x86/build/vdso: Simplify 'cmd_vdso2c'
[linux/fpc-iii.git] / mm / shmem.c
blob2cab8440305531f8ab97f3a56c95b91516bcd2ea
1 /*
2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
21 * This file is released under the GPL.
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/sched/signal.h>
33 #include <linux/export.h>
34 #include <linux/swap.h>
35 #include <linux/uio.h>
36 #include <linux/khugepaged.h>
37 #include <linux/hugetlb.h>
39 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
41 static struct vfsmount *shm_mnt;
43 #ifdef CONFIG_SHMEM
45 * This virtual memory filesystem is heavily based on the ramfs. It
46 * extends ramfs by the ability to use swap and honor resource limits
47 * which makes it a completely usable filesystem.
50 #include <linux/xattr.h>
51 #include <linux/exportfs.h>
52 #include <linux/posix_acl.h>
53 #include <linux/posix_acl_xattr.h>
54 #include <linux/mman.h>
55 #include <linux/string.h>
56 #include <linux/slab.h>
57 #include <linux/backing-dev.h>
58 #include <linux/shmem_fs.h>
59 #include <linux/writeback.h>
60 #include <linux/blkdev.h>
61 #include <linux/pagevec.h>
62 #include <linux/percpu_counter.h>
63 #include <linux/falloc.h>
64 #include <linux/splice.h>
65 #include <linux/security.h>
66 #include <linux/swapops.h>
67 #include <linux/mempolicy.h>
68 #include <linux/namei.h>
69 #include <linux/ctype.h>
70 #include <linux/migrate.h>
71 #include <linux/highmem.h>
72 #include <linux/seq_file.h>
73 #include <linux/magic.h>
74 #include <linux/syscalls.h>
75 #include <linux/fcntl.h>
76 #include <uapi/linux/memfd.h>
77 #include <linux/userfaultfd_k.h>
78 #include <linux/rmap.h>
79 #include <linux/uuid.h>
81 #include <linux/uaccess.h>
82 #include <asm/pgtable.h>
84 #include "internal.h"
86 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
87 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
89 /* Pretend that each entry is of this size in directory's i_size */
90 #define BOGO_DIRENT_SIZE 20
92 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
93 #define SHORT_SYMLINK_LEN 128
96 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
97 * inode->i_private (with i_mutex making sure that it has only one user at
98 * a time): we would prefer not to enlarge the shmem inode just for that.
100 struct shmem_falloc {
101 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
102 pgoff_t start; /* start of range currently being fallocated */
103 pgoff_t next; /* the next page offset to be fallocated */
104 pgoff_t nr_falloced; /* how many new pages have been fallocated */
105 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
108 #ifdef CONFIG_TMPFS
109 static unsigned long shmem_default_max_blocks(void)
111 return totalram_pages / 2;
114 static unsigned long shmem_default_max_inodes(void)
116 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
118 #endif
120 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
121 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
122 struct shmem_inode_info *info, pgoff_t index);
123 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
124 struct page **pagep, enum sgp_type sgp,
125 gfp_t gfp, struct vm_area_struct *vma,
126 struct vm_fault *vmf, int *fault_type);
128 int shmem_getpage(struct inode *inode, pgoff_t index,
129 struct page **pagep, enum sgp_type sgp)
131 return shmem_getpage_gfp(inode, index, pagep, sgp,
132 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
135 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
137 return sb->s_fs_info;
141 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
142 * for shared memory and for shared anonymous (/dev/zero) mappings
143 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
144 * consistent with the pre-accounting of private mappings ...
146 static inline int shmem_acct_size(unsigned long flags, loff_t size)
148 return (flags & VM_NORESERVE) ?
149 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
152 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
154 if (!(flags & VM_NORESERVE))
155 vm_unacct_memory(VM_ACCT(size));
158 static inline int shmem_reacct_size(unsigned long flags,
159 loff_t oldsize, loff_t newsize)
161 if (!(flags & VM_NORESERVE)) {
162 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
163 return security_vm_enough_memory_mm(current->mm,
164 VM_ACCT(newsize) - VM_ACCT(oldsize));
165 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
166 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
168 return 0;
172 * ... whereas tmpfs objects are accounted incrementally as
173 * pages are allocated, in order to allow large sparse files.
174 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
175 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
177 static inline int shmem_acct_block(unsigned long flags, long pages)
179 if (!(flags & VM_NORESERVE))
180 return 0;
182 return security_vm_enough_memory_mm(current->mm,
183 pages * VM_ACCT(PAGE_SIZE));
186 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
188 if (flags & VM_NORESERVE)
189 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
192 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
194 struct shmem_inode_info *info = SHMEM_I(inode);
195 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
197 if (shmem_acct_block(info->flags, pages))
198 return false;
200 if (sbinfo->max_blocks) {
201 if (percpu_counter_compare(&sbinfo->used_blocks,
202 sbinfo->max_blocks - pages) > 0)
203 goto unacct;
204 percpu_counter_add(&sbinfo->used_blocks, pages);
207 return true;
209 unacct:
210 shmem_unacct_blocks(info->flags, pages);
211 return false;
214 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
216 struct shmem_inode_info *info = SHMEM_I(inode);
217 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
219 if (sbinfo->max_blocks)
220 percpu_counter_sub(&sbinfo->used_blocks, pages);
221 shmem_unacct_blocks(info->flags, pages);
224 static const struct super_operations shmem_ops;
225 static const struct address_space_operations shmem_aops;
226 static const struct file_operations shmem_file_operations;
227 static const struct inode_operations shmem_inode_operations;
228 static const struct inode_operations shmem_dir_inode_operations;
229 static const struct inode_operations shmem_special_inode_operations;
230 static const struct vm_operations_struct shmem_vm_ops;
231 static struct file_system_type shmem_fs_type;
233 bool vma_is_shmem(struct vm_area_struct *vma)
235 return vma->vm_ops == &shmem_vm_ops;
238 static LIST_HEAD(shmem_swaplist);
239 static DEFINE_MUTEX(shmem_swaplist_mutex);
241 static int shmem_reserve_inode(struct super_block *sb)
243 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
244 if (sbinfo->max_inodes) {
245 spin_lock(&sbinfo->stat_lock);
246 if (!sbinfo->free_inodes) {
247 spin_unlock(&sbinfo->stat_lock);
248 return -ENOSPC;
250 sbinfo->free_inodes--;
251 spin_unlock(&sbinfo->stat_lock);
253 return 0;
256 static void shmem_free_inode(struct super_block *sb)
258 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
259 if (sbinfo->max_inodes) {
260 spin_lock(&sbinfo->stat_lock);
261 sbinfo->free_inodes++;
262 spin_unlock(&sbinfo->stat_lock);
267 * shmem_recalc_inode - recalculate the block usage of an inode
268 * @inode: inode to recalc
270 * We have to calculate the free blocks since the mm can drop
271 * undirtied hole pages behind our back.
273 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
274 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
276 * It has to be called with the spinlock held.
278 static void shmem_recalc_inode(struct inode *inode)
280 struct shmem_inode_info *info = SHMEM_I(inode);
281 long freed;
283 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
284 if (freed > 0) {
285 info->alloced -= freed;
286 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
287 shmem_inode_unacct_blocks(inode, freed);
291 bool shmem_charge(struct inode *inode, long pages)
293 struct shmem_inode_info *info = SHMEM_I(inode);
294 unsigned long flags;
296 if (!shmem_inode_acct_block(inode, pages))
297 return false;
299 spin_lock_irqsave(&info->lock, flags);
300 info->alloced += pages;
301 inode->i_blocks += pages * BLOCKS_PER_PAGE;
302 shmem_recalc_inode(inode);
303 spin_unlock_irqrestore(&info->lock, flags);
304 inode->i_mapping->nrpages += pages;
306 return true;
309 void shmem_uncharge(struct inode *inode, long pages)
311 struct shmem_inode_info *info = SHMEM_I(inode);
312 unsigned long flags;
314 spin_lock_irqsave(&info->lock, flags);
315 info->alloced -= pages;
316 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
317 shmem_recalc_inode(inode);
318 spin_unlock_irqrestore(&info->lock, flags);
320 shmem_inode_unacct_blocks(inode, pages);
324 * Replace item expected in radix tree by a new item, while holding tree lock.
326 static int shmem_radix_tree_replace(struct address_space *mapping,
327 pgoff_t index, void *expected, void *replacement)
329 struct radix_tree_node *node;
330 void __rcu **pslot;
331 void *item;
333 VM_BUG_ON(!expected);
334 VM_BUG_ON(!replacement);
335 item = __radix_tree_lookup(&mapping->i_pages, index, &node, &pslot);
336 if (!item)
337 return -ENOENT;
338 if (item != expected)
339 return -ENOENT;
340 __radix_tree_replace(&mapping->i_pages, node, pslot,
341 replacement, NULL);
342 return 0;
346 * Sometimes, before we decide whether to proceed or to fail, we must check
347 * that an entry was not already brought back from swap by a racing thread.
349 * Checking page is not enough: by the time a SwapCache page is locked, it
350 * might be reused, and again be SwapCache, using the same swap as before.
352 static bool shmem_confirm_swap(struct address_space *mapping,
353 pgoff_t index, swp_entry_t swap)
355 void *item;
357 rcu_read_lock();
358 item = radix_tree_lookup(&mapping->i_pages, index);
359 rcu_read_unlock();
360 return item == swp_to_radix_entry(swap);
364 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
366 * SHMEM_HUGE_NEVER:
367 * disables huge pages for the mount;
368 * SHMEM_HUGE_ALWAYS:
369 * enables huge pages for the mount;
370 * SHMEM_HUGE_WITHIN_SIZE:
371 * only allocate huge pages if the page will be fully within i_size,
372 * also respect fadvise()/madvise() hints;
373 * SHMEM_HUGE_ADVISE:
374 * only allocate huge pages if requested with fadvise()/madvise();
377 #define SHMEM_HUGE_NEVER 0
378 #define SHMEM_HUGE_ALWAYS 1
379 #define SHMEM_HUGE_WITHIN_SIZE 2
380 #define SHMEM_HUGE_ADVISE 3
383 * Special values.
384 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
386 * SHMEM_HUGE_DENY:
387 * disables huge on shm_mnt and all mounts, for emergency use;
388 * SHMEM_HUGE_FORCE:
389 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
392 #define SHMEM_HUGE_DENY (-1)
393 #define SHMEM_HUGE_FORCE (-2)
395 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
396 /* ifdef here to avoid bloating shmem.o when not necessary */
398 static int shmem_huge __read_mostly;
400 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
401 static int shmem_parse_huge(const char *str)
403 if (!strcmp(str, "never"))
404 return SHMEM_HUGE_NEVER;
405 if (!strcmp(str, "always"))
406 return SHMEM_HUGE_ALWAYS;
407 if (!strcmp(str, "within_size"))
408 return SHMEM_HUGE_WITHIN_SIZE;
409 if (!strcmp(str, "advise"))
410 return SHMEM_HUGE_ADVISE;
411 if (!strcmp(str, "deny"))
412 return SHMEM_HUGE_DENY;
413 if (!strcmp(str, "force"))
414 return SHMEM_HUGE_FORCE;
415 return -EINVAL;
418 static const char *shmem_format_huge(int huge)
420 switch (huge) {
421 case SHMEM_HUGE_NEVER:
422 return "never";
423 case SHMEM_HUGE_ALWAYS:
424 return "always";
425 case SHMEM_HUGE_WITHIN_SIZE:
426 return "within_size";
427 case SHMEM_HUGE_ADVISE:
428 return "advise";
429 case SHMEM_HUGE_DENY:
430 return "deny";
431 case SHMEM_HUGE_FORCE:
432 return "force";
433 default:
434 VM_BUG_ON(1);
435 return "bad_val";
438 #endif
440 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
441 struct shrink_control *sc, unsigned long nr_to_split)
443 LIST_HEAD(list), *pos, *next;
444 LIST_HEAD(to_remove);
445 struct inode *inode;
446 struct shmem_inode_info *info;
447 struct page *page;
448 unsigned long batch = sc ? sc->nr_to_scan : 128;
449 int removed = 0, split = 0;
451 if (list_empty(&sbinfo->shrinklist))
452 return SHRINK_STOP;
454 spin_lock(&sbinfo->shrinklist_lock);
455 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
456 info = list_entry(pos, struct shmem_inode_info, shrinklist);
458 /* pin the inode */
459 inode = igrab(&info->vfs_inode);
461 /* inode is about to be evicted */
462 if (!inode) {
463 list_del_init(&info->shrinklist);
464 removed++;
465 goto next;
468 /* Check if there's anything to gain */
469 if (round_up(inode->i_size, PAGE_SIZE) ==
470 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
471 list_move(&info->shrinklist, &to_remove);
472 removed++;
473 goto next;
476 list_move(&info->shrinklist, &list);
477 next:
478 if (!--batch)
479 break;
481 spin_unlock(&sbinfo->shrinklist_lock);
483 list_for_each_safe(pos, next, &to_remove) {
484 info = list_entry(pos, struct shmem_inode_info, shrinklist);
485 inode = &info->vfs_inode;
486 list_del_init(&info->shrinklist);
487 iput(inode);
490 list_for_each_safe(pos, next, &list) {
491 int ret;
493 info = list_entry(pos, struct shmem_inode_info, shrinklist);
494 inode = &info->vfs_inode;
496 if (nr_to_split && split >= nr_to_split)
497 goto leave;
499 page = find_get_page(inode->i_mapping,
500 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
501 if (!page)
502 goto drop;
504 /* No huge page at the end of the file: nothing to split */
505 if (!PageTransHuge(page)) {
506 put_page(page);
507 goto drop;
511 * Leave the inode on the list if we failed to lock
512 * the page at this time.
514 * Waiting for the lock may lead to deadlock in the
515 * reclaim path.
517 if (!trylock_page(page)) {
518 put_page(page);
519 goto leave;
522 ret = split_huge_page(page);
523 unlock_page(page);
524 put_page(page);
526 /* If split failed leave the inode on the list */
527 if (ret)
528 goto leave;
530 split++;
531 drop:
532 list_del_init(&info->shrinklist);
533 removed++;
534 leave:
535 iput(inode);
538 spin_lock(&sbinfo->shrinklist_lock);
539 list_splice_tail(&list, &sbinfo->shrinklist);
540 sbinfo->shrinklist_len -= removed;
541 spin_unlock(&sbinfo->shrinklist_lock);
543 return split;
546 static long shmem_unused_huge_scan(struct super_block *sb,
547 struct shrink_control *sc)
549 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
551 if (!READ_ONCE(sbinfo->shrinklist_len))
552 return SHRINK_STOP;
554 return shmem_unused_huge_shrink(sbinfo, sc, 0);
557 static long shmem_unused_huge_count(struct super_block *sb,
558 struct shrink_control *sc)
560 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
561 return READ_ONCE(sbinfo->shrinklist_len);
563 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
565 #define shmem_huge SHMEM_HUGE_DENY
567 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
568 struct shrink_control *sc, unsigned long nr_to_split)
570 return 0;
572 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
574 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
576 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
577 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
578 shmem_huge != SHMEM_HUGE_DENY)
579 return true;
580 return false;
584 * Like add_to_page_cache_locked, but error if expected item has gone.
586 static int shmem_add_to_page_cache(struct page *page,
587 struct address_space *mapping,
588 pgoff_t index, void *expected)
590 int error, nr = hpage_nr_pages(page);
592 VM_BUG_ON_PAGE(PageTail(page), page);
593 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
594 VM_BUG_ON_PAGE(!PageLocked(page), page);
595 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
596 VM_BUG_ON(expected && PageTransHuge(page));
598 page_ref_add(page, nr);
599 page->mapping = mapping;
600 page->index = index;
602 xa_lock_irq(&mapping->i_pages);
603 if (PageTransHuge(page)) {
604 void __rcu **results;
605 pgoff_t idx;
606 int i;
608 error = 0;
609 if (radix_tree_gang_lookup_slot(&mapping->i_pages,
610 &results, &idx, index, 1) &&
611 idx < index + HPAGE_PMD_NR) {
612 error = -EEXIST;
615 if (!error) {
616 for (i = 0; i < HPAGE_PMD_NR; i++) {
617 error = radix_tree_insert(&mapping->i_pages,
618 index + i, page + i);
619 VM_BUG_ON(error);
621 count_vm_event(THP_FILE_ALLOC);
623 } else if (!expected) {
624 error = radix_tree_insert(&mapping->i_pages, index, page);
625 } else {
626 error = shmem_radix_tree_replace(mapping, index, expected,
627 page);
630 if (!error) {
631 mapping->nrpages += nr;
632 if (PageTransHuge(page))
633 __inc_node_page_state(page, NR_SHMEM_THPS);
634 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
635 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
636 xa_unlock_irq(&mapping->i_pages);
637 } else {
638 page->mapping = NULL;
639 xa_unlock_irq(&mapping->i_pages);
640 page_ref_sub(page, nr);
642 return error;
646 * Like delete_from_page_cache, but substitutes swap for page.
648 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
650 struct address_space *mapping = page->mapping;
651 int error;
653 VM_BUG_ON_PAGE(PageCompound(page), page);
655 xa_lock_irq(&mapping->i_pages);
656 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
657 page->mapping = NULL;
658 mapping->nrpages--;
659 __dec_node_page_state(page, NR_FILE_PAGES);
660 __dec_node_page_state(page, NR_SHMEM);
661 xa_unlock_irq(&mapping->i_pages);
662 put_page(page);
663 BUG_ON(error);
667 * Remove swap entry from radix tree, free the swap and its page cache.
669 static int shmem_free_swap(struct address_space *mapping,
670 pgoff_t index, void *radswap)
672 void *old;
674 xa_lock_irq(&mapping->i_pages);
675 old = radix_tree_delete_item(&mapping->i_pages, index, radswap);
676 xa_unlock_irq(&mapping->i_pages);
677 if (old != radswap)
678 return -ENOENT;
679 free_swap_and_cache(radix_to_swp_entry(radswap));
680 return 0;
684 * Determine (in bytes) how many of the shmem object's pages mapped by the
685 * given offsets are swapped out.
687 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
688 * as long as the inode doesn't go away and racy results are not a problem.
690 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
691 pgoff_t start, pgoff_t end)
693 struct radix_tree_iter iter;
694 void __rcu **slot;
695 struct page *page;
696 unsigned long swapped = 0;
698 rcu_read_lock();
700 radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
701 if (iter.index >= end)
702 break;
704 page = radix_tree_deref_slot(slot);
706 if (radix_tree_deref_retry(page)) {
707 slot = radix_tree_iter_retry(&iter);
708 continue;
711 if (radix_tree_exceptional_entry(page))
712 swapped++;
714 if (need_resched()) {
715 slot = radix_tree_iter_resume(slot, &iter);
716 cond_resched_rcu();
720 rcu_read_unlock();
722 return swapped << PAGE_SHIFT;
726 * Determine (in bytes) how many of the shmem object's pages mapped by the
727 * given vma is swapped out.
729 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
730 * as long as the inode doesn't go away and racy results are not a problem.
732 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
734 struct inode *inode = file_inode(vma->vm_file);
735 struct shmem_inode_info *info = SHMEM_I(inode);
736 struct address_space *mapping = inode->i_mapping;
737 unsigned long swapped;
739 /* Be careful as we don't hold info->lock */
740 swapped = READ_ONCE(info->swapped);
743 * The easier cases are when the shmem object has nothing in swap, or
744 * the vma maps it whole. Then we can simply use the stats that we
745 * already track.
747 if (!swapped)
748 return 0;
750 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
751 return swapped << PAGE_SHIFT;
753 /* Here comes the more involved part */
754 return shmem_partial_swap_usage(mapping,
755 linear_page_index(vma, vma->vm_start),
756 linear_page_index(vma, vma->vm_end));
760 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
762 void shmem_unlock_mapping(struct address_space *mapping)
764 struct pagevec pvec;
765 pgoff_t indices[PAGEVEC_SIZE];
766 pgoff_t index = 0;
768 pagevec_init(&pvec);
770 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
772 while (!mapping_unevictable(mapping)) {
774 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
775 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
777 pvec.nr = find_get_entries(mapping, index,
778 PAGEVEC_SIZE, pvec.pages, indices);
779 if (!pvec.nr)
780 break;
781 index = indices[pvec.nr - 1] + 1;
782 pagevec_remove_exceptionals(&pvec);
783 check_move_unevictable_pages(pvec.pages, pvec.nr);
784 pagevec_release(&pvec);
785 cond_resched();
790 * Remove range of pages and swap entries from radix tree, and free them.
791 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
793 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
794 bool unfalloc)
796 struct address_space *mapping = inode->i_mapping;
797 struct shmem_inode_info *info = SHMEM_I(inode);
798 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
799 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
800 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
801 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
802 struct pagevec pvec;
803 pgoff_t indices[PAGEVEC_SIZE];
804 long nr_swaps_freed = 0;
805 pgoff_t index;
806 int i;
808 if (lend == -1)
809 end = -1; /* unsigned, so actually very big */
811 pagevec_init(&pvec);
812 index = start;
813 while (index < end) {
814 pvec.nr = find_get_entries(mapping, index,
815 min(end - index, (pgoff_t)PAGEVEC_SIZE),
816 pvec.pages, indices);
817 if (!pvec.nr)
818 break;
819 for (i = 0; i < pagevec_count(&pvec); i++) {
820 struct page *page = pvec.pages[i];
822 index = indices[i];
823 if (index >= end)
824 break;
826 if (radix_tree_exceptional_entry(page)) {
827 if (unfalloc)
828 continue;
829 nr_swaps_freed += !shmem_free_swap(mapping,
830 index, page);
831 continue;
834 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
836 if (!trylock_page(page))
837 continue;
839 if (PageTransTail(page)) {
840 /* Middle of THP: zero out the page */
841 clear_highpage(page);
842 unlock_page(page);
843 continue;
844 } else if (PageTransHuge(page)) {
845 if (index == round_down(end, HPAGE_PMD_NR)) {
847 * Range ends in the middle of THP:
848 * zero out the page
850 clear_highpage(page);
851 unlock_page(page);
852 continue;
854 index += HPAGE_PMD_NR - 1;
855 i += HPAGE_PMD_NR - 1;
858 if (!unfalloc || !PageUptodate(page)) {
859 VM_BUG_ON_PAGE(PageTail(page), page);
860 if (page_mapping(page) == mapping) {
861 VM_BUG_ON_PAGE(PageWriteback(page), page);
862 truncate_inode_page(mapping, page);
865 unlock_page(page);
867 pagevec_remove_exceptionals(&pvec);
868 pagevec_release(&pvec);
869 cond_resched();
870 index++;
873 if (partial_start) {
874 struct page *page = NULL;
875 shmem_getpage(inode, start - 1, &page, SGP_READ);
876 if (page) {
877 unsigned int top = PAGE_SIZE;
878 if (start > end) {
879 top = partial_end;
880 partial_end = 0;
882 zero_user_segment(page, partial_start, top);
883 set_page_dirty(page);
884 unlock_page(page);
885 put_page(page);
888 if (partial_end) {
889 struct page *page = NULL;
890 shmem_getpage(inode, end, &page, SGP_READ);
891 if (page) {
892 zero_user_segment(page, 0, partial_end);
893 set_page_dirty(page);
894 unlock_page(page);
895 put_page(page);
898 if (start >= end)
899 return;
901 index = start;
902 while (index < end) {
903 cond_resched();
905 pvec.nr = find_get_entries(mapping, index,
906 min(end - index, (pgoff_t)PAGEVEC_SIZE),
907 pvec.pages, indices);
908 if (!pvec.nr) {
909 /* If all gone or hole-punch or unfalloc, we're done */
910 if (index == start || end != -1)
911 break;
912 /* But if truncating, restart to make sure all gone */
913 index = start;
914 continue;
916 for (i = 0; i < pagevec_count(&pvec); i++) {
917 struct page *page = pvec.pages[i];
919 index = indices[i];
920 if (index >= end)
921 break;
923 if (radix_tree_exceptional_entry(page)) {
924 if (unfalloc)
925 continue;
926 if (shmem_free_swap(mapping, index, page)) {
927 /* Swap was replaced by page: retry */
928 index--;
929 break;
931 nr_swaps_freed++;
932 continue;
935 lock_page(page);
937 if (PageTransTail(page)) {
938 /* Middle of THP: zero out the page */
939 clear_highpage(page);
940 unlock_page(page);
942 * Partial thp truncate due 'start' in middle
943 * of THP: don't need to look on these pages
944 * again on !pvec.nr restart.
946 if (index != round_down(end, HPAGE_PMD_NR))
947 start++;
948 continue;
949 } else if (PageTransHuge(page)) {
950 if (index == round_down(end, HPAGE_PMD_NR)) {
952 * Range ends in the middle of THP:
953 * zero out the page
955 clear_highpage(page);
956 unlock_page(page);
957 continue;
959 index += HPAGE_PMD_NR - 1;
960 i += HPAGE_PMD_NR - 1;
963 if (!unfalloc || !PageUptodate(page)) {
964 VM_BUG_ON_PAGE(PageTail(page), page);
965 if (page_mapping(page) == mapping) {
966 VM_BUG_ON_PAGE(PageWriteback(page), page);
967 truncate_inode_page(mapping, page);
968 } else {
969 /* Page was replaced by swap: retry */
970 unlock_page(page);
971 index--;
972 break;
975 unlock_page(page);
977 pagevec_remove_exceptionals(&pvec);
978 pagevec_release(&pvec);
979 index++;
982 spin_lock_irq(&info->lock);
983 info->swapped -= nr_swaps_freed;
984 shmem_recalc_inode(inode);
985 spin_unlock_irq(&info->lock);
988 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
990 shmem_undo_range(inode, lstart, lend, false);
991 inode->i_ctime = inode->i_mtime = current_time(inode);
993 EXPORT_SYMBOL_GPL(shmem_truncate_range);
995 static int shmem_getattr(const struct path *path, struct kstat *stat,
996 u32 request_mask, unsigned int query_flags)
998 struct inode *inode = path->dentry->d_inode;
999 struct shmem_inode_info *info = SHMEM_I(inode);
1000 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1002 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1003 spin_lock_irq(&info->lock);
1004 shmem_recalc_inode(inode);
1005 spin_unlock_irq(&info->lock);
1007 generic_fillattr(inode, stat);
1009 if (is_huge_enabled(sb_info))
1010 stat->blksize = HPAGE_PMD_SIZE;
1012 return 0;
1015 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1017 struct inode *inode = d_inode(dentry);
1018 struct shmem_inode_info *info = SHMEM_I(inode);
1019 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1020 int error;
1022 error = setattr_prepare(dentry, attr);
1023 if (error)
1024 return error;
1026 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1027 loff_t oldsize = inode->i_size;
1028 loff_t newsize = attr->ia_size;
1030 /* protected by i_mutex */
1031 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1032 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1033 return -EPERM;
1035 if (newsize != oldsize) {
1036 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1037 oldsize, newsize);
1038 if (error)
1039 return error;
1040 i_size_write(inode, newsize);
1041 inode->i_ctime = inode->i_mtime = current_time(inode);
1043 if (newsize <= oldsize) {
1044 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1045 if (oldsize > holebegin)
1046 unmap_mapping_range(inode->i_mapping,
1047 holebegin, 0, 1);
1048 if (info->alloced)
1049 shmem_truncate_range(inode,
1050 newsize, (loff_t)-1);
1051 /* unmap again to remove racily COWed private pages */
1052 if (oldsize > holebegin)
1053 unmap_mapping_range(inode->i_mapping,
1054 holebegin, 0, 1);
1057 * Part of the huge page can be beyond i_size: subject
1058 * to shrink under memory pressure.
1060 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1061 spin_lock(&sbinfo->shrinklist_lock);
1063 * _careful to defend against unlocked access to
1064 * ->shrink_list in shmem_unused_huge_shrink()
1066 if (list_empty_careful(&info->shrinklist)) {
1067 list_add_tail(&info->shrinklist,
1068 &sbinfo->shrinklist);
1069 sbinfo->shrinklist_len++;
1071 spin_unlock(&sbinfo->shrinklist_lock);
1076 setattr_copy(inode, attr);
1077 if (attr->ia_valid & ATTR_MODE)
1078 error = posix_acl_chmod(inode, inode->i_mode);
1079 return error;
1082 static void shmem_evict_inode(struct inode *inode)
1084 struct shmem_inode_info *info = SHMEM_I(inode);
1085 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1087 if (inode->i_mapping->a_ops == &shmem_aops) {
1088 shmem_unacct_size(info->flags, inode->i_size);
1089 inode->i_size = 0;
1090 shmem_truncate_range(inode, 0, (loff_t)-1);
1091 if (!list_empty(&info->shrinklist)) {
1092 spin_lock(&sbinfo->shrinklist_lock);
1093 if (!list_empty(&info->shrinklist)) {
1094 list_del_init(&info->shrinklist);
1095 sbinfo->shrinklist_len--;
1097 spin_unlock(&sbinfo->shrinklist_lock);
1099 if (!list_empty(&info->swaplist)) {
1100 mutex_lock(&shmem_swaplist_mutex);
1101 list_del_init(&info->swaplist);
1102 mutex_unlock(&shmem_swaplist_mutex);
1106 simple_xattrs_free(&info->xattrs);
1107 WARN_ON(inode->i_blocks);
1108 shmem_free_inode(inode->i_sb);
1109 clear_inode(inode);
1112 static unsigned long find_swap_entry(struct radix_tree_root *root, void *item)
1114 struct radix_tree_iter iter;
1115 void __rcu **slot;
1116 unsigned long found = -1;
1117 unsigned int checked = 0;
1119 rcu_read_lock();
1120 radix_tree_for_each_slot(slot, root, &iter, 0) {
1121 void *entry = radix_tree_deref_slot(slot);
1123 if (radix_tree_deref_retry(entry)) {
1124 slot = radix_tree_iter_retry(&iter);
1125 continue;
1127 if (entry == item) {
1128 found = iter.index;
1129 break;
1131 checked++;
1132 if ((checked % 4096) != 0)
1133 continue;
1134 slot = radix_tree_iter_resume(slot, &iter);
1135 cond_resched_rcu();
1138 rcu_read_unlock();
1139 return found;
1143 * If swap found in inode, free it and move page from swapcache to filecache.
1145 static int shmem_unuse_inode(struct shmem_inode_info *info,
1146 swp_entry_t swap, struct page **pagep)
1148 struct address_space *mapping = info->vfs_inode.i_mapping;
1149 void *radswap;
1150 pgoff_t index;
1151 gfp_t gfp;
1152 int error = 0;
1154 radswap = swp_to_radix_entry(swap);
1155 index = find_swap_entry(&mapping->i_pages, radswap);
1156 if (index == -1)
1157 return -EAGAIN; /* tell shmem_unuse we found nothing */
1160 * Move _head_ to start search for next from here.
1161 * But be careful: shmem_evict_inode checks list_empty without taking
1162 * mutex, and there's an instant in list_move_tail when info->swaplist
1163 * would appear empty, if it were the only one on shmem_swaplist.
1165 if (shmem_swaplist.next != &info->swaplist)
1166 list_move_tail(&shmem_swaplist, &info->swaplist);
1168 gfp = mapping_gfp_mask(mapping);
1169 if (shmem_should_replace_page(*pagep, gfp)) {
1170 mutex_unlock(&shmem_swaplist_mutex);
1171 error = shmem_replace_page(pagep, gfp, info, index);
1172 mutex_lock(&shmem_swaplist_mutex);
1174 * We needed to drop mutex to make that restrictive page
1175 * allocation, but the inode might have been freed while we
1176 * dropped it: although a racing shmem_evict_inode() cannot
1177 * complete without emptying the radix_tree, our page lock
1178 * on this swapcache page is not enough to prevent that -
1179 * free_swap_and_cache() of our swap entry will only
1180 * trylock_page(), removing swap from radix_tree whatever.
1182 * We must not proceed to shmem_add_to_page_cache() if the
1183 * inode has been freed, but of course we cannot rely on
1184 * inode or mapping or info to check that. However, we can
1185 * safely check if our swap entry is still in use (and here
1186 * it can't have got reused for another page): if it's still
1187 * in use, then the inode cannot have been freed yet, and we
1188 * can safely proceed (if it's no longer in use, that tells
1189 * nothing about the inode, but we don't need to unuse swap).
1191 if (!page_swapcount(*pagep))
1192 error = -ENOENT;
1196 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1197 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1198 * beneath us (pagelock doesn't help until the page is in pagecache).
1200 if (!error)
1201 error = shmem_add_to_page_cache(*pagep, mapping, index,
1202 radswap);
1203 if (error != -ENOMEM) {
1205 * Truncation and eviction use free_swap_and_cache(), which
1206 * only does trylock page: if we raced, best clean up here.
1208 delete_from_swap_cache(*pagep);
1209 set_page_dirty(*pagep);
1210 if (!error) {
1211 spin_lock_irq(&info->lock);
1212 info->swapped--;
1213 spin_unlock_irq(&info->lock);
1214 swap_free(swap);
1217 return error;
1221 * Search through swapped inodes to find and replace swap by page.
1223 int shmem_unuse(swp_entry_t swap, struct page *page)
1225 struct list_head *this, *next;
1226 struct shmem_inode_info *info;
1227 struct mem_cgroup *memcg;
1228 int error = 0;
1231 * There's a faint possibility that swap page was replaced before
1232 * caller locked it: caller will come back later with the right page.
1234 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1235 goto out;
1238 * Charge page using GFP_KERNEL while we can wait, before taking
1239 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1240 * Charged back to the user (not to caller) when swap account is used.
1242 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1243 false);
1244 if (error)
1245 goto out;
1246 /* No radix_tree_preload: swap entry keeps a place for page in tree */
1247 error = -EAGAIN;
1249 mutex_lock(&shmem_swaplist_mutex);
1250 list_for_each_safe(this, next, &shmem_swaplist) {
1251 info = list_entry(this, struct shmem_inode_info, swaplist);
1252 if (info->swapped)
1253 error = shmem_unuse_inode(info, swap, &page);
1254 else
1255 list_del_init(&info->swaplist);
1256 cond_resched();
1257 if (error != -EAGAIN)
1258 break;
1259 /* found nothing in this: move on to search the next */
1261 mutex_unlock(&shmem_swaplist_mutex);
1263 if (error) {
1264 if (error != -ENOMEM)
1265 error = 0;
1266 mem_cgroup_cancel_charge(page, memcg, false);
1267 } else
1268 mem_cgroup_commit_charge(page, memcg, true, false);
1269 out:
1270 unlock_page(page);
1271 put_page(page);
1272 return error;
1276 * Move the page from the page cache to the swap cache.
1278 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1280 struct shmem_inode_info *info;
1281 struct address_space *mapping;
1282 struct inode *inode;
1283 swp_entry_t swap;
1284 pgoff_t index;
1286 VM_BUG_ON_PAGE(PageCompound(page), page);
1287 BUG_ON(!PageLocked(page));
1288 mapping = page->mapping;
1289 index = page->index;
1290 inode = mapping->host;
1291 info = SHMEM_I(inode);
1292 if (info->flags & VM_LOCKED)
1293 goto redirty;
1294 if (!total_swap_pages)
1295 goto redirty;
1298 * Our capabilities prevent regular writeback or sync from ever calling
1299 * shmem_writepage; but a stacking filesystem might use ->writepage of
1300 * its underlying filesystem, in which case tmpfs should write out to
1301 * swap only in response to memory pressure, and not for the writeback
1302 * threads or sync.
1304 if (!wbc->for_reclaim) {
1305 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1306 goto redirty;
1310 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1311 * value into swapfile.c, the only way we can correctly account for a
1312 * fallocated page arriving here is now to initialize it and write it.
1314 * That's okay for a page already fallocated earlier, but if we have
1315 * not yet completed the fallocation, then (a) we want to keep track
1316 * of this page in case we have to undo it, and (b) it may not be a
1317 * good idea to continue anyway, once we're pushing into swap. So
1318 * reactivate the page, and let shmem_fallocate() quit when too many.
1320 if (!PageUptodate(page)) {
1321 if (inode->i_private) {
1322 struct shmem_falloc *shmem_falloc;
1323 spin_lock(&inode->i_lock);
1324 shmem_falloc = inode->i_private;
1325 if (shmem_falloc &&
1326 !shmem_falloc->waitq &&
1327 index >= shmem_falloc->start &&
1328 index < shmem_falloc->next)
1329 shmem_falloc->nr_unswapped++;
1330 else
1331 shmem_falloc = NULL;
1332 spin_unlock(&inode->i_lock);
1333 if (shmem_falloc)
1334 goto redirty;
1336 clear_highpage(page);
1337 flush_dcache_page(page);
1338 SetPageUptodate(page);
1341 swap = get_swap_page(page);
1342 if (!swap.val)
1343 goto redirty;
1346 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1347 * if it's not already there. Do it now before the page is
1348 * moved to swap cache, when its pagelock no longer protects
1349 * the inode from eviction. But don't unlock the mutex until
1350 * we've incremented swapped, because shmem_unuse_inode() will
1351 * prune a !swapped inode from the swaplist under this mutex.
1353 mutex_lock(&shmem_swaplist_mutex);
1354 if (list_empty(&info->swaplist))
1355 list_add_tail(&info->swaplist, &shmem_swaplist);
1357 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1358 spin_lock_irq(&info->lock);
1359 shmem_recalc_inode(inode);
1360 info->swapped++;
1361 spin_unlock_irq(&info->lock);
1363 swap_shmem_alloc(swap);
1364 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1366 mutex_unlock(&shmem_swaplist_mutex);
1367 BUG_ON(page_mapped(page));
1368 swap_writepage(page, wbc);
1369 return 0;
1372 mutex_unlock(&shmem_swaplist_mutex);
1373 put_swap_page(page, swap);
1374 redirty:
1375 set_page_dirty(page);
1376 if (wbc->for_reclaim)
1377 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1378 unlock_page(page);
1379 return 0;
1382 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1383 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1385 char buffer[64];
1387 if (!mpol || mpol->mode == MPOL_DEFAULT)
1388 return; /* show nothing */
1390 mpol_to_str(buffer, sizeof(buffer), mpol);
1392 seq_printf(seq, ",mpol=%s", buffer);
1395 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1397 struct mempolicy *mpol = NULL;
1398 if (sbinfo->mpol) {
1399 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1400 mpol = sbinfo->mpol;
1401 mpol_get(mpol);
1402 spin_unlock(&sbinfo->stat_lock);
1404 return mpol;
1406 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1407 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1410 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1412 return NULL;
1414 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1415 #ifndef CONFIG_NUMA
1416 #define vm_policy vm_private_data
1417 #endif
1419 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1420 struct shmem_inode_info *info, pgoff_t index)
1422 /* Create a pseudo vma that just contains the policy */
1423 memset(vma, 0, sizeof(*vma));
1424 /* Bias interleave by inode number to distribute better across nodes */
1425 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1426 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1429 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1431 /* Drop reference taken by mpol_shared_policy_lookup() */
1432 mpol_cond_put(vma->vm_policy);
1435 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1436 struct shmem_inode_info *info, pgoff_t index)
1438 struct vm_area_struct pvma;
1439 struct page *page;
1440 struct vm_fault vmf;
1442 shmem_pseudo_vma_init(&pvma, info, index);
1443 vmf.vma = &pvma;
1444 vmf.address = 0;
1445 page = swap_cluster_readahead(swap, gfp, &vmf);
1446 shmem_pseudo_vma_destroy(&pvma);
1448 return page;
1451 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1452 struct shmem_inode_info *info, pgoff_t index)
1454 struct vm_area_struct pvma;
1455 struct inode *inode = &info->vfs_inode;
1456 struct address_space *mapping = inode->i_mapping;
1457 pgoff_t idx, hindex;
1458 void __rcu **results;
1459 struct page *page;
1461 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1462 return NULL;
1464 hindex = round_down(index, HPAGE_PMD_NR);
1465 rcu_read_lock();
1466 if (radix_tree_gang_lookup_slot(&mapping->i_pages, &results, &idx,
1467 hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1468 rcu_read_unlock();
1469 return NULL;
1471 rcu_read_unlock();
1473 shmem_pseudo_vma_init(&pvma, info, hindex);
1474 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1475 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1476 shmem_pseudo_vma_destroy(&pvma);
1477 if (page)
1478 prep_transhuge_page(page);
1479 return page;
1482 static struct page *shmem_alloc_page(gfp_t gfp,
1483 struct shmem_inode_info *info, pgoff_t index)
1485 struct vm_area_struct pvma;
1486 struct page *page;
1488 shmem_pseudo_vma_init(&pvma, info, index);
1489 page = alloc_page_vma(gfp, &pvma, 0);
1490 shmem_pseudo_vma_destroy(&pvma);
1492 return page;
1495 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1496 struct inode *inode,
1497 pgoff_t index, bool huge)
1499 struct shmem_inode_info *info = SHMEM_I(inode);
1500 struct page *page;
1501 int nr;
1502 int err = -ENOSPC;
1504 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1505 huge = false;
1506 nr = huge ? HPAGE_PMD_NR : 1;
1508 if (!shmem_inode_acct_block(inode, nr))
1509 goto failed;
1511 if (huge)
1512 page = shmem_alloc_hugepage(gfp, info, index);
1513 else
1514 page = shmem_alloc_page(gfp, info, index);
1515 if (page) {
1516 __SetPageLocked(page);
1517 __SetPageSwapBacked(page);
1518 return page;
1521 err = -ENOMEM;
1522 shmem_inode_unacct_blocks(inode, nr);
1523 failed:
1524 return ERR_PTR(err);
1528 * When a page is moved from swapcache to shmem filecache (either by the
1529 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1530 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1531 * ignorance of the mapping it belongs to. If that mapping has special
1532 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1533 * we may need to copy to a suitable page before moving to filecache.
1535 * In a future release, this may well be extended to respect cpuset and
1536 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1537 * but for now it is a simple matter of zone.
1539 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1541 return page_zonenum(page) > gfp_zone(gfp);
1544 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1545 struct shmem_inode_info *info, pgoff_t index)
1547 struct page *oldpage, *newpage;
1548 struct address_space *swap_mapping;
1549 pgoff_t swap_index;
1550 int error;
1552 oldpage = *pagep;
1553 swap_index = page_private(oldpage);
1554 swap_mapping = page_mapping(oldpage);
1557 * We have arrived here because our zones are constrained, so don't
1558 * limit chance of success by further cpuset and node constraints.
1560 gfp &= ~GFP_CONSTRAINT_MASK;
1561 newpage = shmem_alloc_page(gfp, info, index);
1562 if (!newpage)
1563 return -ENOMEM;
1565 get_page(newpage);
1566 copy_highpage(newpage, oldpage);
1567 flush_dcache_page(newpage);
1569 __SetPageLocked(newpage);
1570 __SetPageSwapBacked(newpage);
1571 SetPageUptodate(newpage);
1572 set_page_private(newpage, swap_index);
1573 SetPageSwapCache(newpage);
1576 * Our caller will very soon move newpage out of swapcache, but it's
1577 * a nice clean interface for us to replace oldpage by newpage there.
1579 xa_lock_irq(&swap_mapping->i_pages);
1580 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1581 newpage);
1582 if (!error) {
1583 __inc_node_page_state(newpage, NR_FILE_PAGES);
1584 __dec_node_page_state(oldpage, NR_FILE_PAGES);
1586 xa_unlock_irq(&swap_mapping->i_pages);
1588 if (unlikely(error)) {
1590 * Is this possible? I think not, now that our callers check
1591 * both PageSwapCache and page_private after getting page lock;
1592 * but be defensive. Reverse old to newpage for clear and free.
1594 oldpage = newpage;
1595 } else {
1596 mem_cgroup_migrate(oldpage, newpage);
1597 lru_cache_add_anon(newpage);
1598 *pagep = newpage;
1601 ClearPageSwapCache(oldpage);
1602 set_page_private(oldpage, 0);
1604 unlock_page(oldpage);
1605 put_page(oldpage);
1606 put_page(oldpage);
1607 return error;
1611 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1613 * If we allocate a new one we do not mark it dirty. That's up to the
1614 * vm. If we swap it in we mark it dirty since we also free the swap
1615 * entry since a page cannot live in both the swap and page cache.
1617 * fault_mm and fault_type are only supplied by shmem_fault:
1618 * otherwise they are NULL.
1620 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1621 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1622 struct vm_area_struct *vma, struct vm_fault *vmf, int *fault_type)
1624 struct address_space *mapping = inode->i_mapping;
1625 struct shmem_inode_info *info = SHMEM_I(inode);
1626 struct shmem_sb_info *sbinfo;
1627 struct mm_struct *charge_mm;
1628 struct mem_cgroup *memcg;
1629 struct page *page;
1630 swp_entry_t swap;
1631 enum sgp_type sgp_huge = sgp;
1632 pgoff_t hindex = index;
1633 int error;
1634 int once = 0;
1635 int alloced = 0;
1637 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1638 return -EFBIG;
1639 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1640 sgp = SGP_CACHE;
1641 repeat:
1642 swap.val = 0;
1643 page = find_lock_entry(mapping, index);
1644 if (radix_tree_exceptional_entry(page)) {
1645 swap = radix_to_swp_entry(page);
1646 page = NULL;
1649 if (sgp <= SGP_CACHE &&
1650 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1651 error = -EINVAL;
1652 goto unlock;
1655 if (page && sgp == SGP_WRITE)
1656 mark_page_accessed(page);
1658 /* fallocated page? */
1659 if (page && !PageUptodate(page)) {
1660 if (sgp != SGP_READ)
1661 goto clear;
1662 unlock_page(page);
1663 put_page(page);
1664 page = NULL;
1666 if (page || (sgp == SGP_READ && !swap.val)) {
1667 *pagep = page;
1668 return 0;
1672 * Fast cache lookup did not find it:
1673 * bring it back from swap or allocate.
1675 sbinfo = SHMEM_SB(inode->i_sb);
1676 charge_mm = vma ? vma->vm_mm : current->mm;
1678 if (swap.val) {
1679 /* Look it up and read it in.. */
1680 page = lookup_swap_cache(swap, NULL, 0);
1681 if (!page) {
1682 /* Or update major stats only when swapin succeeds?? */
1683 if (fault_type) {
1684 *fault_type |= VM_FAULT_MAJOR;
1685 count_vm_event(PGMAJFAULT);
1686 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1688 /* Here we actually start the io */
1689 page = shmem_swapin(swap, gfp, info, index);
1690 if (!page) {
1691 error = -ENOMEM;
1692 goto failed;
1696 /* We have to do this with page locked to prevent races */
1697 lock_page(page);
1698 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1699 !shmem_confirm_swap(mapping, index, swap)) {
1700 error = -EEXIST; /* try again */
1701 goto unlock;
1703 if (!PageUptodate(page)) {
1704 error = -EIO;
1705 goto failed;
1707 wait_on_page_writeback(page);
1709 if (shmem_should_replace_page(page, gfp)) {
1710 error = shmem_replace_page(&page, gfp, info, index);
1711 if (error)
1712 goto failed;
1715 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1716 false);
1717 if (!error) {
1718 error = shmem_add_to_page_cache(page, mapping, index,
1719 swp_to_radix_entry(swap));
1721 * We already confirmed swap under page lock, and make
1722 * no memory allocation here, so usually no possibility
1723 * of error; but free_swap_and_cache() only trylocks a
1724 * page, so it is just possible that the entry has been
1725 * truncated or holepunched since swap was confirmed.
1726 * shmem_undo_range() will have done some of the
1727 * unaccounting, now delete_from_swap_cache() will do
1728 * the rest.
1729 * Reset swap.val? No, leave it so "failed" goes back to
1730 * "repeat": reading a hole and writing should succeed.
1732 if (error) {
1733 mem_cgroup_cancel_charge(page, memcg, false);
1734 delete_from_swap_cache(page);
1737 if (error)
1738 goto failed;
1740 mem_cgroup_commit_charge(page, memcg, true, false);
1742 spin_lock_irq(&info->lock);
1743 info->swapped--;
1744 shmem_recalc_inode(inode);
1745 spin_unlock_irq(&info->lock);
1747 if (sgp == SGP_WRITE)
1748 mark_page_accessed(page);
1750 delete_from_swap_cache(page);
1751 set_page_dirty(page);
1752 swap_free(swap);
1754 } else {
1755 if (vma && userfaultfd_missing(vma)) {
1756 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1757 return 0;
1760 /* shmem_symlink() */
1761 if (mapping->a_ops != &shmem_aops)
1762 goto alloc_nohuge;
1763 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1764 goto alloc_nohuge;
1765 if (shmem_huge == SHMEM_HUGE_FORCE)
1766 goto alloc_huge;
1767 switch (sbinfo->huge) {
1768 loff_t i_size;
1769 pgoff_t off;
1770 case SHMEM_HUGE_NEVER:
1771 goto alloc_nohuge;
1772 case SHMEM_HUGE_WITHIN_SIZE:
1773 off = round_up(index, HPAGE_PMD_NR);
1774 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1775 if (i_size >= HPAGE_PMD_SIZE &&
1776 i_size >> PAGE_SHIFT >= off)
1777 goto alloc_huge;
1778 /* fallthrough */
1779 case SHMEM_HUGE_ADVISE:
1780 if (sgp_huge == SGP_HUGE)
1781 goto alloc_huge;
1782 /* TODO: implement fadvise() hints */
1783 goto alloc_nohuge;
1786 alloc_huge:
1787 page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1788 if (IS_ERR(page)) {
1789 alloc_nohuge: page = shmem_alloc_and_acct_page(gfp, inode,
1790 index, false);
1792 if (IS_ERR(page)) {
1793 int retry = 5;
1794 error = PTR_ERR(page);
1795 page = NULL;
1796 if (error != -ENOSPC)
1797 goto failed;
1799 * Try to reclaim some spece by splitting a huge page
1800 * beyond i_size on the filesystem.
1802 while (retry--) {
1803 int ret;
1804 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1805 if (ret == SHRINK_STOP)
1806 break;
1807 if (ret)
1808 goto alloc_nohuge;
1810 goto failed;
1813 if (PageTransHuge(page))
1814 hindex = round_down(index, HPAGE_PMD_NR);
1815 else
1816 hindex = index;
1818 if (sgp == SGP_WRITE)
1819 __SetPageReferenced(page);
1821 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1822 PageTransHuge(page));
1823 if (error)
1824 goto unacct;
1825 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1826 compound_order(page));
1827 if (!error) {
1828 error = shmem_add_to_page_cache(page, mapping, hindex,
1829 NULL);
1830 radix_tree_preload_end();
1832 if (error) {
1833 mem_cgroup_cancel_charge(page, memcg,
1834 PageTransHuge(page));
1835 goto unacct;
1837 mem_cgroup_commit_charge(page, memcg, false,
1838 PageTransHuge(page));
1839 lru_cache_add_anon(page);
1841 spin_lock_irq(&info->lock);
1842 info->alloced += 1 << compound_order(page);
1843 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1844 shmem_recalc_inode(inode);
1845 spin_unlock_irq(&info->lock);
1846 alloced = true;
1848 if (PageTransHuge(page) &&
1849 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1850 hindex + HPAGE_PMD_NR - 1) {
1852 * Part of the huge page is beyond i_size: subject
1853 * to shrink under memory pressure.
1855 spin_lock(&sbinfo->shrinklist_lock);
1857 * _careful to defend against unlocked access to
1858 * ->shrink_list in shmem_unused_huge_shrink()
1860 if (list_empty_careful(&info->shrinklist)) {
1861 list_add_tail(&info->shrinklist,
1862 &sbinfo->shrinklist);
1863 sbinfo->shrinklist_len++;
1865 spin_unlock(&sbinfo->shrinklist_lock);
1869 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1871 if (sgp == SGP_FALLOC)
1872 sgp = SGP_WRITE;
1873 clear:
1875 * Let SGP_WRITE caller clear ends if write does not fill page;
1876 * but SGP_FALLOC on a page fallocated earlier must initialize
1877 * it now, lest undo on failure cancel our earlier guarantee.
1879 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1880 struct page *head = compound_head(page);
1881 int i;
1883 for (i = 0; i < (1 << compound_order(head)); i++) {
1884 clear_highpage(head + i);
1885 flush_dcache_page(head + i);
1887 SetPageUptodate(head);
1891 /* Perhaps the file has been truncated since we checked */
1892 if (sgp <= SGP_CACHE &&
1893 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1894 if (alloced) {
1895 ClearPageDirty(page);
1896 delete_from_page_cache(page);
1897 spin_lock_irq(&info->lock);
1898 shmem_recalc_inode(inode);
1899 spin_unlock_irq(&info->lock);
1901 error = -EINVAL;
1902 goto unlock;
1904 *pagep = page + index - hindex;
1905 return 0;
1908 * Error recovery.
1910 unacct:
1911 shmem_inode_unacct_blocks(inode, 1 << compound_order(page));
1913 if (PageTransHuge(page)) {
1914 unlock_page(page);
1915 put_page(page);
1916 goto alloc_nohuge;
1918 failed:
1919 if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1920 error = -EEXIST;
1921 unlock:
1922 if (page) {
1923 unlock_page(page);
1924 put_page(page);
1926 if (error == -ENOSPC && !once++) {
1927 spin_lock_irq(&info->lock);
1928 shmem_recalc_inode(inode);
1929 spin_unlock_irq(&info->lock);
1930 goto repeat;
1932 if (error == -EEXIST) /* from above or from radix_tree_insert */
1933 goto repeat;
1934 return error;
1938 * This is like autoremove_wake_function, but it removes the wait queue
1939 * entry unconditionally - even if something else had already woken the
1940 * target.
1942 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1944 int ret = default_wake_function(wait, mode, sync, key);
1945 list_del_init(&wait->entry);
1946 return ret;
1949 static vm_fault_t shmem_fault(struct vm_fault *vmf)
1951 struct vm_area_struct *vma = vmf->vma;
1952 struct inode *inode = file_inode(vma->vm_file);
1953 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1954 enum sgp_type sgp;
1955 int err;
1956 vm_fault_t ret = VM_FAULT_LOCKED;
1959 * Trinity finds that probing a hole which tmpfs is punching can
1960 * prevent the hole-punch from ever completing: which in turn
1961 * locks writers out with its hold on i_mutex. So refrain from
1962 * faulting pages into the hole while it's being punched. Although
1963 * shmem_undo_range() does remove the additions, it may be unable to
1964 * keep up, as each new page needs its own unmap_mapping_range() call,
1965 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1967 * It does not matter if we sometimes reach this check just before the
1968 * hole-punch begins, so that one fault then races with the punch:
1969 * we just need to make racing faults a rare case.
1971 * The implementation below would be much simpler if we just used a
1972 * standard mutex or completion: but we cannot take i_mutex in fault,
1973 * and bloating every shmem inode for this unlikely case would be sad.
1975 if (unlikely(inode->i_private)) {
1976 struct shmem_falloc *shmem_falloc;
1978 spin_lock(&inode->i_lock);
1979 shmem_falloc = inode->i_private;
1980 if (shmem_falloc &&
1981 shmem_falloc->waitq &&
1982 vmf->pgoff >= shmem_falloc->start &&
1983 vmf->pgoff < shmem_falloc->next) {
1984 wait_queue_head_t *shmem_falloc_waitq;
1985 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
1987 ret = VM_FAULT_NOPAGE;
1988 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1989 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1990 /* It's polite to up mmap_sem if we can */
1991 up_read(&vma->vm_mm->mmap_sem);
1992 ret = VM_FAULT_RETRY;
1995 shmem_falloc_waitq = shmem_falloc->waitq;
1996 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1997 TASK_UNINTERRUPTIBLE);
1998 spin_unlock(&inode->i_lock);
1999 schedule();
2002 * shmem_falloc_waitq points into the shmem_fallocate()
2003 * stack of the hole-punching task: shmem_falloc_waitq
2004 * is usually invalid by the time we reach here, but
2005 * finish_wait() does not dereference it in that case;
2006 * though i_lock needed lest racing with wake_up_all().
2008 spin_lock(&inode->i_lock);
2009 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2010 spin_unlock(&inode->i_lock);
2011 return ret;
2013 spin_unlock(&inode->i_lock);
2016 sgp = SGP_CACHE;
2018 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2019 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2020 sgp = SGP_NOHUGE;
2021 else if (vma->vm_flags & VM_HUGEPAGE)
2022 sgp = SGP_HUGE;
2024 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2025 gfp, vma, vmf, &ret);
2026 if (err)
2027 return vmf_error(err);
2028 return ret;
2031 unsigned long shmem_get_unmapped_area(struct file *file,
2032 unsigned long uaddr, unsigned long len,
2033 unsigned long pgoff, unsigned long flags)
2035 unsigned long (*get_area)(struct file *,
2036 unsigned long, unsigned long, unsigned long, unsigned long);
2037 unsigned long addr;
2038 unsigned long offset;
2039 unsigned long inflated_len;
2040 unsigned long inflated_addr;
2041 unsigned long inflated_offset;
2043 if (len > TASK_SIZE)
2044 return -ENOMEM;
2046 get_area = current->mm->get_unmapped_area;
2047 addr = get_area(file, uaddr, len, pgoff, flags);
2049 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2050 return addr;
2051 if (IS_ERR_VALUE(addr))
2052 return addr;
2053 if (addr & ~PAGE_MASK)
2054 return addr;
2055 if (addr > TASK_SIZE - len)
2056 return addr;
2058 if (shmem_huge == SHMEM_HUGE_DENY)
2059 return addr;
2060 if (len < HPAGE_PMD_SIZE)
2061 return addr;
2062 if (flags & MAP_FIXED)
2063 return addr;
2065 * Our priority is to support MAP_SHARED mapped hugely;
2066 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2067 * But if caller specified an address hint, respect that as before.
2069 if (uaddr)
2070 return addr;
2072 if (shmem_huge != SHMEM_HUGE_FORCE) {
2073 struct super_block *sb;
2075 if (file) {
2076 VM_BUG_ON(file->f_op != &shmem_file_operations);
2077 sb = file_inode(file)->i_sb;
2078 } else {
2080 * Called directly from mm/mmap.c, or drivers/char/mem.c
2081 * for "/dev/zero", to create a shared anonymous object.
2083 if (IS_ERR(shm_mnt))
2084 return addr;
2085 sb = shm_mnt->mnt_sb;
2087 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2088 return addr;
2091 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2092 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2093 return addr;
2094 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2095 return addr;
2097 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2098 if (inflated_len > TASK_SIZE)
2099 return addr;
2100 if (inflated_len < len)
2101 return addr;
2103 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2104 if (IS_ERR_VALUE(inflated_addr))
2105 return addr;
2106 if (inflated_addr & ~PAGE_MASK)
2107 return addr;
2109 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2110 inflated_addr += offset - inflated_offset;
2111 if (inflated_offset > offset)
2112 inflated_addr += HPAGE_PMD_SIZE;
2114 if (inflated_addr > TASK_SIZE - len)
2115 return addr;
2116 return inflated_addr;
2119 #ifdef CONFIG_NUMA
2120 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2122 struct inode *inode = file_inode(vma->vm_file);
2123 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2126 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2127 unsigned long addr)
2129 struct inode *inode = file_inode(vma->vm_file);
2130 pgoff_t index;
2132 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2133 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2135 #endif
2137 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2139 struct inode *inode = file_inode(file);
2140 struct shmem_inode_info *info = SHMEM_I(inode);
2141 int retval = -ENOMEM;
2143 spin_lock_irq(&info->lock);
2144 if (lock && !(info->flags & VM_LOCKED)) {
2145 if (!user_shm_lock(inode->i_size, user))
2146 goto out_nomem;
2147 info->flags |= VM_LOCKED;
2148 mapping_set_unevictable(file->f_mapping);
2150 if (!lock && (info->flags & VM_LOCKED) && user) {
2151 user_shm_unlock(inode->i_size, user);
2152 info->flags &= ~VM_LOCKED;
2153 mapping_clear_unevictable(file->f_mapping);
2155 retval = 0;
2157 out_nomem:
2158 spin_unlock_irq(&info->lock);
2159 return retval;
2162 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2164 file_accessed(file);
2165 vma->vm_ops = &shmem_vm_ops;
2166 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2167 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2168 (vma->vm_end & HPAGE_PMD_MASK)) {
2169 khugepaged_enter(vma, vma->vm_flags);
2171 return 0;
2174 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2175 umode_t mode, dev_t dev, unsigned long flags)
2177 struct inode *inode;
2178 struct shmem_inode_info *info;
2179 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2181 if (shmem_reserve_inode(sb))
2182 return NULL;
2184 inode = new_inode(sb);
2185 if (inode) {
2186 inode->i_ino = get_next_ino();
2187 inode_init_owner(inode, dir, mode);
2188 inode->i_blocks = 0;
2189 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2190 inode->i_generation = get_seconds();
2191 info = SHMEM_I(inode);
2192 memset(info, 0, (char *)inode - (char *)info);
2193 spin_lock_init(&info->lock);
2194 info->seals = F_SEAL_SEAL;
2195 info->flags = flags & VM_NORESERVE;
2196 INIT_LIST_HEAD(&info->shrinklist);
2197 INIT_LIST_HEAD(&info->swaplist);
2198 simple_xattrs_init(&info->xattrs);
2199 cache_no_acl(inode);
2201 switch (mode & S_IFMT) {
2202 default:
2203 inode->i_op = &shmem_special_inode_operations;
2204 init_special_inode(inode, mode, dev);
2205 break;
2206 case S_IFREG:
2207 inode->i_mapping->a_ops = &shmem_aops;
2208 inode->i_op = &shmem_inode_operations;
2209 inode->i_fop = &shmem_file_operations;
2210 mpol_shared_policy_init(&info->policy,
2211 shmem_get_sbmpol(sbinfo));
2212 break;
2213 case S_IFDIR:
2214 inc_nlink(inode);
2215 /* Some things misbehave if size == 0 on a directory */
2216 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2217 inode->i_op = &shmem_dir_inode_operations;
2218 inode->i_fop = &simple_dir_operations;
2219 break;
2220 case S_IFLNK:
2222 * Must not load anything in the rbtree,
2223 * mpol_free_shared_policy will not be called.
2225 mpol_shared_policy_init(&info->policy, NULL);
2226 break;
2228 } else
2229 shmem_free_inode(sb);
2230 return inode;
2233 bool shmem_mapping(struct address_space *mapping)
2235 return mapping->a_ops == &shmem_aops;
2238 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2239 pmd_t *dst_pmd,
2240 struct vm_area_struct *dst_vma,
2241 unsigned long dst_addr,
2242 unsigned long src_addr,
2243 bool zeropage,
2244 struct page **pagep)
2246 struct inode *inode = file_inode(dst_vma->vm_file);
2247 struct shmem_inode_info *info = SHMEM_I(inode);
2248 struct address_space *mapping = inode->i_mapping;
2249 gfp_t gfp = mapping_gfp_mask(mapping);
2250 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2251 struct mem_cgroup *memcg;
2252 spinlock_t *ptl;
2253 void *page_kaddr;
2254 struct page *page;
2255 pte_t _dst_pte, *dst_pte;
2256 int ret;
2258 ret = -ENOMEM;
2259 if (!shmem_inode_acct_block(inode, 1))
2260 goto out;
2262 if (!*pagep) {
2263 page = shmem_alloc_page(gfp, info, pgoff);
2264 if (!page)
2265 goto out_unacct_blocks;
2267 if (!zeropage) { /* mcopy_atomic */
2268 page_kaddr = kmap_atomic(page);
2269 ret = copy_from_user(page_kaddr,
2270 (const void __user *)src_addr,
2271 PAGE_SIZE);
2272 kunmap_atomic(page_kaddr);
2274 /* fallback to copy_from_user outside mmap_sem */
2275 if (unlikely(ret)) {
2276 *pagep = page;
2277 shmem_inode_unacct_blocks(inode, 1);
2278 /* don't free the page */
2279 return -EFAULT;
2281 } else { /* mfill_zeropage_atomic */
2282 clear_highpage(page);
2284 } else {
2285 page = *pagep;
2286 *pagep = NULL;
2289 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2290 __SetPageLocked(page);
2291 __SetPageSwapBacked(page);
2292 __SetPageUptodate(page);
2294 ret = mem_cgroup_try_charge(page, dst_mm, gfp, &memcg, false);
2295 if (ret)
2296 goto out_release;
2298 ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
2299 if (!ret) {
2300 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL);
2301 radix_tree_preload_end();
2303 if (ret)
2304 goto out_release_uncharge;
2306 mem_cgroup_commit_charge(page, memcg, false, false);
2308 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2309 if (dst_vma->vm_flags & VM_WRITE)
2310 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2312 ret = -EEXIST;
2313 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2314 if (!pte_none(*dst_pte))
2315 goto out_release_uncharge_unlock;
2317 lru_cache_add_anon(page);
2319 spin_lock(&info->lock);
2320 info->alloced++;
2321 inode->i_blocks += BLOCKS_PER_PAGE;
2322 shmem_recalc_inode(inode);
2323 spin_unlock(&info->lock);
2325 inc_mm_counter(dst_mm, mm_counter_file(page));
2326 page_add_file_rmap(page, false);
2327 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2329 /* No need to invalidate - it was non-present before */
2330 update_mmu_cache(dst_vma, dst_addr, dst_pte);
2331 unlock_page(page);
2332 pte_unmap_unlock(dst_pte, ptl);
2333 ret = 0;
2334 out:
2335 return ret;
2336 out_release_uncharge_unlock:
2337 pte_unmap_unlock(dst_pte, ptl);
2338 out_release_uncharge:
2339 mem_cgroup_cancel_charge(page, memcg, false);
2340 out_release:
2341 unlock_page(page);
2342 put_page(page);
2343 out_unacct_blocks:
2344 shmem_inode_unacct_blocks(inode, 1);
2345 goto out;
2348 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2349 pmd_t *dst_pmd,
2350 struct vm_area_struct *dst_vma,
2351 unsigned long dst_addr,
2352 unsigned long src_addr,
2353 struct page **pagep)
2355 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2356 dst_addr, src_addr, false, pagep);
2359 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2360 pmd_t *dst_pmd,
2361 struct vm_area_struct *dst_vma,
2362 unsigned long dst_addr)
2364 struct page *page = NULL;
2366 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2367 dst_addr, 0, true, &page);
2370 #ifdef CONFIG_TMPFS
2371 static const struct inode_operations shmem_symlink_inode_operations;
2372 static const struct inode_operations shmem_short_symlink_operations;
2374 #ifdef CONFIG_TMPFS_XATTR
2375 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2376 #else
2377 #define shmem_initxattrs NULL
2378 #endif
2380 static int
2381 shmem_write_begin(struct file *file, struct address_space *mapping,
2382 loff_t pos, unsigned len, unsigned flags,
2383 struct page **pagep, void **fsdata)
2385 struct inode *inode = mapping->host;
2386 struct shmem_inode_info *info = SHMEM_I(inode);
2387 pgoff_t index = pos >> PAGE_SHIFT;
2389 /* i_mutex is held by caller */
2390 if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) {
2391 if (info->seals & F_SEAL_WRITE)
2392 return -EPERM;
2393 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2394 return -EPERM;
2397 return shmem_getpage(inode, index, pagep, SGP_WRITE);
2400 static int
2401 shmem_write_end(struct file *file, struct address_space *mapping,
2402 loff_t pos, unsigned len, unsigned copied,
2403 struct page *page, void *fsdata)
2405 struct inode *inode = mapping->host;
2407 if (pos + copied > inode->i_size)
2408 i_size_write(inode, pos + copied);
2410 if (!PageUptodate(page)) {
2411 struct page *head = compound_head(page);
2412 if (PageTransCompound(page)) {
2413 int i;
2415 for (i = 0; i < HPAGE_PMD_NR; i++) {
2416 if (head + i == page)
2417 continue;
2418 clear_highpage(head + i);
2419 flush_dcache_page(head + i);
2422 if (copied < PAGE_SIZE) {
2423 unsigned from = pos & (PAGE_SIZE - 1);
2424 zero_user_segments(page, 0, from,
2425 from + copied, PAGE_SIZE);
2427 SetPageUptodate(head);
2429 set_page_dirty(page);
2430 unlock_page(page);
2431 put_page(page);
2433 return copied;
2436 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2438 struct file *file = iocb->ki_filp;
2439 struct inode *inode = file_inode(file);
2440 struct address_space *mapping = inode->i_mapping;
2441 pgoff_t index;
2442 unsigned long offset;
2443 enum sgp_type sgp = SGP_READ;
2444 int error = 0;
2445 ssize_t retval = 0;
2446 loff_t *ppos = &iocb->ki_pos;
2449 * Might this read be for a stacking filesystem? Then when reading
2450 * holes of a sparse file, we actually need to allocate those pages,
2451 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2453 if (!iter_is_iovec(to))
2454 sgp = SGP_CACHE;
2456 index = *ppos >> PAGE_SHIFT;
2457 offset = *ppos & ~PAGE_MASK;
2459 for (;;) {
2460 struct page *page = NULL;
2461 pgoff_t end_index;
2462 unsigned long nr, ret;
2463 loff_t i_size = i_size_read(inode);
2465 end_index = i_size >> PAGE_SHIFT;
2466 if (index > end_index)
2467 break;
2468 if (index == end_index) {
2469 nr = i_size & ~PAGE_MASK;
2470 if (nr <= offset)
2471 break;
2474 error = shmem_getpage(inode, index, &page, sgp);
2475 if (error) {
2476 if (error == -EINVAL)
2477 error = 0;
2478 break;
2480 if (page) {
2481 if (sgp == SGP_CACHE)
2482 set_page_dirty(page);
2483 unlock_page(page);
2487 * We must evaluate after, since reads (unlike writes)
2488 * are called without i_mutex protection against truncate
2490 nr = PAGE_SIZE;
2491 i_size = i_size_read(inode);
2492 end_index = i_size >> PAGE_SHIFT;
2493 if (index == end_index) {
2494 nr = i_size & ~PAGE_MASK;
2495 if (nr <= offset) {
2496 if (page)
2497 put_page(page);
2498 break;
2501 nr -= offset;
2503 if (page) {
2505 * If users can be writing to this page using arbitrary
2506 * virtual addresses, take care about potential aliasing
2507 * before reading the page on the kernel side.
2509 if (mapping_writably_mapped(mapping))
2510 flush_dcache_page(page);
2512 * Mark the page accessed if we read the beginning.
2514 if (!offset)
2515 mark_page_accessed(page);
2516 } else {
2517 page = ZERO_PAGE(0);
2518 get_page(page);
2522 * Ok, we have the page, and it's up-to-date, so
2523 * now we can copy it to user space...
2525 ret = copy_page_to_iter(page, offset, nr, to);
2526 retval += ret;
2527 offset += ret;
2528 index += offset >> PAGE_SHIFT;
2529 offset &= ~PAGE_MASK;
2531 put_page(page);
2532 if (!iov_iter_count(to))
2533 break;
2534 if (ret < nr) {
2535 error = -EFAULT;
2536 break;
2538 cond_resched();
2541 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2542 file_accessed(file);
2543 return retval ? retval : error;
2547 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2549 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2550 pgoff_t index, pgoff_t end, int whence)
2552 struct page *page;
2553 struct pagevec pvec;
2554 pgoff_t indices[PAGEVEC_SIZE];
2555 bool done = false;
2556 int i;
2558 pagevec_init(&pvec);
2559 pvec.nr = 1; /* start small: we may be there already */
2560 while (!done) {
2561 pvec.nr = find_get_entries(mapping, index,
2562 pvec.nr, pvec.pages, indices);
2563 if (!pvec.nr) {
2564 if (whence == SEEK_DATA)
2565 index = end;
2566 break;
2568 for (i = 0; i < pvec.nr; i++, index++) {
2569 if (index < indices[i]) {
2570 if (whence == SEEK_HOLE) {
2571 done = true;
2572 break;
2574 index = indices[i];
2576 page = pvec.pages[i];
2577 if (page && !radix_tree_exceptional_entry(page)) {
2578 if (!PageUptodate(page))
2579 page = NULL;
2581 if (index >= end ||
2582 (page && whence == SEEK_DATA) ||
2583 (!page && whence == SEEK_HOLE)) {
2584 done = true;
2585 break;
2588 pagevec_remove_exceptionals(&pvec);
2589 pagevec_release(&pvec);
2590 pvec.nr = PAGEVEC_SIZE;
2591 cond_resched();
2593 return index;
2596 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2598 struct address_space *mapping = file->f_mapping;
2599 struct inode *inode = mapping->host;
2600 pgoff_t start, end;
2601 loff_t new_offset;
2603 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2604 return generic_file_llseek_size(file, offset, whence,
2605 MAX_LFS_FILESIZE, i_size_read(inode));
2606 inode_lock(inode);
2607 /* We're holding i_mutex so we can access i_size directly */
2609 if (offset < 0)
2610 offset = -EINVAL;
2611 else if (offset >= inode->i_size)
2612 offset = -ENXIO;
2613 else {
2614 start = offset >> PAGE_SHIFT;
2615 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2616 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2617 new_offset <<= PAGE_SHIFT;
2618 if (new_offset > offset) {
2619 if (new_offset < inode->i_size)
2620 offset = new_offset;
2621 else if (whence == SEEK_DATA)
2622 offset = -ENXIO;
2623 else
2624 offset = inode->i_size;
2628 if (offset >= 0)
2629 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2630 inode_unlock(inode);
2631 return offset;
2634 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2635 loff_t len)
2637 struct inode *inode = file_inode(file);
2638 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2639 struct shmem_inode_info *info = SHMEM_I(inode);
2640 struct shmem_falloc shmem_falloc;
2641 pgoff_t start, index, end;
2642 int error;
2644 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2645 return -EOPNOTSUPP;
2647 inode_lock(inode);
2649 if (mode & FALLOC_FL_PUNCH_HOLE) {
2650 struct address_space *mapping = file->f_mapping;
2651 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2652 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2653 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2655 /* protected by i_mutex */
2656 if (info->seals & F_SEAL_WRITE) {
2657 error = -EPERM;
2658 goto out;
2661 shmem_falloc.waitq = &shmem_falloc_waitq;
2662 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2663 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2664 spin_lock(&inode->i_lock);
2665 inode->i_private = &shmem_falloc;
2666 spin_unlock(&inode->i_lock);
2668 if ((u64)unmap_end > (u64)unmap_start)
2669 unmap_mapping_range(mapping, unmap_start,
2670 1 + unmap_end - unmap_start, 0);
2671 shmem_truncate_range(inode, offset, offset + len - 1);
2672 /* No need to unmap again: hole-punching leaves COWed pages */
2674 spin_lock(&inode->i_lock);
2675 inode->i_private = NULL;
2676 wake_up_all(&shmem_falloc_waitq);
2677 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2678 spin_unlock(&inode->i_lock);
2679 error = 0;
2680 goto out;
2683 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2684 error = inode_newsize_ok(inode, offset + len);
2685 if (error)
2686 goto out;
2688 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2689 error = -EPERM;
2690 goto out;
2693 start = offset >> PAGE_SHIFT;
2694 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2695 /* Try to avoid a swapstorm if len is impossible to satisfy */
2696 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2697 error = -ENOSPC;
2698 goto out;
2701 shmem_falloc.waitq = NULL;
2702 shmem_falloc.start = start;
2703 shmem_falloc.next = start;
2704 shmem_falloc.nr_falloced = 0;
2705 shmem_falloc.nr_unswapped = 0;
2706 spin_lock(&inode->i_lock);
2707 inode->i_private = &shmem_falloc;
2708 spin_unlock(&inode->i_lock);
2710 for (index = start; index < end; index++) {
2711 struct page *page;
2714 * Good, the fallocate(2) manpage permits EINTR: we may have
2715 * been interrupted because we are using up too much memory.
2717 if (signal_pending(current))
2718 error = -EINTR;
2719 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2720 error = -ENOMEM;
2721 else
2722 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2723 if (error) {
2724 /* Remove the !PageUptodate pages we added */
2725 if (index > start) {
2726 shmem_undo_range(inode,
2727 (loff_t)start << PAGE_SHIFT,
2728 ((loff_t)index << PAGE_SHIFT) - 1, true);
2730 goto undone;
2734 * Inform shmem_writepage() how far we have reached.
2735 * No need for lock or barrier: we have the page lock.
2737 shmem_falloc.next++;
2738 if (!PageUptodate(page))
2739 shmem_falloc.nr_falloced++;
2742 * If !PageUptodate, leave it that way so that freeable pages
2743 * can be recognized if we need to rollback on error later.
2744 * But set_page_dirty so that memory pressure will swap rather
2745 * than free the pages we are allocating (and SGP_CACHE pages
2746 * might still be clean: we now need to mark those dirty too).
2748 set_page_dirty(page);
2749 unlock_page(page);
2750 put_page(page);
2751 cond_resched();
2754 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2755 i_size_write(inode, offset + len);
2756 inode->i_ctime = current_time(inode);
2757 undone:
2758 spin_lock(&inode->i_lock);
2759 inode->i_private = NULL;
2760 spin_unlock(&inode->i_lock);
2761 out:
2762 inode_unlock(inode);
2763 return error;
2766 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2768 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2770 buf->f_type = TMPFS_MAGIC;
2771 buf->f_bsize = PAGE_SIZE;
2772 buf->f_namelen = NAME_MAX;
2773 if (sbinfo->max_blocks) {
2774 buf->f_blocks = sbinfo->max_blocks;
2775 buf->f_bavail =
2776 buf->f_bfree = sbinfo->max_blocks -
2777 percpu_counter_sum(&sbinfo->used_blocks);
2779 if (sbinfo->max_inodes) {
2780 buf->f_files = sbinfo->max_inodes;
2781 buf->f_ffree = sbinfo->free_inodes;
2783 /* else leave those fields 0 like simple_statfs */
2784 return 0;
2788 * File creation. Allocate an inode, and we're done..
2790 static int
2791 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2793 struct inode *inode;
2794 int error = -ENOSPC;
2796 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2797 if (inode) {
2798 error = simple_acl_create(dir, inode);
2799 if (error)
2800 goto out_iput;
2801 error = security_inode_init_security(inode, dir,
2802 &dentry->d_name,
2803 shmem_initxattrs, NULL);
2804 if (error && error != -EOPNOTSUPP)
2805 goto out_iput;
2807 error = 0;
2808 dir->i_size += BOGO_DIRENT_SIZE;
2809 dir->i_ctime = dir->i_mtime = current_time(dir);
2810 d_instantiate(dentry, inode);
2811 dget(dentry); /* Extra count - pin the dentry in core */
2813 return error;
2814 out_iput:
2815 iput(inode);
2816 return error;
2819 static int
2820 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2822 struct inode *inode;
2823 int error = -ENOSPC;
2825 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2826 if (inode) {
2827 error = security_inode_init_security(inode, dir,
2828 NULL,
2829 shmem_initxattrs, NULL);
2830 if (error && error != -EOPNOTSUPP)
2831 goto out_iput;
2832 error = simple_acl_create(dir, inode);
2833 if (error)
2834 goto out_iput;
2835 d_tmpfile(dentry, inode);
2837 return error;
2838 out_iput:
2839 iput(inode);
2840 return error;
2843 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2845 int error;
2847 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2848 return error;
2849 inc_nlink(dir);
2850 return 0;
2853 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2854 bool excl)
2856 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2860 * Link a file..
2862 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2864 struct inode *inode = d_inode(old_dentry);
2865 int ret;
2868 * No ordinary (disk based) filesystem counts links as inodes;
2869 * but each new link needs a new dentry, pinning lowmem, and
2870 * tmpfs dentries cannot be pruned until they are unlinked.
2872 ret = shmem_reserve_inode(inode->i_sb);
2873 if (ret)
2874 goto out;
2876 dir->i_size += BOGO_DIRENT_SIZE;
2877 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2878 inc_nlink(inode);
2879 ihold(inode); /* New dentry reference */
2880 dget(dentry); /* Extra pinning count for the created dentry */
2881 d_instantiate(dentry, inode);
2882 out:
2883 return ret;
2886 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2888 struct inode *inode = d_inode(dentry);
2890 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2891 shmem_free_inode(inode->i_sb);
2893 dir->i_size -= BOGO_DIRENT_SIZE;
2894 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2895 drop_nlink(inode);
2896 dput(dentry); /* Undo the count from "create" - this does all the work */
2897 return 0;
2900 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2902 if (!simple_empty(dentry))
2903 return -ENOTEMPTY;
2905 drop_nlink(d_inode(dentry));
2906 drop_nlink(dir);
2907 return shmem_unlink(dir, dentry);
2910 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2912 bool old_is_dir = d_is_dir(old_dentry);
2913 bool new_is_dir = d_is_dir(new_dentry);
2915 if (old_dir != new_dir && old_is_dir != new_is_dir) {
2916 if (old_is_dir) {
2917 drop_nlink(old_dir);
2918 inc_nlink(new_dir);
2919 } else {
2920 drop_nlink(new_dir);
2921 inc_nlink(old_dir);
2924 old_dir->i_ctime = old_dir->i_mtime =
2925 new_dir->i_ctime = new_dir->i_mtime =
2926 d_inode(old_dentry)->i_ctime =
2927 d_inode(new_dentry)->i_ctime = current_time(old_dir);
2929 return 0;
2932 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2934 struct dentry *whiteout;
2935 int error;
2937 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2938 if (!whiteout)
2939 return -ENOMEM;
2941 error = shmem_mknod(old_dir, whiteout,
2942 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2943 dput(whiteout);
2944 if (error)
2945 return error;
2948 * Cheat and hash the whiteout while the old dentry is still in
2949 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2951 * d_lookup() will consistently find one of them at this point,
2952 * not sure which one, but that isn't even important.
2954 d_rehash(whiteout);
2955 return 0;
2959 * The VFS layer already does all the dentry stuff for rename,
2960 * we just have to decrement the usage count for the target if
2961 * it exists so that the VFS layer correctly free's it when it
2962 * gets overwritten.
2964 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2966 struct inode *inode = d_inode(old_dentry);
2967 int they_are_dirs = S_ISDIR(inode->i_mode);
2969 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2970 return -EINVAL;
2972 if (flags & RENAME_EXCHANGE)
2973 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2975 if (!simple_empty(new_dentry))
2976 return -ENOTEMPTY;
2978 if (flags & RENAME_WHITEOUT) {
2979 int error;
2981 error = shmem_whiteout(old_dir, old_dentry);
2982 if (error)
2983 return error;
2986 if (d_really_is_positive(new_dentry)) {
2987 (void) shmem_unlink(new_dir, new_dentry);
2988 if (they_are_dirs) {
2989 drop_nlink(d_inode(new_dentry));
2990 drop_nlink(old_dir);
2992 } else if (they_are_dirs) {
2993 drop_nlink(old_dir);
2994 inc_nlink(new_dir);
2997 old_dir->i_size -= BOGO_DIRENT_SIZE;
2998 new_dir->i_size += BOGO_DIRENT_SIZE;
2999 old_dir->i_ctime = old_dir->i_mtime =
3000 new_dir->i_ctime = new_dir->i_mtime =
3001 inode->i_ctime = current_time(old_dir);
3002 return 0;
3005 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3007 int error;
3008 int len;
3009 struct inode *inode;
3010 struct page *page;
3012 len = strlen(symname) + 1;
3013 if (len > PAGE_SIZE)
3014 return -ENAMETOOLONG;
3016 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3017 VM_NORESERVE);
3018 if (!inode)
3019 return -ENOSPC;
3021 error = security_inode_init_security(inode, dir, &dentry->d_name,
3022 shmem_initxattrs, NULL);
3023 if (error) {
3024 if (error != -EOPNOTSUPP) {
3025 iput(inode);
3026 return error;
3028 error = 0;
3031 inode->i_size = len-1;
3032 if (len <= SHORT_SYMLINK_LEN) {
3033 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3034 if (!inode->i_link) {
3035 iput(inode);
3036 return -ENOMEM;
3038 inode->i_op = &shmem_short_symlink_operations;
3039 } else {
3040 inode_nohighmem(inode);
3041 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3042 if (error) {
3043 iput(inode);
3044 return error;
3046 inode->i_mapping->a_ops = &shmem_aops;
3047 inode->i_op = &shmem_symlink_inode_operations;
3048 memcpy(page_address(page), symname, len);
3049 SetPageUptodate(page);
3050 set_page_dirty(page);
3051 unlock_page(page);
3052 put_page(page);
3054 dir->i_size += BOGO_DIRENT_SIZE;
3055 dir->i_ctime = dir->i_mtime = current_time(dir);
3056 d_instantiate(dentry, inode);
3057 dget(dentry);
3058 return 0;
3061 static void shmem_put_link(void *arg)
3063 mark_page_accessed(arg);
3064 put_page(arg);
3067 static const char *shmem_get_link(struct dentry *dentry,
3068 struct inode *inode,
3069 struct delayed_call *done)
3071 struct page *page = NULL;
3072 int error;
3073 if (!dentry) {
3074 page = find_get_page(inode->i_mapping, 0);
3075 if (!page)
3076 return ERR_PTR(-ECHILD);
3077 if (!PageUptodate(page)) {
3078 put_page(page);
3079 return ERR_PTR(-ECHILD);
3081 } else {
3082 error = shmem_getpage(inode, 0, &page, SGP_READ);
3083 if (error)
3084 return ERR_PTR(error);
3085 unlock_page(page);
3087 set_delayed_call(done, shmem_put_link, page);
3088 return page_address(page);
3091 #ifdef CONFIG_TMPFS_XATTR
3093 * Superblocks without xattr inode operations may get some security.* xattr
3094 * support from the LSM "for free". As soon as we have any other xattrs
3095 * like ACLs, we also need to implement the security.* handlers at
3096 * filesystem level, though.
3100 * Callback for security_inode_init_security() for acquiring xattrs.
3102 static int shmem_initxattrs(struct inode *inode,
3103 const struct xattr *xattr_array,
3104 void *fs_info)
3106 struct shmem_inode_info *info = SHMEM_I(inode);
3107 const struct xattr *xattr;
3108 struct simple_xattr *new_xattr;
3109 size_t len;
3111 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3112 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3113 if (!new_xattr)
3114 return -ENOMEM;
3116 len = strlen(xattr->name) + 1;
3117 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3118 GFP_KERNEL);
3119 if (!new_xattr->name) {
3120 kfree(new_xattr);
3121 return -ENOMEM;
3124 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3125 XATTR_SECURITY_PREFIX_LEN);
3126 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3127 xattr->name, len);
3129 simple_xattr_list_add(&info->xattrs, new_xattr);
3132 return 0;
3135 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3136 struct dentry *unused, struct inode *inode,
3137 const char *name, void *buffer, size_t size)
3139 struct shmem_inode_info *info = SHMEM_I(inode);
3141 name = xattr_full_name(handler, name);
3142 return simple_xattr_get(&info->xattrs, name, buffer, size);
3145 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3146 struct dentry *unused, struct inode *inode,
3147 const char *name, const void *value,
3148 size_t size, int flags)
3150 struct shmem_inode_info *info = SHMEM_I(inode);
3152 name = xattr_full_name(handler, name);
3153 return simple_xattr_set(&info->xattrs, name, value, size, flags);
3156 static const struct xattr_handler shmem_security_xattr_handler = {
3157 .prefix = XATTR_SECURITY_PREFIX,
3158 .get = shmem_xattr_handler_get,
3159 .set = shmem_xattr_handler_set,
3162 static const struct xattr_handler shmem_trusted_xattr_handler = {
3163 .prefix = XATTR_TRUSTED_PREFIX,
3164 .get = shmem_xattr_handler_get,
3165 .set = shmem_xattr_handler_set,
3168 static const struct xattr_handler *shmem_xattr_handlers[] = {
3169 #ifdef CONFIG_TMPFS_POSIX_ACL
3170 &posix_acl_access_xattr_handler,
3171 &posix_acl_default_xattr_handler,
3172 #endif
3173 &shmem_security_xattr_handler,
3174 &shmem_trusted_xattr_handler,
3175 NULL
3178 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3180 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3181 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3183 #endif /* CONFIG_TMPFS_XATTR */
3185 static const struct inode_operations shmem_short_symlink_operations = {
3186 .get_link = simple_get_link,
3187 #ifdef CONFIG_TMPFS_XATTR
3188 .listxattr = shmem_listxattr,
3189 #endif
3192 static const struct inode_operations shmem_symlink_inode_operations = {
3193 .get_link = shmem_get_link,
3194 #ifdef CONFIG_TMPFS_XATTR
3195 .listxattr = shmem_listxattr,
3196 #endif
3199 static struct dentry *shmem_get_parent(struct dentry *child)
3201 return ERR_PTR(-ESTALE);
3204 static int shmem_match(struct inode *ino, void *vfh)
3206 __u32 *fh = vfh;
3207 __u64 inum = fh[2];
3208 inum = (inum << 32) | fh[1];
3209 return ino->i_ino == inum && fh[0] == ino->i_generation;
3212 /* Find any alias of inode, but prefer a hashed alias */
3213 static struct dentry *shmem_find_alias(struct inode *inode)
3215 struct dentry *alias = d_find_alias(inode);
3217 return alias ?: d_find_any_alias(inode);
3221 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3222 struct fid *fid, int fh_len, int fh_type)
3224 struct inode *inode;
3225 struct dentry *dentry = NULL;
3226 u64 inum;
3228 if (fh_len < 3)
3229 return NULL;
3231 inum = fid->raw[2];
3232 inum = (inum << 32) | fid->raw[1];
3234 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3235 shmem_match, fid->raw);
3236 if (inode) {
3237 dentry = shmem_find_alias(inode);
3238 iput(inode);
3241 return dentry;
3244 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3245 struct inode *parent)
3247 if (*len < 3) {
3248 *len = 3;
3249 return FILEID_INVALID;
3252 if (inode_unhashed(inode)) {
3253 /* Unfortunately insert_inode_hash is not idempotent,
3254 * so as we hash inodes here rather than at creation
3255 * time, we need a lock to ensure we only try
3256 * to do it once
3258 static DEFINE_SPINLOCK(lock);
3259 spin_lock(&lock);
3260 if (inode_unhashed(inode))
3261 __insert_inode_hash(inode,
3262 inode->i_ino + inode->i_generation);
3263 spin_unlock(&lock);
3266 fh[0] = inode->i_generation;
3267 fh[1] = inode->i_ino;
3268 fh[2] = ((__u64)inode->i_ino) >> 32;
3270 *len = 3;
3271 return 1;
3274 static const struct export_operations shmem_export_ops = {
3275 .get_parent = shmem_get_parent,
3276 .encode_fh = shmem_encode_fh,
3277 .fh_to_dentry = shmem_fh_to_dentry,
3280 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3281 bool remount)
3283 char *this_char, *value, *rest;
3284 struct mempolicy *mpol = NULL;
3285 uid_t uid;
3286 gid_t gid;
3288 while (options != NULL) {
3289 this_char = options;
3290 for (;;) {
3292 * NUL-terminate this option: unfortunately,
3293 * mount options form a comma-separated list,
3294 * but mpol's nodelist may also contain commas.
3296 options = strchr(options, ',');
3297 if (options == NULL)
3298 break;
3299 options++;
3300 if (!isdigit(*options)) {
3301 options[-1] = '\0';
3302 break;
3305 if (!*this_char)
3306 continue;
3307 if ((value = strchr(this_char,'=')) != NULL) {
3308 *value++ = 0;
3309 } else {
3310 pr_err("tmpfs: No value for mount option '%s'\n",
3311 this_char);
3312 goto error;
3315 if (!strcmp(this_char,"size")) {
3316 unsigned long long size;
3317 size = memparse(value,&rest);
3318 if (*rest == '%') {
3319 size <<= PAGE_SHIFT;
3320 size *= totalram_pages;
3321 do_div(size, 100);
3322 rest++;
3324 if (*rest)
3325 goto bad_val;
3326 sbinfo->max_blocks =
3327 DIV_ROUND_UP(size, PAGE_SIZE);
3328 } else if (!strcmp(this_char,"nr_blocks")) {
3329 sbinfo->max_blocks = memparse(value, &rest);
3330 if (*rest)
3331 goto bad_val;
3332 } else if (!strcmp(this_char,"nr_inodes")) {
3333 sbinfo->max_inodes = memparse(value, &rest);
3334 if (*rest)
3335 goto bad_val;
3336 } else if (!strcmp(this_char,"mode")) {
3337 if (remount)
3338 continue;
3339 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3340 if (*rest)
3341 goto bad_val;
3342 } else if (!strcmp(this_char,"uid")) {
3343 if (remount)
3344 continue;
3345 uid = simple_strtoul(value, &rest, 0);
3346 if (*rest)
3347 goto bad_val;
3348 sbinfo->uid = make_kuid(current_user_ns(), uid);
3349 if (!uid_valid(sbinfo->uid))
3350 goto bad_val;
3351 } else if (!strcmp(this_char,"gid")) {
3352 if (remount)
3353 continue;
3354 gid = simple_strtoul(value, &rest, 0);
3355 if (*rest)
3356 goto bad_val;
3357 sbinfo->gid = make_kgid(current_user_ns(), gid);
3358 if (!gid_valid(sbinfo->gid))
3359 goto bad_val;
3360 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3361 } else if (!strcmp(this_char, "huge")) {
3362 int huge;
3363 huge = shmem_parse_huge(value);
3364 if (huge < 0)
3365 goto bad_val;
3366 if (!has_transparent_hugepage() &&
3367 huge != SHMEM_HUGE_NEVER)
3368 goto bad_val;
3369 sbinfo->huge = huge;
3370 #endif
3371 #ifdef CONFIG_NUMA
3372 } else if (!strcmp(this_char,"mpol")) {
3373 mpol_put(mpol);
3374 mpol = NULL;
3375 if (mpol_parse_str(value, &mpol))
3376 goto bad_val;
3377 #endif
3378 } else {
3379 pr_err("tmpfs: Bad mount option %s\n", this_char);
3380 goto error;
3383 sbinfo->mpol = mpol;
3384 return 0;
3386 bad_val:
3387 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3388 value, this_char);
3389 error:
3390 mpol_put(mpol);
3391 return 1;
3395 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3397 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3398 struct shmem_sb_info config = *sbinfo;
3399 unsigned long inodes;
3400 int error = -EINVAL;
3402 config.mpol = NULL;
3403 if (shmem_parse_options(data, &config, true))
3404 return error;
3406 spin_lock(&sbinfo->stat_lock);
3407 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3408 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3409 goto out;
3410 if (config.max_inodes < inodes)
3411 goto out;
3413 * Those tests disallow limited->unlimited while any are in use;
3414 * but we must separately disallow unlimited->limited, because
3415 * in that case we have no record of how much is already in use.
3417 if (config.max_blocks && !sbinfo->max_blocks)
3418 goto out;
3419 if (config.max_inodes && !sbinfo->max_inodes)
3420 goto out;
3422 error = 0;
3423 sbinfo->huge = config.huge;
3424 sbinfo->max_blocks = config.max_blocks;
3425 sbinfo->max_inodes = config.max_inodes;
3426 sbinfo->free_inodes = config.max_inodes - inodes;
3429 * Preserve previous mempolicy unless mpol remount option was specified.
3431 if (config.mpol) {
3432 mpol_put(sbinfo->mpol);
3433 sbinfo->mpol = config.mpol; /* transfers initial ref */
3435 out:
3436 spin_unlock(&sbinfo->stat_lock);
3437 return error;
3440 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3442 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3444 if (sbinfo->max_blocks != shmem_default_max_blocks())
3445 seq_printf(seq, ",size=%luk",
3446 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3447 if (sbinfo->max_inodes != shmem_default_max_inodes())
3448 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3449 if (sbinfo->mode != (0777 | S_ISVTX))
3450 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3451 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3452 seq_printf(seq, ",uid=%u",
3453 from_kuid_munged(&init_user_ns, sbinfo->uid));
3454 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3455 seq_printf(seq, ",gid=%u",
3456 from_kgid_munged(&init_user_ns, sbinfo->gid));
3457 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3458 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3459 if (sbinfo->huge)
3460 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3461 #endif
3462 shmem_show_mpol(seq, sbinfo->mpol);
3463 return 0;
3466 #endif /* CONFIG_TMPFS */
3468 static void shmem_put_super(struct super_block *sb)
3470 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3472 percpu_counter_destroy(&sbinfo->used_blocks);
3473 mpol_put(sbinfo->mpol);
3474 kfree(sbinfo);
3475 sb->s_fs_info = NULL;
3478 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3480 struct inode *inode;
3481 struct shmem_sb_info *sbinfo;
3482 int err = -ENOMEM;
3484 /* Round up to L1_CACHE_BYTES to resist false sharing */
3485 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3486 L1_CACHE_BYTES), GFP_KERNEL);
3487 if (!sbinfo)
3488 return -ENOMEM;
3490 sbinfo->mode = 0777 | S_ISVTX;
3491 sbinfo->uid = current_fsuid();
3492 sbinfo->gid = current_fsgid();
3493 sb->s_fs_info = sbinfo;
3495 #ifdef CONFIG_TMPFS
3497 * Per default we only allow half of the physical ram per
3498 * tmpfs instance, limiting inodes to one per page of lowmem;
3499 * but the internal instance is left unlimited.
3501 if (!(sb->s_flags & SB_KERNMOUNT)) {
3502 sbinfo->max_blocks = shmem_default_max_blocks();
3503 sbinfo->max_inodes = shmem_default_max_inodes();
3504 if (shmem_parse_options(data, sbinfo, false)) {
3505 err = -EINVAL;
3506 goto failed;
3508 } else {
3509 sb->s_flags |= SB_NOUSER;
3511 sb->s_export_op = &shmem_export_ops;
3512 sb->s_flags |= SB_NOSEC;
3513 #else
3514 sb->s_flags |= SB_NOUSER;
3515 #endif
3517 spin_lock_init(&sbinfo->stat_lock);
3518 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3519 goto failed;
3520 sbinfo->free_inodes = sbinfo->max_inodes;
3521 spin_lock_init(&sbinfo->shrinklist_lock);
3522 INIT_LIST_HEAD(&sbinfo->shrinklist);
3524 sb->s_maxbytes = MAX_LFS_FILESIZE;
3525 sb->s_blocksize = PAGE_SIZE;
3526 sb->s_blocksize_bits = PAGE_SHIFT;
3527 sb->s_magic = TMPFS_MAGIC;
3528 sb->s_op = &shmem_ops;
3529 sb->s_time_gran = 1;
3530 #ifdef CONFIG_TMPFS_XATTR
3531 sb->s_xattr = shmem_xattr_handlers;
3532 #endif
3533 #ifdef CONFIG_TMPFS_POSIX_ACL
3534 sb->s_flags |= SB_POSIXACL;
3535 #endif
3536 uuid_gen(&sb->s_uuid);
3538 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3539 if (!inode)
3540 goto failed;
3541 inode->i_uid = sbinfo->uid;
3542 inode->i_gid = sbinfo->gid;
3543 sb->s_root = d_make_root(inode);
3544 if (!sb->s_root)
3545 goto failed;
3546 return 0;
3548 failed:
3549 shmem_put_super(sb);
3550 return err;
3553 static struct kmem_cache *shmem_inode_cachep;
3555 static struct inode *shmem_alloc_inode(struct super_block *sb)
3557 struct shmem_inode_info *info;
3558 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3559 if (!info)
3560 return NULL;
3561 return &info->vfs_inode;
3564 static void shmem_destroy_callback(struct rcu_head *head)
3566 struct inode *inode = container_of(head, struct inode, i_rcu);
3567 if (S_ISLNK(inode->i_mode))
3568 kfree(inode->i_link);
3569 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3572 static void shmem_destroy_inode(struct inode *inode)
3574 if (S_ISREG(inode->i_mode))
3575 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3576 call_rcu(&inode->i_rcu, shmem_destroy_callback);
3579 static void shmem_init_inode(void *foo)
3581 struct shmem_inode_info *info = foo;
3582 inode_init_once(&info->vfs_inode);
3585 static void shmem_init_inodecache(void)
3587 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3588 sizeof(struct shmem_inode_info),
3589 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3592 static void shmem_destroy_inodecache(void)
3594 kmem_cache_destroy(shmem_inode_cachep);
3597 static const struct address_space_operations shmem_aops = {
3598 .writepage = shmem_writepage,
3599 .set_page_dirty = __set_page_dirty_no_writeback,
3600 #ifdef CONFIG_TMPFS
3601 .write_begin = shmem_write_begin,
3602 .write_end = shmem_write_end,
3603 #endif
3604 #ifdef CONFIG_MIGRATION
3605 .migratepage = migrate_page,
3606 #endif
3607 .error_remove_page = generic_error_remove_page,
3610 static const struct file_operations shmem_file_operations = {
3611 .mmap = shmem_mmap,
3612 .get_unmapped_area = shmem_get_unmapped_area,
3613 #ifdef CONFIG_TMPFS
3614 .llseek = shmem_file_llseek,
3615 .read_iter = shmem_file_read_iter,
3616 .write_iter = generic_file_write_iter,
3617 .fsync = noop_fsync,
3618 .splice_read = generic_file_splice_read,
3619 .splice_write = iter_file_splice_write,
3620 .fallocate = shmem_fallocate,
3621 #endif
3624 static const struct inode_operations shmem_inode_operations = {
3625 .getattr = shmem_getattr,
3626 .setattr = shmem_setattr,
3627 #ifdef CONFIG_TMPFS_XATTR
3628 .listxattr = shmem_listxattr,
3629 .set_acl = simple_set_acl,
3630 #endif
3633 static const struct inode_operations shmem_dir_inode_operations = {
3634 #ifdef CONFIG_TMPFS
3635 .create = shmem_create,
3636 .lookup = simple_lookup,
3637 .link = shmem_link,
3638 .unlink = shmem_unlink,
3639 .symlink = shmem_symlink,
3640 .mkdir = shmem_mkdir,
3641 .rmdir = shmem_rmdir,
3642 .mknod = shmem_mknod,
3643 .rename = shmem_rename2,
3644 .tmpfile = shmem_tmpfile,
3645 #endif
3646 #ifdef CONFIG_TMPFS_XATTR
3647 .listxattr = shmem_listxattr,
3648 #endif
3649 #ifdef CONFIG_TMPFS_POSIX_ACL
3650 .setattr = shmem_setattr,
3651 .set_acl = simple_set_acl,
3652 #endif
3655 static const struct inode_operations shmem_special_inode_operations = {
3656 #ifdef CONFIG_TMPFS_XATTR
3657 .listxattr = shmem_listxattr,
3658 #endif
3659 #ifdef CONFIG_TMPFS_POSIX_ACL
3660 .setattr = shmem_setattr,
3661 .set_acl = simple_set_acl,
3662 #endif
3665 static const struct super_operations shmem_ops = {
3666 .alloc_inode = shmem_alloc_inode,
3667 .destroy_inode = shmem_destroy_inode,
3668 #ifdef CONFIG_TMPFS
3669 .statfs = shmem_statfs,
3670 .remount_fs = shmem_remount_fs,
3671 .show_options = shmem_show_options,
3672 #endif
3673 .evict_inode = shmem_evict_inode,
3674 .drop_inode = generic_delete_inode,
3675 .put_super = shmem_put_super,
3676 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3677 .nr_cached_objects = shmem_unused_huge_count,
3678 .free_cached_objects = shmem_unused_huge_scan,
3679 #endif
3682 static const struct vm_operations_struct shmem_vm_ops = {
3683 .fault = shmem_fault,
3684 .map_pages = filemap_map_pages,
3685 #ifdef CONFIG_NUMA
3686 .set_policy = shmem_set_policy,
3687 .get_policy = shmem_get_policy,
3688 #endif
3691 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3692 int flags, const char *dev_name, void *data)
3694 return mount_nodev(fs_type, flags, data, shmem_fill_super);
3697 static struct file_system_type shmem_fs_type = {
3698 .owner = THIS_MODULE,
3699 .name = "tmpfs",
3700 .mount = shmem_mount,
3701 .kill_sb = kill_litter_super,
3702 .fs_flags = FS_USERNS_MOUNT,
3705 int __init shmem_init(void)
3707 int error;
3709 /* If rootfs called this, don't re-init */
3710 if (shmem_inode_cachep)
3711 return 0;
3713 shmem_init_inodecache();
3715 error = register_filesystem(&shmem_fs_type);
3716 if (error) {
3717 pr_err("Could not register tmpfs\n");
3718 goto out2;
3721 shm_mnt = kern_mount(&shmem_fs_type);
3722 if (IS_ERR(shm_mnt)) {
3723 error = PTR_ERR(shm_mnt);
3724 pr_err("Could not kern_mount tmpfs\n");
3725 goto out1;
3728 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3729 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3730 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3731 else
3732 shmem_huge = 0; /* just in case it was patched */
3733 #endif
3734 return 0;
3736 out1:
3737 unregister_filesystem(&shmem_fs_type);
3738 out2:
3739 shmem_destroy_inodecache();
3740 shm_mnt = ERR_PTR(error);
3741 return error;
3744 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3745 static ssize_t shmem_enabled_show(struct kobject *kobj,
3746 struct kobj_attribute *attr, char *buf)
3748 int values[] = {
3749 SHMEM_HUGE_ALWAYS,
3750 SHMEM_HUGE_WITHIN_SIZE,
3751 SHMEM_HUGE_ADVISE,
3752 SHMEM_HUGE_NEVER,
3753 SHMEM_HUGE_DENY,
3754 SHMEM_HUGE_FORCE,
3756 int i, count;
3758 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3759 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3761 count += sprintf(buf + count, fmt,
3762 shmem_format_huge(values[i]));
3764 buf[count - 1] = '\n';
3765 return count;
3768 static ssize_t shmem_enabled_store(struct kobject *kobj,
3769 struct kobj_attribute *attr, const char *buf, size_t count)
3771 char tmp[16];
3772 int huge;
3774 if (count + 1 > sizeof(tmp))
3775 return -EINVAL;
3776 memcpy(tmp, buf, count);
3777 tmp[count] = '\0';
3778 if (count && tmp[count - 1] == '\n')
3779 tmp[count - 1] = '\0';
3781 huge = shmem_parse_huge(tmp);
3782 if (huge == -EINVAL)
3783 return -EINVAL;
3784 if (!has_transparent_hugepage() &&
3785 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3786 return -EINVAL;
3788 shmem_huge = huge;
3789 if (shmem_huge > SHMEM_HUGE_DENY)
3790 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3791 return count;
3794 struct kobj_attribute shmem_enabled_attr =
3795 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3796 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
3798 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3799 bool shmem_huge_enabled(struct vm_area_struct *vma)
3801 struct inode *inode = file_inode(vma->vm_file);
3802 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3803 loff_t i_size;
3804 pgoff_t off;
3806 if (shmem_huge == SHMEM_HUGE_FORCE)
3807 return true;
3808 if (shmem_huge == SHMEM_HUGE_DENY)
3809 return false;
3810 switch (sbinfo->huge) {
3811 case SHMEM_HUGE_NEVER:
3812 return false;
3813 case SHMEM_HUGE_ALWAYS:
3814 return true;
3815 case SHMEM_HUGE_WITHIN_SIZE:
3816 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3817 i_size = round_up(i_size_read(inode), PAGE_SIZE);
3818 if (i_size >= HPAGE_PMD_SIZE &&
3819 i_size >> PAGE_SHIFT >= off)
3820 return true;
3821 /* fall through */
3822 case SHMEM_HUGE_ADVISE:
3823 /* TODO: implement fadvise() hints */
3824 return (vma->vm_flags & VM_HUGEPAGE);
3825 default:
3826 VM_BUG_ON(1);
3827 return false;
3830 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
3832 #else /* !CONFIG_SHMEM */
3835 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3837 * This is intended for small system where the benefits of the full
3838 * shmem code (swap-backed and resource-limited) are outweighed by
3839 * their complexity. On systems without swap this code should be
3840 * effectively equivalent, but much lighter weight.
3843 static struct file_system_type shmem_fs_type = {
3844 .name = "tmpfs",
3845 .mount = ramfs_mount,
3846 .kill_sb = kill_litter_super,
3847 .fs_flags = FS_USERNS_MOUNT,
3850 int __init shmem_init(void)
3852 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3854 shm_mnt = kern_mount(&shmem_fs_type);
3855 BUG_ON(IS_ERR(shm_mnt));
3857 return 0;
3860 int shmem_unuse(swp_entry_t swap, struct page *page)
3862 return 0;
3865 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3867 return 0;
3870 void shmem_unlock_mapping(struct address_space *mapping)
3874 #ifdef CONFIG_MMU
3875 unsigned long shmem_get_unmapped_area(struct file *file,
3876 unsigned long addr, unsigned long len,
3877 unsigned long pgoff, unsigned long flags)
3879 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
3881 #endif
3883 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3885 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3887 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3889 #define shmem_vm_ops generic_file_vm_ops
3890 #define shmem_file_operations ramfs_file_operations
3891 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
3892 #define shmem_acct_size(flags, size) 0
3893 #define shmem_unacct_size(flags, size) do {} while (0)
3895 #endif /* CONFIG_SHMEM */
3897 /* common code */
3899 static const struct dentry_operations anon_ops = {
3900 .d_dname = simple_dname
3903 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
3904 unsigned long flags, unsigned int i_flags)
3906 struct file *res;
3907 struct inode *inode;
3908 struct path path;
3909 struct super_block *sb;
3910 struct qstr this;
3912 if (IS_ERR(mnt))
3913 return ERR_CAST(mnt);
3915 if (size < 0 || size > MAX_LFS_FILESIZE)
3916 return ERR_PTR(-EINVAL);
3918 if (shmem_acct_size(flags, size))
3919 return ERR_PTR(-ENOMEM);
3921 res = ERR_PTR(-ENOMEM);
3922 this.name = name;
3923 this.len = strlen(name);
3924 this.hash = 0; /* will go */
3925 sb = mnt->mnt_sb;
3926 path.mnt = mntget(mnt);
3927 path.dentry = d_alloc_pseudo(sb, &this);
3928 if (!path.dentry)
3929 goto put_memory;
3930 d_set_d_op(path.dentry, &anon_ops);
3932 res = ERR_PTR(-ENOSPC);
3933 inode = shmem_get_inode(sb, NULL, S_IFREG | 0777, 0, flags);
3934 if (!inode)
3935 goto put_memory;
3937 inode->i_flags |= i_flags;
3938 d_instantiate(path.dentry, inode);
3939 inode->i_size = size;
3940 clear_nlink(inode); /* It is unlinked */
3941 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3942 if (IS_ERR(res))
3943 goto put_path;
3945 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3946 &shmem_file_operations);
3947 if (IS_ERR(res))
3948 goto put_path;
3950 return res;
3952 put_memory:
3953 shmem_unacct_size(flags, size);
3954 put_path:
3955 path_put(&path);
3956 return res;
3960 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3961 * kernel internal. There will be NO LSM permission checks against the
3962 * underlying inode. So users of this interface must do LSM checks at a
3963 * higher layer. The users are the big_key and shm implementations. LSM
3964 * checks are provided at the key or shm level rather than the inode.
3965 * @name: name for dentry (to be seen in /proc/<pid>/maps
3966 * @size: size to be set for the file
3967 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3969 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3971 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
3975 * shmem_file_setup - get an unlinked file living in tmpfs
3976 * @name: name for dentry (to be seen in /proc/<pid>/maps
3977 * @size: size to be set for the file
3978 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3980 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3982 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
3984 EXPORT_SYMBOL_GPL(shmem_file_setup);
3987 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
3988 * @mnt: the tmpfs mount where the file will be created
3989 * @name: name for dentry (to be seen in /proc/<pid>/maps
3990 * @size: size to be set for the file
3991 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3993 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
3994 loff_t size, unsigned long flags)
3996 return __shmem_file_setup(mnt, name, size, flags, 0);
3998 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4001 * shmem_zero_setup - setup a shared anonymous mapping
4002 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4004 int shmem_zero_setup(struct vm_area_struct *vma)
4006 struct file *file;
4007 loff_t size = vma->vm_end - vma->vm_start;
4010 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4011 * between XFS directory reading and selinux: since this file is only
4012 * accessible to the user through its mapping, use S_PRIVATE flag to
4013 * bypass file security, in the same way as shmem_kernel_file_setup().
4015 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4016 if (IS_ERR(file))
4017 return PTR_ERR(file);
4019 if (vma->vm_file)
4020 fput(vma->vm_file);
4021 vma->vm_file = file;
4022 vma->vm_ops = &shmem_vm_ops;
4024 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4025 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4026 (vma->vm_end & HPAGE_PMD_MASK)) {
4027 khugepaged_enter(vma, vma->vm_flags);
4030 return 0;
4034 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4035 * @mapping: the page's address_space
4036 * @index: the page index
4037 * @gfp: the page allocator flags to use if allocating
4039 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4040 * with any new page allocations done using the specified allocation flags.
4041 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4042 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4043 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4045 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4046 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4048 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4049 pgoff_t index, gfp_t gfp)
4051 #ifdef CONFIG_SHMEM
4052 struct inode *inode = mapping->host;
4053 struct page *page;
4054 int error;
4056 BUG_ON(mapping->a_ops != &shmem_aops);
4057 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4058 gfp, NULL, NULL, NULL);
4059 if (error)
4060 page = ERR_PTR(error);
4061 else
4062 unlock_page(page);
4063 return page;
4064 #else
4066 * The tiny !SHMEM case uses ramfs without swap
4068 return read_cache_page_gfp(mapping, index, gfp);
4069 #endif
4071 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);