Linux 4.2.2
[linux/fpc-iii.git] / arch / x86 / mm / init.c
blob8533b46e6bee565e242f8ea339d892b65206c97d
1 #include <linux/gfp.h>
2 #include <linux/initrd.h>
3 #include <linux/ioport.h>
4 #include <linux/swap.h>
5 #include <linux/memblock.h>
6 #include <linux/bootmem.h> /* for max_low_pfn */
8 #include <asm/cacheflush.h>
9 #include <asm/e820.h>
10 #include <asm/init.h>
11 #include <asm/page.h>
12 #include <asm/page_types.h>
13 #include <asm/sections.h>
14 #include <asm/setup.h>
15 #include <asm/tlbflush.h>
16 #include <asm/tlb.h>
17 #include <asm/proto.h>
18 #include <asm/dma.h> /* for MAX_DMA_PFN */
19 #include <asm/microcode.h>
22 * We need to define the tracepoints somewhere, and tlb.c
23 * is only compied when SMP=y.
25 #define CREATE_TRACE_POINTS
26 #include <trace/events/tlb.h>
28 #include "mm_internal.h"
31 * Tables translating between page_cache_type_t and pte encoding.
33 * Minimal supported modes are defined statically, they are modified
34 * during bootup if more supported cache modes are available.
36 * Index into __cachemode2pte_tbl[] is the cachemode.
38 * Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
39 * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
41 uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
42 [_PAGE_CACHE_MODE_WB ] = 0 | 0 ,
43 [_PAGE_CACHE_MODE_WC ] = 0 | _PAGE_PCD,
44 [_PAGE_CACHE_MODE_UC_MINUS] = 0 | _PAGE_PCD,
45 [_PAGE_CACHE_MODE_UC ] = _PAGE_PWT | _PAGE_PCD,
46 [_PAGE_CACHE_MODE_WT ] = 0 | _PAGE_PCD,
47 [_PAGE_CACHE_MODE_WP ] = 0 | _PAGE_PCD,
49 EXPORT_SYMBOL(__cachemode2pte_tbl);
51 uint8_t __pte2cachemode_tbl[8] = {
52 [__pte2cm_idx( 0 | 0 | 0 )] = _PAGE_CACHE_MODE_WB,
53 [__pte2cm_idx(_PAGE_PWT | 0 | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
54 [__pte2cm_idx( 0 | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
55 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC,
56 [__pte2cm_idx( 0 | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
57 [__pte2cm_idx(_PAGE_PWT | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
58 [__pte2cm_idx(0 | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
59 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
61 EXPORT_SYMBOL(__pte2cachemode_tbl);
63 static unsigned long __initdata pgt_buf_start;
64 static unsigned long __initdata pgt_buf_end;
65 static unsigned long __initdata pgt_buf_top;
67 static unsigned long min_pfn_mapped;
69 static bool __initdata can_use_brk_pgt = true;
72 * Pages returned are already directly mapped.
74 * Changing that is likely to break Xen, see commit:
76 * 279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
78 * for detailed information.
80 __ref void *alloc_low_pages(unsigned int num)
82 unsigned long pfn;
83 int i;
85 if (after_bootmem) {
86 unsigned int order;
88 order = get_order((unsigned long)num << PAGE_SHIFT);
89 return (void *)__get_free_pages(GFP_ATOMIC | __GFP_NOTRACK |
90 __GFP_ZERO, order);
93 if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
94 unsigned long ret;
95 if (min_pfn_mapped >= max_pfn_mapped)
96 panic("alloc_low_pages: ran out of memory");
97 ret = memblock_find_in_range(min_pfn_mapped << PAGE_SHIFT,
98 max_pfn_mapped << PAGE_SHIFT,
99 PAGE_SIZE * num , PAGE_SIZE);
100 if (!ret)
101 panic("alloc_low_pages: can not alloc memory");
102 memblock_reserve(ret, PAGE_SIZE * num);
103 pfn = ret >> PAGE_SHIFT;
104 } else {
105 pfn = pgt_buf_end;
106 pgt_buf_end += num;
107 printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n",
108 pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1);
111 for (i = 0; i < num; i++) {
112 void *adr;
114 adr = __va((pfn + i) << PAGE_SHIFT);
115 clear_page(adr);
118 return __va(pfn << PAGE_SHIFT);
121 /* need 3 4k for initial PMD_SIZE, 3 4k for 0-ISA_END_ADDRESS */
122 #define INIT_PGT_BUF_SIZE (6 * PAGE_SIZE)
123 RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
124 void __init early_alloc_pgt_buf(void)
126 unsigned long tables = INIT_PGT_BUF_SIZE;
127 phys_addr_t base;
129 base = __pa(extend_brk(tables, PAGE_SIZE));
131 pgt_buf_start = base >> PAGE_SHIFT;
132 pgt_buf_end = pgt_buf_start;
133 pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
136 int after_bootmem;
138 early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
140 struct map_range {
141 unsigned long start;
142 unsigned long end;
143 unsigned page_size_mask;
146 static int page_size_mask;
148 static void __init probe_page_size_mask(void)
150 #if !defined(CONFIG_DEBUG_PAGEALLOC) && !defined(CONFIG_KMEMCHECK)
152 * For CONFIG_DEBUG_PAGEALLOC, identity mapping will use small pages.
153 * This will simplify cpa(), which otherwise needs to support splitting
154 * large pages into small in interrupt context, etc.
156 if (cpu_has_pse)
157 page_size_mask |= 1 << PG_LEVEL_2M;
158 #endif
160 /* Enable PSE if available */
161 if (cpu_has_pse)
162 cr4_set_bits_and_update_boot(X86_CR4_PSE);
164 /* Enable PGE if available */
165 if (cpu_has_pge) {
166 cr4_set_bits_and_update_boot(X86_CR4_PGE);
167 __supported_pte_mask |= _PAGE_GLOBAL;
168 } else
169 __supported_pte_mask &= ~_PAGE_GLOBAL;
171 /* Enable 1 GB linear kernel mappings if available: */
172 if (direct_gbpages && cpu_has_gbpages) {
173 printk(KERN_INFO "Using GB pages for direct mapping\n");
174 page_size_mask |= 1 << PG_LEVEL_1G;
175 } else {
176 direct_gbpages = 0;
180 #ifdef CONFIG_X86_32
181 #define NR_RANGE_MR 3
182 #else /* CONFIG_X86_64 */
183 #define NR_RANGE_MR 5
184 #endif
186 static int __meminit save_mr(struct map_range *mr, int nr_range,
187 unsigned long start_pfn, unsigned long end_pfn,
188 unsigned long page_size_mask)
190 if (start_pfn < end_pfn) {
191 if (nr_range >= NR_RANGE_MR)
192 panic("run out of range for init_memory_mapping\n");
193 mr[nr_range].start = start_pfn<<PAGE_SHIFT;
194 mr[nr_range].end = end_pfn<<PAGE_SHIFT;
195 mr[nr_range].page_size_mask = page_size_mask;
196 nr_range++;
199 return nr_range;
203 * adjust the page_size_mask for small range to go with
204 * big page size instead small one if nearby are ram too.
206 static void __init_refok adjust_range_page_size_mask(struct map_range *mr,
207 int nr_range)
209 int i;
211 for (i = 0; i < nr_range; i++) {
212 if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
213 !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
214 unsigned long start = round_down(mr[i].start, PMD_SIZE);
215 unsigned long end = round_up(mr[i].end, PMD_SIZE);
217 #ifdef CONFIG_X86_32
218 if ((end >> PAGE_SHIFT) > max_low_pfn)
219 continue;
220 #endif
222 if (memblock_is_region_memory(start, end - start))
223 mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
225 if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
226 !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
227 unsigned long start = round_down(mr[i].start, PUD_SIZE);
228 unsigned long end = round_up(mr[i].end, PUD_SIZE);
230 if (memblock_is_region_memory(start, end - start))
231 mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
236 static const char *page_size_string(struct map_range *mr)
238 static const char str_1g[] = "1G";
239 static const char str_2m[] = "2M";
240 static const char str_4m[] = "4M";
241 static const char str_4k[] = "4k";
243 if (mr->page_size_mask & (1<<PG_LEVEL_1G))
244 return str_1g;
246 * 32-bit without PAE has a 4M large page size.
247 * PG_LEVEL_2M is misnamed, but we can at least
248 * print out the right size in the string.
250 if (IS_ENABLED(CONFIG_X86_32) &&
251 !IS_ENABLED(CONFIG_X86_PAE) &&
252 mr->page_size_mask & (1<<PG_LEVEL_2M))
253 return str_4m;
255 if (mr->page_size_mask & (1<<PG_LEVEL_2M))
256 return str_2m;
258 return str_4k;
261 static int __meminit split_mem_range(struct map_range *mr, int nr_range,
262 unsigned long start,
263 unsigned long end)
265 unsigned long start_pfn, end_pfn, limit_pfn;
266 unsigned long pfn;
267 int i;
269 limit_pfn = PFN_DOWN(end);
271 /* head if not big page alignment ? */
272 pfn = start_pfn = PFN_DOWN(start);
273 #ifdef CONFIG_X86_32
275 * Don't use a large page for the first 2/4MB of memory
276 * because there are often fixed size MTRRs in there
277 * and overlapping MTRRs into large pages can cause
278 * slowdowns.
280 if (pfn == 0)
281 end_pfn = PFN_DOWN(PMD_SIZE);
282 else
283 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
284 #else /* CONFIG_X86_64 */
285 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
286 #endif
287 if (end_pfn > limit_pfn)
288 end_pfn = limit_pfn;
289 if (start_pfn < end_pfn) {
290 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
291 pfn = end_pfn;
294 /* big page (2M) range */
295 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
296 #ifdef CONFIG_X86_32
297 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
298 #else /* CONFIG_X86_64 */
299 end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
300 if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
301 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
302 #endif
304 if (start_pfn < end_pfn) {
305 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
306 page_size_mask & (1<<PG_LEVEL_2M));
307 pfn = end_pfn;
310 #ifdef CONFIG_X86_64
311 /* big page (1G) range */
312 start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
313 end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
314 if (start_pfn < end_pfn) {
315 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
316 page_size_mask &
317 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
318 pfn = end_pfn;
321 /* tail is not big page (1G) alignment */
322 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
323 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
324 if (start_pfn < end_pfn) {
325 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
326 page_size_mask & (1<<PG_LEVEL_2M));
327 pfn = end_pfn;
329 #endif
331 /* tail is not big page (2M) alignment */
332 start_pfn = pfn;
333 end_pfn = limit_pfn;
334 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
336 if (!after_bootmem)
337 adjust_range_page_size_mask(mr, nr_range);
339 /* try to merge same page size and continuous */
340 for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
341 unsigned long old_start;
342 if (mr[i].end != mr[i+1].start ||
343 mr[i].page_size_mask != mr[i+1].page_size_mask)
344 continue;
345 /* move it */
346 old_start = mr[i].start;
347 memmove(&mr[i], &mr[i+1],
348 (nr_range - 1 - i) * sizeof(struct map_range));
349 mr[i--].start = old_start;
350 nr_range--;
353 for (i = 0; i < nr_range; i++)
354 printk(KERN_DEBUG " [mem %#010lx-%#010lx] page %s\n",
355 mr[i].start, mr[i].end - 1,
356 page_size_string(&mr[i]));
358 return nr_range;
361 struct range pfn_mapped[E820_X_MAX];
362 int nr_pfn_mapped;
364 static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
366 nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_X_MAX,
367 nr_pfn_mapped, start_pfn, end_pfn);
368 nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_X_MAX);
370 max_pfn_mapped = max(max_pfn_mapped, end_pfn);
372 if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
373 max_low_pfn_mapped = max(max_low_pfn_mapped,
374 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
377 bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
379 int i;
381 for (i = 0; i < nr_pfn_mapped; i++)
382 if ((start_pfn >= pfn_mapped[i].start) &&
383 (end_pfn <= pfn_mapped[i].end))
384 return true;
386 return false;
390 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
391 * This runs before bootmem is initialized and gets pages directly from
392 * the physical memory. To access them they are temporarily mapped.
394 unsigned long __init_refok init_memory_mapping(unsigned long start,
395 unsigned long end)
397 struct map_range mr[NR_RANGE_MR];
398 unsigned long ret = 0;
399 int nr_range, i;
401 pr_info("init_memory_mapping: [mem %#010lx-%#010lx]\n",
402 start, end - 1);
404 memset(mr, 0, sizeof(mr));
405 nr_range = split_mem_range(mr, 0, start, end);
407 for (i = 0; i < nr_range; i++)
408 ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
409 mr[i].page_size_mask);
411 add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
413 return ret >> PAGE_SHIFT;
417 * We need to iterate through the E820 memory map and create direct mappings
418 * for only E820_RAM and E820_KERN_RESERVED regions. We cannot simply
419 * create direct mappings for all pfns from [0 to max_low_pfn) and
420 * [4GB to max_pfn) because of possible memory holes in high addresses
421 * that cannot be marked as UC by fixed/variable range MTRRs.
422 * Depending on the alignment of E820 ranges, this may possibly result
423 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
425 * init_mem_mapping() calls init_range_memory_mapping() with big range.
426 * That range would have hole in the middle or ends, and only ram parts
427 * will be mapped in init_range_memory_mapping().
429 static unsigned long __init init_range_memory_mapping(
430 unsigned long r_start,
431 unsigned long r_end)
433 unsigned long start_pfn, end_pfn;
434 unsigned long mapped_ram_size = 0;
435 int i;
437 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
438 u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
439 u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
440 if (start >= end)
441 continue;
444 * if it is overlapping with brk pgt, we need to
445 * alloc pgt buf from memblock instead.
447 can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
448 min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
449 init_memory_mapping(start, end);
450 mapped_ram_size += end - start;
451 can_use_brk_pgt = true;
454 return mapped_ram_size;
457 static unsigned long __init get_new_step_size(unsigned long step_size)
460 * Initial mapped size is PMD_SIZE (2M).
461 * We can not set step_size to be PUD_SIZE (1G) yet.
462 * In worse case, when we cross the 1G boundary, and
463 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
464 * to map 1G range with PTE. Hence we use one less than the
465 * difference of page table level shifts.
467 * Don't need to worry about overflow in the top-down case, on 32bit,
468 * when step_size is 0, round_down() returns 0 for start, and that
469 * turns it into 0x100000000ULL.
470 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
471 * needs to be taken into consideration by the code below.
473 return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
477 * memory_map_top_down - Map [map_start, map_end) top down
478 * @map_start: start address of the target memory range
479 * @map_end: end address of the target memory range
481 * This function will setup direct mapping for memory range
482 * [map_start, map_end) in top-down. That said, the page tables
483 * will be allocated at the end of the memory, and we map the
484 * memory in top-down.
486 static void __init memory_map_top_down(unsigned long map_start,
487 unsigned long map_end)
489 unsigned long real_end, start, last_start;
490 unsigned long step_size;
491 unsigned long addr;
492 unsigned long mapped_ram_size = 0;
494 /* xen has big range in reserved near end of ram, skip it at first.*/
495 addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
496 real_end = addr + PMD_SIZE;
498 /* step_size need to be small so pgt_buf from BRK could cover it */
499 step_size = PMD_SIZE;
500 max_pfn_mapped = 0; /* will get exact value next */
501 min_pfn_mapped = real_end >> PAGE_SHIFT;
502 last_start = start = real_end;
505 * We start from the top (end of memory) and go to the bottom.
506 * The memblock_find_in_range() gets us a block of RAM from the
507 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
508 * for page table.
510 while (last_start > map_start) {
511 if (last_start > step_size) {
512 start = round_down(last_start - 1, step_size);
513 if (start < map_start)
514 start = map_start;
515 } else
516 start = map_start;
517 mapped_ram_size += init_range_memory_mapping(start,
518 last_start);
519 last_start = start;
520 min_pfn_mapped = last_start >> PAGE_SHIFT;
521 if (mapped_ram_size >= step_size)
522 step_size = get_new_step_size(step_size);
525 if (real_end < map_end)
526 init_range_memory_mapping(real_end, map_end);
530 * memory_map_bottom_up - Map [map_start, map_end) bottom up
531 * @map_start: start address of the target memory range
532 * @map_end: end address of the target memory range
534 * This function will setup direct mapping for memory range
535 * [map_start, map_end) in bottom-up. Since we have limited the
536 * bottom-up allocation above the kernel, the page tables will
537 * be allocated just above the kernel and we map the memory
538 * in [map_start, map_end) in bottom-up.
540 static void __init memory_map_bottom_up(unsigned long map_start,
541 unsigned long map_end)
543 unsigned long next, start;
544 unsigned long mapped_ram_size = 0;
545 /* step_size need to be small so pgt_buf from BRK could cover it */
546 unsigned long step_size = PMD_SIZE;
548 start = map_start;
549 min_pfn_mapped = start >> PAGE_SHIFT;
552 * We start from the bottom (@map_start) and go to the top (@map_end).
553 * The memblock_find_in_range() gets us a block of RAM from the
554 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
555 * for page table.
557 while (start < map_end) {
558 if (step_size && map_end - start > step_size) {
559 next = round_up(start + 1, step_size);
560 if (next > map_end)
561 next = map_end;
562 } else {
563 next = map_end;
566 mapped_ram_size += init_range_memory_mapping(start, next);
567 start = next;
569 if (mapped_ram_size >= step_size)
570 step_size = get_new_step_size(step_size);
574 void __init init_mem_mapping(void)
576 unsigned long end;
578 probe_page_size_mask();
580 #ifdef CONFIG_X86_64
581 end = max_pfn << PAGE_SHIFT;
582 #else
583 end = max_low_pfn << PAGE_SHIFT;
584 #endif
586 /* the ISA range is always mapped regardless of memory holes */
587 init_memory_mapping(0, ISA_END_ADDRESS);
590 * If the allocation is in bottom-up direction, we setup direct mapping
591 * in bottom-up, otherwise we setup direct mapping in top-down.
593 if (memblock_bottom_up()) {
594 unsigned long kernel_end = __pa_symbol(_end);
597 * we need two separate calls here. This is because we want to
598 * allocate page tables above the kernel. So we first map
599 * [kernel_end, end) to make memory above the kernel be mapped
600 * as soon as possible. And then use page tables allocated above
601 * the kernel to map [ISA_END_ADDRESS, kernel_end).
603 memory_map_bottom_up(kernel_end, end);
604 memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
605 } else {
606 memory_map_top_down(ISA_END_ADDRESS, end);
609 #ifdef CONFIG_X86_64
610 if (max_pfn > max_low_pfn) {
611 /* can we preseve max_low_pfn ?*/
612 max_low_pfn = max_pfn;
614 #else
615 early_ioremap_page_table_range_init();
616 #endif
618 load_cr3(swapper_pg_dir);
619 __flush_tlb_all();
621 early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
625 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
626 * is valid. The argument is a physical page number.
629 * On x86, access has to be given to the first megabyte of ram because that area
630 * contains BIOS code and data regions used by X and dosemu and similar apps.
631 * Access has to be given to non-kernel-ram areas as well, these contain the PCI
632 * mmio resources as well as potential bios/acpi data regions.
634 int devmem_is_allowed(unsigned long pagenr)
636 if (pagenr < 256)
637 return 1;
638 if (iomem_is_exclusive(pagenr << PAGE_SHIFT))
639 return 0;
640 if (!page_is_ram(pagenr))
641 return 1;
642 return 0;
645 void free_init_pages(char *what, unsigned long begin, unsigned long end)
647 unsigned long begin_aligned, end_aligned;
649 /* Make sure boundaries are page aligned */
650 begin_aligned = PAGE_ALIGN(begin);
651 end_aligned = end & PAGE_MASK;
653 if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
654 begin = begin_aligned;
655 end = end_aligned;
658 if (begin >= end)
659 return;
662 * If debugging page accesses then do not free this memory but
663 * mark them not present - any buggy init-section access will
664 * create a kernel page fault:
666 #ifdef CONFIG_DEBUG_PAGEALLOC
667 printk(KERN_INFO "debug: unmapping init [mem %#010lx-%#010lx]\n",
668 begin, end - 1);
669 set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
670 #else
672 * We just marked the kernel text read only above, now that
673 * we are going to free part of that, we need to make that
674 * writeable and non-executable first.
676 set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
677 set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
679 free_reserved_area((void *)begin, (void *)end, POISON_FREE_INITMEM, what);
680 #endif
683 void free_initmem(void)
685 free_init_pages("unused kernel",
686 (unsigned long)(&__init_begin),
687 (unsigned long)(&__init_end));
690 #ifdef CONFIG_BLK_DEV_INITRD
691 void __init free_initrd_mem(unsigned long start, unsigned long end)
693 #ifdef CONFIG_MICROCODE_EARLY
695 * Remember, initrd memory may contain microcode or other useful things.
696 * Before we lose initrd mem, we need to find a place to hold them
697 * now that normal virtual memory is enabled.
699 save_microcode_in_initrd();
700 #endif
703 * end could be not aligned, and We can not align that,
704 * decompresser could be confused by aligned initrd_end
705 * We already reserve the end partial page before in
706 * - i386_start_kernel()
707 * - x86_64_start_kernel()
708 * - relocate_initrd()
709 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
711 free_init_pages("initrd", start, PAGE_ALIGN(end));
713 #endif
715 void __init zone_sizes_init(void)
717 unsigned long max_zone_pfns[MAX_NR_ZONES];
719 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
721 #ifdef CONFIG_ZONE_DMA
722 max_zone_pfns[ZONE_DMA] = min(MAX_DMA_PFN, max_low_pfn);
723 #endif
724 #ifdef CONFIG_ZONE_DMA32
725 max_zone_pfns[ZONE_DMA32] = min(MAX_DMA32_PFN, max_low_pfn);
726 #endif
727 max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
728 #ifdef CONFIG_HIGHMEM
729 max_zone_pfns[ZONE_HIGHMEM] = max_pfn;
730 #endif
732 free_area_init_nodes(max_zone_pfns);
735 DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
736 #ifdef CONFIG_SMP
737 .active_mm = &init_mm,
738 .state = 0,
739 #endif
740 .cr4 = ~0UL, /* fail hard if we screw up cr4 shadow initialization */
742 EXPORT_SYMBOL_GPL(cpu_tlbstate);
744 void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
746 /* entry 0 MUST be WB (hardwired to speed up translations) */
747 BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
749 __cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
750 __pte2cachemode_tbl[entry] = cache;