debugfs: fix debugfs_rename parameter checking
[linux/fpc-iii.git] / kernel / signal.c
blobc187def3dba6b48a54cbe4110d243fde19adb319
1 /*
2 * linux/kernel/signal.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/user.h>
18 #include <linux/sched/debug.h>
19 #include <linux/sched/task.h>
20 #include <linux/sched/task_stack.h>
21 #include <linux/sched/cputime.h>
22 #include <linux/fs.h>
23 #include <linux/tty.h>
24 #include <linux/binfmts.h>
25 #include <linux/coredump.h>
26 #include <linux/security.h>
27 #include <linux/syscalls.h>
28 #include <linux/ptrace.h>
29 #include <linux/signal.h>
30 #include <linux/signalfd.h>
31 #include <linux/ratelimit.h>
32 #include <linux/tracehook.h>
33 #include <linux/capability.h>
34 #include <linux/freezer.h>
35 #include <linux/pid_namespace.h>
36 #include <linux/nsproxy.h>
37 #include <linux/user_namespace.h>
38 #include <linux/uprobes.h>
39 #include <linux/compat.h>
40 #include <linux/cn_proc.h>
41 #include <linux/compiler.h>
42 #include <linux/posix-timers.h>
43 #include <linux/livepatch.h>
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/signal.h>
48 #include <asm/param.h>
49 #include <linux/uaccess.h>
50 #include <asm/unistd.h>
51 #include <asm/siginfo.h>
52 #include <asm/cacheflush.h>
53 #include "audit.h" /* audit_signal_info() */
56 * SLAB caches for signal bits.
59 static struct kmem_cache *sigqueue_cachep;
61 int print_fatal_signals __read_mostly;
63 static void __user *sig_handler(struct task_struct *t, int sig)
65 return t->sighand->action[sig - 1].sa.sa_handler;
68 static inline bool sig_handler_ignored(void __user *handler, int sig)
70 /* Is it explicitly or implicitly ignored? */
71 return handler == SIG_IGN ||
72 (handler == SIG_DFL && sig_kernel_ignore(sig));
75 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
77 void __user *handler;
79 handler = sig_handler(t, sig);
81 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
82 handler == SIG_DFL && !(force && sig_kernel_only(sig)))
83 return true;
85 return sig_handler_ignored(handler, sig);
88 static bool sig_ignored(struct task_struct *t, int sig, bool force)
91 * Blocked signals are never ignored, since the
92 * signal handler may change by the time it is
93 * unblocked.
95 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
96 return false;
99 * Tracers may want to know about even ignored signal unless it
100 * is SIGKILL which can't be reported anyway but can be ignored
101 * by SIGNAL_UNKILLABLE task.
103 if (t->ptrace && sig != SIGKILL)
104 return false;
106 return sig_task_ignored(t, sig, force);
110 * Re-calculate pending state from the set of locally pending
111 * signals, globally pending signals, and blocked signals.
113 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
115 unsigned long ready;
116 long i;
118 switch (_NSIG_WORDS) {
119 default:
120 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
121 ready |= signal->sig[i] &~ blocked->sig[i];
122 break;
124 case 4: ready = signal->sig[3] &~ blocked->sig[3];
125 ready |= signal->sig[2] &~ blocked->sig[2];
126 ready |= signal->sig[1] &~ blocked->sig[1];
127 ready |= signal->sig[0] &~ blocked->sig[0];
128 break;
130 case 2: ready = signal->sig[1] &~ blocked->sig[1];
131 ready |= signal->sig[0] &~ blocked->sig[0];
132 break;
134 case 1: ready = signal->sig[0] &~ blocked->sig[0];
136 return ready != 0;
139 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
141 static bool recalc_sigpending_tsk(struct task_struct *t)
143 if ((t->jobctl & JOBCTL_PENDING_MASK) ||
144 PENDING(&t->pending, &t->blocked) ||
145 PENDING(&t->signal->shared_pending, &t->blocked)) {
146 set_tsk_thread_flag(t, TIF_SIGPENDING);
147 return true;
151 * We must never clear the flag in another thread, or in current
152 * when it's possible the current syscall is returning -ERESTART*.
153 * So we don't clear it here, and only callers who know they should do.
155 return false;
159 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
160 * This is superfluous when called on current, the wakeup is a harmless no-op.
162 void recalc_sigpending_and_wake(struct task_struct *t)
164 if (recalc_sigpending_tsk(t))
165 signal_wake_up(t, 0);
168 void recalc_sigpending(void)
170 if (!recalc_sigpending_tsk(current) && !freezing(current) &&
171 !klp_patch_pending(current))
172 clear_thread_flag(TIF_SIGPENDING);
176 void calculate_sigpending(void)
178 /* Have any signals or users of TIF_SIGPENDING been delayed
179 * until after fork?
181 spin_lock_irq(&current->sighand->siglock);
182 set_tsk_thread_flag(current, TIF_SIGPENDING);
183 recalc_sigpending();
184 spin_unlock_irq(&current->sighand->siglock);
187 /* Given the mask, find the first available signal that should be serviced. */
189 #define SYNCHRONOUS_MASK \
190 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
191 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
193 int next_signal(struct sigpending *pending, sigset_t *mask)
195 unsigned long i, *s, *m, x;
196 int sig = 0;
198 s = pending->signal.sig;
199 m = mask->sig;
202 * Handle the first word specially: it contains the
203 * synchronous signals that need to be dequeued first.
205 x = *s &~ *m;
206 if (x) {
207 if (x & SYNCHRONOUS_MASK)
208 x &= SYNCHRONOUS_MASK;
209 sig = ffz(~x) + 1;
210 return sig;
213 switch (_NSIG_WORDS) {
214 default:
215 for (i = 1; i < _NSIG_WORDS; ++i) {
216 x = *++s &~ *++m;
217 if (!x)
218 continue;
219 sig = ffz(~x) + i*_NSIG_BPW + 1;
220 break;
222 break;
224 case 2:
225 x = s[1] &~ m[1];
226 if (!x)
227 break;
228 sig = ffz(~x) + _NSIG_BPW + 1;
229 break;
231 case 1:
232 /* Nothing to do */
233 break;
236 return sig;
239 static inline void print_dropped_signal(int sig)
241 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
243 if (!print_fatal_signals)
244 return;
246 if (!__ratelimit(&ratelimit_state))
247 return;
249 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
250 current->comm, current->pid, sig);
254 * task_set_jobctl_pending - set jobctl pending bits
255 * @task: target task
256 * @mask: pending bits to set
258 * Clear @mask from @task->jobctl. @mask must be subset of
259 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
260 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
261 * cleared. If @task is already being killed or exiting, this function
262 * becomes noop.
264 * CONTEXT:
265 * Must be called with @task->sighand->siglock held.
267 * RETURNS:
268 * %true if @mask is set, %false if made noop because @task was dying.
270 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
272 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
273 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
274 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
276 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
277 return false;
279 if (mask & JOBCTL_STOP_SIGMASK)
280 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
282 task->jobctl |= mask;
283 return true;
287 * task_clear_jobctl_trapping - clear jobctl trapping bit
288 * @task: target task
290 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
291 * Clear it and wake up the ptracer. Note that we don't need any further
292 * locking. @task->siglock guarantees that @task->parent points to the
293 * ptracer.
295 * CONTEXT:
296 * Must be called with @task->sighand->siglock held.
298 void task_clear_jobctl_trapping(struct task_struct *task)
300 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
301 task->jobctl &= ~JOBCTL_TRAPPING;
302 smp_mb(); /* advised by wake_up_bit() */
303 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
308 * task_clear_jobctl_pending - clear jobctl pending bits
309 * @task: target task
310 * @mask: pending bits to clear
312 * Clear @mask from @task->jobctl. @mask must be subset of
313 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
314 * STOP bits are cleared together.
316 * If clearing of @mask leaves no stop or trap pending, this function calls
317 * task_clear_jobctl_trapping().
319 * CONTEXT:
320 * Must be called with @task->sighand->siglock held.
322 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
324 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
326 if (mask & JOBCTL_STOP_PENDING)
327 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
329 task->jobctl &= ~mask;
331 if (!(task->jobctl & JOBCTL_PENDING_MASK))
332 task_clear_jobctl_trapping(task);
336 * task_participate_group_stop - participate in a group stop
337 * @task: task participating in a group stop
339 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
340 * Group stop states are cleared and the group stop count is consumed if
341 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
342 * stop, the appropriate %SIGNAL_* flags are set.
344 * CONTEXT:
345 * Must be called with @task->sighand->siglock held.
347 * RETURNS:
348 * %true if group stop completion should be notified to the parent, %false
349 * otherwise.
351 static bool task_participate_group_stop(struct task_struct *task)
353 struct signal_struct *sig = task->signal;
354 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
356 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
358 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
360 if (!consume)
361 return false;
363 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
364 sig->group_stop_count--;
367 * Tell the caller to notify completion iff we are entering into a
368 * fresh group stop. Read comment in do_signal_stop() for details.
370 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
371 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
372 return true;
374 return false;
377 void task_join_group_stop(struct task_struct *task)
379 /* Have the new thread join an on-going signal group stop */
380 unsigned long jobctl = current->jobctl;
381 if (jobctl & JOBCTL_STOP_PENDING) {
382 struct signal_struct *sig = current->signal;
383 unsigned long signr = jobctl & JOBCTL_STOP_SIGMASK;
384 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
385 if (task_set_jobctl_pending(task, signr | gstop)) {
386 sig->group_stop_count++;
392 * allocate a new signal queue record
393 * - this may be called without locks if and only if t == current, otherwise an
394 * appropriate lock must be held to stop the target task from exiting
396 static struct sigqueue *
397 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
399 struct sigqueue *q = NULL;
400 struct user_struct *user;
403 * Protect access to @t credentials. This can go away when all
404 * callers hold rcu read lock.
406 rcu_read_lock();
407 user = get_uid(__task_cred(t)->user);
408 atomic_inc(&user->sigpending);
409 rcu_read_unlock();
411 if (override_rlimit ||
412 atomic_read(&user->sigpending) <=
413 task_rlimit(t, RLIMIT_SIGPENDING)) {
414 q = kmem_cache_alloc(sigqueue_cachep, flags);
415 } else {
416 print_dropped_signal(sig);
419 if (unlikely(q == NULL)) {
420 atomic_dec(&user->sigpending);
421 free_uid(user);
422 } else {
423 INIT_LIST_HEAD(&q->list);
424 q->flags = 0;
425 q->user = user;
428 return q;
431 static void __sigqueue_free(struct sigqueue *q)
433 if (q->flags & SIGQUEUE_PREALLOC)
434 return;
435 atomic_dec(&q->user->sigpending);
436 free_uid(q->user);
437 kmem_cache_free(sigqueue_cachep, q);
440 void flush_sigqueue(struct sigpending *queue)
442 struct sigqueue *q;
444 sigemptyset(&queue->signal);
445 while (!list_empty(&queue->list)) {
446 q = list_entry(queue->list.next, struct sigqueue , list);
447 list_del_init(&q->list);
448 __sigqueue_free(q);
453 * Flush all pending signals for this kthread.
455 void flush_signals(struct task_struct *t)
457 unsigned long flags;
459 spin_lock_irqsave(&t->sighand->siglock, flags);
460 clear_tsk_thread_flag(t, TIF_SIGPENDING);
461 flush_sigqueue(&t->pending);
462 flush_sigqueue(&t->signal->shared_pending);
463 spin_unlock_irqrestore(&t->sighand->siglock, flags);
466 #ifdef CONFIG_POSIX_TIMERS
467 static void __flush_itimer_signals(struct sigpending *pending)
469 sigset_t signal, retain;
470 struct sigqueue *q, *n;
472 signal = pending->signal;
473 sigemptyset(&retain);
475 list_for_each_entry_safe(q, n, &pending->list, list) {
476 int sig = q->info.si_signo;
478 if (likely(q->info.si_code != SI_TIMER)) {
479 sigaddset(&retain, sig);
480 } else {
481 sigdelset(&signal, sig);
482 list_del_init(&q->list);
483 __sigqueue_free(q);
487 sigorsets(&pending->signal, &signal, &retain);
490 void flush_itimer_signals(void)
492 struct task_struct *tsk = current;
493 unsigned long flags;
495 spin_lock_irqsave(&tsk->sighand->siglock, flags);
496 __flush_itimer_signals(&tsk->pending);
497 __flush_itimer_signals(&tsk->signal->shared_pending);
498 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
500 #endif
502 void ignore_signals(struct task_struct *t)
504 int i;
506 for (i = 0; i < _NSIG; ++i)
507 t->sighand->action[i].sa.sa_handler = SIG_IGN;
509 flush_signals(t);
513 * Flush all handlers for a task.
516 void
517 flush_signal_handlers(struct task_struct *t, int force_default)
519 int i;
520 struct k_sigaction *ka = &t->sighand->action[0];
521 for (i = _NSIG ; i != 0 ; i--) {
522 if (force_default || ka->sa.sa_handler != SIG_IGN)
523 ka->sa.sa_handler = SIG_DFL;
524 ka->sa.sa_flags = 0;
525 #ifdef __ARCH_HAS_SA_RESTORER
526 ka->sa.sa_restorer = NULL;
527 #endif
528 sigemptyset(&ka->sa.sa_mask);
529 ka++;
533 bool unhandled_signal(struct task_struct *tsk, int sig)
535 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
536 if (is_global_init(tsk))
537 return true;
539 if (handler != SIG_IGN && handler != SIG_DFL)
540 return false;
542 /* if ptraced, let the tracer determine */
543 return !tsk->ptrace;
546 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info,
547 bool *resched_timer)
549 struct sigqueue *q, *first = NULL;
552 * Collect the siginfo appropriate to this signal. Check if
553 * there is another siginfo for the same signal.
555 list_for_each_entry(q, &list->list, list) {
556 if (q->info.si_signo == sig) {
557 if (first)
558 goto still_pending;
559 first = q;
563 sigdelset(&list->signal, sig);
565 if (first) {
566 still_pending:
567 list_del_init(&first->list);
568 copy_siginfo(info, &first->info);
570 *resched_timer =
571 (first->flags & SIGQUEUE_PREALLOC) &&
572 (info->si_code == SI_TIMER) &&
573 (info->si_sys_private);
575 __sigqueue_free(first);
576 } else {
578 * Ok, it wasn't in the queue. This must be
579 * a fast-pathed signal or we must have been
580 * out of queue space. So zero out the info.
582 clear_siginfo(info);
583 info->si_signo = sig;
584 info->si_errno = 0;
585 info->si_code = SI_USER;
586 info->si_pid = 0;
587 info->si_uid = 0;
591 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
592 siginfo_t *info, bool *resched_timer)
594 int sig = next_signal(pending, mask);
596 if (sig)
597 collect_signal(sig, pending, info, resched_timer);
598 return sig;
602 * Dequeue a signal and return the element to the caller, which is
603 * expected to free it.
605 * All callers have to hold the siglock.
607 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
609 bool resched_timer = false;
610 int signr;
612 /* We only dequeue private signals from ourselves, we don't let
613 * signalfd steal them
615 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
616 if (!signr) {
617 signr = __dequeue_signal(&tsk->signal->shared_pending,
618 mask, info, &resched_timer);
619 #ifdef CONFIG_POSIX_TIMERS
621 * itimer signal ?
623 * itimers are process shared and we restart periodic
624 * itimers in the signal delivery path to prevent DoS
625 * attacks in the high resolution timer case. This is
626 * compliant with the old way of self-restarting
627 * itimers, as the SIGALRM is a legacy signal and only
628 * queued once. Changing the restart behaviour to
629 * restart the timer in the signal dequeue path is
630 * reducing the timer noise on heavy loaded !highres
631 * systems too.
633 if (unlikely(signr == SIGALRM)) {
634 struct hrtimer *tmr = &tsk->signal->real_timer;
636 if (!hrtimer_is_queued(tmr) &&
637 tsk->signal->it_real_incr != 0) {
638 hrtimer_forward(tmr, tmr->base->get_time(),
639 tsk->signal->it_real_incr);
640 hrtimer_restart(tmr);
643 #endif
646 recalc_sigpending();
647 if (!signr)
648 return 0;
650 if (unlikely(sig_kernel_stop(signr))) {
652 * Set a marker that we have dequeued a stop signal. Our
653 * caller might release the siglock and then the pending
654 * stop signal it is about to process is no longer in the
655 * pending bitmasks, but must still be cleared by a SIGCONT
656 * (and overruled by a SIGKILL). So those cases clear this
657 * shared flag after we've set it. Note that this flag may
658 * remain set after the signal we return is ignored or
659 * handled. That doesn't matter because its only purpose
660 * is to alert stop-signal processing code when another
661 * processor has come along and cleared the flag.
663 current->jobctl |= JOBCTL_STOP_DEQUEUED;
665 #ifdef CONFIG_POSIX_TIMERS
666 if (resched_timer) {
668 * Release the siglock to ensure proper locking order
669 * of timer locks outside of siglocks. Note, we leave
670 * irqs disabled here, since the posix-timers code is
671 * about to disable them again anyway.
673 spin_unlock(&tsk->sighand->siglock);
674 posixtimer_rearm(info);
675 spin_lock(&tsk->sighand->siglock);
677 /* Don't expose the si_sys_private value to userspace */
678 info->si_sys_private = 0;
680 #endif
681 return signr;
684 static int dequeue_synchronous_signal(siginfo_t *info)
686 struct task_struct *tsk = current;
687 struct sigpending *pending = &tsk->pending;
688 struct sigqueue *q, *sync = NULL;
691 * Might a synchronous signal be in the queue?
693 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
694 return 0;
697 * Return the first synchronous signal in the queue.
699 list_for_each_entry(q, &pending->list, list) {
700 /* Synchronous signals have a postive si_code */
701 if ((q->info.si_code > SI_USER) &&
702 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
703 sync = q;
704 goto next;
707 return 0;
708 next:
710 * Check if there is another siginfo for the same signal.
712 list_for_each_entry_continue(q, &pending->list, list) {
713 if (q->info.si_signo == sync->info.si_signo)
714 goto still_pending;
717 sigdelset(&pending->signal, sync->info.si_signo);
718 recalc_sigpending();
719 still_pending:
720 list_del_init(&sync->list);
721 copy_siginfo(info, &sync->info);
722 __sigqueue_free(sync);
723 return info->si_signo;
727 * Tell a process that it has a new active signal..
729 * NOTE! we rely on the previous spin_lock to
730 * lock interrupts for us! We can only be called with
731 * "siglock" held, and the local interrupt must
732 * have been disabled when that got acquired!
734 * No need to set need_resched since signal event passing
735 * goes through ->blocked
737 void signal_wake_up_state(struct task_struct *t, unsigned int state)
739 set_tsk_thread_flag(t, TIF_SIGPENDING);
741 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
742 * case. We don't check t->state here because there is a race with it
743 * executing another processor and just now entering stopped state.
744 * By using wake_up_state, we ensure the process will wake up and
745 * handle its death signal.
747 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
748 kick_process(t);
752 * Remove signals in mask from the pending set and queue.
753 * Returns 1 if any signals were found.
755 * All callers must be holding the siglock.
757 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
759 struct sigqueue *q, *n;
760 sigset_t m;
762 sigandsets(&m, mask, &s->signal);
763 if (sigisemptyset(&m))
764 return;
766 sigandnsets(&s->signal, &s->signal, mask);
767 list_for_each_entry_safe(q, n, &s->list, list) {
768 if (sigismember(mask, q->info.si_signo)) {
769 list_del_init(&q->list);
770 __sigqueue_free(q);
775 static inline int is_si_special(const struct siginfo *info)
777 return info <= SEND_SIG_FORCED;
780 static inline bool si_fromuser(const struct siginfo *info)
782 return info == SEND_SIG_NOINFO ||
783 (!is_si_special(info) && SI_FROMUSER(info));
787 * called with RCU read lock from check_kill_permission()
789 static bool kill_ok_by_cred(struct task_struct *t)
791 const struct cred *cred = current_cred();
792 const struct cred *tcred = __task_cred(t);
794 return uid_eq(cred->euid, tcred->suid) ||
795 uid_eq(cred->euid, tcred->uid) ||
796 uid_eq(cred->uid, tcred->suid) ||
797 uid_eq(cred->uid, tcred->uid) ||
798 ns_capable(tcred->user_ns, CAP_KILL);
802 * Bad permissions for sending the signal
803 * - the caller must hold the RCU read lock
805 static int check_kill_permission(int sig, struct siginfo *info,
806 struct task_struct *t)
808 struct pid *sid;
809 int error;
811 if (!valid_signal(sig))
812 return -EINVAL;
814 if (!si_fromuser(info))
815 return 0;
817 error = audit_signal_info(sig, t); /* Let audit system see the signal */
818 if (error)
819 return error;
821 if (!same_thread_group(current, t) &&
822 !kill_ok_by_cred(t)) {
823 switch (sig) {
824 case SIGCONT:
825 sid = task_session(t);
827 * We don't return the error if sid == NULL. The
828 * task was unhashed, the caller must notice this.
830 if (!sid || sid == task_session(current))
831 break;
832 default:
833 return -EPERM;
837 return security_task_kill(t, info, sig, NULL);
841 * ptrace_trap_notify - schedule trap to notify ptracer
842 * @t: tracee wanting to notify tracer
844 * This function schedules sticky ptrace trap which is cleared on the next
845 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
846 * ptracer.
848 * If @t is running, STOP trap will be taken. If trapped for STOP and
849 * ptracer is listening for events, tracee is woken up so that it can
850 * re-trap for the new event. If trapped otherwise, STOP trap will be
851 * eventually taken without returning to userland after the existing traps
852 * are finished by PTRACE_CONT.
854 * CONTEXT:
855 * Must be called with @task->sighand->siglock held.
857 static void ptrace_trap_notify(struct task_struct *t)
859 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
860 assert_spin_locked(&t->sighand->siglock);
862 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
863 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
867 * Handle magic process-wide effects of stop/continue signals. Unlike
868 * the signal actions, these happen immediately at signal-generation
869 * time regardless of blocking, ignoring, or handling. This does the
870 * actual continuing for SIGCONT, but not the actual stopping for stop
871 * signals. The process stop is done as a signal action for SIG_DFL.
873 * Returns true if the signal should be actually delivered, otherwise
874 * it should be dropped.
876 static bool prepare_signal(int sig, struct task_struct *p, bool force)
878 struct signal_struct *signal = p->signal;
879 struct task_struct *t;
880 sigset_t flush;
882 if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
883 if (!(signal->flags & SIGNAL_GROUP_EXIT))
884 return sig == SIGKILL;
886 * The process is in the middle of dying, nothing to do.
888 } else if (sig_kernel_stop(sig)) {
890 * This is a stop signal. Remove SIGCONT from all queues.
892 siginitset(&flush, sigmask(SIGCONT));
893 flush_sigqueue_mask(&flush, &signal->shared_pending);
894 for_each_thread(p, t)
895 flush_sigqueue_mask(&flush, &t->pending);
896 } else if (sig == SIGCONT) {
897 unsigned int why;
899 * Remove all stop signals from all queues, wake all threads.
901 siginitset(&flush, SIG_KERNEL_STOP_MASK);
902 flush_sigqueue_mask(&flush, &signal->shared_pending);
903 for_each_thread(p, t) {
904 flush_sigqueue_mask(&flush, &t->pending);
905 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
906 if (likely(!(t->ptrace & PT_SEIZED)))
907 wake_up_state(t, __TASK_STOPPED);
908 else
909 ptrace_trap_notify(t);
913 * Notify the parent with CLD_CONTINUED if we were stopped.
915 * If we were in the middle of a group stop, we pretend it
916 * was already finished, and then continued. Since SIGCHLD
917 * doesn't queue we report only CLD_STOPPED, as if the next
918 * CLD_CONTINUED was dropped.
920 why = 0;
921 if (signal->flags & SIGNAL_STOP_STOPPED)
922 why |= SIGNAL_CLD_CONTINUED;
923 else if (signal->group_stop_count)
924 why |= SIGNAL_CLD_STOPPED;
926 if (why) {
928 * The first thread which returns from do_signal_stop()
929 * will take ->siglock, notice SIGNAL_CLD_MASK, and
930 * notify its parent. See get_signal_to_deliver().
932 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
933 signal->group_stop_count = 0;
934 signal->group_exit_code = 0;
938 return !sig_ignored(p, sig, force);
942 * Test if P wants to take SIG. After we've checked all threads with this,
943 * it's equivalent to finding no threads not blocking SIG. Any threads not
944 * blocking SIG were ruled out because they are not running and already
945 * have pending signals. Such threads will dequeue from the shared queue
946 * as soon as they're available, so putting the signal on the shared queue
947 * will be equivalent to sending it to one such thread.
949 static inline bool wants_signal(int sig, struct task_struct *p)
951 if (sigismember(&p->blocked, sig))
952 return false;
954 if (p->flags & PF_EXITING)
955 return false;
957 if (sig == SIGKILL)
958 return true;
960 if (task_is_stopped_or_traced(p))
961 return false;
963 return task_curr(p) || !signal_pending(p);
966 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
968 struct signal_struct *signal = p->signal;
969 struct task_struct *t;
972 * Now find a thread we can wake up to take the signal off the queue.
974 * If the main thread wants the signal, it gets first crack.
975 * Probably the least surprising to the average bear.
977 if (wants_signal(sig, p))
978 t = p;
979 else if ((type == PIDTYPE_PID) || thread_group_empty(p))
981 * There is just one thread and it does not need to be woken.
982 * It will dequeue unblocked signals before it runs again.
984 return;
985 else {
987 * Otherwise try to find a suitable thread.
989 t = signal->curr_target;
990 while (!wants_signal(sig, t)) {
991 t = next_thread(t);
992 if (t == signal->curr_target)
994 * No thread needs to be woken.
995 * Any eligible threads will see
996 * the signal in the queue soon.
998 return;
1000 signal->curr_target = t;
1004 * Found a killable thread. If the signal will be fatal,
1005 * then start taking the whole group down immediately.
1007 if (sig_fatal(p, sig) &&
1008 !(signal->flags & SIGNAL_GROUP_EXIT) &&
1009 !sigismember(&t->real_blocked, sig) &&
1010 (sig == SIGKILL || !p->ptrace)) {
1012 * This signal will be fatal to the whole group.
1014 if (!sig_kernel_coredump(sig)) {
1016 * Start a group exit and wake everybody up.
1017 * This way we don't have other threads
1018 * running and doing things after a slower
1019 * thread has the fatal signal pending.
1021 signal->flags = SIGNAL_GROUP_EXIT;
1022 signal->group_exit_code = sig;
1023 signal->group_stop_count = 0;
1024 t = p;
1025 do {
1026 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1027 sigaddset(&t->pending.signal, SIGKILL);
1028 signal_wake_up(t, 1);
1029 } while_each_thread(p, t);
1030 return;
1035 * The signal is already in the shared-pending queue.
1036 * Tell the chosen thread to wake up and dequeue it.
1038 signal_wake_up(t, sig == SIGKILL);
1039 return;
1042 static inline bool legacy_queue(struct sigpending *signals, int sig)
1044 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1047 #ifdef CONFIG_USER_NS
1048 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1050 if (current_user_ns() == task_cred_xxx(t, user_ns))
1051 return;
1053 if (SI_FROMKERNEL(info))
1054 return;
1056 rcu_read_lock();
1057 info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
1058 make_kuid(current_user_ns(), info->si_uid));
1059 rcu_read_unlock();
1061 #else
1062 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1064 return;
1066 #endif
1068 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1069 enum pid_type type, int from_ancestor_ns)
1071 struct sigpending *pending;
1072 struct sigqueue *q;
1073 int override_rlimit;
1074 int ret = 0, result;
1076 assert_spin_locked(&t->sighand->siglock);
1078 result = TRACE_SIGNAL_IGNORED;
1079 if (!prepare_signal(sig, t,
1080 from_ancestor_ns || (info == SEND_SIG_PRIV) || (info == SEND_SIG_FORCED)))
1081 goto ret;
1083 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1085 * Short-circuit ignored signals and support queuing
1086 * exactly one non-rt signal, so that we can get more
1087 * detailed information about the cause of the signal.
1089 result = TRACE_SIGNAL_ALREADY_PENDING;
1090 if (legacy_queue(pending, sig))
1091 goto ret;
1093 result = TRACE_SIGNAL_DELIVERED;
1095 * fast-pathed signals for kernel-internal things like SIGSTOP
1096 * or SIGKILL.
1098 if (info == SEND_SIG_FORCED)
1099 goto out_set;
1102 * Real-time signals must be queued if sent by sigqueue, or
1103 * some other real-time mechanism. It is implementation
1104 * defined whether kill() does so. We attempt to do so, on
1105 * the principle of least surprise, but since kill is not
1106 * allowed to fail with EAGAIN when low on memory we just
1107 * make sure at least one signal gets delivered and don't
1108 * pass on the info struct.
1110 if (sig < SIGRTMIN)
1111 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1112 else
1113 override_rlimit = 0;
1115 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
1116 if (q) {
1117 list_add_tail(&q->list, &pending->list);
1118 switch ((unsigned long) info) {
1119 case (unsigned long) SEND_SIG_NOINFO:
1120 clear_siginfo(&q->info);
1121 q->info.si_signo = sig;
1122 q->info.si_errno = 0;
1123 q->info.si_code = SI_USER;
1124 q->info.si_pid = task_tgid_nr_ns(current,
1125 task_active_pid_ns(t));
1126 q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1127 break;
1128 case (unsigned long) SEND_SIG_PRIV:
1129 clear_siginfo(&q->info);
1130 q->info.si_signo = sig;
1131 q->info.si_errno = 0;
1132 q->info.si_code = SI_KERNEL;
1133 q->info.si_pid = 0;
1134 q->info.si_uid = 0;
1135 break;
1136 default:
1137 copy_siginfo(&q->info, info);
1138 if (from_ancestor_ns)
1139 q->info.si_pid = 0;
1140 break;
1143 userns_fixup_signal_uid(&q->info, t);
1145 } else if (!is_si_special(info)) {
1146 if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1148 * Queue overflow, abort. We may abort if the
1149 * signal was rt and sent by user using something
1150 * other than kill().
1152 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1153 ret = -EAGAIN;
1154 goto ret;
1155 } else {
1157 * This is a silent loss of information. We still
1158 * send the signal, but the *info bits are lost.
1160 result = TRACE_SIGNAL_LOSE_INFO;
1164 out_set:
1165 signalfd_notify(t, sig);
1166 sigaddset(&pending->signal, sig);
1168 /* Let multiprocess signals appear after on-going forks */
1169 if (type > PIDTYPE_TGID) {
1170 struct multiprocess_signals *delayed;
1171 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1172 sigset_t *signal = &delayed->signal;
1173 /* Can't queue both a stop and a continue signal */
1174 if (sig == SIGCONT)
1175 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1176 else if (sig_kernel_stop(sig))
1177 sigdelset(signal, SIGCONT);
1178 sigaddset(signal, sig);
1182 complete_signal(sig, t, type);
1183 ret:
1184 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1185 return ret;
1188 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1189 enum pid_type type)
1191 int from_ancestor_ns = 0;
1193 #ifdef CONFIG_PID_NS
1194 from_ancestor_ns = si_fromuser(info) &&
1195 !task_pid_nr_ns(current, task_active_pid_ns(t));
1196 #endif
1198 return __send_signal(sig, info, t, type, from_ancestor_ns);
1201 static void print_fatal_signal(int signr)
1203 struct pt_regs *regs = signal_pt_regs();
1204 pr_info("potentially unexpected fatal signal %d.\n", signr);
1206 #if defined(__i386__) && !defined(__arch_um__)
1207 pr_info("code at %08lx: ", regs->ip);
1209 int i;
1210 for (i = 0; i < 16; i++) {
1211 unsigned char insn;
1213 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1214 break;
1215 pr_cont("%02x ", insn);
1218 pr_cont("\n");
1219 #endif
1220 preempt_disable();
1221 show_regs(regs);
1222 preempt_enable();
1225 static int __init setup_print_fatal_signals(char *str)
1227 get_option (&str, &print_fatal_signals);
1229 return 1;
1232 __setup("print-fatal-signals=", setup_print_fatal_signals);
1235 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1237 return send_signal(sig, info, p, PIDTYPE_TGID);
1240 static int
1241 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1243 return send_signal(sig, info, t, PIDTYPE_PID);
1246 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1247 enum pid_type type)
1249 unsigned long flags;
1250 int ret = -ESRCH;
1252 if (lock_task_sighand(p, &flags)) {
1253 ret = send_signal(sig, info, p, type);
1254 unlock_task_sighand(p, &flags);
1257 return ret;
1261 * Force a signal that the process can't ignore: if necessary
1262 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1264 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1265 * since we do not want to have a signal handler that was blocked
1266 * be invoked when user space had explicitly blocked it.
1268 * We don't want to have recursive SIGSEGV's etc, for example,
1269 * that is why we also clear SIGNAL_UNKILLABLE.
1272 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1274 unsigned long int flags;
1275 int ret, blocked, ignored;
1276 struct k_sigaction *action;
1278 spin_lock_irqsave(&t->sighand->siglock, flags);
1279 action = &t->sighand->action[sig-1];
1280 ignored = action->sa.sa_handler == SIG_IGN;
1281 blocked = sigismember(&t->blocked, sig);
1282 if (blocked || ignored) {
1283 action->sa.sa_handler = SIG_DFL;
1284 if (blocked) {
1285 sigdelset(&t->blocked, sig);
1286 recalc_sigpending_and_wake(t);
1290 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1291 * debugging to leave init killable.
1293 if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1294 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1295 ret = specific_send_sig_info(sig, info, t);
1296 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1298 return ret;
1302 * Nuke all other threads in the group.
1304 int zap_other_threads(struct task_struct *p)
1306 struct task_struct *t = p;
1307 int count = 0;
1309 p->signal->group_stop_count = 0;
1311 while_each_thread(p, t) {
1312 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1313 count++;
1315 /* Don't bother with already dead threads */
1316 if (t->exit_state)
1317 continue;
1318 sigaddset(&t->pending.signal, SIGKILL);
1319 signal_wake_up(t, 1);
1322 return count;
1325 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1326 unsigned long *flags)
1328 struct sighand_struct *sighand;
1330 rcu_read_lock();
1331 for (;;) {
1332 sighand = rcu_dereference(tsk->sighand);
1333 if (unlikely(sighand == NULL))
1334 break;
1337 * This sighand can be already freed and even reused, but
1338 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1339 * initializes ->siglock: this slab can't go away, it has
1340 * the same object type, ->siglock can't be reinitialized.
1342 * We need to ensure that tsk->sighand is still the same
1343 * after we take the lock, we can race with de_thread() or
1344 * __exit_signal(). In the latter case the next iteration
1345 * must see ->sighand == NULL.
1347 spin_lock_irqsave(&sighand->siglock, *flags);
1348 if (likely(sighand == tsk->sighand))
1349 break;
1350 spin_unlock_irqrestore(&sighand->siglock, *flags);
1352 rcu_read_unlock();
1354 return sighand;
1358 * send signal info to all the members of a group
1360 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1361 enum pid_type type)
1363 int ret;
1365 rcu_read_lock();
1366 ret = check_kill_permission(sig, info, p);
1367 rcu_read_unlock();
1369 if (!ret && sig)
1370 ret = do_send_sig_info(sig, info, p, type);
1372 return ret;
1376 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1377 * control characters do (^C, ^Z etc)
1378 * - the caller must hold at least a readlock on tasklist_lock
1380 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1382 struct task_struct *p = NULL;
1383 int retval, success;
1385 success = 0;
1386 retval = -ESRCH;
1387 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1388 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1389 success |= !err;
1390 retval = err;
1391 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1392 return success ? 0 : retval;
1395 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1397 int error = -ESRCH;
1398 struct task_struct *p;
1400 for (;;) {
1401 rcu_read_lock();
1402 p = pid_task(pid, PIDTYPE_PID);
1403 if (p)
1404 error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1405 rcu_read_unlock();
1406 if (likely(!p || error != -ESRCH))
1407 return error;
1410 * The task was unhashed in between, try again. If it
1411 * is dead, pid_task() will return NULL, if we race with
1412 * de_thread() it will find the new leader.
1417 static int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1419 int error;
1420 rcu_read_lock();
1421 error = kill_pid_info(sig, info, find_vpid(pid));
1422 rcu_read_unlock();
1423 return error;
1426 static inline bool kill_as_cred_perm(const struct cred *cred,
1427 struct task_struct *target)
1429 const struct cred *pcred = __task_cred(target);
1431 return uid_eq(cred->euid, pcred->suid) ||
1432 uid_eq(cred->euid, pcred->uid) ||
1433 uid_eq(cred->uid, pcred->suid) ||
1434 uid_eq(cred->uid, pcred->uid);
1437 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1438 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1439 const struct cred *cred)
1441 int ret = -EINVAL;
1442 struct task_struct *p;
1443 unsigned long flags;
1445 if (!valid_signal(sig))
1446 return ret;
1448 rcu_read_lock();
1449 p = pid_task(pid, PIDTYPE_PID);
1450 if (!p) {
1451 ret = -ESRCH;
1452 goto out_unlock;
1454 if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1455 ret = -EPERM;
1456 goto out_unlock;
1458 ret = security_task_kill(p, info, sig, cred);
1459 if (ret)
1460 goto out_unlock;
1462 if (sig) {
1463 if (lock_task_sighand(p, &flags)) {
1464 ret = __send_signal(sig, info, p, PIDTYPE_TGID, 0);
1465 unlock_task_sighand(p, &flags);
1466 } else
1467 ret = -ESRCH;
1469 out_unlock:
1470 rcu_read_unlock();
1471 return ret;
1473 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1476 * kill_something_info() interprets pid in interesting ways just like kill(2).
1478 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1479 * is probably wrong. Should make it like BSD or SYSV.
1482 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1484 int ret;
1486 if (pid > 0) {
1487 rcu_read_lock();
1488 ret = kill_pid_info(sig, info, find_vpid(pid));
1489 rcu_read_unlock();
1490 return ret;
1493 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */
1494 if (pid == INT_MIN)
1495 return -ESRCH;
1497 read_lock(&tasklist_lock);
1498 if (pid != -1) {
1499 ret = __kill_pgrp_info(sig, info,
1500 pid ? find_vpid(-pid) : task_pgrp(current));
1501 } else {
1502 int retval = 0, count = 0;
1503 struct task_struct * p;
1505 for_each_process(p) {
1506 if (task_pid_vnr(p) > 1 &&
1507 !same_thread_group(p, current)) {
1508 int err = group_send_sig_info(sig, info, p,
1509 PIDTYPE_MAX);
1510 ++count;
1511 if (err != -EPERM)
1512 retval = err;
1515 ret = count ? retval : -ESRCH;
1517 read_unlock(&tasklist_lock);
1519 return ret;
1523 * These are for backward compatibility with the rest of the kernel source.
1526 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1529 * Make sure legacy kernel users don't send in bad values
1530 * (normal paths check this in check_kill_permission).
1532 if (!valid_signal(sig))
1533 return -EINVAL;
1535 return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1538 #define __si_special(priv) \
1539 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1542 send_sig(int sig, struct task_struct *p, int priv)
1544 return send_sig_info(sig, __si_special(priv), p);
1547 void force_sig(int sig, struct task_struct *p)
1549 force_sig_info(sig, SEND_SIG_PRIV, p);
1553 * When things go south during signal handling, we
1554 * will force a SIGSEGV. And if the signal that caused
1555 * the problem was already a SIGSEGV, we'll want to
1556 * make sure we don't even try to deliver the signal..
1558 void force_sigsegv(int sig, struct task_struct *p)
1560 if (sig == SIGSEGV) {
1561 unsigned long flags;
1562 spin_lock_irqsave(&p->sighand->siglock, flags);
1563 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1564 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1566 force_sig(SIGSEGV, p);
1569 int force_sig_fault(int sig, int code, void __user *addr
1570 ___ARCH_SI_TRAPNO(int trapno)
1571 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1572 , struct task_struct *t)
1574 struct siginfo info;
1576 clear_siginfo(&info);
1577 info.si_signo = sig;
1578 info.si_errno = 0;
1579 info.si_code = code;
1580 info.si_addr = addr;
1581 #ifdef __ARCH_SI_TRAPNO
1582 info.si_trapno = trapno;
1583 #endif
1584 #ifdef __ia64__
1585 info.si_imm = imm;
1586 info.si_flags = flags;
1587 info.si_isr = isr;
1588 #endif
1589 return force_sig_info(info.si_signo, &info, t);
1592 int send_sig_fault(int sig, int code, void __user *addr
1593 ___ARCH_SI_TRAPNO(int trapno)
1594 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1595 , struct task_struct *t)
1597 struct siginfo info;
1599 clear_siginfo(&info);
1600 info.si_signo = sig;
1601 info.si_errno = 0;
1602 info.si_code = code;
1603 info.si_addr = addr;
1604 #ifdef __ARCH_SI_TRAPNO
1605 info.si_trapno = trapno;
1606 #endif
1607 #ifdef __ia64__
1608 info.si_imm = imm;
1609 info.si_flags = flags;
1610 info.si_isr = isr;
1611 #endif
1612 return send_sig_info(info.si_signo, &info, t);
1615 int force_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1617 struct siginfo info;
1619 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1620 clear_siginfo(&info);
1621 info.si_signo = SIGBUS;
1622 info.si_errno = 0;
1623 info.si_code = code;
1624 info.si_addr = addr;
1625 info.si_addr_lsb = lsb;
1626 return force_sig_info(info.si_signo, &info, t);
1629 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1631 struct siginfo info;
1633 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1634 clear_siginfo(&info);
1635 info.si_signo = SIGBUS;
1636 info.si_errno = 0;
1637 info.si_code = code;
1638 info.si_addr = addr;
1639 info.si_addr_lsb = lsb;
1640 return send_sig_info(info.si_signo, &info, t);
1642 EXPORT_SYMBOL(send_sig_mceerr);
1644 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1646 struct siginfo info;
1648 clear_siginfo(&info);
1649 info.si_signo = SIGSEGV;
1650 info.si_errno = 0;
1651 info.si_code = SEGV_BNDERR;
1652 info.si_addr = addr;
1653 info.si_lower = lower;
1654 info.si_upper = upper;
1655 return force_sig_info(info.si_signo, &info, current);
1658 #ifdef SEGV_PKUERR
1659 int force_sig_pkuerr(void __user *addr, u32 pkey)
1661 struct siginfo info;
1663 clear_siginfo(&info);
1664 info.si_signo = SIGSEGV;
1665 info.si_errno = 0;
1666 info.si_code = SEGV_PKUERR;
1667 info.si_addr = addr;
1668 info.si_pkey = pkey;
1669 return force_sig_info(info.si_signo, &info, current);
1671 #endif
1673 /* For the crazy architectures that include trap information in
1674 * the errno field, instead of an actual errno value.
1676 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1678 struct siginfo info;
1680 clear_siginfo(&info);
1681 info.si_signo = SIGTRAP;
1682 info.si_errno = errno;
1683 info.si_code = TRAP_HWBKPT;
1684 info.si_addr = addr;
1685 return force_sig_info(info.si_signo, &info, current);
1688 int kill_pgrp(struct pid *pid, int sig, int priv)
1690 int ret;
1692 read_lock(&tasklist_lock);
1693 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1694 read_unlock(&tasklist_lock);
1696 return ret;
1698 EXPORT_SYMBOL(kill_pgrp);
1700 int kill_pid(struct pid *pid, int sig, int priv)
1702 return kill_pid_info(sig, __si_special(priv), pid);
1704 EXPORT_SYMBOL(kill_pid);
1707 * These functions support sending signals using preallocated sigqueue
1708 * structures. This is needed "because realtime applications cannot
1709 * afford to lose notifications of asynchronous events, like timer
1710 * expirations or I/O completions". In the case of POSIX Timers
1711 * we allocate the sigqueue structure from the timer_create. If this
1712 * allocation fails we are able to report the failure to the application
1713 * with an EAGAIN error.
1715 struct sigqueue *sigqueue_alloc(void)
1717 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1719 if (q)
1720 q->flags |= SIGQUEUE_PREALLOC;
1722 return q;
1725 void sigqueue_free(struct sigqueue *q)
1727 unsigned long flags;
1728 spinlock_t *lock = &current->sighand->siglock;
1730 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1732 * We must hold ->siglock while testing q->list
1733 * to serialize with collect_signal() or with
1734 * __exit_signal()->flush_sigqueue().
1736 spin_lock_irqsave(lock, flags);
1737 q->flags &= ~SIGQUEUE_PREALLOC;
1739 * If it is queued it will be freed when dequeued,
1740 * like the "regular" sigqueue.
1742 if (!list_empty(&q->list))
1743 q = NULL;
1744 spin_unlock_irqrestore(lock, flags);
1746 if (q)
1747 __sigqueue_free(q);
1750 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1752 int sig = q->info.si_signo;
1753 struct sigpending *pending;
1754 struct task_struct *t;
1755 unsigned long flags;
1756 int ret, result;
1758 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1760 ret = -1;
1761 rcu_read_lock();
1762 t = pid_task(pid, type);
1763 if (!t || !likely(lock_task_sighand(t, &flags)))
1764 goto ret;
1766 ret = 1; /* the signal is ignored */
1767 result = TRACE_SIGNAL_IGNORED;
1768 if (!prepare_signal(sig, t, false))
1769 goto out;
1771 ret = 0;
1772 if (unlikely(!list_empty(&q->list))) {
1774 * If an SI_TIMER entry is already queue just increment
1775 * the overrun count.
1777 BUG_ON(q->info.si_code != SI_TIMER);
1778 q->info.si_overrun++;
1779 result = TRACE_SIGNAL_ALREADY_PENDING;
1780 goto out;
1782 q->info.si_overrun = 0;
1784 signalfd_notify(t, sig);
1785 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1786 list_add_tail(&q->list, &pending->list);
1787 sigaddset(&pending->signal, sig);
1788 complete_signal(sig, t, type);
1789 result = TRACE_SIGNAL_DELIVERED;
1790 out:
1791 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
1792 unlock_task_sighand(t, &flags);
1793 ret:
1794 rcu_read_unlock();
1795 return ret;
1799 * Let a parent know about the death of a child.
1800 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1802 * Returns true if our parent ignored us and so we've switched to
1803 * self-reaping.
1805 bool do_notify_parent(struct task_struct *tsk, int sig)
1807 struct siginfo info;
1808 unsigned long flags;
1809 struct sighand_struct *psig;
1810 bool autoreap = false;
1811 u64 utime, stime;
1813 BUG_ON(sig == -1);
1815 /* do_notify_parent_cldstop should have been called instead. */
1816 BUG_ON(task_is_stopped_or_traced(tsk));
1818 BUG_ON(!tsk->ptrace &&
1819 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1821 if (sig != SIGCHLD) {
1823 * This is only possible if parent == real_parent.
1824 * Check if it has changed security domain.
1826 if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1827 sig = SIGCHLD;
1830 clear_siginfo(&info);
1831 info.si_signo = sig;
1832 info.si_errno = 0;
1834 * We are under tasklist_lock here so our parent is tied to
1835 * us and cannot change.
1837 * task_active_pid_ns will always return the same pid namespace
1838 * until a task passes through release_task.
1840 * write_lock() currently calls preempt_disable() which is the
1841 * same as rcu_read_lock(), but according to Oleg, this is not
1842 * correct to rely on this
1844 rcu_read_lock();
1845 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1846 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1847 task_uid(tsk));
1848 rcu_read_unlock();
1850 task_cputime(tsk, &utime, &stime);
1851 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1852 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1854 info.si_status = tsk->exit_code & 0x7f;
1855 if (tsk->exit_code & 0x80)
1856 info.si_code = CLD_DUMPED;
1857 else if (tsk->exit_code & 0x7f)
1858 info.si_code = CLD_KILLED;
1859 else {
1860 info.si_code = CLD_EXITED;
1861 info.si_status = tsk->exit_code >> 8;
1864 psig = tsk->parent->sighand;
1865 spin_lock_irqsave(&psig->siglock, flags);
1866 if (!tsk->ptrace && sig == SIGCHLD &&
1867 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1868 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1870 * We are exiting and our parent doesn't care. POSIX.1
1871 * defines special semantics for setting SIGCHLD to SIG_IGN
1872 * or setting the SA_NOCLDWAIT flag: we should be reaped
1873 * automatically and not left for our parent's wait4 call.
1874 * Rather than having the parent do it as a magic kind of
1875 * signal handler, we just set this to tell do_exit that we
1876 * can be cleaned up without becoming a zombie. Note that
1877 * we still call __wake_up_parent in this case, because a
1878 * blocked sys_wait4 might now return -ECHILD.
1880 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1881 * is implementation-defined: we do (if you don't want
1882 * it, just use SIG_IGN instead).
1884 autoreap = true;
1885 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1886 sig = 0;
1888 if (valid_signal(sig) && sig)
1889 __group_send_sig_info(sig, &info, tsk->parent);
1890 __wake_up_parent(tsk, tsk->parent);
1891 spin_unlock_irqrestore(&psig->siglock, flags);
1893 return autoreap;
1897 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1898 * @tsk: task reporting the state change
1899 * @for_ptracer: the notification is for ptracer
1900 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1902 * Notify @tsk's parent that the stopped/continued state has changed. If
1903 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1904 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1906 * CONTEXT:
1907 * Must be called with tasklist_lock at least read locked.
1909 static void do_notify_parent_cldstop(struct task_struct *tsk,
1910 bool for_ptracer, int why)
1912 struct siginfo info;
1913 unsigned long flags;
1914 struct task_struct *parent;
1915 struct sighand_struct *sighand;
1916 u64 utime, stime;
1918 if (for_ptracer) {
1919 parent = tsk->parent;
1920 } else {
1921 tsk = tsk->group_leader;
1922 parent = tsk->real_parent;
1925 clear_siginfo(&info);
1926 info.si_signo = SIGCHLD;
1927 info.si_errno = 0;
1929 * see comment in do_notify_parent() about the following 4 lines
1931 rcu_read_lock();
1932 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1933 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1934 rcu_read_unlock();
1936 task_cputime(tsk, &utime, &stime);
1937 info.si_utime = nsec_to_clock_t(utime);
1938 info.si_stime = nsec_to_clock_t(stime);
1940 info.si_code = why;
1941 switch (why) {
1942 case CLD_CONTINUED:
1943 info.si_status = SIGCONT;
1944 break;
1945 case CLD_STOPPED:
1946 info.si_status = tsk->signal->group_exit_code & 0x7f;
1947 break;
1948 case CLD_TRAPPED:
1949 info.si_status = tsk->exit_code & 0x7f;
1950 break;
1951 default:
1952 BUG();
1955 sighand = parent->sighand;
1956 spin_lock_irqsave(&sighand->siglock, flags);
1957 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1958 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1959 __group_send_sig_info(SIGCHLD, &info, parent);
1961 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1963 __wake_up_parent(tsk, parent);
1964 spin_unlock_irqrestore(&sighand->siglock, flags);
1967 static inline bool may_ptrace_stop(void)
1969 if (!likely(current->ptrace))
1970 return false;
1972 * Are we in the middle of do_coredump?
1973 * If so and our tracer is also part of the coredump stopping
1974 * is a deadlock situation, and pointless because our tracer
1975 * is dead so don't allow us to stop.
1976 * If SIGKILL was already sent before the caller unlocked
1977 * ->siglock we must see ->core_state != NULL. Otherwise it
1978 * is safe to enter schedule().
1980 * This is almost outdated, a task with the pending SIGKILL can't
1981 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1982 * after SIGKILL was already dequeued.
1984 if (unlikely(current->mm->core_state) &&
1985 unlikely(current->mm == current->parent->mm))
1986 return false;
1988 return true;
1992 * Return non-zero if there is a SIGKILL that should be waking us up.
1993 * Called with the siglock held.
1995 static bool sigkill_pending(struct task_struct *tsk)
1997 return sigismember(&tsk->pending.signal, SIGKILL) ||
1998 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
2002 * This must be called with current->sighand->siglock held.
2004 * This should be the path for all ptrace stops.
2005 * We always set current->last_siginfo while stopped here.
2006 * That makes it a way to test a stopped process for
2007 * being ptrace-stopped vs being job-control-stopped.
2009 * If we actually decide not to stop at all because the tracer
2010 * is gone, we keep current->exit_code unless clear_code.
2012 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
2013 __releases(&current->sighand->siglock)
2014 __acquires(&current->sighand->siglock)
2016 bool gstop_done = false;
2018 if (arch_ptrace_stop_needed(exit_code, info)) {
2020 * The arch code has something special to do before a
2021 * ptrace stop. This is allowed to block, e.g. for faults
2022 * on user stack pages. We can't keep the siglock while
2023 * calling arch_ptrace_stop, so we must release it now.
2024 * To preserve proper semantics, we must do this before
2025 * any signal bookkeeping like checking group_stop_count.
2026 * Meanwhile, a SIGKILL could come in before we retake the
2027 * siglock. That must prevent us from sleeping in TASK_TRACED.
2028 * So after regaining the lock, we must check for SIGKILL.
2030 spin_unlock_irq(&current->sighand->siglock);
2031 arch_ptrace_stop(exit_code, info);
2032 spin_lock_irq(&current->sighand->siglock);
2033 if (sigkill_pending(current))
2034 return;
2037 set_special_state(TASK_TRACED);
2040 * We're committing to trapping. TRACED should be visible before
2041 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2042 * Also, transition to TRACED and updates to ->jobctl should be
2043 * atomic with respect to siglock and should be done after the arch
2044 * hook as siglock is released and regrabbed across it.
2046 * TRACER TRACEE
2048 * ptrace_attach()
2049 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED)
2050 * do_wait()
2051 * set_current_state() smp_wmb();
2052 * ptrace_do_wait()
2053 * wait_task_stopped()
2054 * task_stopped_code()
2055 * [L] task_is_traced() [S] task_clear_jobctl_trapping();
2057 smp_wmb();
2059 current->last_siginfo = info;
2060 current->exit_code = exit_code;
2063 * If @why is CLD_STOPPED, we're trapping to participate in a group
2064 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
2065 * across siglock relocks since INTERRUPT was scheduled, PENDING
2066 * could be clear now. We act as if SIGCONT is received after
2067 * TASK_TRACED is entered - ignore it.
2069 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2070 gstop_done = task_participate_group_stop(current);
2072 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2073 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2074 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2075 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2077 /* entering a trap, clear TRAPPING */
2078 task_clear_jobctl_trapping(current);
2080 spin_unlock_irq(&current->sighand->siglock);
2081 read_lock(&tasklist_lock);
2082 if (may_ptrace_stop()) {
2084 * Notify parents of the stop.
2086 * While ptraced, there are two parents - the ptracer and
2087 * the real_parent of the group_leader. The ptracer should
2088 * know about every stop while the real parent is only
2089 * interested in the completion of group stop. The states
2090 * for the two don't interact with each other. Notify
2091 * separately unless they're gonna be duplicates.
2093 do_notify_parent_cldstop(current, true, why);
2094 if (gstop_done && ptrace_reparented(current))
2095 do_notify_parent_cldstop(current, false, why);
2098 * Don't want to allow preemption here, because
2099 * sys_ptrace() needs this task to be inactive.
2101 * XXX: implement read_unlock_no_resched().
2103 preempt_disable();
2104 read_unlock(&tasklist_lock);
2105 preempt_enable_no_resched();
2106 freezable_schedule();
2107 } else {
2109 * By the time we got the lock, our tracer went away.
2110 * Don't drop the lock yet, another tracer may come.
2112 * If @gstop_done, the ptracer went away between group stop
2113 * completion and here. During detach, it would have set
2114 * JOBCTL_STOP_PENDING on us and we'll re-enter
2115 * TASK_STOPPED in do_signal_stop() on return, so notifying
2116 * the real parent of the group stop completion is enough.
2118 if (gstop_done)
2119 do_notify_parent_cldstop(current, false, why);
2121 /* tasklist protects us from ptrace_freeze_traced() */
2122 __set_current_state(TASK_RUNNING);
2123 if (clear_code)
2124 current->exit_code = 0;
2125 read_unlock(&tasklist_lock);
2129 * We are back. Now reacquire the siglock before touching
2130 * last_siginfo, so that we are sure to have synchronized with
2131 * any signal-sending on another CPU that wants to examine it.
2133 spin_lock_irq(&current->sighand->siglock);
2134 current->last_siginfo = NULL;
2136 /* LISTENING can be set only during STOP traps, clear it */
2137 current->jobctl &= ~JOBCTL_LISTENING;
2140 * Queued signals ignored us while we were stopped for tracing.
2141 * So check for any that we should take before resuming user mode.
2142 * This sets TIF_SIGPENDING, but never clears it.
2144 recalc_sigpending_tsk(current);
2147 static void ptrace_do_notify(int signr, int exit_code, int why)
2149 siginfo_t info;
2151 clear_siginfo(&info);
2152 info.si_signo = signr;
2153 info.si_code = exit_code;
2154 info.si_pid = task_pid_vnr(current);
2155 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2157 /* Let the debugger run. */
2158 ptrace_stop(exit_code, why, 1, &info);
2161 void ptrace_notify(int exit_code)
2163 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2164 if (unlikely(current->task_works))
2165 task_work_run();
2167 spin_lock_irq(&current->sighand->siglock);
2168 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2169 spin_unlock_irq(&current->sighand->siglock);
2173 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2174 * @signr: signr causing group stop if initiating
2176 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2177 * and participate in it. If already set, participate in the existing
2178 * group stop. If participated in a group stop (and thus slept), %true is
2179 * returned with siglock released.
2181 * If ptraced, this function doesn't handle stop itself. Instead,
2182 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2183 * untouched. The caller must ensure that INTERRUPT trap handling takes
2184 * places afterwards.
2186 * CONTEXT:
2187 * Must be called with @current->sighand->siglock held, which is released
2188 * on %true return.
2190 * RETURNS:
2191 * %false if group stop is already cancelled or ptrace trap is scheduled.
2192 * %true if participated in group stop.
2194 static bool do_signal_stop(int signr)
2195 __releases(&current->sighand->siglock)
2197 struct signal_struct *sig = current->signal;
2199 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2200 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2201 struct task_struct *t;
2203 /* signr will be recorded in task->jobctl for retries */
2204 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2206 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2207 unlikely(signal_group_exit(sig)))
2208 return false;
2210 * There is no group stop already in progress. We must
2211 * initiate one now.
2213 * While ptraced, a task may be resumed while group stop is
2214 * still in effect and then receive a stop signal and
2215 * initiate another group stop. This deviates from the
2216 * usual behavior as two consecutive stop signals can't
2217 * cause two group stops when !ptraced. That is why we
2218 * also check !task_is_stopped(t) below.
2220 * The condition can be distinguished by testing whether
2221 * SIGNAL_STOP_STOPPED is already set. Don't generate
2222 * group_exit_code in such case.
2224 * This is not necessary for SIGNAL_STOP_CONTINUED because
2225 * an intervening stop signal is required to cause two
2226 * continued events regardless of ptrace.
2228 if (!(sig->flags & SIGNAL_STOP_STOPPED))
2229 sig->group_exit_code = signr;
2231 sig->group_stop_count = 0;
2233 if (task_set_jobctl_pending(current, signr | gstop))
2234 sig->group_stop_count++;
2236 t = current;
2237 while_each_thread(current, t) {
2239 * Setting state to TASK_STOPPED for a group
2240 * stop is always done with the siglock held,
2241 * so this check has no races.
2243 if (!task_is_stopped(t) &&
2244 task_set_jobctl_pending(t, signr | gstop)) {
2245 sig->group_stop_count++;
2246 if (likely(!(t->ptrace & PT_SEIZED)))
2247 signal_wake_up(t, 0);
2248 else
2249 ptrace_trap_notify(t);
2254 if (likely(!current->ptrace)) {
2255 int notify = 0;
2258 * If there are no other threads in the group, or if there
2259 * is a group stop in progress and we are the last to stop,
2260 * report to the parent.
2262 if (task_participate_group_stop(current))
2263 notify = CLD_STOPPED;
2265 set_special_state(TASK_STOPPED);
2266 spin_unlock_irq(&current->sighand->siglock);
2269 * Notify the parent of the group stop completion. Because
2270 * we're not holding either the siglock or tasklist_lock
2271 * here, ptracer may attach inbetween; however, this is for
2272 * group stop and should always be delivered to the real
2273 * parent of the group leader. The new ptracer will get
2274 * its notification when this task transitions into
2275 * TASK_TRACED.
2277 if (notify) {
2278 read_lock(&tasklist_lock);
2279 do_notify_parent_cldstop(current, false, notify);
2280 read_unlock(&tasklist_lock);
2283 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2284 freezable_schedule();
2285 return true;
2286 } else {
2288 * While ptraced, group stop is handled by STOP trap.
2289 * Schedule it and let the caller deal with it.
2291 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2292 return false;
2297 * do_jobctl_trap - take care of ptrace jobctl traps
2299 * When PT_SEIZED, it's used for both group stop and explicit
2300 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2301 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2302 * the stop signal; otherwise, %SIGTRAP.
2304 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2305 * number as exit_code and no siginfo.
2307 * CONTEXT:
2308 * Must be called with @current->sighand->siglock held, which may be
2309 * released and re-acquired before returning with intervening sleep.
2311 static void do_jobctl_trap(void)
2313 struct signal_struct *signal = current->signal;
2314 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2316 if (current->ptrace & PT_SEIZED) {
2317 if (!signal->group_stop_count &&
2318 !(signal->flags & SIGNAL_STOP_STOPPED))
2319 signr = SIGTRAP;
2320 WARN_ON_ONCE(!signr);
2321 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2322 CLD_STOPPED);
2323 } else {
2324 WARN_ON_ONCE(!signr);
2325 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2326 current->exit_code = 0;
2330 static int ptrace_signal(int signr, siginfo_t *info)
2333 * We do not check sig_kernel_stop(signr) but set this marker
2334 * unconditionally because we do not know whether debugger will
2335 * change signr. This flag has no meaning unless we are going
2336 * to stop after return from ptrace_stop(). In this case it will
2337 * be checked in do_signal_stop(), we should only stop if it was
2338 * not cleared by SIGCONT while we were sleeping. See also the
2339 * comment in dequeue_signal().
2341 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2342 ptrace_stop(signr, CLD_TRAPPED, 0, info);
2344 /* We're back. Did the debugger cancel the sig? */
2345 signr = current->exit_code;
2346 if (signr == 0)
2347 return signr;
2349 current->exit_code = 0;
2352 * Update the siginfo structure if the signal has
2353 * changed. If the debugger wanted something
2354 * specific in the siginfo structure then it should
2355 * have updated *info via PTRACE_SETSIGINFO.
2357 if (signr != info->si_signo) {
2358 clear_siginfo(info);
2359 info->si_signo = signr;
2360 info->si_errno = 0;
2361 info->si_code = SI_USER;
2362 rcu_read_lock();
2363 info->si_pid = task_pid_vnr(current->parent);
2364 info->si_uid = from_kuid_munged(current_user_ns(),
2365 task_uid(current->parent));
2366 rcu_read_unlock();
2369 /* If the (new) signal is now blocked, requeue it. */
2370 if (sigismember(&current->blocked, signr)) {
2371 specific_send_sig_info(signr, info, current);
2372 signr = 0;
2375 return signr;
2378 bool get_signal(struct ksignal *ksig)
2380 struct sighand_struct *sighand = current->sighand;
2381 struct signal_struct *signal = current->signal;
2382 int signr;
2384 if (unlikely(current->task_works))
2385 task_work_run();
2387 if (unlikely(uprobe_deny_signal()))
2388 return false;
2391 * Do this once, we can't return to user-mode if freezing() == T.
2392 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2393 * thus do not need another check after return.
2395 try_to_freeze();
2397 relock:
2398 spin_lock_irq(&sighand->siglock);
2400 * Every stopped thread goes here after wakeup. Check to see if
2401 * we should notify the parent, prepare_signal(SIGCONT) encodes
2402 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2404 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2405 int why;
2407 if (signal->flags & SIGNAL_CLD_CONTINUED)
2408 why = CLD_CONTINUED;
2409 else
2410 why = CLD_STOPPED;
2412 signal->flags &= ~SIGNAL_CLD_MASK;
2414 spin_unlock_irq(&sighand->siglock);
2417 * Notify the parent that we're continuing. This event is
2418 * always per-process and doesn't make whole lot of sense
2419 * for ptracers, who shouldn't consume the state via
2420 * wait(2) either, but, for backward compatibility, notify
2421 * the ptracer of the group leader too unless it's gonna be
2422 * a duplicate.
2424 read_lock(&tasklist_lock);
2425 do_notify_parent_cldstop(current, false, why);
2427 if (ptrace_reparented(current->group_leader))
2428 do_notify_parent_cldstop(current->group_leader,
2429 true, why);
2430 read_unlock(&tasklist_lock);
2432 goto relock;
2435 /* Has this task already been marked for death? */
2436 ksig->info.si_signo = signr = SIGKILL;
2437 if (signal_group_exit(signal))
2438 goto fatal;
2440 for (;;) {
2441 struct k_sigaction *ka;
2443 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2444 do_signal_stop(0))
2445 goto relock;
2447 if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2448 do_jobctl_trap();
2449 spin_unlock_irq(&sighand->siglock);
2450 goto relock;
2454 * Signals generated by the execution of an instruction
2455 * need to be delivered before any other pending signals
2456 * so that the instruction pointer in the signal stack
2457 * frame points to the faulting instruction.
2459 signr = dequeue_synchronous_signal(&ksig->info);
2460 if (!signr)
2461 signr = dequeue_signal(current, &current->blocked, &ksig->info);
2463 if (!signr)
2464 break; /* will return 0 */
2466 if (unlikely(current->ptrace) && signr != SIGKILL) {
2467 signr = ptrace_signal(signr, &ksig->info);
2468 if (!signr)
2469 continue;
2472 ka = &sighand->action[signr-1];
2474 /* Trace actually delivered signals. */
2475 trace_signal_deliver(signr, &ksig->info, ka);
2477 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2478 continue;
2479 if (ka->sa.sa_handler != SIG_DFL) {
2480 /* Run the handler. */
2481 ksig->ka = *ka;
2483 if (ka->sa.sa_flags & SA_ONESHOT)
2484 ka->sa.sa_handler = SIG_DFL;
2486 break; /* will return non-zero "signr" value */
2490 * Now we are doing the default action for this signal.
2492 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2493 continue;
2496 * Global init gets no signals it doesn't want.
2497 * Container-init gets no signals it doesn't want from same
2498 * container.
2500 * Note that if global/container-init sees a sig_kernel_only()
2501 * signal here, the signal must have been generated internally
2502 * or must have come from an ancestor namespace. In either
2503 * case, the signal cannot be dropped.
2505 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2506 !sig_kernel_only(signr))
2507 continue;
2509 if (sig_kernel_stop(signr)) {
2511 * The default action is to stop all threads in
2512 * the thread group. The job control signals
2513 * do nothing in an orphaned pgrp, but SIGSTOP
2514 * always works. Note that siglock needs to be
2515 * dropped during the call to is_orphaned_pgrp()
2516 * because of lock ordering with tasklist_lock.
2517 * This allows an intervening SIGCONT to be posted.
2518 * We need to check for that and bail out if necessary.
2520 if (signr != SIGSTOP) {
2521 spin_unlock_irq(&sighand->siglock);
2523 /* signals can be posted during this window */
2525 if (is_current_pgrp_orphaned())
2526 goto relock;
2528 spin_lock_irq(&sighand->siglock);
2531 if (likely(do_signal_stop(ksig->info.si_signo))) {
2532 /* It released the siglock. */
2533 goto relock;
2537 * We didn't actually stop, due to a race
2538 * with SIGCONT or something like that.
2540 continue;
2543 fatal:
2544 spin_unlock_irq(&sighand->siglock);
2547 * Anything else is fatal, maybe with a core dump.
2549 current->flags |= PF_SIGNALED;
2551 if (sig_kernel_coredump(signr)) {
2552 if (print_fatal_signals)
2553 print_fatal_signal(ksig->info.si_signo);
2554 proc_coredump_connector(current);
2556 * If it was able to dump core, this kills all
2557 * other threads in the group and synchronizes with
2558 * their demise. If we lost the race with another
2559 * thread getting here, it set group_exit_code
2560 * first and our do_group_exit call below will use
2561 * that value and ignore the one we pass it.
2563 do_coredump(&ksig->info);
2567 * Death signals, no core dump.
2569 do_group_exit(ksig->info.si_signo);
2570 /* NOTREACHED */
2572 spin_unlock_irq(&sighand->siglock);
2574 ksig->sig = signr;
2575 return ksig->sig > 0;
2579 * signal_delivered -
2580 * @ksig: kernel signal struct
2581 * @stepping: nonzero if debugger single-step or block-step in use
2583 * This function should be called when a signal has successfully been
2584 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2585 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2586 * is set in @ksig->ka.sa.sa_flags. Tracing is notified.
2588 static void signal_delivered(struct ksignal *ksig, int stepping)
2590 sigset_t blocked;
2592 /* A signal was successfully delivered, and the
2593 saved sigmask was stored on the signal frame,
2594 and will be restored by sigreturn. So we can
2595 simply clear the restore sigmask flag. */
2596 clear_restore_sigmask();
2598 sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2599 if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2600 sigaddset(&blocked, ksig->sig);
2601 set_current_blocked(&blocked);
2602 tracehook_signal_handler(stepping);
2605 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2607 if (failed)
2608 force_sigsegv(ksig->sig, current);
2609 else
2610 signal_delivered(ksig, stepping);
2614 * It could be that complete_signal() picked us to notify about the
2615 * group-wide signal. Other threads should be notified now to take
2616 * the shared signals in @which since we will not.
2618 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2620 sigset_t retarget;
2621 struct task_struct *t;
2623 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2624 if (sigisemptyset(&retarget))
2625 return;
2627 t = tsk;
2628 while_each_thread(tsk, t) {
2629 if (t->flags & PF_EXITING)
2630 continue;
2632 if (!has_pending_signals(&retarget, &t->blocked))
2633 continue;
2634 /* Remove the signals this thread can handle. */
2635 sigandsets(&retarget, &retarget, &t->blocked);
2637 if (!signal_pending(t))
2638 signal_wake_up(t, 0);
2640 if (sigisemptyset(&retarget))
2641 break;
2645 void exit_signals(struct task_struct *tsk)
2647 int group_stop = 0;
2648 sigset_t unblocked;
2651 * @tsk is about to have PF_EXITING set - lock out users which
2652 * expect stable threadgroup.
2654 cgroup_threadgroup_change_begin(tsk);
2656 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2657 tsk->flags |= PF_EXITING;
2658 cgroup_threadgroup_change_end(tsk);
2659 return;
2662 spin_lock_irq(&tsk->sighand->siglock);
2664 * From now this task is not visible for group-wide signals,
2665 * see wants_signal(), do_signal_stop().
2667 tsk->flags |= PF_EXITING;
2669 cgroup_threadgroup_change_end(tsk);
2671 if (!signal_pending(tsk))
2672 goto out;
2674 unblocked = tsk->blocked;
2675 signotset(&unblocked);
2676 retarget_shared_pending(tsk, &unblocked);
2678 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2679 task_participate_group_stop(tsk))
2680 group_stop = CLD_STOPPED;
2681 out:
2682 spin_unlock_irq(&tsk->sighand->siglock);
2685 * If group stop has completed, deliver the notification. This
2686 * should always go to the real parent of the group leader.
2688 if (unlikely(group_stop)) {
2689 read_lock(&tasklist_lock);
2690 do_notify_parent_cldstop(tsk, false, group_stop);
2691 read_unlock(&tasklist_lock);
2695 EXPORT_SYMBOL(recalc_sigpending);
2696 EXPORT_SYMBOL_GPL(dequeue_signal);
2697 EXPORT_SYMBOL(flush_signals);
2698 EXPORT_SYMBOL(force_sig);
2699 EXPORT_SYMBOL(send_sig);
2700 EXPORT_SYMBOL(send_sig_info);
2701 EXPORT_SYMBOL(sigprocmask);
2704 * System call entry points.
2708 * sys_restart_syscall - restart a system call
2710 SYSCALL_DEFINE0(restart_syscall)
2712 struct restart_block *restart = &current->restart_block;
2713 return restart->fn(restart);
2716 long do_no_restart_syscall(struct restart_block *param)
2718 return -EINTR;
2721 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2723 if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2724 sigset_t newblocked;
2725 /* A set of now blocked but previously unblocked signals. */
2726 sigandnsets(&newblocked, newset, &current->blocked);
2727 retarget_shared_pending(tsk, &newblocked);
2729 tsk->blocked = *newset;
2730 recalc_sigpending();
2734 * set_current_blocked - change current->blocked mask
2735 * @newset: new mask
2737 * It is wrong to change ->blocked directly, this helper should be used
2738 * to ensure the process can't miss a shared signal we are going to block.
2740 void set_current_blocked(sigset_t *newset)
2742 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2743 __set_current_blocked(newset);
2746 void __set_current_blocked(const sigset_t *newset)
2748 struct task_struct *tsk = current;
2751 * In case the signal mask hasn't changed, there is nothing we need
2752 * to do. The current->blocked shouldn't be modified by other task.
2754 if (sigequalsets(&tsk->blocked, newset))
2755 return;
2757 spin_lock_irq(&tsk->sighand->siglock);
2758 __set_task_blocked(tsk, newset);
2759 spin_unlock_irq(&tsk->sighand->siglock);
2763 * This is also useful for kernel threads that want to temporarily
2764 * (or permanently) block certain signals.
2766 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2767 * interface happily blocks "unblockable" signals like SIGKILL
2768 * and friends.
2770 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2772 struct task_struct *tsk = current;
2773 sigset_t newset;
2775 /* Lockless, only current can change ->blocked, never from irq */
2776 if (oldset)
2777 *oldset = tsk->blocked;
2779 switch (how) {
2780 case SIG_BLOCK:
2781 sigorsets(&newset, &tsk->blocked, set);
2782 break;
2783 case SIG_UNBLOCK:
2784 sigandnsets(&newset, &tsk->blocked, set);
2785 break;
2786 case SIG_SETMASK:
2787 newset = *set;
2788 break;
2789 default:
2790 return -EINVAL;
2793 __set_current_blocked(&newset);
2794 return 0;
2798 * sys_rt_sigprocmask - change the list of currently blocked signals
2799 * @how: whether to add, remove, or set signals
2800 * @nset: stores pending signals
2801 * @oset: previous value of signal mask if non-null
2802 * @sigsetsize: size of sigset_t type
2804 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2805 sigset_t __user *, oset, size_t, sigsetsize)
2807 sigset_t old_set, new_set;
2808 int error;
2810 /* XXX: Don't preclude handling different sized sigset_t's. */
2811 if (sigsetsize != sizeof(sigset_t))
2812 return -EINVAL;
2814 old_set = current->blocked;
2816 if (nset) {
2817 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2818 return -EFAULT;
2819 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2821 error = sigprocmask(how, &new_set, NULL);
2822 if (error)
2823 return error;
2826 if (oset) {
2827 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2828 return -EFAULT;
2831 return 0;
2834 #ifdef CONFIG_COMPAT
2835 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2836 compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2838 sigset_t old_set = current->blocked;
2840 /* XXX: Don't preclude handling different sized sigset_t's. */
2841 if (sigsetsize != sizeof(sigset_t))
2842 return -EINVAL;
2844 if (nset) {
2845 sigset_t new_set;
2846 int error;
2847 if (get_compat_sigset(&new_set, nset))
2848 return -EFAULT;
2849 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2851 error = sigprocmask(how, &new_set, NULL);
2852 if (error)
2853 return error;
2855 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
2857 #endif
2859 static void do_sigpending(sigset_t *set)
2861 spin_lock_irq(&current->sighand->siglock);
2862 sigorsets(set, &current->pending.signal,
2863 &current->signal->shared_pending.signal);
2864 spin_unlock_irq(&current->sighand->siglock);
2866 /* Outside the lock because only this thread touches it. */
2867 sigandsets(set, &current->blocked, set);
2871 * sys_rt_sigpending - examine a pending signal that has been raised
2872 * while blocked
2873 * @uset: stores pending signals
2874 * @sigsetsize: size of sigset_t type or larger
2876 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2878 sigset_t set;
2880 if (sigsetsize > sizeof(*uset))
2881 return -EINVAL;
2883 do_sigpending(&set);
2885 if (copy_to_user(uset, &set, sigsetsize))
2886 return -EFAULT;
2888 return 0;
2891 #ifdef CONFIG_COMPAT
2892 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2893 compat_size_t, sigsetsize)
2895 sigset_t set;
2897 if (sigsetsize > sizeof(*uset))
2898 return -EINVAL;
2900 do_sigpending(&set);
2902 return put_compat_sigset(uset, &set, sigsetsize);
2904 #endif
2906 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
2908 enum siginfo_layout layout = SIL_KILL;
2909 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
2910 static const struct {
2911 unsigned char limit, layout;
2912 } filter[] = {
2913 [SIGILL] = { NSIGILL, SIL_FAULT },
2914 [SIGFPE] = { NSIGFPE, SIL_FAULT },
2915 [SIGSEGV] = { NSIGSEGV, SIL_FAULT },
2916 [SIGBUS] = { NSIGBUS, SIL_FAULT },
2917 [SIGTRAP] = { NSIGTRAP, SIL_FAULT },
2918 #if defined(SIGEMT) && defined(NSIGEMT)
2919 [SIGEMT] = { NSIGEMT, SIL_FAULT },
2920 #endif
2921 [SIGCHLD] = { NSIGCHLD, SIL_CHLD },
2922 [SIGPOLL] = { NSIGPOLL, SIL_POLL },
2923 [SIGSYS] = { NSIGSYS, SIL_SYS },
2925 if ((sig < ARRAY_SIZE(filter)) && (si_code <= filter[sig].limit)) {
2926 layout = filter[sig].layout;
2927 /* Handle the exceptions */
2928 if ((sig == SIGBUS) &&
2929 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
2930 layout = SIL_FAULT_MCEERR;
2931 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
2932 layout = SIL_FAULT_BNDERR;
2933 #ifdef SEGV_PKUERR
2934 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
2935 layout = SIL_FAULT_PKUERR;
2936 #endif
2938 else if (si_code <= NSIGPOLL)
2939 layout = SIL_POLL;
2940 } else {
2941 if (si_code == SI_TIMER)
2942 layout = SIL_TIMER;
2943 else if (si_code == SI_SIGIO)
2944 layout = SIL_POLL;
2945 else if (si_code < 0)
2946 layout = SIL_RT;
2948 return layout;
2951 int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from)
2953 if (copy_to_user(to, from , sizeof(struct siginfo)))
2954 return -EFAULT;
2955 return 0;
2958 #ifdef CONFIG_COMPAT
2959 int copy_siginfo_to_user32(struct compat_siginfo __user *to,
2960 const struct siginfo *from)
2961 #if defined(CONFIG_X86_X32_ABI) || defined(CONFIG_IA32_EMULATION)
2963 return __copy_siginfo_to_user32(to, from, in_x32_syscall());
2965 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
2966 const struct siginfo *from, bool x32_ABI)
2967 #endif
2969 struct compat_siginfo new;
2970 memset(&new, 0, sizeof(new));
2972 new.si_signo = from->si_signo;
2973 new.si_errno = from->si_errno;
2974 new.si_code = from->si_code;
2975 switch(siginfo_layout(from->si_signo, from->si_code)) {
2976 case SIL_KILL:
2977 new.si_pid = from->si_pid;
2978 new.si_uid = from->si_uid;
2979 break;
2980 case SIL_TIMER:
2981 new.si_tid = from->si_tid;
2982 new.si_overrun = from->si_overrun;
2983 new.si_int = from->si_int;
2984 break;
2985 case SIL_POLL:
2986 new.si_band = from->si_band;
2987 new.si_fd = from->si_fd;
2988 break;
2989 case SIL_FAULT:
2990 new.si_addr = ptr_to_compat(from->si_addr);
2991 #ifdef __ARCH_SI_TRAPNO
2992 new.si_trapno = from->si_trapno;
2993 #endif
2994 break;
2995 case SIL_FAULT_MCEERR:
2996 new.si_addr = ptr_to_compat(from->si_addr);
2997 #ifdef __ARCH_SI_TRAPNO
2998 new.si_trapno = from->si_trapno;
2999 #endif
3000 new.si_addr_lsb = from->si_addr_lsb;
3001 break;
3002 case SIL_FAULT_BNDERR:
3003 new.si_addr = ptr_to_compat(from->si_addr);
3004 #ifdef __ARCH_SI_TRAPNO
3005 new.si_trapno = from->si_trapno;
3006 #endif
3007 new.si_lower = ptr_to_compat(from->si_lower);
3008 new.si_upper = ptr_to_compat(from->si_upper);
3009 break;
3010 case SIL_FAULT_PKUERR:
3011 new.si_addr = ptr_to_compat(from->si_addr);
3012 #ifdef __ARCH_SI_TRAPNO
3013 new.si_trapno = from->si_trapno;
3014 #endif
3015 new.si_pkey = from->si_pkey;
3016 break;
3017 case SIL_CHLD:
3018 new.si_pid = from->si_pid;
3019 new.si_uid = from->si_uid;
3020 new.si_status = from->si_status;
3021 #ifdef CONFIG_X86_X32_ABI
3022 if (x32_ABI) {
3023 new._sifields._sigchld_x32._utime = from->si_utime;
3024 new._sifields._sigchld_x32._stime = from->si_stime;
3025 } else
3026 #endif
3028 new.si_utime = from->si_utime;
3029 new.si_stime = from->si_stime;
3031 break;
3032 case SIL_RT:
3033 new.si_pid = from->si_pid;
3034 new.si_uid = from->si_uid;
3035 new.si_int = from->si_int;
3036 break;
3037 case SIL_SYS:
3038 new.si_call_addr = ptr_to_compat(from->si_call_addr);
3039 new.si_syscall = from->si_syscall;
3040 new.si_arch = from->si_arch;
3041 break;
3044 if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3045 return -EFAULT;
3047 return 0;
3050 int copy_siginfo_from_user32(struct siginfo *to,
3051 const struct compat_siginfo __user *ufrom)
3053 struct compat_siginfo from;
3055 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3056 return -EFAULT;
3058 clear_siginfo(to);
3059 to->si_signo = from.si_signo;
3060 to->si_errno = from.si_errno;
3061 to->si_code = from.si_code;
3062 switch(siginfo_layout(from.si_signo, from.si_code)) {
3063 case SIL_KILL:
3064 to->si_pid = from.si_pid;
3065 to->si_uid = from.si_uid;
3066 break;
3067 case SIL_TIMER:
3068 to->si_tid = from.si_tid;
3069 to->si_overrun = from.si_overrun;
3070 to->si_int = from.si_int;
3071 break;
3072 case SIL_POLL:
3073 to->si_band = from.si_band;
3074 to->si_fd = from.si_fd;
3075 break;
3076 case SIL_FAULT:
3077 to->si_addr = compat_ptr(from.si_addr);
3078 #ifdef __ARCH_SI_TRAPNO
3079 to->si_trapno = from.si_trapno;
3080 #endif
3081 break;
3082 case SIL_FAULT_MCEERR:
3083 to->si_addr = compat_ptr(from.si_addr);
3084 #ifdef __ARCH_SI_TRAPNO
3085 to->si_trapno = from.si_trapno;
3086 #endif
3087 to->si_addr_lsb = from.si_addr_lsb;
3088 break;
3089 case SIL_FAULT_BNDERR:
3090 to->si_addr = compat_ptr(from.si_addr);
3091 #ifdef __ARCH_SI_TRAPNO
3092 to->si_trapno = from.si_trapno;
3093 #endif
3094 to->si_lower = compat_ptr(from.si_lower);
3095 to->si_upper = compat_ptr(from.si_upper);
3096 break;
3097 case SIL_FAULT_PKUERR:
3098 to->si_addr = compat_ptr(from.si_addr);
3099 #ifdef __ARCH_SI_TRAPNO
3100 to->si_trapno = from.si_trapno;
3101 #endif
3102 to->si_pkey = from.si_pkey;
3103 break;
3104 case SIL_CHLD:
3105 to->si_pid = from.si_pid;
3106 to->si_uid = from.si_uid;
3107 to->si_status = from.si_status;
3108 #ifdef CONFIG_X86_X32_ABI
3109 if (in_x32_syscall()) {
3110 to->si_utime = from._sifields._sigchld_x32._utime;
3111 to->si_stime = from._sifields._sigchld_x32._stime;
3112 } else
3113 #endif
3115 to->si_utime = from.si_utime;
3116 to->si_stime = from.si_stime;
3118 break;
3119 case SIL_RT:
3120 to->si_pid = from.si_pid;
3121 to->si_uid = from.si_uid;
3122 to->si_int = from.si_int;
3123 break;
3124 case SIL_SYS:
3125 to->si_call_addr = compat_ptr(from.si_call_addr);
3126 to->si_syscall = from.si_syscall;
3127 to->si_arch = from.si_arch;
3128 break;
3130 return 0;
3132 #endif /* CONFIG_COMPAT */
3135 * do_sigtimedwait - wait for queued signals specified in @which
3136 * @which: queued signals to wait for
3137 * @info: if non-null, the signal's siginfo is returned here
3138 * @ts: upper bound on process time suspension
3140 static int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
3141 const struct timespec *ts)
3143 ktime_t *to = NULL, timeout = KTIME_MAX;
3144 struct task_struct *tsk = current;
3145 sigset_t mask = *which;
3146 int sig, ret = 0;
3148 if (ts) {
3149 if (!timespec_valid(ts))
3150 return -EINVAL;
3151 timeout = timespec_to_ktime(*ts);
3152 to = &timeout;
3156 * Invert the set of allowed signals to get those we want to block.
3158 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3159 signotset(&mask);
3161 spin_lock_irq(&tsk->sighand->siglock);
3162 sig = dequeue_signal(tsk, &mask, info);
3163 if (!sig && timeout) {
3165 * None ready, temporarily unblock those we're interested
3166 * while we are sleeping in so that we'll be awakened when
3167 * they arrive. Unblocking is always fine, we can avoid
3168 * set_current_blocked().
3170 tsk->real_blocked = tsk->blocked;
3171 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3172 recalc_sigpending();
3173 spin_unlock_irq(&tsk->sighand->siglock);
3175 __set_current_state(TASK_INTERRUPTIBLE);
3176 ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3177 HRTIMER_MODE_REL);
3178 spin_lock_irq(&tsk->sighand->siglock);
3179 __set_task_blocked(tsk, &tsk->real_blocked);
3180 sigemptyset(&tsk->real_blocked);
3181 sig = dequeue_signal(tsk, &mask, info);
3183 spin_unlock_irq(&tsk->sighand->siglock);
3185 if (sig)
3186 return sig;
3187 return ret ? -EINTR : -EAGAIN;
3191 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
3192 * in @uthese
3193 * @uthese: queued signals to wait for
3194 * @uinfo: if non-null, the signal's siginfo is returned here
3195 * @uts: upper bound on process time suspension
3196 * @sigsetsize: size of sigset_t type
3198 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3199 siginfo_t __user *, uinfo, const struct timespec __user *, uts,
3200 size_t, sigsetsize)
3202 sigset_t these;
3203 struct timespec ts;
3204 siginfo_t info;
3205 int ret;
3207 /* XXX: Don't preclude handling different sized sigset_t's. */
3208 if (sigsetsize != sizeof(sigset_t))
3209 return -EINVAL;
3211 if (copy_from_user(&these, uthese, sizeof(these)))
3212 return -EFAULT;
3214 if (uts) {
3215 if (copy_from_user(&ts, uts, sizeof(ts)))
3216 return -EFAULT;
3219 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3221 if (ret > 0 && uinfo) {
3222 if (copy_siginfo_to_user(uinfo, &info))
3223 ret = -EFAULT;
3226 return ret;
3229 #ifdef CONFIG_COMPAT
3230 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait, compat_sigset_t __user *, uthese,
3231 struct compat_siginfo __user *, uinfo,
3232 struct compat_timespec __user *, uts, compat_size_t, sigsetsize)
3234 sigset_t s;
3235 struct timespec t;
3236 siginfo_t info;
3237 long ret;
3239 if (sigsetsize != sizeof(sigset_t))
3240 return -EINVAL;
3242 if (get_compat_sigset(&s, uthese))
3243 return -EFAULT;
3245 if (uts) {
3246 if (compat_get_timespec(&t, uts))
3247 return -EFAULT;
3250 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3252 if (ret > 0 && uinfo) {
3253 if (copy_siginfo_to_user32(uinfo, &info))
3254 ret = -EFAULT;
3257 return ret;
3259 #endif
3262 * sys_kill - send a signal to a process
3263 * @pid: the PID of the process
3264 * @sig: signal to be sent
3266 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3268 struct siginfo info;
3270 clear_siginfo(&info);
3271 info.si_signo = sig;
3272 info.si_errno = 0;
3273 info.si_code = SI_USER;
3274 info.si_pid = task_tgid_vnr(current);
3275 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3277 return kill_something_info(sig, &info, pid);
3280 static int
3281 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
3283 struct task_struct *p;
3284 int error = -ESRCH;
3286 rcu_read_lock();
3287 p = find_task_by_vpid(pid);
3288 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3289 error = check_kill_permission(sig, info, p);
3291 * The null signal is a permissions and process existence
3292 * probe. No signal is actually delivered.
3294 if (!error && sig) {
3295 error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3297 * If lock_task_sighand() failed we pretend the task
3298 * dies after receiving the signal. The window is tiny,
3299 * and the signal is private anyway.
3301 if (unlikely(error == -ESRCH))
3302 error = 0;
3305 rcu_read_unlock();
3307 return error;
3310 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3312 struct siginfo info;
3314 clear_siginfo(&info);
3315 info.si_signo = sig;
3316 info.si_errno = 0;
3317 info.si_code = SI_TKILL;
3318 info.si_pid = task_tgid_vnr(current);
3319 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3321 return do_send_specific(tgid, pid, sig, &info);
3325 * sys_tgkill - send signal to one specific thread
3326 * @tgid: the thread group ID of the thread
3327 * @pid: the PID of the thread
3328 * @sig: signal to be sent
3330 * This syscall also checks the @tgid and returns -ESRCH even if the PID
3331 * exists but it's not belonging to the target process anymore. This
3332 * method solves the problem of threads exiting and PIDs getting reused.
3334 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3336 /* This is only valid for single tasks */
3337 if (pid <= 0 || tgid <= 0)
3338 return -EINVAL;
3340 return do_tkill(tgid, pid, sig);
3344 * sys_tkill - send signal to one specific task
3345 * @pid: the PID of the task
3346 * @sig: signal to be sent
3348 * Send a signal to only one task, even if it's a CLONE_THREAD task.
3350 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3352 /* This is only valid for single tasks */
3353 if (pid <= 0)
3354 return -EINVAL;
3356 return do_tkill(0, pid, sig);
3359 static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info)
3361 /* Not even root can pretend to send signals from the kernel.
3362 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3364 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3365 (task_pid_vnr(current) != pid))
3366 return -EPERM;
3368 info->si_signo = sig;
3370 /* POSIX.1b doesn't mention process groups. */
3371 return kill_proc_info(sig, info, pid);
3375 * sys_rt_sigqueueinfo - send signal information to a signal
3376 * @pid: the PID of the thread
3377 * @sig: signal to be sent
3378 * @uinfo: signal info to be sent
3380 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3381 siginfo_t __user *, uinfo)
3383 siginfo_t info;
3384 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3385 return -EFAULT;
3386 return do_rt_sigqueueinfo(pid, sig, &info);
3389 #ifdef CONFIG_COMPAT
3390 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3391 compat_pid_t, pid,
3392 int, sig,
3393 struct compat_siginfo __user *, uinfo)
3395 siginfo_t info;
3396 int ret = copy_siginfo_from_user32(&info, uinfo);
3397 if (unlikely(ret))
3398 return ret;
3399 return do_rt_sigqueueinfo(pid, sig, &info);
3401 #endif
3403 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
3405 /* This is only valid for single tasks */
3406 if (pid <= 0 || tgid <= 0)
3407 return -EINVAL;
3409 /* Not even root can pretend to send signals from the kernel.
3410 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3412 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3413 (task_pid_vnr(current) != pid))
3414 return -EPERM;
3416 info->si_signo = sig;
3418 return do_send_specific(tgid, pid, sig, info);
3421 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3422 siginfo_t __user *, uinfo)
3424 siginfo_t info;
3426 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3427 return -EFAULT;
3429 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3432 #ifdef CONFIG_COMPAT
3433 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3434 compat_pid_t, tgid,
3435 compat_pid_t, pid,
3436 int, sig,
3437 struct compat_siginfo __user *, uinfo)
3439 siginfo_t info;
3441 if (copy_siginfo_from_user32(&info, uinfo))
3442 return -EFAULT;
3443 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3445 #endif
3448 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3450 void kernel_sigaction(int sig, __sighandler_t action)
3452 spin_lock_irq(&current->sighand->siglock);
3453 current->sighand->action[sig - 1].sa.sa_handler = action;
3454 if (action == SIG_IGN) {
3455 sigset_t mask;
3457 sigemptyset(&mask);
3458 sigaddset(&mask, sig);
3460 flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3461 flush_sigqueue_mask(&mask, &current->pending);
3462 recalc_sigpending();
3464 spin_unlock_irq(&current->sighand->siglock);
3466 EXPORT_SYMBOL(kernel_sigaction);
3468 void __weak sigaction_compat_abi(struct k_sigaction *act,
3469 struct k_sigaction *oact)
3473 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3475 struct task_struct *p = current, *t;
3476 struct k_sigaction *k;
3477 sigset_t mask;
3479 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3480 return -EINVAL;
3482 k = &p->sighand->action[sig-1];
3484 spin_lock_irq(&p->sighand->siglock);
3485 if (oact)
3486 *oact = *k;
3488 sigaction_compat_abi(act, oact);
3490 if (act) {
3491 sigdelsetmask(&act->sa.sa_mask,
3492 sigmask(SIGKILL) | sigmask(SIGSTOP));
3493 *k = *act;
3495 * POSIX 3.3.1.3:
3496 * "Setting a signal action to SIG_IGN for a signal that is
3497 * pending shall cause the pending signal to be discarded,
3498 * whether or not it is blocked."
3500 * "Setting a signal action to SIG_DFL for a signal that is
3501 * pending and whose default action is to ignore the signal
3502 * (for example, SIGCHLD), shall cause the pending signal to
3503 * be discarded, whether or not it is blocked"
3505 if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3506 sigemptyset(&mask);
3507 sigaddset(&mask, sig);
3508 flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3509 for_each_thread(p, t)
3510 flush_sigqueue_mask(&mask, &t->pending);
3514 spin_unlock_irq(&p->sighand->siglock);
3515 return 0;
3518 static int
3519 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
3520 size_t min_ss_size)
3522 struct task_struct *t = current;
3524 if (oss) {
3525 memset(oss, 0, sizeof(stack_t));
3526 oss->ss_sp = (void __user *) t->sas_ss_sp;
3527 oss->ss_size = t->sas_ss_size;
3528 oss->ss_flags = sas_ss_flags(sp) |
3529 (current->sas_ss_flags & SS_FLAG_BITS);
3532 if (ss) {
3533 void __user *ss_sp = ss->ss_sp;
3534 size_t ss_size = ss->ss_size;
3535 unsigned ss_flags = ss->ss_flags;
3536 int ss_mode;
3538 if (unlikely(on_sig_stack(sp)))
3539 return -EPERM;
3541 ss_mode = ss_flags & ~SS_FLAG_BITS;
3542 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
3543 ss_mode != 0))
3544 return -EINVAL;
3546 if (ss_mode == SS_DISABLE) {
3547 ss_size = 0;
3548 ss_sp = NULL;
3549 } else {
3550 if (unlikely(ss_size < min_ss_size))
3551 return -ENOMEM;
3554 t->sas_ss_sp = (unsigned long) ss_sp;
3555 t->sas_ss_size = ss_size;
3556 t->sas_ss_flags = ss_flags;
3558 return 0;
3561 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3563 stack_t new, old;
3564 int err;
3565 if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
3566 return -EFAULT;
3567 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
3568 current_user_stack_pointer(),
3569 MINSIGSTKSZ);
3570 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
3571 err = -EFAULT;
3572 return err;
3575 int restore_altstack(const stack_t __user *uss)
3577 stack_t new;
3578 if (copy_from_user(&new, uss, sizeof(stack_t)))
3579 return -EFAULT;
3580 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
3581 MINSIGSTKSZ);
3582 /* squash all but EFAULT for now */
3583 return 0;
3586 int __save_altstack(stack_t __user *uss, unsigned long sp)
3588 struct task_struct *t = current;
3589 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3590 __put_user(t->sas_ss_flags, &uss->ss_flags) |
3591 __put_user(t->sas_ss_size, &uss->ss_size);
3592 if (err)
3593 return err;
3594 if (t->sas_ss_flags & SS_AUTODISARM)
3595 sas_ss_reset(t);
3596 return 0;
3599 #ifdef CONFIG_COMPAT
3600 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
3601 compat_stack_t __user *uoss_ptr)
3603 stack_t uss, uoss;
3604 int ret;
3606 if (uss_ptr) {
3607 compat_stack_t uss32;
3608 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3609 return -EFAULT;
3610 uss.ss_sp = compat_ptr(uss32.ss_sp);
3611 uss.ss_flags = uss32.ss_flags;
3612 uss.ss_size = uss32.ss_size;
3614 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
3615 compat_user_stack_pointer(),
3616 COMPAT_MINSIGSTKSZ);
3617 if (ret >= 0 && uoss_ptr) {
3618 compat_stack_t old;
3619 memset(&old, 0, sizeof(old));
3620 old.ss_sp = ptr_to_compat(uoss.ss_sp);
3621 old.ss_flags = uoss.ss_flags;
3622 old.ss_size = uoss.ss_size;
3623 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
3624 ret = -EFAULT;
3626 return ret;
3629 COMPAT_SYSCALL_DEFINE2(sigaltstack,
3630 const compat_stack_t __user *, uss_ptr,
3631 compat_stack_t __user *, uoss_ptr)
3633 return do_compat_sigaltstack(uss_ptr, uoss_ptr);
3636 int compat_restore_altstack(const compat_stack_t __user *uss)
3638 int err = do_compat_sigaltstack(uss, NULL);
3639 /* squash all but -EFAULT for now */
3640 return err == -EFAULT ? err : 0;
3643 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3645 int err;
3646 struct task_struct *t = current;
3647 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
3648 &uss->ss_sp) |
3649 __put_user(t->sas_ss_flags, &uss->ss_flags) |
3650 __put_user(t->sas_ss_size, &uss->ss_size);
3651 if (err)
3652 return err;
3653 if (t->sas_ss_flags & SS_AUTODISARM)
3654 sas_ss_reset(t);
3655 return 0;
3657 #endif
3659 #ifdef __ARCH_WANT_SYS_SIGPENDING
3662 * sys_sigpending - examine pending signals
3663 * @uset: where mask of pending signal is returned
3665 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
3667 sigset_t set;
3669 if (sizeof(old_sigset_t) > sizeof(*uset))
3670 return -EINVAL;
3672 do_sigpending(&set);
3674 if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
3675 return -EFAULT;
3677 return 0;
3680 #ifdef CONFIG_COMPAT
3681 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
3683 sigset_t set;
3685 do_sigpending(&set);
3687 return put_user(set.sig[0], set32);
3689 #endif
3691 #endif
3693 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
3695 * sys_sigprocmask - examine and change blocked signals
3696 * @how: whether to add, remove, or set signals
3697 * @nset: signals to add or remove (if non-null)
3698 * @oset: previous value of signal mask if non-null
3700 * Some platforms have their own version with special arguments;
3701 * others support only sys_rt_sigprocmask.
3704 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3705 old_sigset_t __user *, oset)
3707 old_sigset_t old_set, new_set;
3708 sigset_t new_blocked;
3710 old_set = current->blocked.sig[0];
3712 if (nset) {
3713 if (copy_from_user(&new_set, nset, sizeof(*nset)))
3714 return -EFAULT;
3716 new_blocked = current->blocked;
3718 switch (how) {
3719 case SIG_BLOCK:
3720 sigaddsetmask(&new_blocked, new_set);
3721 break;
3722 case SIG_UNBLOCK:
3723 sigdelsetmask(&new_blocked, new_set);
3724 break;
3725 case SIG_SETMASK:
3726 new_blocked.sig[0] = new_set;
3727 break;
3728 default:
3729 return -EINVAL;
3732 set_current_blocked(&new_blocked);
3735 if (oset) {
3736 if (copy_to_user(oset, &old_set, sizeof(*oset)))
3737 return -EFAULT;
3740 return 0;
3742 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3744 #ifndef CONFIG_ODD_RT_SIGACTION
3746 * sys_rt_sigaction - alter an action taken by a process
3747 * @sig: signal to be sent
3748 * @act: new sigaction
3749 * @oact: used to save the previous sigaction
3750 * @sigsetsize: size of sigset_t type
3752 SYSCALL_DEFINE4(rt_sigaction, int, sig,
3753 const struct sigaction __user *, act,
3754 struct sigaction __user *, oact,
3755 size_t, sigsetsize)
3757 struct k_sigaction new_sa, old_sa;
3758 int ret;
3760 /* XXX: Don't preclude handling different sized sigset_t's. */
3761 if (sigsetsize != sizeof(sigset_t))
3762 return -EINVAL;
3764 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3765 return -EFAULT;
3767 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3768 if (ret)
3769 return ret;
3771 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3772 return -EFAULT;
3774 return 0;
3776 #ifdef CONFIG_COMPAT
3777 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
3778 const struct compat_sigaction __user *, act,
3779 struct compat_sigaction __user *, oact,
3780 compat_size_t, sigsetsize)
3782 struct k_sigaction new_ka, old_ka;
3783 #ifdef __ARCH_HAS_SA_RESTORER
3784 compat_uptr_t restorer;
3785 #endif
3786 int ret;
3788 /* XXX: Don't preclude handling different sized sigset_t's. */
3789 if (sigsetsize != sizeof(compat_sigset_t))
3790 return -EINVAL;
3792 if (act) {
3793 compat_uptr_t handler;
3794 ret = get_user(handler, &act->sa_handler);
3795 new_ka.sa.sa_handler = compat_ptr(handler);
3796 #ifdef __ARCH_HAS_SA_RESTORER
3797 ret |= get_user(restorer, &act->sa_restorer);
3798 new_ka.sa.sa_restorer = compat_ptr(restorer);
3799 #endif
3800 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
3801 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
3802 if (ret)
3803 return -EFAULT;
3806 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3807 if (!ret && oact) {
3808 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
3809 &oact->sa_handler);
3810 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
3811 sizeof(oact->sa_mask));
3812 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
3813 #ifdef __ARCH_HAS_SA_RESTORER
3814 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3815 &oact->sa_restorer);
3816 #endif
3818 return ret;
3820 #endif
3821 #endif /* !CONFIG_ODD_RT_SIGACTION */
3823 #ifdef CONFIG_OLD_SIGACTION
3824 SYSCALL_DEFINE3(sigaction, int, sig,
3825 const struct old_sigaction __user *, act,
3826 struct old_sigaction __user *, oact)
3828 struct k_sigaction new_ka, old_ka;
3829 int ret;
3831 if (act) {
3832 old_sigset_t mask;
3833 if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3834 __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
3835 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
3836 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3837 __get_user(mask, &act->sa_mask))
3838 return -EFAULT;
3839 #ifdef __ARCH_HAS_KA_RESTORER
3840 new_ka.ka_restorer = NULL;
3841 #endif
3842 siginitset(&new_ka.sa.sa_mask, mask);
3845 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3847 if (!ret && oact) {
3848 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3849 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
3850 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
3851 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3852 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3853 return -EFAULT;
3856 return ret;
3858 #endif
3859 #ifdef CONFIG_COMPAT_OLD_SIGACTION
3860 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
3861 const struct compat_old_sigaction __user *, act,
3862 struct compat_old_sigaction __user *, oact)
3864 struct k_sigaction new_ka, old_ka;
3865 int ret;
3866 compat_old_sigset_t mask;
3867 compat_uptr_t handler, restorer;
3869 if (act) {
3870 if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3871 __get_user(handler, &act->sa_handler) ||
3872 __get_user(restorer, &act->sa_restorer) ||
3873 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3874 __get_user(mask, &act->sa_mask))
3875 return -EFAULT;
3877 #ifdef __ARCH_HAS_KA_RESTORER
3878 new_ka.ka_restorer = NULL;
3879 #endif
3880 new_ka.sa.sa_handler = compat_ptr(handler);
3881 new_ka.sa.sa_restorer = compat_ptr(restorer);
3882 siginitset(&new_ka.sa.sa_mask, mask);
3885 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3887 if (!ret && oact) {
3888 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3889 __put_user(ptr_to_compat(old_ka.sa.sa_handler),
3890 &oact->sa_handler) ||
3891 __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3892 &oact->sa_restorer) ||
3893 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3894 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3895 return -EFAULT;
3897 return ret;
3899 #endif
3901 #ifdef CONFIG_SGETMASK_SYSCALL
3904 * For backwards compatibility. Functionality superseded by sigprocmask.
3906 SYSCALL_DEFINE0(sgetmask)
3908 /* SMP safe */
3909 return current->blocked.sig[0];
3912 SYSCALL_DEFINE1(ssetmask, int, newmask)
3914 int old = current->blocked.sig[0];
3915 sigset_t newset;
3917 siginitset(&newset, newmask);
3918 set_current_blocked(&newset);
3920 return old;
3922 #endif /* CONFIG_SGETMASK_SYSCALL */
3924 #ifdef __ARCH_WANT_SYS_SIGNAL
3926 * For backwards compatibility. Functionality superseded by sigaction.
3928 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3930 struct k_sigaction new_sa, old_sa;
3931 int ret;
3933 new_sa.sa.sa_handler = handler;
3934 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3935 sigemptyset(&new_sa.sa.sa_mask);
3937 ret = do_sigaction(sig, &new_sa, &old_sa);
3939 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3941 #endif /* __ARCH_WANT_SYS_SIGNAL */
3943 #ifdef __ARCH_WANT_SYS_PAUSE
3945 SYSCALL_DEFINE0(pause)
3947 while (!signal_pending(current)) {
3948 __set_current_state(TASK_INTERRUPTIBLE);
3949 schedule();
3951 return -ERESTARTNOHAND;
3954 #endif
3956 static int sigsuspend(sigset_t *set)
3958 current->saved_sigmask = current->blocked;
3959 set_current_blocked(set);
3961 while (!signal_pending(current)) {
3962 __set_current_state(TASK_INTERRUPTIBLE);
3963 schedule();
3965 set_restore_sigmask();
3966 return -ERESTARTNOHAND;
3970 * sys_rt_sigsuspend - replace the signal mask for a value with the
3971 * @unewset value until a signal is received
3972 * @unewset: new signal mask value
3973 * @sigsetsize: size of sigset_t type
3975 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3977 sigset_t newset;
3979 /* XXX: Don't preclude handling different sized sigset_t's. */
3980 if (sigsetsize != sizeof(sigset_t))
3981 return -EINVAL;
3983 if (copy_from_user(&newset, unewset, sizeof(newset)))
3984 return -EFAULT;
3985 return sigsuspend(&newset);
3988 #ifdef CONFIG_COMPAT
3989 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
3991 sigset_t newset;
3993 /* XXX: Don't preclude handling different sized sigset_t's. */
3994 if (sigsetsize != sizeof(sigset_t))
3995 return -EINVAL;
3997 if (get_compat_sigset(&newset, unewset))
3998 return -EFAULT;
3999 return sigsuspend(&newset);
4001 #endif
4003 #ifdef CONFIG_OLD_SIGSUSPEND
4004 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4006 sigset_t blocked;
4007 siginitset(&blocked, mask);
4008 return sigsuspend(&blocked);
4010 #endif
4011 #ifdef CONFIG_OLD_SIGSUSPEND3
4012 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4014 sigset_t blocked;
4015 siginitset(&blocked, mask);
4016 return sigsuspend(&blocked);
4018 #endif
4020 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4022 return NULL;
4025 void __init signals_init(void)
4027 /* If this check fails, the __ARCH_SI_PREAMBLE_SIZE value is wrong! */
4028 BUILD_BUG_ON(__ARCH_SI_PREAMBLE_SIZE
4029 != offsetof(struct siginfo, _sifields._pad));
4030 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4032 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
4035 #ifdef CONFIG_KGDB_KDB
4036 #include <linux/kdb.h>
4038 * kdb_send_sig - Allows kdb to send signals without exposing
4039 * signal internals. This function checks if the required locks are
4040 * available before calling the main signal code, to avoid kdb
4041 * deadlocks.
4043 void kdb_send_sig(struct task_struct *t, int sig)
4045 static struct task_struct *kdb_prev_t;
4046 int new_t, ret;
4047 if (!spin_trylock(&t->sighand->siglock)) {
4048 kdb_printf("Can't do kill command now.\n"
4049 "The sigmask lock is held somewhere else in "
4050 "kernel, try again later\n");
4051 return;
4053 new_t = kdb_prev_t != t;
4054 kdb_prev_t = t;
4055 if (t->state != TASK_RUNNING && new_t) {
4056 spin_unlock(&t->sighand->siglock);
4057 kdb_printf("Process is not RUNNING, sending a signal from "
4058 "kdb risks deadlock\n"
4059 "on the run queue locks. "
4060 "The signal has _not_ been sent.\n"
4061 "Reissue the kill command if you want to risk "
4062 "the deadlock.\n");
4063 return;
4065 ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4066 spin_unlock(&t->sighand->siglock);
4067 if (ret)
4068 kdb_printf("Fail to deliver Signal %d to process %d.\n",
4069 sig, t->pid);
4070 else
4071 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4073 #endif /* CONFIG_KGDB_KDB */