debugfs: fix debugfs_rename parameter checking
[linux/fpc-iii.git] / kernel / kprobes.c
blob4344381664cce83d22bd82ac10cc786728b4a745
1 /*
2 * Kernel Probes (KProbes)
3 * kernel/kprobes.c
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 * Copyright (C) IBM Corporation, 2002, 2004
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation (includes suggestions from
23 * Rusty Russell).
24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25 * hlists and exceptions notifier as suggested by Andi Kleen.
26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27 * interface to access function arguments.
28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29 * exceptions notifier to be first on the priority list.
30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32 * <prasanna@in.ibm.com> added function-return probes.
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/export.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/jump_label.h>
52 #include <asm/sections.h>
53 #include <asm/cacheflush.h>
54 #include <asm/errno.h>
55 #include <linux/uaccess.h>
57 #define KPROBE_HASH_BITS 6
58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
61 static int kprobes_initialized;
62 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
63 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
65 /* NOTE: change this value only with kprobe_mutex held */
66 static bool kprobes_all_disarmed;
68 /* This protects kprobe_table and optimizing_list */
69 static DEFINE_MUTEX(kprobe_mutex);
70 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
71 static struct {
72 raw_spinlock_t lock ____cacheline_aligned_in_smp;
73 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
75 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
76 unsigned int __unused)
78 return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
81 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
83 return &(kretprobe_table_locks[hash].lock);
86 /* Blacklist -- list of struct kprobe_blacklist_entry */
87 static LIST_HEAD(kprobe_blacklist);
89 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
91 * kprobe->ainsn.insn points to the copy of the instruction to be
92 * single-stepped. x86_64, POWER4 and above have no-exec support and
93 * stepping on the instruction on a vmalloced/kmalloced/data page
94 * is a recipe for disaster
96 struct kprobe_insn_page {
97 struct list_head list;
98 kprobe_opcode_t *insns; /* Page of instruction slots */
99 struct kprobe_insn_cache *cache;
100 int nused;
101 int ngarbage;
102 char slot_used[];
105 #define KPROBE_INSN_PAGE_SIZE(slots) \
106 (offsetof(struct kprobe_insn_page, slot_used) + \
107 (sizeof(char) * (slots)))
109 static int slots_per_page(struct kprobe_insn_cache *c)
111 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
114 enum kprobe_slot_state {
115 SLOT_CLEAN = 0,
116 SLOT_DIRTY = 1,
117 SLOT_USED = 2,
120 void __weak *alloc_insn_page(void)
122 return module_alloc(PAGE_SIZE);
125 void __weak free_insn_page(void *page)
127 module_memfree(page);
130 struct kprobe_insn_cache kprobe_insn_slots = {
131 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
132 .alloc = alloc_insn_page,
133 .free = free_insn_page,
134 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
135 .insn_size = MAX_INSN_SIZE,
136 .nr_garbage = 0,
138 static int collect_garbage_slots(struct kprobe_insn_cache *c);
141 * __get_insn_slot() - Find a slot on an executable page for an instruction.
142 * We allocate an executable page if there's no room on existing ones.
144 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
146 struct kprobe_insn_page *kip;
147 kprobe_opcode_t *slot = NULL;
149 /* Since the slot array is not protected by rcu, we need a mutex */
150 mutex_lock(&c->mutex);
151 retry:
152 rcu_read_lock();
153 list_for_each_entry_rcu(kip, &c->pages, list) {
154 if (kip->nused < slots_per_page(c)) {
155 int i;
156 for (i = 0; i < slots_per_page(c); i++) {
157 if (kip->slot_used[i] == SLOT_CLEAN) {
158 kip->slot_used[i] = SLOT_USED;
159 kip->nused++;
160 slot = kip->insns + (i * c->insn_size);
161 rcu_read_unlock();
162 goto out;
165 /* kip->nused is broken. Fix it. */
166 kip->nused = slots_per_page(c);
167 WARN_ON(1);
170 rcu_read_unlock();
172 /* If there are any garbage slots, collect it and try again. */
173 if (c->nr_garbage && collect_garbage_slots(c) == 0)
174 goto retry;
176 /* All out of space. Need to allocate a new page. */
177 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
178 if (!kip)
179 goto out;
182 * Use module_alloc so this page is within +/- 2GB of where the
183 * kernel image and loaded module images reside. This is required
184 * so x86_64 can correctly handle the %rip-relative fixups.
186 kip->insns = c->alloc();
187 if (!kip->insns) {
188 kfree(kip);
189 goto out;
191 INIT_LIST_HEAD(&kip->list);
192 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
193 kip->slot_used[0] = SLOT_USED;
194 kip->nused = 1;
195 kip->ngarbage = 0;
196 kip->cache = c;
197 list_add_rcu(&kip->list, &c->pages);
198 slot = kip->insns;
199 out:
200 mutex_unlock(&c->mutex);
201 return slot;
204 /* Return 1 if all garbages are collected, otherwise 0. */
205 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
207 kip->slot_used[idx] = SLOT_CLEAN;
208 kip->nused--;
209 if (kip->nused == 0) {
211 * Page is no longer in use. Free it unless
212 * it's the last one. We keep the last one
213 * so as not to have to set it up again the
214 * next time somebody inserts a probe.
216 if (!list_is_singular(&kip->list)) {
217 list_del_rcu(&kip->list);
218 synchronize_rcu();
219 kip->cache->free(kip->insns);
220 kfree(kip);
222 return 1;
224 return 0;
227 static int collect_garbage_slots(struct kprobe_insn_cache *c)
229 struct kprobe_insn_page *kip, *next;
231 /* Ensure no-one is interrupted on the garbages */
232 synchronize_sched();
234 list_for_each_entry_safe(kip, next, &c->pages, list) {
235 int i;
236 if (kip->ngarbage == 0)
237 continue;
238 kip->ngarbage = 0; /* we will collect all garbages */
239 for (i = 0; i < slots_per_page(c); i++) {
240 if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
241 break;
244 c->nr_garbage = 0;
245 return 0;
248 void __free_insn_slot(struct kprobe_insn_cache *c,
249 kprobe_opcode_t *slot, int dirty)
251 struct kprobe_insn_page *kip;
252 long idx;
254 mutex_lock(&c->mutex);
255 rcu_read_lock();
256 list_for_each_entry_rcu(kip, &c->pages, list) {
257 idx = ((long)slot - (long)kip->insns) /
258 (c->insn_size * sizeof(kprobe_opcode_t));
259 if (idx >= 0 && idx < slots_per_page(c))
260 goto out;
262 /* Could not find this slot. */
263 WARN_ON(1);
264 kip = NULL;
265 out:
266 rcu_read_unlock();
267 /* Mark and sweep: this may sleep */
268 if (kip) {
269 /* Check double free */
270 WARN_ON(kip->slot_used[idx] != SLOT_USED);
271 if (dirty) {
272 kip->slot_used[idx] = SLOT_DIRTY;
273 kip->ngarbage++;
274 if (++c->nr_garbage > slots_per_page(c))
275 collect_garbage_slots(c);
276 } else {
277 collect_one_slot(kip, idx);
280 mutex_unlock(&c->mutex);
284 * Check given address is on the page of kprobe instruction slots.
285 * This will be used for checking whether the address on a stack
286 * is on a text area or not.
288 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
290 struct kprobe_insn_page *kip;
291 bool ret = false;
293 rcu_read_lock();
294 list_for_each_entry_rcu(kip, &c->pages, list) {
295 if (addr >= (unsigned long)kip->insns &&
296 addr < (unsigned long)kip->insns + PAGE_SIZE) {
297 ret = true;
298 break;
301 rcu_read_unlock();
303 return ret;
306 #ifdef CONFIG_OPTPROBES
307 /* For optimized_kprobe buffer */
308 struct kprobe_insn_cache kprobe_optinsn_slots = {
309 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
310 .alloc = alloc_insn_page,
311 .free = free_insn_page,
312 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
313 /* .insn_size is initialized later */
314 .nr_garbage = 0,
316 #endif
317 #endif
319 /* We have preemption disabled.. so it is safe to use __ versions */
320 static inline void set_kprobe_instance(struct kprobe *kp)
322 __this_cpu_write(kprobe_instance, kp);
325 static inline void reset_kprobe_instance(void)
327 __this_cpu_write(kprobe_instance, NULL);
331 * This routine is called either:
332 * - under the kprobe_mutex - during kprobe_[un]register()
333 * OR
334 * - with preemption disabled - from arch/xxx/kernel/kprobes.c
336 struct kprobe *get_kprobe(void *addr)
338 struct hlist_head *head;
339 struct kprobe *p;
341 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
342 hlist_for_each_entry_rcu(p, head, hlist) {
343 if (p->addr == addr)
344 return p;
347 return NULL;
349 NOKPROBE_SYMBOL(get_kprobe);
351 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
353 /* Return true if the kprobe is an aggregator */
354 static inline int kprobe_aggrprobe(struct kprobe *p)
356 return p->pre_handler == aggr_pre_handler;
359 /* Return true(!0) if the kprobe is unused */
360 static inline int kprobe_unused(struct kprobe *p)
362 return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
363 list_empty(&p->list);
367 * Keep all fields in the kprobe consistent
369 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
371 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
372 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
375 #ifdef CONFIG_OPTPROBES
376 /* NOTE: change this value only with kprobe_mutex held */
377 static bool kprobes_allow_optimization;
380 * Call all pre_handler on the list, but ignores its return value.
381 * This must be called from arch-dep optimized caller.
383 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
385 struct kprobe *kp;
387 list_for_each_entry_rcu(kp, &p->list, list) {
388 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
389 set_kprobe_instance(kp);
390 kp->pre_handler(kp, regs);
392 reset_kprobe_instance();
395 NOKPROBE_SYMBOL(opt_pre_handler);
397 /* Free optimized instructions and optimized_kprobe */
398 static void free_aggr_kprobe(struct kprobe *p)
400 struct optimized_kprobe *op;
402 op = container_of(p, struct optimized_kprobe, kp);
403 arch_remove_optimized_kprobe(op);
404 arch_remove_kprobe(p);
405 kfree(op);
408 /* Return true(!0) if the kprobe is ready for optimization. */
409 static inline int kprobe_optready(struct kprobe *p)
411 struct optimized_kprobe *op;
413 if (kprobe_aggrprobe(p)) {
414 op = container_of(p, struct optimized_kprobe, kp);
415 return arch_prepared_optinsn(&op->optinsn);
418 return 0;
421 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
422 static inline int kprobe_disarmed(struct kprobe *p)
424 struct optimized_kprobe *op;
426 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
427 if (!kprobe_aggrprobe(p))
428 return kprobe_disabled(p);
430 op = container_of(p, struct optimized_kprobe, kp);
432 return kprobe_disabled(p) && list_empty(&op->list);
435 /* Return true(!0) if the probe is queued on (un)optimizing lists */
436 static int kprobe_queued(struct kprobe *p)
438 struct optimized_kprobe *op;
440 if (kprobe_aggrprobe(p)) {
441 op = container_of(p, struct optimized_kprobe, kp);
442 if (!list_empty(&op->list))
443 return 1;
445 return 0;
449 * Return an optimized kprobe whose optimizing code replaces
450 * instructions including addr (exclude breakpoint).
452 static struct kprobe *get_optimized_kprobe(unsigned long addr)
454 int i;
455 struct kprobe *p = NULL;
456 struct optimized_kprobe *op;
458 /* Don't check i == 0, since that is a breakpoint case. */
459 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
460 p = get_kprobe((void *)(addr - i));
462 if (p && kprobe_optready(p)) {
463 op = container_of(p, struct optimized_kprobe, kp);
464 if (arch_within_optimized_kprobe(op, addr))
465 return p;
468 return NULL;
471 /* Optimization staging list, protected by kprobe_mutex */
472 static LIST_HEAD(optimizing_list);
473 static LIST_HEAD(unoptimizing_list);
474 static LIST_HEAD(freeing_list);
476 static void kprobe_optimizer(struct work_struct *work);
477 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
478 #define OPTIMIZE_DELAY 5
481 * Optimize (replace a breakpoint with a jump) kprobes listed on
482 * optimizing_list.
484 static void do_optimize_kprobes(void)
487 * The optimization/unoptimization refers online_cpus via
488 * stop_machine() and cpu-hotplug modifies online_cpus.
489 * And same time, text_mutex will be held in cpu-hotplug and here.
490 * This combination can cause a deadlock (cpu-hotplug try to lock
491 * text_mutex but stop_machine can not be done because online_cpus
492 * has been changed)
493 * To avoid this deadlock, caller must have locked cpu hotplug
494 * for preventing cpu-hotplug outside of text_mutex locking.
496 lockdep_assert_cpus_held();
498 /* Optimization never be done when disarmed */
499 if (kprobes_all_disarmed || !kprobes_allow_optimization ||
500 list_empty(&optimizing_list))
501 return;
503 mutex_lock(&text_mutex);
504 arch_optimize_kprobes(&optimizing_list);
505 mutex_unlock(&text_mutex);
509 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
510 * if need) kprobes listed on unoptimizing_list.
512 static void do_unoptimize_kprobes(void)
514 struct optimized_kprobe *op, *tmp;
516 /* See comment in do_optimize_kprobes() */
517 lockdep_assert_cpus_held();
519 /* Unoptimization must be done anytime */
520 if (list_empty(&unoptimizing_list))
521 return;
523 mutex_lock(&text_mutex);
524 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
525 /* Loop free_list for disarming */
526 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
527 /* Disarm probes if marked disabled */
528 if (kprobe_disabled(&op->kp))
529 arch_disarm_kprobe(&op->kp);
530 if (kprobe_unused(&op->kp)) {
532 * Remove unused probes from hash list. After waiting
533 * for synchronization, these probes are reclaimed.
534 * (reclaiming is done by do_free_cleaned_kprobes.)
536 hlist_del_rcu(&op->kp.hlist);
537 } else
538 list_del_init(&op->list);
540 mutex_unlock(&text_mutex);
543 /* Reclaim all kprobes on the free_list */
544 static void do_free_cleaned_kprobes(void)
546 struct optimized_kprobe *op, *tmp;
548 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
549 BUG_ON(!kprobe_unused(&op->kp));
550 list_del_init(&op->list);
551 free_aggr_kprobe(&op->kp);
555 /* Start optimizer after OPTIMIZE_DELAY passed */
556 static void kick_kprobe_optimizer(void)
558 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
561 /* Kprobe jump optimizer */
562 static void kprobe_optimizer(struct work_struct *work)
564 mutex_lock(&kprobe_mutex);
565 cpus_read_lock();
566 /* Lock modules while optimizing kprobes */
567 mutex_lock(&module_mutex);
570 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
571 * kprobes before waiting for quiesence period.
573 do_unoptimize_kprobes();
576 * Step 2: Wait for quiesence period to ensure all potentially
577 * preempted tasks to have normally scheduled. Because optprobe
578 * may modify multiple instructions, there is a chance that Nth
579 * instruction is preempted. In that case, such tasks can return
580 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
581 * Note that on non-preemptive kernel, this is transparently converted
582 * to synchronoze_sched() to wait for all interrupts to have completed.
584 synchronize_rcu_tasks();
586 /* Step 3: Optimize kprobes after quiesence period */
587 do_optimize_kprobes();
589 /* Step 4: Free cleaned kprobes after quiesence period */
590 do_free_cleaned_kprobes();
592 mutex_unlock(&module_mutex);
593 cpus_read_unlock();
594 mutex_unlock(&kprobe_mutex);
596 /* Step 5: Kick optimizer again if needed */
597 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
598 kick_kprobe_optimizer();
601 /* Wait for completing optimization and unoptimization */
602 void wait_for_kprobe_optimizer(void)
604 mutex_lock(&kprobe_mutex);
606 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
607 mutex_unlock(&kprobe_mutex);
609 /* this will also make optimizing_work execute immmediately */
610 flush_delayed_work(&optimizing_work);
611 /* @optimizing_work might not have been queued yet, relax */
612 cpu_relax();
614 mutex_lock(&kprobe_mutex);
617 mutex_unlock(&kprobe_mutex);
620 /* Optimize kprobe if p is ready to be optimized */
621 static void optimize_kprobe(struct kprobe *p)
623 struct optimized_kprobe *op;
625 /* Check if the kprobe is disabled or not ready for optimization. */
626 if (!kprobe_optready(p) || !kprobes_allow_optimization ||
627 (kprobe_disabled(p) || kprobes_all_disarmed))
628 return;
630 /* kprobes with post_handler can not be optimized */
631 if (p->post_handler)
632 return;
634 op = container_of(p, struct optimized_kprobe, kp);
636 /* Check there is no other kprobes at the optimized instructions */
637 if (arch_check_optimized_kprobe(op) < 0)
638 return;
640 /* Check if it is already optimized. */
641 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
642 return;
643 op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
645 if (!list_empty(&op->list))
646 /* This is under unoptimizing. Just dequeue the probe */
647 list_del_init(&op->list);
648 else {
649 list_add(&op->list, &optimizing_list);
650 kick_kprobe_optimizer();
654 /* Short cut to direct unoptimizing */
655 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
657 lockdep_assert_cpus_held();
658 arch_unoptimize_kprobe(op);
659 if (kprobe_disabled(&op->kp))
660 arch_disarm_kprobe(&op->kp);
663 /* Unoptimize a kprobe if p is optimized */
664 static void unoptimize_kprobe(struct kprobe *p, bool force)
666 struct optimized_kprobe *op;
668 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
669 return; /* This is not an optprobe nor optimized */
671 op = container_of(p, struct optimized_kprobe, kp);
672 if (!kprobe_optimized(p)) {
673 /* Unoptimized or unoptimizing case */
674 if (force && !list_empty(&op->list)) {
676 * Only if this is unoptimizing kprobe and forced,
677 * forcibly unoptimize it. (No need to unoptimize
678 * unoptimized kprobe again :)
680 list_del_init(&op->list);
681 force_unoptimize_kprobe(op);
683 return;
686 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
687 if (!list_empty(&op->list)) {
688 /* Dequeue from the optimization queue */
689 list_del_init(&op->list);
690 return;
692 /* Optimized kprobe case */
693 if (force)
694 /* Forcibly update the code: this is a special case */
695 force_unoptimize_kprobe(op);
696 else {
697 list_add(&op->list, &unoptimizing_list);
698 kick_kprobe_optimizer();
702 /* Cancel unoptimizing for reusing */
703 static int reuse_unused_kprobe(struct kprobe *ap)
705 struct optimized_kprobe *op;
706 int ret;
708 BUG_ON(!kprobe_unused(ap));
710 * Unused kprobe MUST be on the way of delayed unoptimizing (means
711 * there is still a relative jump) and disabled.
713 op = container_of(ap, struct optimized_kprobe, kp);
714 WARN_ON_ONCE(list_empty(&op->list));
715 /* Enable the probe again */
716 ap->flags &= ~KPROBE_FLAG_DISABLED;
717 /* Optimize it again (remove from op->list) */
718 ret = kprobe_optready(ap);
719 if (ret)
720 return ret;
722 optimize_kprobe(ap);
723 return 0;
726 /* Remove optimized instructions */
727 static void kill_optimized_kprobe(struct kprobe *p)
729 struct optimized_kprobe *op;
731 op = container_of(p, struct optimized_kprobe, kp);
732 if (!list_empty(&op->list))
733 /* Dequeue from the (un)optimization queue */
734 list_del_init(&op->list);
735 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
737 if (kprobe_unused(p)) {
738 /* Enqueue if it is unused */
739 list_add(&op->list, &freeing_list);
741 * Remove unused probes from the hash list. After waiting
742 * for synchronization, this probe is reclaimed.
743 * (reclaiming is done by do_free_cleaned_kprobes().)
745 hlist_del_rcu(&op->kp.hlist);
748 /* Don't touch the code, because it is already freed. */
749 arch_remove_optimized_kprobe(op);
752 static inline
753 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
755 if (!kprobe_ftrace(p))
756 arch_prepare_optimized_kprobe(op, p);
759 /* Try to prepare optimized instructions */
760 static void prepare_optimized_kprobe(struct kprobe *p)
762 struct optimized_kprobe *op;
764 op = container_of(p, struct optimized_kprobe, kp);
765 __prepare_optimized_kprobe(op, p);
768 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
769 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
771 struct optimized_kprobe *op;
773 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
774 if (!op)
775 return NULL;
777 INIT_LIST_HEAD(&op->list);
778 op->kp.addr = p->addr;
779 __prepare_optimized_kprobe(op, p);
781 return &op->kp;
784 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
787 * Prepare an optimized_kprobe and optimize it
788 * NOTE: p must be a normal registered kprobe
790 static void try_to_optimize_kprobe(struct kprobe *p)
792 struct kprobe *ap;
793 struct optimized_kprobe *op;
795 /* Impossible to optimize ftrace-based kprobe */
796 if (kprobe_ftrace(p))
797 return;
799 /* For preparing optimization, jump_label_text_reserved() is called */
800 cpus_read_lock();
801 jump_label_lock();
802 mutex_lock(&text_mutex);
804 ap = alloc_aggr_kprobe(p);
805 if (!ap)
806 goto out;
808 op = container_of(ap, struct optimized_kprobe, kp);
809 if (!arch_prepared_optinsn(&op->optinsn)) {
810 /* If failed to setup optimizing, fallback to kprobe */
811 arch_remove_optimized_kprobe(op);
812 kfree(op);
813 goto out;
816 init_aggr_kprobe(ap, p);
817 optimize_kprobe(ap); /* This just kicks optimizer thread */
819 out:
820 mutex_unlock(&text_mutex);
821 jump_label_unlock();
822 cpus_read_unlock();
825 #ifdef CONFIG_SYSCTL
826 static void optimize_all_kprobes(void)
828 struct hlist_head *head;
829 struct kprobe *p;
830 unsigned int i;
832 mutex_lock(&kprobe_mutex);
833 /* If optimization is already allowed, just return */
834 if (kprobes_allow_optimization)
835 goto out;
837 cpus_read_lock();
838 kprobes_allow_optimization = true;
839 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
840 head = &kprobe_table[i];
841 hlist_for_each_entry_rcu(p, head, hlist)
842 if (!kprobe_disabled(p))
843 optimize_kprobe(p);
845 cpus_read_unlock();
846 printk(KERN_INFO "Kprobes globally optimized\n");
847 out:
848 mutex_unlock(&kprobe_mutex);
851 static void unoptimize_all_kprobes(void)
853 struct hlist_head *head;
854 struct kprobe *p;
855 unsigned int i;
857 mutex_lock(&kprobe_mutex);
858 /* If optimization is already prohibited, just return */
859 if (!kprobes_allow_optimization) {
860 mutex_unlock(&kprobe_mutex);
861 return;
864 cpus_read_lock();
865 kprobes_allow_optimization = false;
866 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
867 head = &kprobe_table[i];
868 hlist_for_each_entry_rcu(p, head, hlist) {
869 if (!kprobe_disabled(p))
870 unoptimize_kprobe(p, false);
873 cpus_read_unlock();
874 mutex_unlock(&kprobe_mutex);
876 /* Wait for unoptimizing completion */
877 wait_for_kprobe_optimizer();
878 printk(KERN_INFO "Kprobes globally unoptimized\n");
881 static DEFINE_MUTEX(kprobe_sysctl_mutex);
882 int sysctl_kprobes_optimization;
883 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
884 void __user *buffer, size_t *length,
885 loff_t *ppos)
887 int ret;
889 mutex_lock(&kprobe_sysctl_mutex);
890 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
891 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
893 if (sysctl_kprobes_optimization)
894 optimize_all_kprobes();
895 else
896 unoptimize_all_kprobes();
897 mutex_unlock(&kprobe_sysctl_mutex);
899 return ret;
901 #endif /* CONFIG_SYSCTL */
903 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
904 static void __arm_kprobe(struct kprobe *p)
906 struct kprobe *_p;
908 /* Check collision with other optimized kprobes */
909 _p = get_optimized_kprobe((unsigned long)p->addr);
910 if (unlikely(_p))
911 /* Fallback to unoptimized kprobe */
912 unoptimize_kprobe(_p, true);
914 arch_arm_kprobe(p);
915 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */
918 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
919 static void __disarm_kprobe(struct kprobe *p, bool reopt)
921 struct kprobe *_p;
923 /* Try to unoptimize */
924 unoptimize_kprobe(p, kprobes_all_disarmed);
926 if (!kprobe_queued(p)) {
927 arch_disarm_kprobe(p);
928 /* If another kprobe was blocked, optimize it. */
929 _p = get_optimized_kprobe((unsigned long)p->addr);
930 if (unlikely(_p) && reopt)
931 optimize_kprobe(_p);
933 /* TODO: reoptimize others after unoptimized this probe */
936 #else /* !CONFIG_OPTPROBES */
938 #define optimize_kprobe(p) do {} while (0)
939 #define unoptimize_kprobe(p, f) do {} while (0)
940 #define kill_optimized_kprobe(p) do {} while (0)
941 #define prepare_optimized_kprobe(p) do {} while (0)
942 #define try_to_optimize_kprobe(p) do {} while (0)
943 #define __arm_kprobe(p) arch_arm_kprobe(p)
944 #define __disarm_kprobe(p, o) arch_disarm_kprobe(p)
945 #define kprobe_disarmed(p) kprobe_disabled(p)
946 #define wait_for_kprobe_optimizer() do {} while (0)
948 static int reuse_unused_kprobe(struct kprobe *ap)
951 * If the optimized kprobe is NOT supported, the aggr kprobe is
952 * released at the same time that the last aggregated kprobe is
953 * unregistered.
954 * Thus there should be no chance to reuse unused kprobe.
956 printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
957 return -EINVAL;
960 static void free_aggr_kprobe(struct kprobe *p)
962 arch_remove_kprobe(p);
963 kfree(p);
966 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
968 return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
970 #endif /* CONFIG_OPTPROBES */
972 #ifdef CONFIG_KPROBES_ON_FTRACE
973 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
974 .func = kprobe_ftrace_handler,
975 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
977 static int kprobe_ftrace_enabled;
979 /* Must ensure p->addr is really on ftrace */
980 static int prepare_kprobe(struct kprobe *p)
982 if (!kprobe_ftrace(p))
983 return arch_prepare_kprobe(p);
985 return arch_prepare_kprobe_ftrace(p);
988 /* Caller must lock kprobe_mutex */
989 static int arm_kprobe_ftrace(struct kprobe *p)
991 int ret = 0;
993 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
994 (unsigned long)p->addr, 0, 0);
995 if (ret) {
996 pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n",
997 p->addr, ret);
998 return ret;
1001 if (kprobe_ftrace_enabled == 0) {
1002 ret = register_ftrace_function(&kprobe_ftrace_ops);
1003 if (ret) {
1004 pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
1005 goto err_ftrace;
1009 kprobe_ftrace_enabled++;
1010 return ret;
1012 err_ftrace:
1014 * Note: Since kprobe_ftrace_ops has IPMODIFY set, and ftrace requires a
1015 * non-empty filter_hash for IPMODIFY ops, we're safe from an accidental
1016 * empty filter_hash which would undesirably trace all functions.
1018 ftrace_set_filter_ip(&kprobe_ftrace_ops, (unsigned long)p->addr, 1, 0);
1019 return ret;
1022 /* Caller must lock kprobe_mutex */
1023 static int disarm_kprobe_ftrace(struct kprobe *p)
1025 int ret = 0;
1027 if (kprobe_ftrace_enabled == 1) {
1028 ret = unregister_ftrace_function(&kprobe_ftrace_ops);
1029 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1030 return ret;
1033 kprobe_ftrace_enabled--;
1035 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
1036 (unsigned long)p->addr, 1, 0);
1037 WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n",
1038 p->addr, ret);
1039 return ret;
1041 #else /* !CONFIG_KPROBES_ON_FTRACE */
1042 #define prepare_kprobe(p) arch_prepare_kprobe(p)
1043 #define arm_kprobe_ftrace(p) (-ENODEV)
1044 #define disarm_kprobe_ftrace(p) (-ENODEV)
1045 #endif
1047 /* Arm a kprobe with text_mutex */
1048 static int arm_kprobe(struct kprobe *kp)
1050 if (unlikely(kprobe_ftrace(kp)))
1051 return arm_kprobe_ftrace(kp);
1053 cpus_read_lock();
1054 mutex_lock(&text_mutex);
1055 __arm_kprobe(kp);
1056 mutex_unlock(&text_mutex);
1057 cpus_read_unlock();
1059 return 0;
1062 /* Disarm a kprobe with text_mutex */
1063 static int disarm_kprobe(struct kprobe *kp, bool reopt)
1065 if (unlikely(kprobe_ftrace(kp)))
1066 return disarm_kprobe_ftrace(kp);
1068 cpus_read_lock();
1069 mutex_lock(&text_mutex);
1070 __disarm_kprobe(kp, reopt);
1071 mutex_unlock(&text_mutex);
1072 cpus_read_unlock();
1074 return 0;
1078 * Aggregate handlers for multiple kprobes support - these handlers
1079 * take care of invoking the individual kprobe handlers on p->list
1081 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1083 struct kprobe *kp;
1085 list_for_each_entry_rcu(kp, &p->list, list) {
1086 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1087 set_kprobe_instance(kp);
1088 if (kp->pre_handler(kp, regs))
1089 return 1;
1091 reset_kprobe_instance();
1093 return 0;
1095 NOKPROBE_SYMBOL(aggr_pre_handler);
1097 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1098 unsigned long flags)
1100 struct kprobe *kp;
1102 list_for_each_entry_rcu(kp, &p->list, list) {
1103 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1104 set_kprobe_instance(kp);
1105 kp->post_handler(kp, regs, flags);
1106 reset_kprobe_instance();
1110 NOKPROBE_SYMBOL(aggr_post_handler);
1112 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1113 int trapnr)
1115 struct kprobe *cur = __this_cpu_read(kprobe_instance);
1118 * if we faulted "during" the execution of a user specified
1119 * probe handler, invoke just that probe's fault handler
1121 if (cur && cur->fault_handler) {
1122 if (cur->fault_handler(cur, regs, trapnr))
1123 return 1;
1125 return 0;
1127 NOKPROBE_SYMBOL(aggr_fault_handler);
1129 /* Walks the list and increments nmissed count for multiprobe case */
1130 void kprobes_inc_nmissed_count(struct kprobe *p)
1132 struct kprobe *kp;
1133 if (!kprobe_aggrprobe(p)) {
1134 p->nmissed++;
1135 } else {
1136 list_for_each_entry_rcu(kp, &p->list, list)
1137 kp->nmissed++;
1139 return;
1141 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1143 void recycle_rp_inst(struct kretprobe_instance *ri,
1144 struct hlist_head *head)
1146 struct kretprobe *rp = ri->rp;
1148 /* remove rp inst off the rprobe_inst_table */
1149 hlist_del(&ri->hlist);
1150 INIT_HLIST_NODE(&ri->hlist);
1151 if (likely(rp)) {
1152 raw_spin_lock(&rp->lock);
1153 hlist_add_head(&ri->hlist, &rp->free_instances);
1154 raw_spin_unlock(&rp->lock);
1155 } else
1156 /* Unregistering */
1157 hlist_add_head(&ri->hlist, head);
1159 NOKPROBE_SYMBOL(recycle_rp_inst);
1161 void kretprobe_hash_lock(struct task_struct *tsk,
1162 struct hlist_head **head, unsigned long *flags)
1163 __acquires(hlist_lock)
1165 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1166 raw_spinlock_t *hlist_lock;
1168 *head = &kretprobe_inst_table[hash];
1169 hlist_lock = kretprobe_table_lock_ptr(hash);
1170 raw_spin_lock_irqsave(hlist_lock, *flags);
1172 NOKPROBE_SYMBOL(kretprobe_hash_lock);
1174 static void kretprobe_table_lock(unsigned long hash,
1175 unsigned long *flags)
1176 __acquires(hlist_lock)
1178 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1179 raw_spin_lock_irqsave(hlist_lock, *flags);
1181 NOKPROBE_SYMBOL(kretprobe_table_lock);
1183 void kretprobe_hash_unlock(struct task_struct *tsk,
1184 unsigned long *flags)
1185 __releases(hlist_lock)
1187 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1188 raw_spinlock_t *hlist_lock;
1190 hlist_lock = kretprobe_table_lock_ptr(hash);
1191 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1193 NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1195 static void kretprobe_table_unlock(unsigned long hash,
1196 unsigned long *flags)
1197 __releases(hlist_lock)
1199 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1200 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1202 NOKPROBE_SYMBOL(kretprobe_table_unlock);
1205 * This function is called from finish_task_switch when task tk becomes dead,
1206 * so that we can recycle any function-return probe instances associated
1207 * with this task. These left over instances represent probed functions
1208 * that have been called but will never return.
1210 void kprobe_flush_task(struct task_struct *tk)
1212 struct kretprobe_instance *ri;
1213 struct hlist_head *head, empty_rp;
1214 struct hlist_node *tmp;
1215 unsigned long hash, flags = 0;
1217 if (unlikely(!kprobes_initialized))
1218 /* Early boot. kretprobe_table_locks not yet initialized. */
1219 return;
1221 INIT_HLIST_HEAD(&empty_rp);
1222 hash = hash_ptr(tk, KPROBE_HASH_BITS);
1223 head = &kretprobe_inst_table[hash];
1224 kretprobe_table_lock(hash, &flags);
1225 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1226 if (ri->task == tk)
1227 recycle_rp_inst(ri, &empty_rp);
1229 kretprobe_table_unlock(hash, &flags);
1230 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1231 hlist_del(&ri->hlist);
1232 kfree(ri);
1235 NOKPROBE_SYMBOL(kprobe_flush_task);
1237 static inline void free_rp_inst(struct kretprobe *rp)
1239 struct kretprobe_instance *ri;
1240 struct hlist_node *next;
1242 hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1243 hlist_del(&ri->hlist);
1244 kfree(ri);
1248 static void cleanup_rp_inst(struct kretprobe *rp)
1250 unsigned long flags, hash;
1251 struct kretprobe_instance *ri;
1252 struct hlist_node *next;
1253 struct hlist_head *head;
1255 /* No race here */
1256 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1257 kretprobe_table_lock(hash, &flags);
1258 head = &kretprobe_inst_table[hash];
1259 hlist_for_each_entry_safe(ri, next, head, hlist) {
1260 if (ri->rp == rp)
1261 ri->rp = NULL;
1263 kretprobe_table_unlock(hash, &flags);
1265 free_rp_inst(rp);
1267 NOKPROBE_SYMBOL(cleanup_rp_inst);
1269 /* Add the new probe to ap->list */
1270 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1272 BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1274 if (p->post_handler)
1275 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */
1277 list_add_rcu(&p->list, &ap->list);
1278 if (p->post_handler && !ap->post_handler)
1279 ap->post_handler = aggr_post_handler;
1281 return 0;
1285 * Fill in the required fields of the "manager kprobe". Replace the
1286 * earlier kprobe in the hlist with the manager kprobe
1288 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1290 /* Copy p's insn slot to ap */
1291 copy_kprobe(p, ap);
1292 flush_insn_slot(ap);
1293 ap->addr = p->addr;
1294 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1295 ap->pre_handler = aggr_pre_handler;
1296 ap->fault_handler = aggr_fault_handler;
1297 /* We don't care the kprobe which has gone. */
1298 if (p->post_handler && !kprobe_gone(p))
1299 ap->post_handler = aggr_post_handler;
1301 INIT_LIST_HEAD(&ap->list);
1302 INIT_HLIST_NODE(&ap->hlist);
1304 list_add_rcu(&p->list, &ap->list);
1305 hlist_replace_rcu(&p->hlist, &ap->hlist);
1309 * This is the second or subsequent kprobe at the address - handle
1310 * the intricacies
1312 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1314 int ret = 0;
1315 struct kprobe *ap = orig_p;
1317 cpus_read_lock();
1319 /* For preparing optimization, jump_label_text_reserved() is called */
1320 jump_label_lock();
1321 mutex_lock(&text_mutex);
1323 if (!kprobe_aggrprobe(orig_p)) {
1324 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1325 ap = alloc_aggr_kprobe(orig_p);
1326 if (!ap) {
1327 ret = -ENOMEM;
1328 goto out;
1330 init_aggr_kprobe(ap, orig_p);
1331 } else if (kprobe_unused(ap)) {
1332 /* This probe is going to die. Rescue it */
1333 ret = reuse_unused_kprobe(ap);
1334 if (ret)
1335 goto out;
1338 if (kprobe_gone(ap)) {
1340 * Attempting to insert new probe at the same location that
1341 * had a probe in the module vaddr area which already
1342 * freed. So, the instruction slot has already been
1343 * released. We need a new slot for the new probe.
1345 ret = arch_prepare_kprobe(ap);
1346 if (ret)
1348 * Even if fail to allocate new slot, don't need to
1349 * free aggr_probe. It will be used next time, or
1350 * freed by unregister_kprobe.
1352 goto out;
1354 /* Prepare optimized instructions if possible. */
1355 prepare_optimized_kprobe(ap);
1358 * Clear gone flag to prevent allocating new slot again, and
1359 * set disabled flag because it is not armed yet.
1361 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1362 | KPROBE_FLAG_DISABLED;
1365 /* Copy ap's insn slot to p */
1366 copy_kprobe(ap, p);
1367 ret = add_new_kprobe(ap, p);
1369 out:
1370 mutex_unlock(&text_mutex);
1371 jump_label_unlock();
1372 cpus_read_unlock();
1374 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1375 ap->flags &= ~KPROBE_FLAG_DISABLED;
1376 if (!kprobes_all_disarmed) {
1377 /* Arm the breakpoint again. */
1378 ret = arm_kprobe(ap);
1379 if (ret) {
1380 ap->flags |= KPROBE_FLAG_DISABLED;
1381 list_del_rcu(&p->list);
1382 synchronize_sched();
1386 return ret;
1389 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1391 /* The __kprobes marked functions and entry code must not be probed */
1392 return addr >= (unsigned long)__kprobes_text_start &&
1393 addr < (unsigned long)__kprobes_text_end;
1396 bool within_kprobe_blacklist(unsigned long addr)
1398 struct kprobe_blacklist_entry *ent;
1400 if (arch_within_kprobe_blacklist(addr))
1401 return true;
1403 * If there exists a kprobe_blacklist, verify and
1404 * fail any probe registration in the prohibited area
1406 list_for_each_entry(ent, &kprobe_blacklist, list) {
1407 if (addr >= ent->start_addr && addr < ent->end_addr)
1408 return true;
1411 return false;
1415 * If we have a symbol_name argument, look it up and add the offset field
1416 * to it. This way, we can specify a relative address to a symbol.
1417 * This returns encoded errors if it fails to look up symbol or invalid
1418 * combination of parameters.
1420 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1421 const char *symbol_name, unsigned int offset)
1423 if ((symbol_name && addr) || (!symbol_name && !addr))
1424 goto invalid;
1426 if (symbol_name) {
1427 addr = kprobe_lookup_name(symbol_name, offset);
1428 if (!addr)
1429 return ERR_PTR(-ENOENT);
1432 addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1433 if (addr)
1434 return addr;
1436 invalid:
1437 return ERR_PTR(-EINVAL);
1440 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1442 return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1445 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1446 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1448 struct kprobe *ap, *list_p;
1450 ap = get_kprobe(p->addr);
1451 if (unlikely(!ap))
1452 return NULL;
1454 if (p != ap) {
1455 list_for_each_entry_rcu(list_p, &ap->list, list)
1456 if (list_p == p)
1457 /* kprobe p is a valid probe */
1458 goto valid;
1459 return NULL;
1461 valid:
1462 return ap;
1465 /* Return error if the kprobe is being re-registered */
1466 static inline int check_kprobe_rereg(struct kprobe *p)
1468 int ret = 0;
1470 mutex_lock(&kprobe_mutex);
1471 if (__get_valid_kprobe(p))
1472 ret = -EINVAL;
1473 mutex_unlock(&kprobe_mutex);
1475 return ret;
1478 int __weak arch_check_ftrace_location(struct kprobe *p)
1480 unsigned long ftrace_addr;
1482 ftrace_addr = ftrace_location((unsigned long)p->addr);
1483 if (ftrace_addr) {
1484 #ifdef CONFIG_KPROBES_ON_FTRACE
1485 /* Given address is not on the instruction boundary */
1486 if ((unsigned long)p->addr != ftrace_addr)
1487 return -EILSEQ;
1488 p->flags |= KPROBE_FLAG_FTRACE;
1489 #else /* !CONFIG_KPROBES_ON_FTRACE */
1490 return -EINVAL;
1491 #endif
1493 return 0;
1496 static int check_kprobe_address_safe(struct kprobe *p,
1497 struct module **probed_mod)
1499 int ret;
1501 ret = arch_check_ftrace_location(p);
1502 if (ret)
1503 return ret;
1504 jump_label_lock();
1505 preempt_disable();
1507 /* Ensure it is not in reserved area nor out of text */
1508 if (!kernel_text_address((unsigned long) p->addr) ||
1509 within_kprobe_blacklist((unsigned long) p->addr) ||
1510 jump_label_text_reserved(p->addr, p->addr)) {
1511 ret = -EINVAL;
1512 goto out;
1515 /* Check if are we probing a module */
1516 *probed_mod = __module_text_address((unsigned long) p->addr);
1517 if (*probed_mod) {
1519 * We must hold a refcount of the probed module while updating
1520 * its code to prohibit unexpected unloading.
1522 if (unlikely(!try_module_get(*probed_mod))) {
1523 ret = -ENOENT;
1524 goto out;
1528 * If the module freed .init.text, we couldn't insert
1529 * kprobes in there.
1531 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1532 (*probed_mod)->state != MODULE_STATE_COMING) {
1533 module_put(*probed_mod);
1534 *probed_mod = NULL;
1535 ret = -ENOENT;
1538 out:
1539 preempt_enable();
1540 jump_label_unlock();
1542 return ret;
1545 int register_kprobe(struct kprobe *p)
1547 int ret;
1548 struct kprobe *old_p;
1549 struct module *probed_mod;
1550 kprobe_opcode_t *addr;
1552 /* Adjust probe address from symbol */
1553 addr = kprobe_addr(p);
1554 if (IS_ERR(addr))
1555 return PTR_ERR(addr);
1556 p->addr = addr;
1558 ret = check_kprobe_rereg(p);
1559 if (ret)
1560 return ret;
1562 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1563 p->flags &= KPROBE_FLAG_DISABLED;
1564 p->nmissed = 0;
1565 INIT_LIST_HEAD(&p->list);
1567 ret = check_kprobe_address_safe(p, &probed_mod);
1568 if (ret)
1569 return ret;
1571 mutex_lock(&kprobe_mutex);
1573 old_p = get_kprobe(p->addr);
1574 if (old_p) {
1575 /* Since this may unoptimize old_p, locking text_mutex. */
1576 ret = register_aggr_kprobe(old_p, p);
1577 goto out;
1580 cpus_read_lock();
1581 /* Prevent text modification */
1582 mutex_lock(&text_mutex);
1583 ret = prepare_kprobe(p);
1584 mutex_unlock(&text_mutex);
1585 cpus_read_unlock();
1586 if (ret)
1587 goto out;
1589 INIT_HLIST_NODE(&p->hlist);
1590 hlist_add_head_rcu(&p->hlist,
1591 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1593 if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1594 ret = arm_kprobe(p);
1595 if (ret) {
1596 hlist_del_rcu(&p->hlist);
1597 synchronize_sched();
1598 goto out;
1602 /* Try to optimize kprobe */
1603 try_to_optimize_kprobe(p);
1604 out:
1605 mutex_unlock(&kprobe_mutex);
1607 if (probed_mod)
1608 module_put(probed_mod);
1610 return ret;
1612 EXPORT_SYMBOL_GPL(register_kprobe);
1614 /* Check if all probes on the aggrprobe are disabled */
1615 static int aggr_kprobe_disabled(struct kprobe *ap)
1617 struct kprobe *kp;
1619 list_for_each_entry_rcu(kp, &ap->list, list)
1620 if (!kprobe_disabled(kp))
1622 * There is an active probe on the list.
1623 * We can't disable this ap.
1625 return 0;
1627 return 1;
1630 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1631 static struct kprobe *__disable_kprobe(struct kprobe *p)
1633 struct kprobe *orig_p;
1634 int ret;
1636 /* Get an original kprobe for return */
1637 orig_p = __get_valid_kprobe(p);
1638 if (unlikely(orig_p == NULL))
1639 return ERR_PTR(-EINVAL);
1641 if (!kprobe_disabled(p)) {
1642 /* Disable probe if it is a child probe */
1643 if (p != orig_p)
1644 p->flags |= KPROBE_FLAG_DISABLED;
1646 /* Try to disarm and disable this/parent probe */
1647 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1649 * If kprobes_all_disarmed is set, orig_p
1650 * should have already been disarmed, so
1651 * skip unneed disarming process.
1653 if (!kprobes_all_disarmed) {
1654 ret = disarm_kprobe(orig_p, true);
1655 if (ret) {
1656 p->flags &= ~KPROBE_FLAG_DISABLED;
1657 return ERR_PTR(ret);
1660 orig_p->flags |= KPROBE_FLAG_DISABLED;
1664 return orig_p;
1668 * Unregister a kprobe without a scheduler synchronization.
1670 static int __unregister_kprobe_top(struct kprobe *p)
1672 struct kprobe *ap, *list_p;
1674 /* Disable kprobe. This will disarm it if needed. */
1675 ap = __disable_kprobe(p);
1676 if (IS_ERR(ap))
1677 return PTR_ERR(ap);
1679 if (ap == p)
1681 * This probe is an independent(and non-optimized) kprobe
1682 * (not an aggrprobe). Remove from the hash list.
1684 goto disarmed;
1686 /* Following process expects this probe is an aggrprobe */
1687 WARN_ON(!kprobe_aggrprobe(ap));
1689 if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1691 * !disarmed could be happen if the probe is under delayed
1692 * unoptimizing.
1694 goto disarmed;
1695 else {
1696 /* If disabling probe has special handlers, update aggrprobe */
1697 if (p->post_handler && !kprobe_gone(p)) {
1698 list_for_each_entry_rcu(list_p, &ap->list, list) {
1699 if ((list_p != p) && (list_p->post_handler))
1700 goto noclean;
1702 ap->post_handler = NULL;
1704 noclean:
1706 * Remove from the aggrprobe: this path will do nothing in
1707 * __unregister_kprobe_bottom().
1709 list_del_rcu(&p->list);
1710 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1712 * Try to optimize this probe again, because post
1713 * handler may have been changed.
1715 optimize_kprobe(ap);
1717 return 0;
1719 disarmed:
1720 BUG_ON(!kprobe_disarmed(ap));
1721 hlist_del_rcu(&ap->hlist);
1722 return 0;
1725 static void __unregister_kprobe_bottom(struct kprobe *p)
1727 struct kprobe *ap;
1729 if (list_empty(&p->list))
1730 /* This is an independent kprobe */
1731 arch_remove_kprobe(p);
1732 else if (list_is_singular(&p->list)) {
1733 /* This is the last child of an aggrprobe */
1734 ap = list_entry(p->list.next, struct kprobe, list);
1735 list_del(&p->list);
1736 free_aggr_kprobe(ap);
1738 /* Otherwise, do nothing. */
1741 int register_kprobes(struct kprobe **kps, int num)
1743 int i, ret = 0;
1745 if (num <= 0)
1746 return -EINVAL;
1747 for (i = 0; i < num; i++) {
1748 ret = register_kprobe(kps[i]);
1749 if (ret < 0) {
1750 if (i > 0)
1751 unregister_kprobes(kps, i);
1752 break;
1755 return ret;
1757 EXPORT_SYMBOL_GPL(register_kprobes);
1759 void unregister_kprobe(struct kprobe *p)
1761 unregister_kprobes(&p, 1);
1763 EXPORT_SYMBOL_GPL(unregister_kprobe);
1765 void unregister_kprobes(struct kprobe **kps, int num)
1767 int i;
1769 if (num <= 0)
1770 return;
1771 mutex_lock(&kprobe_mutex);
1772 for (i = 0; i < num; i++)
1773 if (__unregister_kprobe_top(kps[i]) < 0)
1774 kps[i]->addr = NULL;
1775 mutex_unlock(&kprobe_mutex);
1777 synchronize_sched();
1778 for (i = 0; i < num; i++)
1779 if (kps[i]->addr)
1780 __unregister_kprobe_bottom(kps[i]);
1782 EXPORT_SYMBOL_GPL(unregister_kprobes);
1784 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1785 unsigned long val, void *data)
1787 return NOTIFY_DONE;
1789 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1791 static struct notifier_block kprobe_exceptions_nb = {
1792 .notifier_call = kprobe_exceptions_notify,
1793 .priority = 0x7fffffff /* we need to be notified first */
1796 unsigned long __weak arch_deref_entry_point(void *entry)
1798 return (unsigned long)entry;
1801 #ifdef CONFIG_KRETPROBES
1803 * This kprobe pre_handler is registered with every kretprobe. When probe
1804 * hits it will set up the return probe.
1806 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1808 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1809 unsigned long hash, flags = 0;
1810 struct kretprobe_instance *ri;
1813 * To avoid deadlocks, prohibit return probing in NMI contexts,
1814 * just skip the probe and increase the (inexact) 'nmissed'
1815 * statistical counter, so that the user is informed that
1816 * something happened:
1818 if (unlikely(in_nmi())) {
1819 rp->nmissed++;
1820 return 0;
1823 /* TODO: consider to only swap the RA after the last pre_handler fired */
1824 hash = hash_ptr(current, KPROBE_HASH_BITS);
1825 raw_spin_lock_irqsave(&rp->lock, flags);
1826 if (!hlist_empty(&rp->free_instances)) {
1827 ri = hlist_entry(rp->free_instances.first,
1828 struct kretprobe_instance, hlist);
1829 hlist_del(&ri->hlist);
1830 raw_spin_unlock_irqrestore(&rp->lock, flags);
1832 ri->rp = rp;
1833 ri->task = current;
1835 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1836 raw_spin_lock_irqsave(&rp->lock, flags);
1837 hlist_add_head(&ri->hlist, &rp->free_instances);
1838 raw_spin_unlock_irqrestore(&rp->lock, flags);
1839 return 0;
1842 arch_prepare_kretprobe(ri, regs);
1844 /* XXX(hch): why is there no hlist_move_head? */
1845 INIT_HLIST_NODE(&ri->hlist);
1846 kretprobe_table_lock(hash, &flags);
1847 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1848 kretprobe_table_unlock(hash, &flags);
1849 } else {
1850 rp->nmissed++;
1851 raw_spin_unlock_irqrestore(&rp->lock, flags);
1853 return 0;
1855 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1857 bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1859 return !offset;
1862 bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1864 kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1866 if (IS_ERR(kp_addr))
1867 return false;
1869 if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) ||
1870 !arch_kprobe_on_func_entry(offset))
1871 return false;
1873 return true;
1876 int register_kretprobe(struct kretprobe *rp)
1878 int ret = 0;
1879 struct kretprobe_instance *inst;
1880 int i;
1881 void *addr;
1883 if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset))
1884 return -EINVAL;
1886 if (kretprobe_blacklist_size) {
1887 addr = kprobe_addr(&rp->kp);
1888 if (IS_ERR(addr))
1889 return PTR_ERR(addr);
1891 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1892 if (kretprobe_blacklist[i].addr == addr)
1893 return -EINVAL;
1897 rp->kp.pre_handler = pre_handler_kretprobe;
1898 rp->kp.post_handler = NULL;
1899 rp->kp.fault_handler = NULL;
1901 /* Pre-allocate memory for max kretprobe instances */
1902 if (rp->maxactive <= 0) {
1903 #ifdef CONFIG_PREEMPT
1904 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1905 #else
1906 rp->maxactive = num_possible_cpus();
1907 #endif
1909 raw_spin_lock_init(&rp->lock);
1910 INIT_HLIST_HEAD(&rp->free_instances);
1911 for (i = 0; i < rp->maxactive; i++) {
1912 inst = kmalloc(sizeof(struct kretprobe_instance) +
1913 rp->data_size, GFP_KERNEL);
1914 if (inst == NULL) {
1915 free_rp_inst(rp);
1916 return -ENOMEM;
1918 INIT_HLIST_NODE(&inst->hlist);
1919 hlist_add_head(&inst->hlist, &rp->free_instances);
1922 rp->nmissed = 0;
1923 /* Establish function entry probe point */
1924 ret = register_kprobe(&rp->kp);
1925 if (ret != 0)
1926 free_rp_inst(rp);
1927 return ret;
1929 EXPORT_SYMBOL_GPL(register_kretprobe);
1931 int register_kretprobes(struct kretprobe **rps, int num)
1933 int ret = 0, i;
1935 if (num <= 0)
1936 return -EINVAL;
1937 for (i = 0; i < num; i++) {
1938 ret = register_kretprobe(rps[i]);
1939 if (ret < 0) {
1940 if (i > 0)
1941 unregister_kretprobes(rps, i);
1942 break;
1945 return ret;
1947 EXPORT_SYMBOL_GPL(register_kretprobes);
1949 void unregister_kretprobe(struct kretprobe *rp)
1951 unregister_kretprobes(&rp, 1);
1953 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1955 void unregister_kretprobes(struct kretprobe **rps, int num)
1957 int i;
1959 if (num <= 0)
1960 return;
1961 mutex_lock(&kprobe_mutex);
1962 for (i = 0; i < num; i++)
1963 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1964 rps[i]->kp.addr = NULL;
1965 mutex_unlock(&kprobe_mutex);
1967 synchronize_sched();
1968 for (i = 0; i < num; i++) {
1969 if (rps[i]->kp.addr) {
1970 __unregister_kprobe_bottom(&rps[i]->kp);
1971 cleanup_rp_inst(rps[i]);
1975 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1977 #else /* CONFIG_KRETPROBES */
1978 int register_kretprobe(struct kretprobe *rp)
1980 return -ENOSYS;
1982 EXPORT_SYMBOL_GPL(register_kretprobe);
1984 int register_kretprobes(struct kretprobe **rps, int num)
1986 return -ENOSYS;
1988 EXPORT_SYMBOL_GPL(register_kretprobes);
1990 void unregister_kretprobe(struct kretprobe *rp)
1993 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1995 void unregister_kretprobes(struct kretprobe **rps, int num)
1998 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2000 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2002 return 0;
2004 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2006 #endif /* CONFIG_KRETPROBES */
2008 /* Set the kprobe gone and remove its instruction buffer. */
2009 static void kill_kprobe(struct kprobe *p)
2011 struct kprobe *kp;
2013 p->flags |= KPROBE_FLAG_GONE;
2014 if (kprobe_aggrprobe(p)) {
2016 * If this is an aggr_kprobe, we have to list all the
2017 * chained probes and mark them GONE.
2019 list_for_each_entry_rcu(kp, &p->list, list)
2020 kp->flags |= KPROBE_FLAG_GONE;
2021 p->post_handler = NULL;
2022 kill_optimized_kprobe(p);
2025 * Here, we can remove insn_slot safely, because no thread calls
2026 * the original probed function (which will be freed soon) any more.
2028 arch_remove_kprobe(p);
2031 /* Disable one kprobe */
2032 int disable_kprobe(struct kprobe *kp)
2034 int ret = 0;
2035 struct kprobe *p;
2037 mutex_lock(&kprobe_mutex);
2039 /* Disable this kprobe */
2040 p = __disable_kprobe(kp);
2041 if (IS_ERR(p))
2042 ret = PTR_ERR(p);
2044 mutex_unlock(&kprobe_mutex);
2045 return ret;
2047 EXPORT_SYMBOL_GPL(disable_kprobe);
2049 /* Enable one kprobe */
2050 int enable_kprobe(struct kprobe *kp)
2052 int ret = 0;
2053 struct kprobe *p;
2055 mutex_lock(&kprobe_mutex);
2057 /* Check whether specified probe is valid. */
2058 p = __get_valid_kprobe(kp);
2059 if (unlikely(p == NULL)) {
2060 ret = -EINVAL;
2061 goto out;
2064 if (kprobe_gone(kp)) {
2065 /* This kprobe has gone, we couldn't enable it. */
2066 ret = -EINVAL;
2067 goto out;
2070 if (p != kp)
2071 kp->flags &= ~KPROBE_FLAG_DISABLED;
2073 if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2074 p->flags &= ~KPROBE_FLAG_DISABLED;
2075 ret = arm_kprobe(p);
2076 if (ret)
2077 p->flags |= KPROBE_FLAG_DISABLED;
2079 out:
2080 mutex_unlock(&kprobe_mutex);
2081 return ret;
2083 EXPORT_SYMBOL_GPL(enable_kprobe);
2085 /* Caller must NOT call this in usual path. This is only for critical case */
2086 void dump_kprobe(struct kprobe *kp)
2088 pr_err("Dumping kprobe:\n");
2089 pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2090 kp->symbol_name, kp->offset, kp->addr);
2092 NOKPROBE_SYMBOL(dump_kprobe);
2095 * Lookup and populate the kprobe_blacklist.
2097 * Unlike the kretprobe blacklist, we'll need to determine
2098 * the range of addresses that belong to the said functions,
2099 * since a kprobe need not necessarily be at the beginning
2100 * of a function.
2102 static int __init populate_kprobe_blacklist(unsigned long *start,
2103 unsigned long *end)
2105 unsigned long *iter;
2106 struct kprobe_blacklist_entry *ent;
2107 unsigned long entry, offset = 0, size = 0;
2109 for (iter = start; iter < end; iter++) {
2110 entry = arch_deref_entry_point((void *)*iter);
2112 if (!kernel_text_address(entry) ||
2113 !kallsyms_lookup_size_offset(entry, &size, &offset))
2114 continue;
2116 ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2117 if (!ent)
2118 return -ENOMEM;
2119 ent->start_addr = entry;
2120 ent->end_addr = entry + size;
2121 INIT_LIST_HEAD(&ent->list);
2122 list_add_tail(&ent->list, &kprobe_blacklist);
2124 return 0;
2127 /* Module notifier call back, checking kprobes on the module */
2128 static int kprobes_module_callback(struct notifier_block *nb,
2129 unsigned long val, void *data)
2131 struct module *mod = data;
2132 struct hlist_head *head;
2133 struct kprobe *p;
2134 unsigned int i;
2135 int checkcore = (val == MODULE_STATE_GOING);
2137 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2138 return NOTIFY_DONE;
2141 * When MODULE_STATE_GOING was notified, both of module .text and
2142 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2143 * notified, only .init.text section would be freed. We need to
2144 * disable kprobes which have been inserted in the sections.
2146 mutex_lock(&kprobe_mutex);
2147 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2148 head = &kprobe_table[i];
2149 hlist_for_each_entry_rcu(p, head, hlist)
2150 if (within_module_init((unsigned long)p->addr, mod) ||
2151 (checkcore &&
2152 within_module_core((unsigned long)p->addr, mod))) {
2154 * The vaddr this probe is installed will soon
2155 * be vfreed buy not synced to disk. Hence,
2156 * disarming the breakpoint isn't needed.
2158 * Note, this will also move any optimized probes
2159 * that are pending to be removed from their
2160 * corresponding lists to the freeing_list and
2161 * will not be touched by the delayed
2162 * kprobe_optimizer work handler.
2164 kill_kprobe(p);
2167 mutex_unlock(&kprobe_mutex);
2168 return NOTIFY_DONE;
2171 static struct notifier_block kprobe_module_nb = {
2172 .notifier_call = kprobes_module_callback,
2173 .priority = 0
2176 /* Markers of _kprobe_blacklist section */
2177 extern unsigned long __start_kprobe_blacklist[];
2178 extern unsigned long __stop_kprobe_blacklist[];
2180 static int __init init_kprobes(void)
2182 int i, err = 0;
2184 /* FIXME allocate the probe table, currently defined statically */
2185 /* initialize all list heads */
2186 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2187 INIT_HLIST_HEAD(&kprobe_table[i]);
2188 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2189 raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2192 err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2193 __stop_kprobe_blacklist);
2194 if (err) {
2195 pr_err("kprobes: failed to populate blacklist: %d\n", err);
2196 pr_err("Please take care of using kprobes.\n");
2199 if (kretprobe_blacklist_size) {
2200 /* lookup the function address from its name */
2201 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2202 kretprobe_blacklist[i].addr =
2203 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2204 if (!kretprobe_blacklist[i].addr)
2205 printk("kretprobe: lookup failed: %s\n",
2206 kretprobe_blacklist[i].name);
2210 #if defined(CONFIG_OPTPROBES)
2211 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2212 /* Init kprobe_optinsn_slots */
2213 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2214 #endif
2215 /* By default, kprobes can be optimized */
2216 kprobes_allow_optimization = true;
2217 #endif
2219 /* By default, kprobes are armed */
2220 kprobes_all_disarmed = false;
2222 err = arch_init_kprobes();
2223 if (!err)
2224 err = register_die_notifier(&kprobe_exceptions_nb);
2225 if (!err)
2226 err = register_module_notifier(&kprobe_module_nb);
2228 kprobes_initialized = (err == 0);
2230 if (!err)
2231 init_test_probes();
2232 return err;
2235 #ifdef CONFIG_DEBUG_FS
2236 static void report_probe(struct seq_file *pi, struct kprobe *p,
2237 const char *sym, int offset, char *modname, struct kprobe *pp)
2239 char *kprobe_type;
2240 void *addr = p->addr;
2242 if (p->pre_handler == pre_handler_kretprobe)
2243 kprobe_type = "r";
2244 else
2245 kprobe_type = "k";
2247 if (!kallsyms_show_value())
2248 addr = NULL;
2250 if (sym)
2251 seq_printf(pi, "%px %s %s+0x%x %s ",
2252 addr, kprobe_type, sym, offset,
2253 (modname ? modname : " "));
2254 else /* try to use %pS */
2255 seq_printf(pi, "%px %s %pS ",
2256 addr, kprobe_type, p->addr);
2258 if (!pp)
2259 pp = p;
2260 seq_printf(pi, "%s%s%s%s\n",
2261 (kprobe_gone(p) ? "[GONE]" : ""),
2262 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""),
2263 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2264 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2267 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2269 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2272 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2274 (*pos)++;
2275 if (*pos >= KPROBE_TABLE_SIZE)
2276 return NULL;
2277 return pos;
2280 static void kprobe_seq_stop(struct seq_file *f, void *v)
2282 /* Nothing to do */
2285 static int show_kprobe_addr(struct seq_file *pi, void *v)
2287 struct hlist_head *head;
2288 struct kprobe *p, *kp;
2289 const char *sym = NULL;
2290 unsigned int i = *(loff_t *) v;
2291 unsigned long offset = 0;
2292 char *modname, namebuf[KSYM_NAME_LEN];
2294 head = &kprobe_table[i];
2295 preempt_disable();
2296 hlist_for_each_entry_rcu(p, head, hlist) {
2297 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2298 &offset, &modname, namebuf);
2299 if (kprobe_aggrprobe(p)) {
2300 list_for_each_entry_rcu(kp, &p->list, list)
2301 report_probe(pi, kp, sym, offset, modname, p);
2302 } else
2303 report_probe(pi, p, sym, offset, modname, NULL);
2305 preempt_enable();
2306 return 0;
2309 static const struct seq_operations kprobes_seq_ops = {
2310 .start = kprobe_seq_start,
2311 .next = kprobe_seq_next,
2312 .stop = kprobe_seq_stop,
2313 .show = show_kprobe_addr
2316 static int kprobes_open(struct inode *inode, struct file *filp)
2318 return seq_open(filp, &kprobes_seq_ops);
2321 static const struct file_operations debugfs_kprobes_operations = {
2322 .open = kprobes_open,
2323 .read = seq_read,
2324 .llseek = seq_lseek,
2325 .release = seq_release,
2328 /* kprobes/blacklist -- shows which functions can not be probed */
2329 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2331 return seq_list_start(&kprobe_blacklist, *pos);
2334 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2336 return seq_list_next(v, &kprobe_blacklist, pos);
2339 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2341 struct kprobe_blacklist_entry *ent =
2342 list_entry(v, struct kprobe_blacklist_entry, list);
2345 * If /proc/kallsyms is not showing kernel address, we won't
2346 * show them here either.
2348 if (!kallsyms_show_value())
2349 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2350 (void *)ent->start_addr);
2351 else
2352 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2353 (void *)ent->end_addr, (void *)ent->start_addr);
2354 return 0;
2357 static const struct seq_operations kprobe_blacklist_seq_ops = {
2358 .start = kprobe_blacklist_seq_start,
2359 .next = kprobe_blacklist_seq_next,
2360 .stop = kprobe_seq_stop, /* Reuse void function */
2361 .show = kprobe_blacklist_seq_show,
2364 static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2366 return seq_open(filp, &kprobe_blacklist_seq_ops);
2369 static const struct file_operations debugfs_kprobe_blacklist_ops = {
2370 .open = kprobe_blacklist_open,
2371 .read = seq_read,
2372 .llseek = seq_lseek,
2373 .release = seq_release,
2376 static int arm_all_kprobes(void)
2378 struct hlist_head *head;
2379 struct kprobe *p;
2380 unsigned int i, total = 0, errors = 0;
2381 int err, ret = 0;
2383 mutex_lock(&kprobe_mutex);
2385 /* If kprobes are armed, just return */
2386 if (!kprobes_all_disarmed)
2387 goto already_enabled;
2390 * optimize_kprobe() called by arm_kprobe() checks
2391 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2392 * arm_kprobe.
2394 kprobes_all_disarmed = false;
2395 /* Arming kprobes doesn't optimize kprobe itself */
2396 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2397 head = &kprobe_table[i];
2398 /* Arm all kprobes on a best-effort basis */
2399 hlist_for_each_entry_rcu(p, head, hlist) {
2400 if (!kprobe_disabled(p)) {
2401 err = arm_kprobe(p);
2402 if (err) {
2403 errors++;
2404 ret = err;
2406 total++;
2411 if (errors)
2412 pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2413 errors, total);
2414 else
2415 pr_info("Kprobes globally enabled\n");
2417 already_enabled:
2418 mutex_unlock(&kprobe_mutex);
2419 return ret;
2422 static int disarm_all_kprobes(void)
2424 struct hlist_head *head;
2425 struct kprobe *p;
2426 unsigned int i, total = 0, errors = 0;
2427 int err, ret = 0;
2429 mutex_lock(&kprobe_mutex);
2431 /* If kprobes are already disarmed, just return */
2432 if (kprobes_all_disarmed) {
2433 mutex_unlock(&kprobe_mutex);
2434 return 0;
2437 kprobes_all_disarmed = true;
2439 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2440 head = &kprobe_table[i];
2441 /* Disarm all kprobes on a best-effort basis */
2442 hlist_for_each_entry_rcu(p, head, hlist) {
2443 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2444 err = disarm_kprobe(p, false);
2445 if (err) {
2446 errors++;
2447 ret = err;
2449 total++;
2454 if (errors)
2455 pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2456 errors, total);
2457 else
2458 pr_info("Kprobes globally disabled\n");
2460 mutex_unlock(&kprobe_mutex);
2462 /* Wait for disarming all kprobes by optimizer */
2463 wait_for_kprobe_optimizer();
2465 return ret;
2469 * XXX: The debugfs bool file interface doesn't allow for callbacks
2470 * when the bool state is switched. We can reuse that facility when
2471 * available
2473 static ssize_t read_enabled_file_bool(struct file *file,
2474 char __user *user_buf, size_t count, loff_t *ppos)
2476 char buf[3];
2478 if (!kprobes_all_disarmed)
2479 buf[0] = '1';
2480 else
2481 buf[0] = '0';
2482 buf[1] = '\n';
2483 buf[2] = 0x00;
2484 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2487 static ssize_t write_enabled_file_bool(struct file *file,
2488 const char __user *user_buf, size_t count, loff_t *ppos)
2490 char buf[32];
2491 size_t buf_size;
2492 int ret = 0;
2494 buf_size = min(count, (sizeof(buf)-1));
2495 if (copy_from_user(buf, user_buf, buf_size))
2496 return -EFAULT;
2498 buf[buf_size] = '\0';
2499 switch (buf[0]) {
2500 case 'y':
2501 case 'Y':
2502 case '1':
2503 ret = arm_all_kprobes();
2504 break;
2505 case 'n':
2506 case 'N':
2507 case '0':
2508 ret = disarm_all_kprobes();
2509 break;
2510 default:
2511 return -EINVAL;
2514 if (ret)
2515 return ret;
2517 return count;
2520 static const struct file_operations fops_kp = {
2521 .read = read_enabled_file_bool,
2522 .write = write_enabled_file_bool,
2523 .llseek = default_llseek,
2526 static int __init debugfs_kprobe_init(void)
2528 struct dentry *dir, *file;
2529 unsigned int value = 1;
2531 dir = debugfs_create_dir("kprobes", NULL);
2532 if (!dir)
2533 return -ENOMEM;
2535 file = debugfs_create_file("list", 0400, dir, NULL,
2536 &debugfs_kprobes_operations);
2537 if (!file)
2538 goto error;
2540 file = debugfs_create_file("enabled", 0600, dir,
2541 &value, &fops_kp);
2542 if (!file)
2543 goto error;
2545 file = debugfs_create_file("blacklist", 0400, dir, NULL,
2546 &debugfs_kprobe_blacklist_ops);
2547 if (!file)
2548 goto error;
2550 return 0;
2552 error:
2553 debugfs_remove(dir);
2554 return -ENOMEM;
2557 late_initcall(debugfs_kprobe_init);
2558 #endif /* CONFIG_DEBUG_FS */
2560 module_init(init_kprobes);