Linux 4.2.2
[linux/fpc-iii.git] / arch / x86 / xen / smp.c
blob86484384492e97d8d41d030bdb78fd0119a8b2cf
1 /*
2 * Xen SMP support
4 * This file implements the Xen versions of smp_ops. SMP under Xen is
5 * very straightforward. Bringing a CPU up is simply a matter of
6 * loading its initial context and setting it running.
8 * IPIs are handled through the Xen event mechanism.
10 * Because virtual CPUs can be scheduled onto any real CPU, there's no
11 * useful topology information for the kernel to make use of. As a
12 * result, all CPUs are treated as if they're single-core and
13 * single-threaded.
15 #include <linux/sched.h>
16 #include <linux/err.h>
17 #include <linux/slab.h>
18 #include <linux/smp.h>
19 #include <linux/irq_work.h>
20 #include <linux/tick.h>
22 #include <asm/paravirt.h>
23 #include <asm/desc.h>
24 #include <asm/pgtable.h>
25 #include <asm/cpu.h>
27 #include <xen/interface/xen.h>
28 #include <xen/interface/vcpu.h>
30 #include <asm/xen/interface.h>
31 #include <asm/xen/hypercall.h>
33 #include <xen/xen.h>
34 #include <xen/page.h>
35 #include <xen/events.h>
37 #include <xen/hvc-console.h>
38 #include "xen-ops.h"
39 #include "mmu.h"
40 #include "smp.h"
42 cpumask_var_t xen_cpu_initialized_map;
44 struct xen_common_irq {
45 int irq;
46 char *name;
48 static DEFINE_PER_CPU(struct xen_common_irq, xen_resched_irq) = { .irq = -1 };
49 static DEFINE_PER_CPU(struct xen_common_irq, xen_callfunc_irq) = { .irq = -1 };
50 static DEFINE_PER_CPU(struct xen_common_irq, xen_callfuncsingle_irq) = { .irq = -1 };
51 static DEFINE_PER_CPU(struct xen_common_irq, xen_irq_work) = { .irq = -1 };
52 static DEFINE_PER_CPU(struct xen_common_irq, xen_debug_irq) = { .irq = -1 };
54 static irqreturn_t xen_call_function_interrupt(int irq, void *dev_id);
55 static irqreturn_t xen_call_function_single_interrupt(int irq, void *dev_id);
56 static irqreturn_t xen_irq_work_interrupt(int irq, void *dev_id);
59 * Reschedule call back.
61 static irqreturn_t xen_reschedule_interrupt(int irq, void *dev_id)
63 inc_irq_stat(irq_resched_count);
64 scheduler_ipi();
66 return IRQ_HANDLED;
69 static void cpu_bringup(void)
71 int cpu;
73 cpu_init();
74 touch_softlockup_watchdog();
75 preempt_disable();
77 /* PVH runs in ring 0 and allows us to do native syscalls. Yay! */
78 if (!xen_feature(XENFEAT_supervisor_mode_kernel)) {
79 xen_enable_sysenter();
80 xen_enable_syscall();
82 cpu = smp_processor_id();
83 smp_store_cpu_info(cpu);
84 cpu_data(cpu).x86_max_cores = 1;
85 set_cpu_sibling_map(cpu);
87 xen_setup_cpu_clockevents();
89 notify_cpu_starting(cpu);
91 set_cpu_online(cpu, true);
93 cpu_set_state_online(cpu); /* Implies full memory barrier. */
95 /* We can take interrupts now: we're officially "up". */
96 local_irq_enable();
100 * Note: cpu parameter is only relevant for PVH. The reason for passing it
101 * is we can't do smp_processor_id until the percpu segments are loaded, for
102 * which we need the cpu number! So we pass it in rdi as first parameter.
104 asmlinkage __visible void cpu_bringup_and_idle(int cpu)
106 #ifdef CONFIG_XEN_PVH
107 if (xen_feature(XENFEAT_auto_translated_physmap) &&
108 xen_feature(XENFEAT_supervisor_mode_kernel))
109 xen_pvh_secondary_vcpu_init(cpu);
110 #endif
111 cpu_bringup();
112 cpu_startup_entry(CPUHP_ONLINE);
115 static void xen_smp_intr_free(unsigned int cpu)
117 if (per_cpu(xen_resched_irq, cpu).irq >= 0) {
118 unbind_from_irqhandler(per_cpu(xen_resched_irq, cpu).irq, NULL);
119 per_cpu(xen_resched_irq, cpu).irq = -1;
120 kfree(per_cpu(xen_resched_irq, cpu).name);
121 per_cpu(xen_resched_irq, cpu).name = NULL;
123 if (per_cpu(xen_callfunc_irq, cpu).irq >= 0) {
124 unbind_from_irqhandler(per_cpu(xen_callfunc_irq, cpu).irq, NULL);
125 per_cpu(xen_callfunc_irq, cpu).irq = -1;
126 kfree(per_cpu(xen_callfunc_irq, cpu).name);
127 per_cpu(xen_callfunc_irq, cpu).name = NULL;
129 if (per_cpu(xen_debug_irq, cpu).irq >= 0) {
130 unbind_from_irqhandler(per_cpu(xen_debug_irq, cpu).irq, NULL);
131 per_cpu(xen_debug_irq, cpu).irq = -1;
132 kfree(per_cpu(xen_debug_irq, cpu).name);
133 per_cpu(xen_debug_irq, cpu).name = NULL;
135 if (per_cpu(xen_callfuncsingle_irq, cpu).irq >= 0) {
136 unbind_from_irqhandler(per_cpu(xen_callfuncsingle_irq, cpu).irq,
137 NULL);
138 per_cpu(xen_callfuncsingle_irq, cpu).irq = -1;
139 kfree(per_cpu(xen_callfuncsingle_irq, cpu).name);
140 per_cpu(xen_callfuncsingle_irq, cpu).name = NULL;
142 if (xen_hvm_domain())
143 return;
145 if (per_cpu(xen_irq_work, cpu).irq >= 0) {
146 unbind_from_irqhandler(per_cpu(xen_irq_work, cpu).irq, NULL);
147 per_cpu(xen_irq_work, cpu).irq = -1;
148 kfree(per_cpu(xen_irq_work, cpu).name);
149 per_cpu(xen_irq_work, cpu).name = NULL;
152 static int xen_smp_intr_init(unsigned int cpu)
154 int rc;
155 char *resched_name, *callfunc_name, *debug_name;
157 resched_name = kasprintf(GFP_KERNEL, "resched%d", cpu);
158 rc = bind_ipi_to_irqhandler(XEN_RESCHEDULE_VECTOR,
159 cpu,
160 xen_reschedule_interrupt,
161 IRQF_PERCPU|IRQF_NOBALANCING,
162 resched_name,
163 NULL);
164 if (rc < 0)
165 goto fail;
166 per_cpu(xen_resched_irq, cpu).irq = rc;
167 per_cpu(xen_resched_irq, cpu).name = resched_name;
169 callfunc_name = kasprintf(GFP_KERNEL, "callfunc%d", cpu);
170 rc = bind_ipi_to_irqhandler(XEN_CALL_FUNCTION_VECTOR,
171 cpu,
172 xen_call_function_interrupt,
173 IRQF_PERCPU|IRQF_NOBALANCING,
174 callfunc_name,
175 NULL);
176 if (rc < 0)
177 goto fail;
178 per_cpu(xen_callfunc_irq, cpu).irq = rc;
179 per_cpu(xen_callfunc_irq, cpu).name = callfunc_name;
181 debug_name = kasprintf(GFP_KERNEL, "debug%d", cpu);
182 rc = bind_virq_to_irqhandler(VIRQ_DEBUG, cpu, xen_debug_interrupt,
183 IRQF_PERCPU | IRQF_NOBALANCING,
184 debug_name, NULL);
185 if (rc < 0)
186 goto fail;
187 per_cpu(xen_debug_irq, cpu).irq = rc;
188 per_cpu(xen_debug_irq, cpu).name = debug_name;
190 callfunc_name = kasprintf(GFP_KERNEL, "callfuncsingle%d", cpu);
191 rc = bind_ipi_to_irqhandler(XEN_CALL_FUNCTION_SINGLE_VECTOR,
192 cpu,
193 xen_call_function_single_interrupt,
194 IRQF_PERCPU|IRQF_NOBALANCING,
195 callfunc_name,
196 NULL);
197 if (rc < 0)
198 goto fail;
199 per_cpu(xen_callfuncsingle_irq, cpu).irq = rc;
200 per_cpu(xen_callfuncsingle_irq, cpu).name = callfunc_name;
203 * The IRQ worker on PVHVM goes through the native path and uses the
204 * IPI mechanism.
206 if (xen_hvm_domain())
207 return 0;
209 callfunc_name = kasprintf(GFP_KERNEL, "irqwork%d", cpu);
210 rc = bind_ipi_to_irqhandler(XEN_IRQ_WORK_VECTOR,
211 cpu,
212 xen_irq_work_interrupt,
213 IRQF_PERCPU|IRQF_NOBALANCING,
214 callfunc_name,
215 NULL);
216 if (rc < 0)
217 goto fail;
218 per_cpu(xen_irq_work, cpu).irq = rc;
219 per_cpu(xen_irq_work, cpu).name = callfunc_name;
221 return 0;
223 fail:
224 xen_smp_intr_free(cpu);
225 return rc;
228 static void __init xen_fill_possible_map(void)
230 int i, rc;
232 if (xen_initial_domain())
233 return;
235 for (i = 0; i < nr_cpu_ids; i++) {
236 rc = HYPERVISOR_vcpu_op(VCPUOP_is_up, i, NULL);
237 if (rc >= 0) {
238 num_processors++;
239 set_cpu_possible(i, true);
244 static void __init xen_filter_cpu_maps(void)
246 int i, rc;
247 unsigned int subtract = 0;
249 if (!xen_initial_domain())
250 return;
252 num_processors = 0;
253 disabled_cpus = 0;
254 for (i = 0; i < nr_cpu_ids; i++) {
255 rc = HYPERVISOR_vcpu_op(VCPUOP_is_up, i, NULL);
256 if (rc >= 0) {
257 num_processors++;
258 set_cpu_possible(i, true);
259 } else {
260 set_cpu_possible(i, false);
261 set_cpu_present(i, false);
262 subtract++;
265 #ifdef CONFIG_HOTPLUG_CPU
266 /* This is akin to using 'nr_cpus' on the Linux command line.
267 * Which is OK as when we use 'dom0_max_vcpus=X' we can only
268 * have up to X, while nr_cpu_ids is greater than X. This
269 * normally is not a problem, except when CPU hotplugging
270 * is involved and then there might be more than X CPUs
271 * in the guest - which will not work as there is no
272 * hypercall to expand the max number of VCPUs an already
273 * running guest has. So cap it up to X. */
274 if (subtract)
275 nr_cpu_ids = nr_cpu_ids - subtract;
276 #endif
280 static void __init xen_smp_prepare_boot_cpu(void)
282 BUG_ON(smp_processor_id() != 0);
283 native_smp_prepare_boot_cpu();
285 if (xen_pv_domain()) {
286 if (!xen_feature(XENFEAT_writable_page_tables))
287 /* We've switched to the "real" per-cpu gdt, so make
288 * sure the old memory can be recycled. */
289 make_lowmem_page_readwrite(xen_initial_gdt);
291 #ifdef CONFIG_X86_32
293 * Xen starts us with XEN_FLAT_RING1_DS, but linux code
294 * expects __USER_DS
296 loadsegment(ds, __USER_DS);
297 loadsegment(es, __USER_DS);
298 #endif
300 xen_filter_cpu_maps();
301 xen_setup_vcpu_info_placement();
304 * The alternative logic (which patches the unlock/lock) runs before
305 * the smp bootup up code is activated. Hence we need to set this up
306 * the core kernel is being patched. Otherwise we will have only
307 * modules patched but not core code.
309 xen_init_spinlocks();
312 static void __init xen_smp_prepare_cpus(unsigned int max_cpus)
314 unsigned cpu;
315 unsigned int i;
317 if (skip_ioapic_setup) {
318 char *m = (max_cpus == 0) ?
319 "The nosmp parameter is incompatible with Xen; " \
320 "use Xen dom0_max_vcpus=1 parameter" :
321 "The noapic parameter is incompatible with Xen";
323 xen_raw_printk(m);
324 panic(m);
326 xen_init_lock_cpu(0);
328 smp_store_boot_cpu_info();
329 cpu_data(0).x86_max_cores = 1;
331 for_each_possible_cpu(i) {
332 zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
333 zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
334 zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
336 set_cpu_sibling_map(0);
338 if (xen_smp_intr_init(0))
339 BUG();
341 if (!alloc_cpumask_var(&xen_cpu_initialized_map, GFP_KERNEL))
342 panic("could not allocate xen_cpu_initialized_map\n");
344 cpumask_copy(xen_cpu_initialized_map, cpumask_of(0));
346 /* Restrict the possible_map according to max_cpus. */
347 while ((num_possible_cpus() > 1) && (num_possible_cpus() > max_cpus)) {
348 for (cpu = nr_cpu_ids - 1; !cpu_possible(cpu); cpu--)
349 continue;
350 set_cpu_possible(cpu, false);
353 for_each_possible_cpu(cpu)
354 set_cpu_present(cpu, true);
357 static int
358 cpu_initialize_context(unsigned int cpu, struct task_struct *idle)
360 struct vcpu_guest_context *ctxt;
361 struct desc_struct *gdt;
362 unsigned long gdt_mfn;
364 /* used to tell cpu_init() that it can proceed with initialization */
365 cpumask_set_cpu(cpu, cpu_callout_mask);
366 if (cpumask_test_and_set_cpu(cpu, xen_cpu_initialized_map))
367 return 0;
369 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
370 if (ctxt == NULL)
371 return -ENOMEM;
373 gdt = get_cpu_gdt_table(cpu);
375 #ifdef CONFIG_X86_32
376 /* Note: PVH is not yet supported on x86_32. */
377 ctxt->user_regs.fs = __KERNEL_PERCPU;
378 ctxt->user_regs.gs = __KERNEL_STACK_CANARY;
379 #endif
380 memset(&ctxt->fpu_ctxt, 0, sizeof(ctxt->fpu_ctxt));
382 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
383 ctxt->user_regs.eip = (unsigned long)cpu_bringup_and_idle;
384 ctxt->flags = VGCF_IN_KERNEL;
385 ctxt->user_regs.eflags = 0x1000; /* IOPL_RING1 */
386 ctxt->user_regs.ds = __USER_DS;
387 ctxt->user_regs.es = __USER_DS;
388 ctxt->user_regs.ss = __KERNEL_DS;
390 xen_copy_trap_info(ctxt->trap_ctxt);
392 ctxt->ldt_ents = 0;
394 BUG_ON((unsigned long)gdt & ~PAGE_MASK);
396 gdt_mfn = arbitrary_virt_to_mfn(gdt);
397 make_lowmem_page_readonly(gdt);
398 make_lowmem_page_readonly(mfn_to_virt(gdt_mfn));
400 ctxt->gdt_frames[0] = gdt_mfn;
401 ctxt->gdt_ents = GDT_ENTRIES;
403 ctxt->kernel_ss = __KERNEL_DS;
404 ctxt->kernel_sp = idle->thread.sp0;
406 #ifdef CONFIG_X86_32
407 ctxt->event_callback_cs = __KERNEL_CS;
408 ctxt->failsafe_callback_cs = __KERNEL_CS;
409 #else
410 ctxt->gs_base_kernel = per_cpu_offset(cpu);
411 #endif
412 ctxt->event_callback_eip =
413 (unsigned long)xen_hypervisor_callback;
414 ctxt->failsafe_callback_eip =
415 (unsigned long)xen_failsafe_callback;
416 ctxt->user_regs.cs = __KERNEL_CS;
417 per_cpu(xen_cr3, cpu) = __pa(swapper_pg_dir);
419 #ifdef CONFIG_XEN_PVH
420 else {
422 * The vcpu comes on kernel page tables which have the NX pte
423 * bit set. This means before DS/SS is touched, NX in
424 * EFER must be set. Hence the following assembly glue code.
426 ctxt->user_regs.eip = (unsigned long)xen_pvh_early_cpu_init;
427 ctxt->user_regs.rdi = cpu;
428 ctxt->user_regs.rsi = true; /* entry == true */
430 #endif
431 ctxt->user_regs.esp = idle->thread.sp0 - sizeof(struct pt_regs);
432 ctxt->ctrlreg[3] = xen_pfn_to_cr3(virt_to_mfn(swapper_pg_dir));
433 if (HYPERVISOR_vcpu_op(VCPUOP_initialise, cpu, ctxt))
434 BUG();
436 kfree(ctxt);
437 return 0;
440 static int xen_cpu_up(unsigned int cpu, struct task_struct *idle)
442 int rc;
444 common_cpu_up(cpu, idle);
446 xen_setup_runstate_info(cpu);
447 xen_setup_timer(cpu);
448 xen_init_lock_cpu(cpu);
451 * PV VCPUs are always successfully taken down (see 'while' loop
452 * in xen_cpu_die()), so -EBUSY is an error.
454 rc = cpu_check_up_prepare(cpu);
455 if (rc)
456 return rc;
458 /* make sure interrupts start blocked */
459 per_cpu(xen_vcpu, cpu)->evtchn_upcall_mask = 1;
461 rc = cpu_initialize_context(cpu, idle);
462 if (rc)
463 return rc;
465 rc = xen_smp_intr_init(cpu);
466 if (rc)
467 return rc;
469 rc = HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL);
470 BUG_ON(rc);
472 while (cpu_report_state(cpu) != CPU_ONLINE)
473 HYPERVISOR_sched_op(SCHEDOP_yield, NULL);
475 return 0;
478 static void xen_smp_cpus_done(unsigned int max_cpus)
482 #ifdef CONFIG_HOTPLUG_CPU
483 static int xen_cpu_disable(void)
485 unsigned int cpu = smp_processor_id();
486 if (cpu == 0)
487 return -EBUSY;
489 cpu_disable_common();
491 load_cr3(swapper_pg_dir);
492 return 0;
495 static void xen_cpu_die(unsigned int cpu)
497 while (xen_pv_domain() && HYPERVISOR_vcpu_op(VCPUOP_is_up, cpu, NULL)) {
498 __set_current_state(TASK_UNINTERRUPTIBLE);
499 schedule_timeout(HZ/10);
502 if (common_cpu_die(cpu) == 0) {
503 xen_smp_intr_free(cpu);
504 xen_uninit_lock_cpu(cpu);
505 xen_teardown_timer(cpu);
509 static void xen_play_dead(void) /* used only with HOTPLUG_CPU */
511 play_dead_common();
512 HYPERVISOR_vcpu_op(VCPUOP_down, smp_processor_id(), NULL);
513 cpu_bringup();
515 * commit 4b0c0f294 (tick: Cleanup NOHZ per cpu data on cpu down)
516 * clears certain data that the cpu_idle loop (which called us
517 * and that we return from) expects. The only way to get that
518 * data back is to call:
520 tick_nohz_idle_enter();
523 #else /* !CONFIG_HOTPLUG_CPU */
524 static int xen_cpu_disable(void)
526 return -ENOSYS;
529 static void xen_cpu_die(unsigned int cpu)
531 BUG();
534 static void xen_play_dead(void)
536 BUG();
539 #endif
540 static void stop_self(void *v)
542 int cpu = smp_processor_id();
544 /* make sure we're not pinning something down */
545 load_cr3(swapper_pg_dir);
546 /* should set up a minimal gdt */
548 set_cpu_online(cpu, false);
550 HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL);
551 BUG();
554 static void xen_stop_other_cpus(int wait)
556 smp_call_function(stop_self, NULL, wait);
559 static void xen_smp_send_reschedule(int cpu)
561 xen_send_IPI_one(cpu, XEN_RESCHEDULE_VECTOR);
564 static void __xen_send_IPI_mask(const struct cpumask *mask,
565 int vector)
567 unsigned cpu;
569 for_each_cpu_and(cpu, mask, cpu_online_mask)
570 xen_send_IPI_one(cpu, vector);
573 static void xen_smp_send_call_function_ipi(const struct cpumask *mask)
575 int cpu;
577 __xen_send_IPI_mask(mask, XEN_CALL_FUNCTION_VECTOR);
579 /* Make sure other vcpus get a chance to run if they need to. */
580 for_each_cpu(cpu, mask) {
581 if (xen_vcpu_stolen(cpu)) {
582 HYPERVISOR_sched_op(SCHEDOP_yield, NULL);
583 break;
588 static void xen_smp_send_call_function_single_ipi(int cpu)
590 __xen_send_IPI_mask(cpumask_of(cpu),
591 XEN_CALL_FUNCTION_SINGLE_VECTOR);
594 static inline int xen_map_vector(int vector)
596 int xen_vector;
598 switch (vector) {
599 case RESCHEDULE_VECTOR:
600 xen_vector = XEN_RESCHEDULE_VECTOR;
601 break;
602 case CALL_FUNCTION_VECTOR:
603 xen_vector = XEN_CALL_FUNCTION_VECTOR;
604 break;
605 case CALL_FUNCTION_SINGLE_VECTOR:
606 xen_vector = XEN_CALL_FUNCTION_SINGLE_VECTOR;
607 break;
608 case IRQ_WORK_VECTOR:
609 xen_vector = XEN_IRQ_WORK_VECTOR;
610 break;
611 #ifdef CONFIG_X86_64
612 case NMI_VECTOR:
613 case APIC_DM_NMI: /* Some use that instead of NMI_VECTOR */
614 xen_vector = XEN_NMI_VECTOR;
615 break;
616 #endif
617 default:
618 xen_vector = -1;
619 printk(KERN_ERR "xen: vector 0x%x is not implemented\n",
620 vector);
623 return xen_vector;
626 void xen_send_IPI_mask(const struct cpumask *mask,
627 int vector)
629 int xen_vector = xen_map_vector(vector);
631 if (xen_vector >= 0)
632 __xen_send_IPI_mask(mask, xen_vector);
635 void xen_send_IPI_all(int vector)
637 int xen_vector = xen_map_vector(vector);
639 if (xen_vector >= 0)
640 __xen_send_IPI_mask(cpu_online_mask, xen_vector);
643 void xen_send_IPI_self(int vector)
645 int xen_vector = xen_map_vector(vector);
647 if (xen_vector >= 0)
648 xen_send_IPI_one(smp_processor_id(), xen_vector);
651 void xen_send_IPI_mask_allbutself(const struct cpumask *mask,
652 int vector)
654 unsigned cpu;
655 unsigned int this_cpu = smp_processor_id();
656 int xen_vector = xen_map_vector(vector);
658 if (!(num_online_cpus() > 1) || (xen_vector < 0))
659 return;
661 for_each_cpu_and(cpu, mask, cpu_online_mask) {
662 if (this_cpu == cpu)
663 continue;
665 xen_send_IPI_one(cpu, xen_vector);
669 void xen_send_IPI_allbutself(int vector)
671 xen_send_IPI_mask_allbutself(cpu_online_mask, vector);
674 static irqreturn_t xen_call_function_interrupt(int irq, void *dev_id)
676 irq_enter();
677 generic_smp_call_function_interrupt();
678 inc_irq_stat(irq_call_count);
679 irq_exit();
681 return IRQ_HANDLED;
684 static irqreturn_t xen_call_function_single_interrupt(int irq, void *dev_id)
686 irq_enter();
687 generic_smp_call_function_single_interrupt();
688 inc_irq_stat(irq_call_count);
689 irq_exit();
691 return IRQ_HANDLED;
694 static irqreturn_t xen_irq_work_interrupt(int irq, void *dev_id)
696 irq_enter();
697 irq_work_run();
698 inc_irq_stat(apic_irq_work_irqs);
699 irq_exit();
701 return IRQ_HANDLED;
704 static const struct smp_ops xen_smp_ops __initconst = {
705 .smp_prepare_boot_cpu = xen_smp_prepare_boot_cpu,
706 .smp_prepare_cpus = xen_smp_prepare_cpus,
707 .smp_cpus_done = xen_smp_cpus_done,
709 .cpu_up = xen_cpu_up,
710 .cpu_die = xen_cpu_die,
711 .cpu_disable = xen_cpu_disable,
712 .play_dead = xen_play_dead,
714 .stop_other_cpus = xen_stop_other_cpus,
715 .smp_send_reschedule = xen_smp_send_reschedule,
717 .send_call_func_ipi = xen_smp_send_call_function_ipi,
718 .send_call_func_single_ipi = xen_smp_send_call_function_single_ipi,
721 void __init xen_smp_init(void)
723 smp_ops = xen_smp_ops;
724 xen_fill_possible_map();
727 static void __init xen_hvm_smp_prepare_cpus(unsigned int max_cpus)
729 native_smp_prepare_cpus(max_cpus);
730 WARN_ON(xen_smp_intr_init(0));
732 xen_init_lock_cpu(0);
735 static int xen_hvm_cpu_up(unsigned int cpu, struct task_struct *tidle)
737 int rc;
740 * This can happen if CPU was offlined earlier and
741 * offlining timed out in common_cpu_die().
743 if (cpu_report_state(cpu) == CPU_DEAD_FROZEN) {
744 xen_smp_intr_free(cpu);
745 xen_uninit_lock_cpu(cpu);
749 * xen_smp_intr_init() needs to run before native_cpu_up()
750 * so that IPI vectors are set up on the booting CPU before
751 * it is marked online in native_cpu_up().
753 rc = xen_smp_intr_init(cpu);
754 WARN_ON(rc);
755 if (!rc)
756 rc = native_cpu_up(cpu, tidle);
759 * We must initialize the slowpath CPU kicker _after_ the native
760 * path has executed. If we initialized it before none of the
761 * unlocker IPI kicks would reach the booting CPU as the booting
762 * CPU had not set itself 'online' in cpu_online_mask. That mask
763 * is checked when IPIs are sent (on HVM at least).
765 xen_init_lock_cpu(cpu);
766 return rc;
769 void __init xen_hvm_smp_init(void)
771 if (!xen_have_vector_callback)
772 return;
773 smp_ops.smp_prepare_cpus = xen_hvm_smp_prepare_cpus;
774 smp_ops.smp_send_reschedule = xen_smp_send_reschedule;
775 smp_ops.cpu_up = xen_hvm_cpu_up;
776 smp_ops.cpu_die = xen_cpu_die;
777 smp_ops.send_call_func_ipi = xen_smp_send_call_function_ipi;
778 smp_ops.send_call_func_single_ipi = xen_smp_send_call_function_single_ipi;
779 smp_ops.smp_prepare_boot_cpu = xen_smp_prepare_boot_cpu;