu
, VCPU_REGS_RBX
, regs
->rbx
);
6927 kvm_register_write(vcpu
, VCPU_REGS_RCX
, regs
->rcx
);
6928 kvm_register_write(vcpu
, VCPU_REGS_RDX
, regs
->rdx
);
6929 kvm_register_write(vcpu
, VCPU_REGS_RSI
, regs
->rsi
);
6930 kvm_register_write(vcpu
, VCPU_REGS_RDI
, regs
->rdi
);
6931 kvm_register_write(vcpu
, VCPU_REGS_RSP
, regs
->rsp
);
6932 kvm_register_write(vcpu
, VCPU_REGS_RBP
, regs
->rbp
);
6933 #ifdef CONFIG_X86_64
6934 kvm_register_write(vcpu
, VCPU_REGS_R8
, regs
->r8
);
6935 kvm_register_write(vcpu
, VCPU_REGS_R9
, regs
->r9
);
6936 kvm_register_write(vcpu
, VCPU_REGS_R10
, regs
->r10
);
6937 kvm_register_write(vcpu
, VCPU_REGS_R11
, regs
->r11
);
6938 kvm_register_write(vcpu
, VCPU_REGS_R12
, regs
->r12
);
6939 kvm_register_write(vcpu
, VCPU_REGS_R13
, regs
->r13
);
6940 kvm_register_write(vcpu
, VCPU_REGS_R14
, regs
->r14
);
6941 kvm_register_write(vcpu
, VCPU_REGS_R15
, regs
->r15
);
6944 kvm_rip_write(vcpu
, regs
->rip
);
6945 kvm_set_rflags(vcpu
, regs
->rflags
);
6947 vcpu
->arch
.exception
.pending
= false;
6949 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6954 void kvm_get_cs_db_l_bits(struct kvm_vcpu
*vcpu
, int *db
, int *l
)
6956 struct kvm_segment cs
;
6958 kvm_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
6962 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits
);
6964 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu
*vcpu
,
6965 struct kvm_sregs
*sregs
)
6969 kvm_get_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
6970 kvm_get_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
6971 kvm_get_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
6972 kvm_get_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
6973 kvm_get_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
6974 kvm_get_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
6976 kvm_get_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
6977 kvm_get_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
6979 kvm_x86_ops
->get_idt(vcpu
, &dt
);
6980 sregs
->idt
.limit
= dt
.size
;
6981 sregs
->idt
.base
= dt
.address
;
6982 kvm_x86_ops
->get_gdt(vcpu
, &dt
);
6983 sregs
->gdt
.limit
= dt
.size
;
6984 sregs
->gdt
.base
= dt
.address
;
6986 sregs
->cr0
= kvm_read_cr0(vcpu
);
6987 sregs
->cr2
= vcpu
->arch
.cr2
;
6988 sregs
->cr3
= kvm_read_cr3(vcpu
);
6989 sregs
->cr4
= kvm_read_cr4(vcpu
);
6990 sregs
->cr8
= kvm_get_cr8(vcpu
);
6991 sregs
->efer
= vcpu
->arch
.efer
;
6992 sregs
->apic_base
= kvm_get_apic_base(vcpu
);
6994 memset(sregs
->interrupt_bitmap
, 0, sizeof sregs
->interrupt_bitmap
);
6996 if (vcpu
->arch
.interrupt
.pending
&& !vcpu
->arch
.interrupt
.soft
)
6997 set_bit(vcpu
->arch
.interrupt
.nr
,
6998 (unsigned long *)sregs
->interrupt_bitmap
);
7003 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu
*vcpu
,
7004 struct kvm_mp_state
*mp_state
)
7006 kvm_apic_accept_events(vcpu
);
7007 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_HALTED
&&
7008 vcpu
->arch
.pv
.pv_unhalted
)
7009 mp_state
->mp_state
= KVM_MP_STATE_RUNNABLE
;
7011 mp_state
->mp_state
= vcpu
->arch
.mp_state
;
7016 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu
*vcpu
,
7017 struct kvm_mp_state
*mp_state
)
7019 if (!kvm_vcpu_has_lapic(vcpu
) &&
7020 mp_state
->mp_state
!= KVM_MP_STATE_RUNNABLE
)
7023 if (mp_state
->mp_state
== KVM_MP_STATE_SIPI_RECEIVED
) {
7024 vcpu
->arch
.mp_state
= KVM_MP_STATE_INIT_RECEIVED
;
7025 set_bit(KVM_APIC_SIPI
, &vcpu
->arch
.apic
->pending_events
);
7027 vcpu
->arch
.mp_state
= mp_state
->mp_state
;
7028 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
7032 int kvm_task_switch(struct kvm_vcpu
*vcpu
, u16 tss_selector
, int idt_index
,
7033 int reason
, bool has_error_code
, u32 error_code
)
7035 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
7038 init_emulate_ctxt(vcpu
);
7040 ret
= emulator_task_switch(ctxt
, tss_selector
, idt_index
, reason
,
7041 has_error_code
, error_code
);
7044 return EMULATE_FAIL
;
7046 kvm_rip_write(vcpu
, ctxt
->eip
);
7047 kvm_set_rflags(vcpu
, ctxt
->eflags
);
7048 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
7049 return EMULATE_DONE
;
7051 EXPORT_SYMBOL_GPL(kvm_task_switch
);
7053 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu
*vcpu
,
7054 struct kvm_sregs
*sregs
)
7056 struct msr_data apic_base_msr
;
7057 int mmu_reset_needed
= 0;
7058 int pending_vec
, max_bits
, idx
;
7061 if (!guest_cpuid_has_xsave(vcpu
) && (sregs
->cr4
& X86_CR4_OSXSAVE
))
7064 dt
.size
= sregs
->idt
.limit
;
7065 dt
.address
= sregs
->idt
.base
;
7066 kvm_x86_ops
->set_idt(vcpu
, &dt
);
7067 dt
.size
= sregs
->gdt
.limit
;
7068 dt
.address
= sregs
->gdt
.base
;
7069 kvm_x86_ops
->set_gdt(vcpu
, &dt
);
7071 vcpu
->arch
.cr2
= sregs
->cr2
;
7072 mmu_reset_needed
|= kvm_read_cr3(vcpu
) != sregs
->cr3
;
7073 vcpu
->arch
.cr3
= sregs
->cr3
;
7074 __set_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
);
7076 kvm_set_cr8(vcpu
, sregs
->cr8
);
7078 mmu_reset_needed
|= vcpu
->arch
.efer
!= sregs
->efer
;
7079 kvm_x86_ops
->set_efer(vcpu
, sregs
->efer
);
7080 apic_base_msr
.data
= sregs
->apic_base
;
7081 apic_base_msr
.host_initiated
= true;
7082 kvm_set_apic_base(vcpu
, &apic_base_msr
);
7084 mmu_reset_needed
|= kvm_read_cr0(vcpu
) != sregs
->cr0
;
7085 kvm_x86_ops
->set_cr0(vcpu
, sregs
->cr0
);
7086 vcpu
->arch
.cr0
= sregs
->cr0
;
7088 mmu_reset_needed
|= kvm_read_cr4(vcpu
) != sregs
->cr4
;
7089 kvm_x86_ops
->set_cr4(vcpu
, sregs
->cr4
);
7090 if (sregs
->cr4
& X86_CR4_OSXSAVE
)
7091 kvm_update_cpuid(vcpu
);
7093 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
7094 if (!is_long_mode(vcpu
) && is_pae(vcpu
)) {
7095 load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
, kvm_read_cr3(vcpu
));
7096 mmu_reset_needed
= 1;
7098 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
7100 if (mmu_reset_needed
)
7101 kvm_mmu_reset_context(vcpu
);
7103 max_bits
= KVM_NR_INTERRUPTS
;
7104 pending_vec
= find_first_bit(
7105 (const unsigned long *)sregs
->interrupt_bitmap
, max_bits
);
7106 if (pending_vec
< max_bits
) {
7107 kvm_queue_interrupt(vcpu
, pending_vec
, false);
7108 pr_debug("Set back pending irq %d\n", pending_vec
);
7111 kvm_set_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
7112 kvm_set_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
7113 kvm_set_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
7114 kvm_set_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
7115 kvm_set_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
7116 kvm_set_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
7118 kvm_set_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
7119 kvm_set_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
7121 update_cr8_intercept(vcpu
);
7123 /* Older userspace won't unhalt the vcpu on reset. */
7124 if (kvm_vcpu_is_bsp(vcpu
) && kvm_rip_read(vcpu
) == 0xfff0 &&
7125 sregs
->cs
.selector
== 0xf000 && sregs
->cs
.base
== 0xffff0000 &&
7127 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
7129 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
7134 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu
*vcpu
,
7135 struct kvm_guest_debug
*dbg
)
7137 unsigned long rflags
;
7140 if (dbg
->control
& (KVM_GUESTDBG_INJECT_DB
| KVM_GUESTDBG_INJECT_BP
)) {
7142 if (vcpu
->arch
.exception
.pending
)
7144 if (dbg
->control
& KVM_GUESTDBG_INJECT_DB
)
7145 kvm_queue_exception(vcpu
, DB_VECTOR
);
7147 kvm_queue_exception(vcpu
, BP_VECTOR
);
7151 * Read rflags as long as potentially injected trace flags are still
7154 rflags
= kvm_get_rflags(vcpu
);
7156 vcpu
->guest_debug
= dbg
->control
;
7157 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_ENABLE
))
7158 vcpu
->guest_debug
= 0;
7160 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
) {
7161 for (i
= 0; i
< KVM_NR_DB_REGS
; ++i
)
7162 vcpu
->arch
.eff_db
[i
] = dbg
->arch
.debugreg
[i
];
7163 vcpu
->arch
.guest_debug_dr7
= dbg
->arch
.debugreg
[7];
7165 for (i
= 0; i
< KVM_NR_DB_REGS
; i
++)
7166 vcpu
->arch
.eff_db
[i
] = vcpu
->arch
.db
[i
];
7168 kvm_update_dr7(vcpu
);
7170 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
7171 vcpu
->arch
.singlestep_rip
= kvm_rip_read(vcpu
) +
7172 get_segment_base(vcpu
, VCPU_SREG_CS
);
7175 * Trigger an rflags update that will inject or remove the trace
7178 kvm_set_rflags(vcpu
, rflags
);
7180 kvm_x86_ops
->update_db_bp_intercept(vcpu
);
7190 * Translate a guest virtual address to a guest physical address.
7192 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu
*vcpu
,
7193 struct kvm_translation
*tr
)
7195 unsigned long vaddr
= tr
->linear_address
;
7199 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
7200 gpa
= kvm_mmu_gva_to_gpa_system(vcpu
, vaddr
, NULL
);
7201 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
7202 tr
->physical_address
= gpa
;
7203 tr
->valid
= gpa
!= UNMAPPED_GVA
;
7210 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
7212 struct fxregs_state
*fxsave
=
7213 &vcpu
->arch
.guest_fpu
.state
.fxsave
;
7215 memcpy(fpu
->fpr
, fxsave
->st_space
, 128);
7216 fpu
->fcw
= fxsave
->cwd
;
7217 fpu
->fsw
= fxsave
->swd
;
7218 fpu
->ftwx
= fxsave
->twd
;
7219 fpu
->last_opcode
= fxsave
->fop
;
7220 fpu
->last_ip
= fxsave
->rip
;
7221 fpu
->last_dp
= fxsave
->rdp
;
7222 memcpy(fpu
->xmm
, fxsave
->xmm_space
, sizeof fxsave
->xmm_space
);
7227 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
7229 struct fxregs_state
*fxsave
=
7230 &vcpu
->arch
.guest_fpu
.state
.fxsave
;
7232 memcpy(fxsave
->st_space
, fpu
->fpr
, 128);
7233 fxsave
->cwd
= fpu
->fcw
;
7234 fxsave
->swd
= fpu
->fsw
;
7235 fxsave
->twd
= fpu
->ftwx
;
7236 fxsave
->fop
= fpu
->last_opcode
;
7237 fxsave
->rip
= fpu
->last_ip
;
7238 fxsave
->rdp
= fpu
->last_dp
;
7239 memcpy(fxsave
->xmm_space
, fpu
->xmm
, sizeof fxsave
->xmm_space
);
7244 static void fx_init(struct kvm_vcpu
*vcpu
)
7246 fpstate_init(&vcpu
->arch
.guest_fpu
.state
);
7248 vcpu
->arch
.guest_fpu
.state
.xsave
.header
.xcomp_bv
=
7249 host_xcr0
| XSTATE_COMPACTION_ENABLED
;
7252 * Ensure guest xcr0 is valid for loading
7254 vcpu
->arch
.xcr0
= XSTATE_FP
;
7256 vcpu
->arch
.cr0
|= X86_CR0_ET
;
7259 void kvm_load_guest_fpu(struct kvm_vcpu
*vcpu
)
7261 if (vcpu
->guest_fpu_loaded
)
7265 * Restore all possible states in the guest,
7266 * and assume host would use all available bits.
7267 * Guest xcr0 would be loaded later.
7269 kvm_put_guest_xcr0(vcpu
);
7270 vcpu
->guest_fpu_loaded
= 1;
7271 __kernel_fpu_begin();
7272 __copy_kernel_to_fpregs(&vcpu
->arch
.guest_fpu
.state
);
7276 void kvm_put_guest_fpu(struct kvm_vcpu
*vcpu
)
7278 kvm_put_guest_xcr0(vcpu
);
7280 if (!vcpu
->guest_fpu_loaded
) {
7281 vcpu
->fpu_counter
= 0;
7285 vcpu
->guest_fpu_loaded
= 0;
7286 copy_fpregs_to_fpstate(&vcpu
->arch
.guest_fpu
);
7288 ++vcpu
->stat
.fpu_reload
;
7290 * If using eager FPU mode, or if the guest is a frequent user
7291 * of the FPU, just leave the FPU active for next time.
7292 * Every 255 times fpu_counter rolls over to 0; a guest that uses
7293 * the FPU in bursts will revert to loading it on demand.
7295 if (!vcpu
->arch
.eager_fpu
) {
7296 if (++vcpu
->fpu_counter
< 5)
7297 kvm_make_request(KVM_REQ_DEACTIVATE_FPU
, vcpu
);
7302 void kvm_arch_vcpu_free(struct kvm_vcpu
*vcpu
)
7304 kvmclock_reset(vcpu
);
7306 free_cpumask_var(vcpu
->arch
.wbinvd_dirty_mask
);
7307 kvm_x86_ops
->vcpu_free(vcpu
);
7310 struct kvm_vcpu
*kvm_arch_vcpu_create(struct kvm
*kvm
,
7313 struct kvm_vcpu
*vcpu
;
7315 if (check_tsc_unstable() && atomic_read(&kvm
->online_vcpus
) != 0)
7316 printk_once(KERN_WARNING
7317 "kvm: SMP vm created on host with unstable TSC; "
7318 "guest TSC will not be reliable\n");
7320 vcpu
= kvm_x86_ops
->vcpu_create(kvm
, id
);
7325 int kvm_arch_vcpu_setup(struct kvm_vcpu
*vcpu
)
7329 kvm_vcpu_mtrr_init(vcpu
);
7330 r
= vcpu_load(vcpu
);
7333 kvm_vcpu_reset(vcpu
, false);
7334 kvm_mmu_setup(vcpu
);
7339 void kvm_arch_vcpu_postcreate(struct kvm_vcpu
*vcpu
)
7341 struct msr_data msr
;
7342 struct kvm
*kvm
= vcpu
->kvm
;
7344 if (vcpu_load(vcpu
))
7347 msr
.index
= MSR_IA32_TSC
;
7348 msr
.host_initiated
= true;
7349 kvm_write_tsc(vcpu
, &msr
);
7352 if (!kvmclock_periodic_sync
)
7355 schedule_delayed_work(&kvm
->arch
.kvmclock_sync_work
,
7356 KVMCLOCK_SYNC_PERIOD
);
7359 void kvm_arch_vcpu_destroy(struct kvm_vcpu
*vcpu
)
7362 vcpu
->arch
.apf
.msr_val
= 0;
7364 r
= vcpu_load(vcpu
);
7366 kvm_mmu_unload(vcpu
);
7369 kvm_x86_ops
->vcpu_free(vcpu
);
7372 void kvm_vcpu_reset(struct kvm_vcpu
*vcpu
, bool init_event
)
7374 vcpu
->arch
.hflags
= 0;
7376 atomic_set(&vcpu
->arch
.nmi_queued
, 0);
7377 vcpu
->arch
.nmi_pending
= 0;
7378 vcpu
->arch
.nmi_injected
= false;
7379 kvm_clear_interrupt_queue(vcpu
);
7380 kvm_clear_exception_queue(vcpu
);
7382 memset(vcpu
->arch
.db
, 0, sizeof(vcpu
->arch
.db
));
7383 kvm_update_dr0123(vcpu
);
7384 vcpu
->arch
.dr6
= DR6_INIT
;
7385 kvm_update_dr6(vcpu
);
7386 vcpu
->arch
.dr7
= DR7_FIXED_1
;
7387 kvm_update_dr7(vcpu
);
7391 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
7392 vcpu
->arch
.apf
.msr_val
= 0;
7393 vcpu
->arch
.st
.msr_val
= 0;
7395 kvmclock_reset(vcpu
);
7397 kvm_clear_async_pf_completion_queue(vcpu
);
7398 kvm_async_pf_hash_reset(vcpu
);
7399 vcpu
->arch
.apf
.halted
= false;
7402 kvm_pmu_reset(vcpu
);
7403 vcpu
->arch
.smbase
= 0x30000;
7406 memset(vcpu
->arch
.regs
, 0, sizeof(vcpu
->arch
.regs
));
7407 vcpu
->arch
.regs_avail
= ~0;
7408 vcpu
->arch
.regs_dirty
= ~0;
7410 kvm_x86_ops
->vcpu_reset(vcpu
, init_event
);
7413 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu
*vcpu
, u8 vector
)
7415 struct kvm_segment cs
;
7417 kvm_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
7418 cs
.selector
= vector
<< 8;
7419 cs
.base
= vector
<< 12;
7420 kvm_set_segment(vcpu
, &cs
, VCPU_SREG_CS
);
7421 kvm_rip_write(vcpu
, 0);
7424 int kvm_arch_hardware_enable(void)
7427 struct kvm_vcpu
*vcpu
;
7432 bool stable
, backwards_tsc
= false;
7434 kvm_shared_msr_cpu_online();
7435 ret
= kvm_x86_ops
->hardware_enable();
7439 local_tsc
= native_read_tsc();
7440 stable
= !check_tsc_unstable();
7441 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
7442 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
7443 if (!stable
&& vcpu
->cpu
== smp_processor_id())
7444 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
7445 if (stable
&& vcpu
->arch
.last_host_tsc
> local_tsc
) {
7446 backwards_tsc
= true;
7447 if (vcpu
->arch
.last_host_tsc
> max_tsc
)
7448 max_tsc
= vcpu
->arch
.last_host_tsc
;
7454 * Sometimes, even reliable TSCs go backwards. This happens on
7455 * platforms that reset TSC during suspend or hibernate actions, but
7456 * maintain synchronization. We must compensate. Fortunately, we can
7457 * detect that condition here, which happens early in CPU bringup,
7458 * before any KVM threads can be running. Unfortunately, we can't
7459 * bring the TSCs fully up to date with real time, as we aren't yet far
7460 * enough into CPU bringup that we know how much real time has actually
7461 * elapsed; our helper function, get_kernel_ns() will be using boot
7462 * variables that haven't been updated yet.
7464 * So we simply find the maximum observed TSC above, then record the
7465 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
7466 * the adjustment will be applied. Note that we accumulate
7467 * adjustments, in case multiple suspend cycles happen before some VCPU
7468 * gets a chance to run again. In the event that no KVM threads get a
7469 * chance to run, we will miss the entire elapsed period, as we'll have
7470 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7471 * loose cycle time. This isn't too big a deal, since the loss will be
7472 * uniform across all VCPUs (not to mention the scenario is extremely
7473 * unlikely). It is possible that a second hibernate recovery happens
7474 * much faster than a first, causing the observed TSC here to be
7475 * smaller; this would require additional padding adjustment, which is
7476 * why we set last_host_tsc to the local tsc observed here.
7478 * N.B. - this code below runs only on platforms with reliable TSC,
7479 * as that is the only way backwards_tsc is set above. Also note
7480 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7481 * have the same delta_cyc adjustment applied if backwards_tsc
7482 * is detected. Note further, this adjustment is only done once,
7483 * as we reset last_host_tsc on all VCPUs to stop this from being
7484 * called multiple times (one for each physical CPU bringup).
7486 * Platforms with unreliable TSCs don't have to deal with this, they
7487 * will be compensated by the logic in vcpu_load, which sets the TSC to
7488 * catchup mode. This will catchup all VCPUs to real time, but cannot
7489 * guarantee that they stay in perfect synchronization.
7491 if (backwards_tsc
) {
7492 u64 delta_cyc
= max_tsc
- local_tsc
;
7493 backwards_tsc_observed
= true;
7494 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
7495 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
7496 vcpu
->arch
.tsc_offset_adjustment
+= delta_cyc
;
7497 vcpu
->arch
.last_host_tsc
= local_tsc
;
7498 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
);
7502 * We have to disable TSC offset matching.. if you were
7503 * booting a VM while issuing an S4 host suspend....
7504 * you may have some problem. Solving this issue is
7505 * left as an exercise to the reader.
7507 kvm
->arch
.last_tsc_nsec
= 0;
7508 kvm
->arch
.last_tsc_write
= 0;
7515 void kvm_arch_hardware_disable(void)
7517 kvm_x86_ops
->hardware_disable();
7518 drop_user_return_notifiers();
7521 int kvm_arch_hardware_setup(void)
7525 r
= kvm_x86_ops
->hardware_setup();
7529 kvm_init_msr_list();
7533 void kvm_arch_hardware_unsetup(void)
7535 kvm_x86_ops
->hardware_unsetup();
7538 void kvm_arch_check_processor_compat(void *rtn
)
7540 kvm_x86_ops
->check_processor_compatibility(rtn
);
7543 bool kvm_vcpu_compatible(struct kvm_vcpu
*vcpu
)
7545 return irqchip_in_kernel(vcpu
->kvm
) == (vcpu
->arch
.apic
!= NULL
);
7548 struct static_key kvm_no_apic_vcpu __read_mostly
;
7550 int kvm_arch_vcpu_init(struct kvm_vcpu
*vcpu
)
7556 BUG_ON(vcpu
->kvm
== NULL
);
7559 vcpu
->arch
.pv
.pv_unhalted
= false;
7560 vcpu
->arch
.emulate_ctxt
.ops
= &emulate_ops
;
7561 if (!irqchip_in_kernel(kvm
) || kvm_vcpu_is_reset_bsp(vcpu
))
7562 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
7564 vcpu
->arch
.mp_state
= KVM_MP_STATE_UNINITIALIZED
;
7566 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
7571 vcpu
->arch
.pio_data
= page_address(page
);
7573 kvm_set_tsc_khz(vcpu
, max_tsc_khz
);
7575 r
= kvm_mmu_create(vcpu
);
7577 goto fail_free_pio_data
;
7579 if (irqchip_in_kernel(kvm
)) {
7580 r
= kvm_create_lapic(vcpu
);
7582 goto fail_mmu_destroy
;
7584 static_key_slow_inc(&kvm_no_apic_vcpu
);
7586 vcpu
->arch
.mce_banks
= kzalloc(KVM_MAX_MCE_BANKS
* sizeof(u64
) * 4,
7588 if (!vcpu
->arch
.mce_banks
) {
7590 goto fail_free_lapic
;
7592 vcpu
->arch
.mcg_cap
= KVM_MAX_MCE_BANKS
;
7594 if (!zalloc_cpumask_var(&vcpu
->arch
.wbinvd_dirty_mask
, GFP_KERNEL
)) {
7596 goto fail_free_mce_banks
;
7601 vcpu
->arch
.ia32_tsc_adjust_msr
= 0x0;
7602 vcpu
->arch
.pv_time_enabled
= false;
7604 vcpu
->arch
.guest_supported_xcr0
= 0;
7605 vcpu
->arch
.guest_xstate_size
= XSAVE_HDR_SIZE
+ XSAVE_HDR_OFFSET
;
7607 vcpu
->arch
.maxphyaddr
= cpuid_query_maxphyaddr(vcpu
);
7609 vcpu
->arch
.pat
= MSR_IA32_CR_PAT_DEFAULT
;
7611 kvm_async_pf_hash_reset(vcpu
);
7616 fail_free_mce_banks
:
7617 kfree(vcpu
->arch
.mce_banks
);
7619 kvm_free_lapic(vcpu
);
7621 kvm_mmu_destroy(vcpu
);
7623 free_page((unsigned long)vcpu
->arch
.pio_data
);
7628 void kvm_arch_vcpu_uninit(struct kvm_vcpu
*vcpu
)
7632 kvm_pmu_destroy(vcpu
);
7633 kfree(vcpu
->arch
.mce_banks
);
7634 kvm_free_lapic(vcpu
);
7635 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
7636 kvm_mmu_destroy(vcpu
);
7637 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
7638 free_page((unsigned long)vcpu
->arch
.pio_data
);
7639 if (!irqchip_in_kernel(vcpu
->kvm
))
7640 static_key_slow_dec(&kvm_no_apic_vcpu
);
7643 void kvm_arch_sched_in(struct kvm_vcpu
*vcpu
, int cpu
)
7645 kvm_x86_ops
->sched_in(vcpu
, cpu
);
7648 int kvm_arch_init_vm(struct kvm
*kvm
, unsigned long type
)
7653 INIT_HLIST_HEAD(&kvm
->arch
.mask_notifier_list
);
7654 INIT_LIST_HEAD(&kvm
->arch
.active_mmu_pages
);
7655 INIT_LIST_HEAD(&kvm
->arch
.zapped_obsolete_pages
);
7656 INIT_LIST_HEAD(&kvm
->arch
.assigned_dev_head
);
7657 atomic_set(&kvm
->arch
.noncoherent_dma_count
, 0);
7659 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7660 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID
, &kvm
->arch
.irq_sources_bitmap
);
7661 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7662 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID
,
7663 &kvm
->arch
.irq_sources_bitmap
);
7665 raw_spin_lock_init(&kvm
->arch
.tsc_write_lock
);
7666 mutex_init(&kvm
->arch
.apic_map_lock
);
7667 spin_lock_init(&kvm
->arch
.pvclock_gtod_sync_lock
);
7669 pvclock_update_vm_gtod_copy(kvm
);
7671 INIT_DELAYED_WORK(&kvm
->arch
.kvmclock_update_work
, kvmclock_update_fn
);
7672 INIT_DELAYED_WORK(&kvm
->arch
.kvmclock_sync_work
, kvmclock_sync_fn
);
7677 static void kvm_unload_vcpu_mmu(struct kvm_vcpu
*vcpu
)
7680 r
= vcpu_load(vcpu
);
7682 kvm_mmu_unload(vcpu
);
7686 static void kvm_free_vcpus(struct kvm
*kvm
)
7689 struct kvm_vcpu
*vcpu
;
7692 * Unpin any mmu pages first.
7694 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
7695 kvm_clear_async_pf_completion_queue(vcpu
);
7696 kvm_unload_vcpu_mmu(vcpu
);
7698 kvm_for_each_vcpu(i
, vcpu
, kvm
)
7699 kvm_arch_vcpu_free(vcpu
);
7701 mutex_lock(&kvm
->lock
);
7702 for (i
= 0; i
< atomic_read(&kvm
->online_vcpus
); i
++)
7703 kvm
->vcpus
[i
] = NULL
;
7705 atomic_set(&kvm
->online_vcpus
, 0);
7706 mutex_unlock(&kvm
->lock
);
7709 void kvm_arch_sync_events(struct kvm
*kvm
)
7711 cancel_delayed_work_sync(&kvm
->arch
.kvmclock_sync_work
);
7712 cancel_delayed_work_sync(&kvm
->arch
.kvmclock_update_work
);
7713 kvm_free_all_assigned_devices(kvm
);
7717 int __x86_set_memory_region(struct kvm
*kvm
,
7718 const struct kvm_userspace_memory_region
*mem
)
7722 /* Called with kvm->slots_lock held. */
7723 BUG_ON(mem
->slot
>= KVM_MEM_SLOTS_NUM
);
7725 for (i
= 0; i
< KVM_ADDRESS_SPACE_NUM
; i
++) {
7726 struct kvm_userspace_memory_region m
= *mem
;
7729 r
= __kvm_set_memory_region(kvm
, &m
);
7736 EXPORT_SYMBOL_GPL(__x86_set_memory_region
);
7738 int x86_set_memory_region(struct kvm
*kvm
,
7739 const struct kvm_userspace_memory_region
*mem
)
7743 mutex_lock(&kvm
->slots_lock
);
7744 r
= __x86_set_memory_region(kvm
, mem
);
7745 mutex_unlock(&kvm
->slots_lock
);
7749 EXPORT_SYMBOL_GPL(x86_set_memory_region
);
7751 void kvm_arch_destroy_vm(struct kvm
*kvm
)
7753 if (current
->mm
== kvm
->mm
) {
7755 * Free memory regions allocated on behalf of userspace,
7756 * unless the the memory map has changed due to process exit
7759 struct kvm_userspace_memory_region mem
;
7760 memset(&mem
, 0, sizeof(mem
));
7761 mem
.slot
= APIC_ACCESS_PAGE_PRIVATE_MEMSLOT
;
7762 x86_set_memory_region(kvm
, &mem
);
7764 mem
.slot
= IDENTITY_PAGETABLE_PRIVATE_MEMSLOT
;
7765 x86_set_memory_region(kvm
, &mem
);
7767 mem
.slot
= TSS_PRIVATE_MEMSLOT
;
7768 x86_set_memory_region(kvm
, &mem
);
7770 kvm_iommu_unmap_guest(kvm
);
7771 kfree(kvm
->arch
.vpic
);
7772 kfree(kvm
->arch
.vioapic
);
7773 kvm_free_vcpus(kvm
);
7774 kfree(rcu_dereference_check(kvm
->arch
.apic_map
, 1));
7777 void kvm_arch_free_memslot(struct kvm
*kvm
, struct kvm_memory_slot
*free
,
7778 struct kvm_memory_slot
*dont
)
7782 for (i
= 0; i
< KVM_NR_PAGE_SIZES
; ++i
) {
7783 if (!dont
|| free
->arch
.rmap
[i
] != dont
->arch
.rmap
[i
]) {
7784 kvfree(free
->arch
.rmap
[i
]);
7785 free
->arch
.rmap
[i
] = NULL
;
7790 if (!dont
|| free
->arch
.lpage_info
[i
- 1] !=
7791 dont
->arch
.lpage_info
[i
- 1]) {
7792 kvfree(free
->arch
.lpage_info
[i
- 1]);
7793 free
->arch
.lpage_info
[i
- 1] = NULL
;
7798 int kvm_arch_create_memslot(struct kvm
*kvm
, struct kvm_memory_slot
*slot
,
7799 unsigned long npages
)
7803 for (i
= 0; i
< KVM_NR_PAGE_SIZES
; ++i
) {
7808 lpages
= gfn_to_index(slot
->base_gfn
+ npages
- 1,
7809 slot
->base_gfn
, level
) + 1;
7811 slot
->arch
.rmap
[i
] =
7812 kvm_kvzalloc(lpages
* sizeof(*slot
->arch
.rmap
[i
]));
7813 if (!slot
->arch
.rmap
[i
])
7818 slot
->arch
.lpage_info
[i
- 1] = kvm_kvzalloc(lpages
*
7819 sizeof(*slot
->arch
.lpage_info
[i
- 1]));
7820 if (!slot
->arch
.lpage_info
[i
- 1])
7823 if (slot
->base_gfn
& (KVM_PAGES_PER_HPAGE(level
) - 1))
7824 slot
->arch
.lpage_info
[i
- 1][0].write_count
= 1;
7825 if ((slot
->base_gfn
+ npages
) & (KVM_PAGES_PER_HPAGE(level
) - 1))
7826 slot
->arch
.lpage_info
[i
- 1][lpages
- 1].write_count
= 1;
7827 ugfn
= slot
->userspace_addr
>> PAGE_SHIFT
;
7829 * If the gfn and userspace address are not aligned wrt each
7830 * other, or if explicitly asked to, disable large page
7831 * support for this slot
7833 if ((slot
->base_gfn
^ ugfn
) & (KVM_PAGES_PER_HPAGE(level
) - 1) ||
7834 !kvm_largepages_enabled()) {
7837 for (j
= 0; j
< lpages
; ++j
)
7838 slot
->arch
.lpage_info
[i
- 1][j
].write_count
= 1;
7845 for (i
= 0; i
< KVM_NR_PAGE_SIZES
; ++i
) {
7846 kvfree(slot
->arch
.rmap
[i
]);
7847 slot
->arch
.rmap
[i
] = NULL
;
7851 kvfree(slot
->arch
.lpage_info
[i
- 1]);
7852 slot
->arch
.lpage_info
[i
- 1] = NULL
;
7857 void kvm_arch_memslots_updated(struct kvm
*kvm
, struct kvm_memslots
*slots
)
7860 * memslots->generation has been incremented.
7861 * mmio generation may have reached its maximum value.
7863 kvm_mmu_invalidate_mmio_sptes(kvm
, slots
);
7866 int kvm_arch_prepare_memory_region(struct kvm
*kvm
,
7867 struct kvm_memory_slot
*memslot
,
7868 const struct kvm_userspace_memory_region
*mem
,
7869 enum kvm_mr_change change
)
7872 * Only private memory slots need to be mapped here since
7873 * KVM_SET_MEMORY_REGION ioctl is no longer supported.
7875 if ((memslot
->id
>= KVM_USER_MEM_SLOTS
) && (change
== KVM_MR_CREATE
)) {
7876 unsigned long userspace_addr
;
7879 * MAP_SHARED to prevent internal slot pages from being moved
7882 userspace_addr
= vm_mmap(NULL
, 0, memslot
->npages
* PAGE_SIZE
,
7883 PROT_READ
| PROT_WRITE
,
7884 MAP_SHARED
| MAP_ANONYMOUS
, 0);
7886 if (IS_ERR((void *)userspace_addr
))
7887 return PTR_ERR((void *)userspace_addr
);
7889 memslot
->userspace_addr
= userspace_addr
;
7895 static void kvm_mmu_slot_apply_flags(struct kvm
*kvm
,
7896 struct kvm_memory_slot
*new)
7898 /* Still write protect RO slot */
7899 if (new->flags
& KVM_MEM_READONLY
) {
7900 kvm_mmu_slot_remove_write_access(kvm
, new);
7905 * Call kvm_x86_ops dirty logging hooks when they are valid.
7907 * kvm_x86_ops->slot_disable_log_dirty is called when:
7909 * - KVM_MR_CREATE with dirty logging is disabled
7910 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
7912 * The reason is, in case of PML, we need to set D-bit for any slots
7913 * with dirty logging disabled in order to eliminate unnecessary GPA
7914 * logging in PML buffer (and potential PML buffer full VMEXT). This
7915 * guarantees leaving PML enabled during guest's lifetime won't have
7916 * any additonal overhead from PML when guest is running with dirty
7917 * logging disabled for memory slots.
7919 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
7920 * to dirty logging mode.
7922 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
7924 * In case of write protect:
7926 * Write protect all pages for dirty logging.
7928 * All the sptes including the large sptes which point to this
7929 * slot are set to readonly. We can not create any new large
7930 * spte on this slot until the end of the logging.
7932 * See the comments in fast_page_fault().
7934 if (new->flags
& KVM_MEM_LOG_DIRTY_PAGES
) {
7935 if (kvm_x86_ops
->slot_enable_log_dirty
)
7936 kvm_x86_ops
->slot_enable_log_dirty(kvm
, new);
7938 kvm_mmu_slot_remove_write_access(kvm
, new);
7940 if (kvm_x86_ops
->slot_disable_log_dirty
)
7941 kvm_x86_ops
->slot_disable_log_dirty(kvm
, new);
7945 void kvm_arch_commit_memory_region(struct kvm
*kvm
,
7946 const struct kvm_userspace_memory_region
*mem
,
7947 const struct kvm_memory_slot
*old
,
7948 const struct kvm_memory_slot
*new,
7949 enum kvm_mr_change change
)
7951 int nr_mmu_pages
= 0;
7953 if (change
== KVM_MR_DELETE
&& old
->id
>= KVM_USER_MEM_SLOTS
) {
7956 ret
= vm_munmap(old
->userspace_addr
,
7957 old
->npages
* PAGE_SIZE
);
7960 "kvm_vm_ioctl_set_memory_region: "
7961 "failed to munmap memory\n");
7964 if (!kvm
->arch
.n_requested_mmu_pages
)
7965 nr_mmu_pages
= kvm_mmu_calculate_mmu_pages(kvm
);
7968 kvm_mmu_change_mmu_pages(kvm
, nr_mmu_pages
);
7971 * Dirty logging tracks sptes in 4k granularity, meaning that large
7972 * sptes have to be split. If live migration is successful, the guest
7973 * in the source machine will be destroyed and large sptes will be
7974 * created in the destination. However, if the guest continues to run
7975 * in the source machine (for example if live migration fails), small
7976 * sptes will remain around and cause bad performance.
7978 * Scan sptes if dirty logging has been stopped, dropping those
7979 * which can be collapsed into a single large-page spte. Later
7980 * page faults will create the large-page sptes.
7982 if ((change
!= KVM_MR_DELETE
) &&
7983 (old
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) &&
7984 !(new->flags
& KVM_MEM_LOG_DIRTY_PAGES
))
7985 kvm_mmu_zap_collapsible_sptes(kvm
, new);
7988 * Set up write protection and/or dirty logging for the new slot.
7990 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
7991 * been zapped so no dirty logging staff is needed for old slot. For
7992 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
7993 * new and it's also covered when dealing with the new slot.
7995 * FIXME: const-ify all uses of struct kvm_memory_slot.
7997 if (change
!= KVM_MR_DELETE
)
7998 kvm_mmu_slot_apply_flags(kvm
, (struct kvm_memory_slot
*) new);
8001 void kvm_arch_flush_shadow_all(struct kvm
*kvm
)
8003 kvm_mmu_invalidate_zap_all_pages(kvm
);
8006 void kvm_arch_flush_shadow_memslot(struct kvm
*kvm
,
8007 struct kvm_memory_slot
*slot
)
8009 kvm_mmu_invalidate_zap_all_pages(kvm
);
8012 int kvm_arch_vcpu_runnable(struct kvm_vcpu
*vcpu
)
8014 if (is_guest_mode(vcpu
) && kvm_x86_ops
->check_nested_events
)
8015 kvm_x86_ops
->check_nested_events(vcpu
, false);
8017 return (vcpu
->arch
.mp_state
== KVM_MP_STATE_RUNNABLE
&&
8018 !vcpu
->arch
.apf
.halted
)
8019 || !list_empty_careful(&vcpu
->async_pf
.done
)
8020 || kvm_apic_has_events(vcpu
)
8021 || vcpu
->arch
.pv
.pv_unhalted
8022 || atomic_read(&vcpu
->arch
.nmi_queued
) ||
8023 (kvm_arch_interrupt_allowed(vcpu
) &&
8024 kvm_cpu_has_interrupt(vcpu
));
8027 int kvm_arch_vcpu_should_kick(struct kvm_vcpu
*vcpu
)
8029 return kvm_vcpu_exiting_guest_mode(vcpu
) == IN_GUEST_MODE
;
8032 int kvm_arch_interrupt_allowed(struct kvm_vcpu
*vcpu
)
8034 return kvm_x86_ops
->interrupt_allowed(vcpu
);
8037 unsigned long kvm_get_linear_rip(struct kvm_vcpu
*vcpu
)
8039 if (is_64_bit_mode(vcpu
))
8040 return kvm_rip_read(vcpu
);
8041 return (u32
)(get_segment_base(vcpu
, VCPU_SREG_CS
) +
8042 kvm_rip_read(vcpu
));
8044 EXPORT_SYMBOL_GPL(kvm_get_linear_rip
);
8046 bool kvm_is_linear_rip(struct kvm_vcpu
*vcpu
, unsigned long linear_rip
)
8048 return kvm_get_linear_rip(vcpu
) == linear_rip
;
8050 EXPORT_SYMBOL_GPL(kvm_is_linear_rip
);
8052 unsigned long kvm_get_rflags(struct kvm_vcpu
*vcpu
)
8054 unsigned long rflags
;
8056 rflags
= kvm_x86_ops
->get_rflags(vcpu
);
8057 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
8058 rflags
&= ~X86_EFLAGS_TF
;
8061 EXPORT_SYMBOL_GPL(kvm_get_rflags
);
8063 static void __kvm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
8065 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
&&
8066 kvm_is_linear_rip(vcpu
, vcpu
->arch
.singlestep_rip
))
8067 rflags
|= X86_EFLAGS_TF
;
8068 kvm_x86_ops
->set_rflags(vcpu
, rflags
);
8071 void kvm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
8073 __kvm_set_rflags(vcpu
, rflags
);
8074 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
8076 EXPORT_SYMBOL_GPL(kvm_set_rflags
);
8078 void kvm_arch_async_page_ready(struct kvm_vcpu
*vcpu
, struct kvm_async_pf
*work
)
8082 if ((vcpu
->arch
.mmu
.direct_map
!= work
->arch
.direct_map
) ||
8086 r
= kvm_mmu_reload(vcpu
);
8090 if (!vcpu
->arch
.mmu
.direct_map
&&
8091 work
->arch
.cr3
!= vcpu
->arch
.mmu
.get_cr3(vcpu
))
8094 vcpu
->arch
.mmu
.page_fault(vcpu
, work
->gva
, 0, true);
8097 static inline u32
kvm_async_pf_hash_fn(gfn_t gfn
)
8099 return hash_32(gfn
& 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU
));
8102 static inline u32
kvm_async_pf_next_probe(u32 key
)
8104 return (key
+ 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU
) - 1);
8107 static void kvm_add_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
8109 u32 key
= kvm_async_pf_hash_fn(gfn
);
8111 while (vcpu
->arch
.apf
.gfns
[key
] != ~0)
8112 key
= kvm_async_pf_next_probe(key
);
8114 vcpu
->arch
.apf
.gfns
[key
] = gfn
;
8117 static u32
kvm_async_pf_gfn_slot(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
8120 u32 key
= kvm_async_pf_hash_fn(gfn
);
8122 for (i
= 0; i
< roundup_pow_of_two(ASYNC_PF_PER_VCPU
) &&
8123 (vcpu
->arch
.apf
.gfns
[key
] != gfn
&&
8124 vcpu
->arch
.apf
.gfns
[key
] != ~0); i
++)
8125 key
= kvm_async_pf_next_probe(key
);
8130 bool kvm_find_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
8132 return vcpu
->arch
.apf
.gfns
[kvm_async_pf_gfn_slot(vcpu
, gfn
)] == gfn
;
8135 static void kvm_del_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
8139 i
= j
= kvm_async_pf_gfn_slot(vcpu
, gfn
);
8141 vcpu
->arch
.apf
.gfns
[i
] = ~0;
8143 j
= kvm_async_pf_next_probe(j
);
8144 if (vcpu
->arch
.apf
.gfns
[j
] == ~0)
8146 k
= kvm_async_pf_hash_fn(vcpu
->arch
.apf
.gfns
[j
]);
8148 * k lies cyclically in ]i,j]
8150 * |....j i.k.| or |.k..j i...|
8152 } while ((i
<= j
) ? (i
< k
&& k
<= j
) : (i
< k
|| k
<= j
));
8153 vcpu
->arch
.apf
.gfns
[i
] = vcpu
->arch
.apf
.gfns
[j
];
8158 static int apf_put_user(struct kvm_vcpu
*vcpu
, u32 val
)
8161 return kvm_write_guest_cached(vcpu
->kvm
, &vcpu
->arch
.apf
.data
, &val
,
8165 void kvm_arch_async_page_not_present(struct kvm_vcpu
*vcpu
,
8166 struct kvm_async_pf
*work
)
8168 struct x86_exception fault
;
8170 trace_kvm_async_pf_not_present(work
->arch
.token
, work
->gva
);
8171 kvm_add_async_pf_gfn(vcpu
, work
->arch
.gfn
);
8173 if (!(vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
) ||
8174 (vcpu
->arch
.apf
.send_user_only
&&
8175 kvm_x86_ops
->get_cpl(vcpu
) == 0))
8176 kvm_make_request(KVM_REQ_APF_HALT
, vcpu
);
8177 else if (!apf_put_user(vcpu
, KVM_PV_REASON_PAGE_NOT_PRESENT
)) {
8178 fault
.vector
= PF_VECTOR
;
8179 fault
.error_code_valid
= true;
8180 fault
.error_code
= 0;
8181 fault
.nested_page_fault
= false;
8182 fault
.address
= work
->arch
.token
;
8183 kvm_inject_page_fault(vcpu
, &fault
);
8187 void kvm_arch_async_page_present(struct kvm_vcpu
*vcpu
,
8188 struct kvm_async_pf
*work
)
8190 struct x86_exception fault
;
8192 trace_kvm_async_pf_ready(work
->arch
.token
, work
->gva
);
8193 if (work
->wakeup_all
)
8194 work
->arch
.token
= ~0; /* broadcast wakeup */
8196 kvm_del_async_pf_gfn(vcpu
, work
->arch
.gfn
);
8198 if ((vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
) &&
8199 !apf_put_user(vcpu
, KVM_PV_REASON_PAGE_READY
)) {
8200 fault
.vector
= PF_VECTOR
;
8201 fault
.error_code_valid
= true;
8202 fault
.error_code
= 0;
8203 fault
.nested_page_fault
= false;
8204 fault
.address
= work
->arch
.token
;
8205 kvm_inject_page_fault(vcpu
, &fault
);
8207 vcpu
->arch
.apf
.halted
= false;
8208 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
8211 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu
*vcpu
)
8213 if (!(vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
))
8216 return !kvm_event_needs_reinjection(vcpu
) &&
8217 kvm_x86_ops
->interrupt_allowed(vcpu
);
8220 void kvm_arch_start_assignment(struct kvm
*kvm
)
8222 atomic_inc(&kvm
->arch
.assigned_device_count
);
8224 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment
);
8226 void kvm_arch_end_assignment(struct kvm
*kvm
)
8228 atomic_dec(&kvm
->arch
.assigned_device_count
);
8230 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment
);
8232 bool kvm_arch_has_assigned_device(struct kvm
*kvm
)
8234 return atomic_read(&kvm
->arch
.assigned_device_count
);
8236 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device
);
8238 void kvm_arch_register_noncoherent_dma(struct kvm
*kvm
)
8240 atomic_inc(&kvm
->arch
.noncoherent_dma_count
);
8242 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma
);
8244 void kvm_arch_unregister_noncoherent_dma(struct kvm
*kvm
)
8246 atomic_dec(&kvm
->arch
.noncoherent_dma_count
);
8248 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma
);
8250 bool kvm_arch_has_noncoherent_dma(struct kvm
*kvm
)
8252 return atomic_read(&kvm
->arch
.noncoherent_dma_count
);
8254 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma
);
8256 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit
);
8257 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq
);
8258 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault
);
8259 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr
);
8260 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr
);
8261 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun
);
8262 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit
);
8263 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject
);
8264 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit
);
8265 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga
);
8266 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit
);
8267 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts
);
8268 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset
);
8269 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window
);
8270 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full
);