1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Real Time Clock interface for Linux
5 * Copyright (C) 1996 Paul Gortmaker
7 * This driver allows use of the real time clock (built into
8 * nearly all computers) from user space. It exports the /dev/rtc
9 * interface supporting various ioctl() and also the
10 * /proc/driver/rtc pseudo-file for status information.
12 * The ioctls can be used to set the interrupt behaviour and
13 * generation rate from the RTC via IRQ 8. Then the /dev/rtc
14 * interface can be used to make use of these timer interrupts,
15 * be they interval or alarm based.
17 * The /dev/rtc interface will block on reads until an interrupt
18 * has been received. If a RTC interrupt has already happened,
19 * it will output an unsigned long and then block. The output value
20 * contains the interrupt status in the low byte and the number of
21 * interrupts since the last read in the remaining high bytes. The
22 * /dev/rtc interface can also be used with the select(2) call.
24 * Based on other minimal char device drivers, like Alan's
25 * watchdog, Ted's random, etc. etc.
27 * 1.07 Paul Gortmaker.
28 * 1.08 Miquel van Smoorenburg: disallow certain things on the
29 * DEC Alpha as the CMOS clock is also used for other things.
30 * 1.09 Nikita Schmidt: epoch support and some Alpha cleanup.
31 * 1.09a Pete Zaitcev: Sun SPARC
32 * 1.09b Jeff Garzik: Modularize, init cleanup
33 * 1.09c Jeff Garzik: SMP cleanup
34 * 1.10 Paul Barton-Davis: add support for async I/O
35 * 1.10a Andrea Arcangeli: Alpha updates
36 * 1.10b Andrew Morton: SMP lock fix
37 * 1.10c Cesar Barros: SMP locking fixes and cleanup
38 * 1.10d Paul Gortmaker: delete paranoia check in rtc_exit
39 * 1.10e Maciej W. Rozycki: Handle DECstation's year weirdness.
40 * 1.11 Takashi Iwai: Kernel access functions
41 * rtc_register/rtc_unregister/rtc_control
42 * 1.11a Daniele Bellucci: Audit create_proc_read_entry in rtc_init
43 * 1.12 Venkatesh Pallipadi: Hooks for emulating rtc on HPET base-timer
44 * CONFIG_HPET_EMULATE_RTC
45 * 1.12a Maciej W. Rozycki: Handle memory-mapped chips properly.
46 * 1.12ac Alan Cox: Allow read access to the day of week register
47 * 1.12b David John: Remove calls to the BKL.
50 #define RTC_VERSION "1.12b"
53 * Note that *all* calls to CMOS_READ and CMOS_WRITE are done with
54 * interrupts disabled. Due to the index-port/data-port (0x70/0x71)
55 * design of the RTC, we don't want two different things trying to
56 * get to it at once. (e.g. the periodic 11 min sync from
57 * kernel/time/ntp.c vs. this driver.)
60 #include <linux/interrupt.h>
61 #include <linux/module.h>
62 #include <linux/kernel.h>
63 #include <linux/types.h>
64 #include <linux/miscdevice.h>
65 #include <linux/ioport.h>
66 #include <linux/fcntl.h>
67 #include <linux/mc146818rtc.h>
68 #include <linux/init.h>
69 #include <linux/poll.h>
70 #include <linux/proc_fs.h>
71 #include <linux/seq_file.h>
72 #include <linux/spinlock.h>
73 #include <linux/sched/signal.h>
74 #include <linux/sysctl.h>
75 #include <linux/wait.h>
76 #include <linux/bcd.h>
77 #include <linux/delay.h>
78 #include <linux/uaccess.h>
79 #include <linux/ratelimit.h>
81 #include <asm/current.h>
89 #include <linux/of_device.h>
92 static unsigned long rtc_port
;
96 #ifdef CONFIG_HPET_EMULATE_RTC
101 static int rtc_has_irq
= 1;
104 #ifndef CONFIG_HPET_EMULATE_RTC
105 #define is_hpet_enabled() 0
106 #define hpet_set_alarm_time(hrs, min, sec) 0
107 #define hpet_set_periodic_freq(arg) 0
108 #define hpet_mask_rtc_irq_bit(arg) 0
109 #define hpet_set_rtc_irq_bit(arg) 0
110 #define hpet_rtc_timer_init() do { } while (0)
111 #define hpet_rtc_dropped_irq() 0
112 #define hpet_register_irq_handler(h) ({ 0; })
113 #define hpet_unregister_irq_handler(h) ({ 0; })
115 static irqreturn_t
hpet_rtc_interrupt(int irq
, void *dev_id
)
123 * We sponge a minor off of the misc major. No need slurping
124 * up another valuable major dev number for this. If you add
125 * an ioctl, make sure you don't conflict with SPARC's RTC
129 static struct fasync_struct
*rtc_async_queue
;
131 static DECLARE_WAIT_QUEUE_HEAD(rtc_wait
);
134 static void rtc_dropped_irq(struct timer_list
*unused
);
136 static DEFINE_TIMER(rtc_irq_timer
, rtc_dropped_irq
);
139 static ssize_t
rtc_read(struct file
*file
, char __user
*buf
,
140 size_t count
, loff_t
*ppos
);
142 static long rtc_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
);
143 static void rtc_get_rtc_time(struct rtc_time
*rtc_tm
);
146 static __poll_t
rtc_poll(struct file
*file
, poll_table
*wait
);
149 static void get_rtc_alm_time(struct rtc_time
*alm_tm
);
151 static void set_rtc_irq_bit_locked(unsigned char bit
);
152 static void mask_rtc_irq_bit_locked(unsigned char bit
);
154 static inline void set_rtc_irq_bit(unsigned char bit
)
156 spin_lock_irq(&rtc_lock
);
157 set_rtc_irq_bit_locked(bit
);
158 spin_unlock_irq(&rtc_lock
);
161 static void mask_rtc_irq_bit(unsigned char bit
)
163 spin_lock_irq(&rtc_lock
);
164 mask_rtc_irq_bit_locked(bit
);
165 spin_unlock_irq(&rtc_lock
);
169 #ifdef CONFIG_PROC_FS
170 static int rtc_proc_show(struct seq_file
*seq
, void *v
);
174 * Bits in rtc_status. (6 bits of room for future expansion)
177 #define RTC_IS_OPEN 0x01 /* means /dev/rtc is in use */
178 #define RTC_TIMER_ON 0x02 /* missed irq timer active */
181 * rtc_status is never changed by rtc_interrupt, and ioctl/open/close is
182 * protected by the spin lock rtc_lock. However, ioctl can still disable the
183 * timer in rtc_status and then with del_timer after the interrupt has read
184 * rtc_status but before mod_timer is called, which would then reenable the
185 * timer (but you would need to have an awful timing before you'd trip on it)
187 static unsigned long rtc_status
; /* bitmapped status byte. */
188 static unsigned long rtc_freq
; /* Current periodic IRQ rate */
189 static unsigned long rtc_irq_data
; /* our output to the world */
190 static unsigned long rtc_max_user_freq
= 64; /* > this, need CAP_SYS_RESOURCE */
193 * If this driver ever becomes modularised, it will be really nice
194 * to make the epoch retain its value across module reload...
197 static unsigned long epoch
= 1900; /* year corresponding to 0x00 */
199 static const unsigned char days_in_mo
[] =
200 {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
203 * Returns true if a clock update is in progress
205 static inline unsigned char rtc_is_updating(void)
210 spin_lock_irqsave(&rtc_lock
, flags
);
211 uip
= (CMOS_READ(RTC_FREQ_SELECT
) & RTC_UIP
);
212 spin_unlock_irqrestore(&rtc_lock
, flags
);
218 * A very tiny interrupt handler. It runs with interrupts disabled,
219 * but there is possibility of conflicting with the set_rtc_mmss()
220 * call (the rtc irq and the timer irq can easily run at the same
221 * time in two different CPUs). So we need to serialize
222 * accesses to the chip with the rtc_lock spinlock that each
223 * architecture should implement in the timer code.
224 * (See ./arch/XXXX/kernel/time.c for the set_rtc_mmss() function.)
227 static irqreturn_t
rtc_interrupt(int irq
, void *dev_id
)
230 * Can be an alarm interrupt, update complete interrupt,
231 * or a periodic interrupt. We store the status in the
232 * low byte and the number of interrupts received since
233 * the last read in the remainder of rtc_irq_data.
236 spin_lock(&rtc_lock
);
237 rtc_irq_data
+= 0x100;
238 rtc_irq_data
&= ~0xff;
239 if (is_hpet_enabled()) {
241 * In this case it is HPET RTC interrupt handler
242 * calling us, with the interrupt information
243 * passed as arg1, instead of irq.
245 rtc_irq_data
|= (unsigned long)irq
& 0xF0;
247 rtc_irq_data
|= (CMOS_READ(RTC_INTR_FLAGS
) & 0xF0);
250 if (rtc_status
& RTC_TIMER_ON
)
251 mod_timer(&rtc_irq_timer
, jiffies
+ HZ
/rtc_freq
+ 2*HZ
/100);
253 spin_unlock(&rtc_lock
);
255 wake_up_interruptible(&rtc_wait
);
257 kill_fasync(&rtc_async_queue
, SIGIO
, POLL_IN
);
264 * sysctl-tuning infrastructure.
266 static struct ctl_table rtc_table
[] = {
268 .procname
= "max-user-freq",
269 .data
= &rtc_max_user_freq
,
270 .maxlen
= sizeof(int),
272 .proc_handler
= proc_dointvec
,
277 static struct ctl_table rtc_root
[] = {
286 static struct ctl_table dev_root
[] = {
295 static struct ctl_table_header
*sysctl_header
;
297 static int __init
init_sysctl(void)
299 sysctl_header
= register_sysctl_table(dev_root
);
303 static void __exit
cleanup_sysctl(void)
305 unregister_sysctl_table(sysctl_header
);
309 * Now all the various file operations that we export.
312 static ssize_t
rtc_read(struct file
*file
, char __user
*buf
,
313 size_t count
, loff_t
*ppos
)
318 DECLARE_WAITQUEUE(wait
, current
);
322 if (rtc_has_irq
== 0)
326 * Historically this function used to assume that sizeof(unsigned long)
327 * is the same in userspace and kernelspace. This lead to problems
328 * for configurations with multiple ABIs such a the MIPS o32 and 64
329 * ABIs supported on the same kernel. So now we support read of both
330 * 4 and 8 bytes and assume that's the sizeof(unsigned long) in the
333 if (count
!= sizeof(unsigned int) && count
!= sizeof(unsigned long))
336 add_wait_queue(&rtc_wait
, &wait
);
339 /* First make it right. Then make it fast. Putting this whole
340 * block within the parentheses of a while would be too
341 * confusing. And no, xchg() is not the answer. */
343 __set_current_state(TASK_INTERRUPTIBLE
);
345 spin_lock_irq(&rtc_lock
);
348 spin_unlock_irq(&rtc_lock
);
353 if (file
->f_flags
& O_NONBLOCK
) {
357 if (signal_pending(current
)) {
358 retval
= -ERESTARTSYS
;
364 if (count
== sizeof(unsigned int)) {
365 retval
= put_user(data
,
366 (unsigned int __user
*)buf
) ?: sizeof(int);
368 retval
= put_user(data
,
369 (unsigned long __user
*)buf
) ?: sizeof(long);
374 __set_current_state(TASK_RUNNING
);
375 remove_wait_queue(&rtc_wait
, &wait
);
381 static int rtc_do_ioctl(unsigned int cmd
, unsigned long arg
, int kernel
)
383 struct rtc_time wtime
;
386 if (rtc_has_irq
== 0) {
403 case RTC_AIE_OFF
: /* Mask alarm int. enab. bit */
405 mask_rtc_irq_bit(RTC_AIE
);
408 case RTC_AIE_ON
: /* Allow alarm interrupts. */
410 set_rtc_irq_bit(RTC_AIE
);
413 case RTC_PIE_OFF
: /* Mask periodic int. enab. bit */
415 /* can be called from isr via rtc_control() */
418 spin_lock_irqsave(&rtc_lock
, flags
);
419 mask_rtc_irq_bit_locked(RTC_PIE
);
420 if (rtc_status
& RTC_TIMER_ON
) {
421 rtc_status
&= ~RTC_TIMER_ON
;
422 del_timer(&rtc_irq_timer
);
424 spin_unlock_irqrestore(&rtc_lock
, flags
);
428 case RTC_PIE_ON
: /* Allow periodic ints */
430 /* can be called from isr via rtc_control() */
434 * We don't really want Joe User enabling more
435 * than 64Hz of interrupts on a multi-user machine.
437 if (!kernel
&& (rtc_freq
> rtc_max_user_freq
) &&
438 (!capable(CAP_SYS_RESOURCE
)))
441 spin_lock_irqsave(&rtc_lock
, flags
);
442 if (!(rtc_status
& RTC_TIMER_ON
)) {
443 mod_timer(&rtc_irq_timer
, jiffies
+ HZ
/rtc_freq
+
445 rtc_status
|= RTC_TIMER_ON
;
447 set_rtc_irq_bit_locked(RTC_PIE
);
448 spin_unlock_irqrestore(&rtc_lock
, flags
);
452 case RTC_UIE_OFF
: /* Mask ints from RTC updates. */
454 mask_rtc_irq_bit(RTC_UIE
);
457 case RTC_UIE_ON
: /* Allow ints for RTC updates. */
459 set_rtc_irq_bit(RTC_UIE
);
463 case RTC_ALM_READ
: /* Read the present alarm time */
466 * This returns a struct rtc_time. Reading >= 0xc0
467 * means "don't care" or "match all". Only the tm_hour,
468 * tm_min, and tm_sec values are filled in.
470 memset(&wtime
, 0, sizeof(struct rtc_time
));
471 get_rtc_alm_time(&wtime
);
474 case RTC_ALM_SET
: /* Store a time into the alarm */
477 * This expects a struct rtc_time. Writing 0xff means
478 * "don't care" or "match all". Only the tm_hour,
479 * tm_min and tm_sec are used.
481 unsigned char hrs
, min
, sec
;
482 struct rtc_time alm_tm
;
484 if (copy_from_user(&alm_tm
, (struct rtc_time __user
*)arg
,
485 sizeof(struct rtc_time
)))
488 hrs
= alm_tm
.tm_hour
;
492 spin_lock_irq(&rtc_lock
);
493 if (hpet_set_alarm_time(hrs
, min
, sec
)) {
495 * Fallthru and set alarm time in CMOS too,
496 * so that we will get proper value in RTC_ALM_READ
499 if (!(CMOS_READ(RTC_CONTROL
) & RTC_DM_BINARY
) ||
516 CMOS_WRITE(hrs
, RTC_HOURS_ALARM
);
517 CMOS_WRITE(min
, RTC_MINUTES_ALARM
);
518 CMOS_WRITE(sec
, RTC_SECONDS_ALARM
);
519 spin_unlock_irq(&rtc_lock
);
523 case RTC_RD_TIME
: /* Read the time/date from RTC */
525 memset(&wtime
, 0, sizeof(struct rtc_time
));
526 rtc_get_rtc_time(&wtime
);
529 case RTC_SET_TIME
: /* Set the RTC */
531 struct rtc_time rtc_tm
;
532 unsigned char mon
, day
, hrs
, min
, sec
, leap_yr
;
533 unsigned char save_control
, save_freq_select
;
535 #ifdef CONFIG_MACH_DECSTATION
536 unsigned int real_yrs
;
539 if (!capable(CAP_SYS_TIME
))
542 if (copy_from_user(&rtc_tm
, (struct rtc_time __user
*)arg
,
543 sizeof(struct rtc_time
)))
546 yrs
= rtc_tm
.tm_year
+ 1900;
547 mon
= rtc_tm
.tm_mon
+ 1; /* tm_mon starts at zero */
548 day
= rtc_tm
.tm_mday
;
549 hrs
= rtc_tm
.tm_hour
;
556 leap_yr
= ((!(yrs
% 4) && (yrs
% 100)) || !(yrs
% 400));
558 if ((mon
> 12) || (day
== 0))
561 if (day
> (days_in_mo
[mon
] + ((mon
== 2) && leap_yr
)))
564 if ((hrs
>= 24) || (min
>= 60) || (sec
>= 60))
568 if (yrs
> 255) /* They are unsigned */
571 spin_lock_irq(&rtc_lock
);
572 #ifdef CONFIG_MACH_DECSTATION
577 * We want to keep the year set to 73 until March
578 * for non-leap years, so that Feb, 29th is handled
581 if (!leap_yr
&& mon
< 3) {
586 /* These limits and adjustments are independent of
587 * whether the chip is in binary mode or not.
590 spin_unlock_irq(&rtc_lock
);
596 if (!(CMOS_READ(RTC_CONTROL
) & RTC_DM_BINARY
)
606 save_control
= CMOS_READ(RTC_CONTROL
);
607 CMOS_WRITE((save_control
|RTC_SET
), RTC_CONTROL
);
608 save_freq_select
= CMOS_READ(RTC_FREQ_SELECT
);
609 CMOS_WRITE((save_freq_select
|RTC_DIV_RESET2
), RTC_FREQ_SELECT
);
611 #ifdef CONFIG_MACH_DECSTATION
612 CMOS_WRITE(real_yrs
, RTC_DEC_YEAR
);
614 CMOS_WRITE(yrs
, RTC_YEAR
);
615 CMOS_WRITE(mon
, RTC_MONTH
);
616 CMOS_WRITE(day
, RTC_DAY_OF_MONTH
);
617 CMOS_WRITE(hrs
, RTC_HOURS
);
618 CMOS_WRITE(min
, RTC_MINUTES
);
619 CMOS_WRITE(sec
, RTC_SECONDS
);
621 CMOS_WRITE(save_control
, RTC_CONTROL
);
622 CMOS_WRITE(save_freq_select
, RTC_FREQ_SELECT
);
624 spin_unlock_irq(&rtc_lock
);
628 case RTC_IRQP_READ
: /* Read the periodic IRQ rate. */
630 return put_user(rtc_freq
, (unsigned long __user
*)arg
);
632 case RTC_IRQP_SET
: /* Set periodic IRQ rate. */
636 /* can be called from isr via rtc_control() */
640 * The max we can do is 8192Hz.
642 if ((arg
< 2) || (arg
> 8192))
645 * We don't really want Joe User generating more
646 * than 64Hz of interrupts on a multi-user machine.
648 if (!kernel
&& (arg
> rtc_max_user_freq
) &&
649 !capable(CAP_SYS_RESOURCE
))
652 while (arg
> (1<<tmp
))
656 * Check that the input was really a power of 2.
663 spin_lock_irqsave(&rtc_lock
, flags
);
664 if (hpet_set_periodic_freq(arg
)) {
665 spin_unlock_irqrestore(&rtc_lock
, flags
);
669 val
= CMOS_READ(RTC_FREQ_SELECT
) & 0xf0;
671 CMOS_WRITE(val
, RTC_FREQ_SELECT
);
672 spin_unlock_irqrestore(&rtc_lock
, flags
);
676 case RTC_EPOCH_READ
: /* Read the epoch. */
678 return put_user(epoch
, (unsigned long __user
*)arg
);
680 case RTC_EPOCH_SET
: /* Set the epoch. */
683 * There were no RTC clocks before 1900.
688 if (!capable(CAP_SYS_TIME
))
697 return copy_to_user((void __user
*)arg
,
698 &wtime
, sizeof wtime
) ? -EFAULT
: 0;
701 static long rtc_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
704 ret
= rtc_do_ioctl(cmd
, arg
, 0);
709 * We enforce only one user at a time here with the open/close.
710 * Also clear the previous interrupt data on an open, and clean
711 * up things on a close.
713 static int rtc_open(struct inode
*inode
, struct file
*file
)
715 spin_lock_irq(&rtc_lock
);
717 if (rtc_status
& RTC_IS_OPEN
)
720 rtc_status
|= RTC_IS_OPEN
;
723 spin_unlock_irq(&rtc_lock
);
727 spin_unlock_irq(&rtc_lock
);
731 static int rtc_fasync(int fd
, struct file
*filp
, int on
)
733 return fasync_helper(fd
, filp
, on
, &rtc_async_queue
);
736 static int rtc_release(struct inode
*inode
, struct file
*file
)
741 if (rtc_has_irq
== 0)
745 * Turn off all interrupts once the device is no longer
746 * in use, and clear the data.
749 spin_lock_irq(&rtc_lock
);
750 if (!hpet_mask_rtc_irq_bit(RTC_PIE
| RTC_AIE
| RTC_UIE
)) {
751 tmp
= CMOS_READ(RTC_CONTROL
);
755 CMOS_WRITE(tmp
, RTC_CONTROL
);
756 CMOS_READ(RTC_INTR_FLAGS
);
758 if (rtc_status
& RTC_TIMER_ON
) {
759 rtc_status
&= ~RTC_TIMER_ON
;
760 del_timer(&rtc_irq_timer
);
762 spin_unlock_irq(&rtc_lock
);
767 spin_lock_irq(&rtc_lock
);
769 rtc_status
&= ~RTC_IS_OPEN
;
770 spin_unlock_irq(&rtc_lock
);
776 static __poll_t
rtc_poll(struct file
*file
, poll_table
*wait
)
780 if (rtc_has_irq
== 0)
783 poll_wait(file
, &rtc_wait
, wait
);
785 spin_lock_irq(&rtc_lock
);
787 spin_unlock_irq(&rtc_lock
);
790 return EPOLLIN
| EPOLLRDNORM
;
796 * The various file operations we support.
799 static const struct file_operations rtc_fops
= {
800 .owner
= THIS_MODULE
,
806 .unlocked_ioctl
= rtc_ioctl
,
808 .release
= rtc_release
,
809 .fasync
= rtc_fasync
,
812 static struct miscdevice rtc_dev
= {
818 static resource_size_t rtc_size
;
820 static struct resource
* __init
rtc_request_region(resource_size_t size
)
825 r
= request_region(RTC_PORT(0), size
, "rtc");
827 r
= request_mem_region(RTC_PORT(0), size
, "rtc");
835 static void rtc_release_region(void)
838 release_region(RTC_PORT(0), rtc_size
);
840 release_mem_region(RTC_PORT(0), rtc_size
);
843 static int __init
rtc_init(void)
845 #ifdef CONFIG_PROC_FS
846 struct proc_dir_entry
*ent
;
848 #if defined(__alpha__) || defined(__mips__)
849 unsigned int year
, ctrl
;
852 #ifdef CONFIG_SPARC32
853 struct device_node
*ebus_dp
;
854 struct platform_device
*op
;
858 irq_handler_t rtc_int_handler_ptr
;
862 #ifdef CONFIG_SPARC32
863 for_each_node_by_name(ebus_dp
, "ebus") {
864 struct device_node
*dp
;
865 for_each_child_of_node(ebus_dp
, dp
) {
866 if (of_node_name_eq(dp
, "rtc")) {
867 op
= of_find_device_by_node(dp
);
869 rtc_port
= op
->resource
[0].start
;
870 rtc_irq
= op
->irqs
[0];
877 printk(KERN_ERR
"rtc_init: no PC rtc found\n");
887 * XXX Interrupt pin #7 in Espresso is shared between RTC and
888 * PCI Slot 2 INTA# (and some INTx# in Slot 1).
890 if (request_irq(rtc_irq
, rtc_interrupt
, IRQF_SHARED
, "rtc",
891 (void *)&rtc_port
)) {
893 printk(KERN_ERR
"rtc: cannot register IRQ %d\n", rtc_irq
);
898 r
= rtc_request_region(RTC_IO_EXTENT
);
901 * If we've already requested a smaller range (for example, because
902 * PNPBIOS or ACPI told us how the device is configured), the request
903 * above might fail because it's too big.
905 * If so, request just the range we actually use.
908 r
= rtc_request_region(RTC_IO_EXTENT_USED
);
913 printk(KERN_ERR
"rtc: I/O resource %lx is not free.\n",
914 (long)(RTC_PORT(0)));
919 if (is_hpet_enabled()) {
922 rtc_int_handler_ptr
= hpet_rtc_interrupt
;
923 err
= hpet_register_irq_handler(rtc_interrupt
);
925 printk(KERN_WARNING
"hpet_register_irq_handler failed "
930 rtc_int_handler_ptr
= rtc_interrupt
;
933 if (request_irq(RTC_IRQ
, rtc_int_handler_ptr
, 0, "rtc", NULL
)) {
934 /* Yeah right, seeing as irq 8 doesn't even hit the bus. */
936 printk(KERN_ERR
"rtc: IRQ %d is not free.\n", RTC_IRQ
);
937 rtc_release_region();
941 hpet_rtc_timer_init();
945 #endif /* CONFIG_SPARC32 vs. others */
947 if (misc_register(&rtc_dev
)) {
949 free_irq(RTC_IRQ
, NULL
);
950 hpet_unregister_irq_handler(rtc_interrupt
);
953 rtc_release_region();
957 #ifdef CONFIG_PROC_FS
958 ent
= proc_create_single("driver/rtc", 0, NULL
, rtc_proc_show
);
960 printk(KERN_WARNING
"rtc: Failed to register with procfs.\n");
963 #if defined(__alpha__) || defined(__mips__)
966 /* Each operating system on an Alpha uses its own epoch.
967 Let's try to guess which one we are using now. */
969 if (rtc_is_updating() != 0)
972 spin_lock_irq(&rtc_lock
);
973 year
= CMOS_READ(RTC_YEAR
);
974 ctrl
= CMOS_READ(RTC_CONTROL
);
975 spin_unlock_irq(&rtc_lock
);
977 if (!(ctrl
& RTC_DM_BINARY
) || RTC_ALWAYS_BCD
)
978 year
= bcd2bin(year
); /* This should never happen... */
982 guess
= "SRM (post-2000)";
983 } else if (year
>= 20 && year
< 48) {
985 guess
= "ARC console";
986 } else if (year
>= 48 && year
< 72) {
988 guess
= "Digital UNIX";
989 #if defined(__mips__)
990 } else if (year
>= 72 && year
< 74) {
992 guess
= "Digital DECstation";
994 } else if (year
>= 70) {
996 guess
= "Standard PC (1900)";
1000 printk(KERN_INFO
"rtc: %s epoch (%lu) detected\n",
1004 if (rtc_has_irq
== 0)
1007 spin_lock_irq(&rtc_lock
);
1009 if (!hpet_set_periodic_freq(rtc_freq
)) {
1011 * Initialize periodic frequency to CMOS reset default,
1014 CMOS_WRITE(((CMOS_READ(RTC_FREQ_SELECT
) & 0xF0) | 0x06),
1017 spin_unlock_irq(&rtc_lock
);
1021 (void) init_sysctl();
1023 printk(KERN_INFO
"Real Time Clock Driver v" RTC_VERSION
"\n");
1028 static void __exit
rtc_exit(void)
1031 remove_proc_entry("driver/rtc", NULL
);
1032 misc_deregister(&rtc_dev
);
1034 #ifdef CONFIG_SPARC32
1036 free_irq(rtc_irq
, &rtc_port
);
1038 rtc_release_region();
1041 free_irq(RTC_IRQ
, NULL
);
1042 hpet_unregister_irq_handler(hpet_rtc_interrupt
);
1045 #endif /* CONFIG_SPARC32 */
1048 module_init(rtc_init
);
1049 module_exit(rtc_exit
);
1053 * At IRQ rates >= 4096Hz, an interrupt may get lost altogether.
1054 * (usually during an IDE disk interrupt, with IRQ unmasking off)
1055 * Since the interrupt handler doesn't get called, the IRQ status
1056 * byte doesn't get read, and the RTC stops generating interrupts.
1057 * A timer is set, and will call this function if/when that happens.
1058 * To get it out of this stalled state, we just read the status.
1059 * At least a jiffy of interrupts (rtc_freq/HZ) will have been lost.
1060 * (You *really* shouldn't be trying to use a non-realtime system
1061 * for something that requires a steady > 1KHz signal anyways.)
1064 static void rtc_dropped_irq(struct timer_list
*unused
)
1068 spin_lock_irq(&rtc_lock
);
1070 if (hpet_rtc_dropped_irq()) {
1071 spin_unlock_irq(&rtc_lock
);
1075 /* Just in case someone disabled the timer from behind our back... */
1076 if (rtc_status
& RTC_TIMER_ON
)
1077 mod_timer(&rtc_irq_timer
, jiffies
+ HZ
/rtc_freq
+ 2*HZ
/100);
1079 rtc_irq_data
+= ((rtc_freq
/HZ
)<<8);
1080 rtc_irq_data
&= ~0xff;
1081 rtc_irq_data
|= (CMOS_READ(RTC_INTR_FLAGS
) & 0xF0); /* restart */
1085 spin_unlock_irq(&rtc_lock
);
1087 printk_ratelimited(KERN_WARNING
"rtc: lost some interrupts at %ldHz.\n",
1090 /* Now we have new data */
1091 wake_up_interruptible(&rtc_wait
);
1093 kill_fasync(&rtc_async_queue
, SIGIO
, POLL_IN
);
1097 #ifdef CONFIG_PROC_FS
1099 * Info exported via "/proc/driver/rtc".
1102 static int rtc_proc_show(struct seq_file
*seq
, void *v
)
1104 #define YN(bit) ((ctrl & bit) ? "yes" : "no")
1105 #define NY(bit) ((ctrl & bit) ? "no" : "yes")
1107 unsigned char batt
, ctrl
;
1110 spin_lock_irq(&rtc_lock
);
1111 batt
= CMOS_READ(RTC_VALID
) & RTC_VRT
;
1112 ctrl
= CMOS_READ(RTC_CONTROL
);
1114 spin_unlock_irq(&rtc_lock
);
1117 rtc_get_rtc_time(&tm
);
1120 * There is no way to tell if the luser has the RTC set for local
1121 * time or for Universal Standard Time (GMT). Probably local though.
1124 "rtc_time\t: %ptRt\n"
1125 "rtc_date\t: %ptRd\n"
1126 "rtc_epoch\t: %04lu\n",
1129 get_rtc_alm_time(&tm
);
1132 * We implicitly assume 24hr mode here. Alarm values >= 0xc0 will
1133 * match any value for that particular field. Values that are
1134 * greater than a valid time, but less than 0xc0 shouldn't appear.
1136 seq_puts(seq
, "alarm\t\t: ");
1137 if (tm
.tm_hour
<= 24)
1138 seq_printf(seq
, "%02d:", tm
.tm_hour
);
1140 seq_puts(seq
, "**:");
1142 if (tm
.tm_min
<= 59)
1143 seq_printf(seq
, "%02d:", tm
.tm_min
);
1145 seq_puts(seq
, "**:");
1147 if (tm
.tm_sec
<= 59)
1148 seq_printf(seq
, "%02d\n", tm
.tm_sec
);
1150 seq_puts(seq
, "**\n");
1153 "DST_enable\t: %s\n"
1156 "square_wave\t: %s\n"
1158 "update_IRQ\t: %s\n"
1159 "periodic_IRQ\t: %s\n"
1160 "periodic_freq\t: %ld\n"
1161 "batt_status\t: %s\n",
1170 batt
? "okay" : "dead");
1178 static void rtc_get_rtc_time(struct rtc_time
*rtc_tm
)
1180 unsigned long uip_watchdog
= jiffies
, flags
;
1182 #ifdef CONFIG_MACH_DECSTATION
1183 unsigned int real_year
;
1187 * read RTC once any update in progress is done. The update
1188 * can take just over 2ms. We wait 20ms. There is no need to
1189 * to poll-wait (up to 1s - eeccch) for the falling edge of RTC_UIP.
1190 * If you need to know *exactly* when a second has started, enable
1191 * periodic update complete interrupts, (via ioctl) and then
1192 * immediately read /dev/rtc which will block until you get the IRQ.
1193 * Once the read clears, read the RTC time (again via ioctl). Easy.
1196 while (rtc_is_updating() != 0 &&
1197 time_before(jiffies
, uip_watchdog
+ 2*HZ
/100))
1201 * Only the values that we read from the RTC are set. We leave
1202 * tm_wday, tm_yday and tm_isdst untouched. Note that while the
1203 * RTC has RTC_DAY_OF_WEEK, we should usually ignore it, as it is
1204 * only updated by the RTC when initially set to a non-zero value.
1206 spin_lock_irqsave(&rtc_lock
, flags
);
1207 rtc_tm
->tm_sec
= CMOS_READ(RTC_SECONDS
);
1208 rtc_tm
->tm_min
= CMOS_READ(RTC_MINUTES
);
1209 rtc_tm
->tm_hour
= CMOS_READ(RTC_HOURS
);
1210 rtc_tm
->tm_mday
= CMOS_READ(RTC_DAY_OF_MONTH
);
1211 rtc_tm
->tm_mon
= CMOS_READ(RTC_MONTH
);
1212 rtc_tm
->tm_year
= CMOS_READ(RTC_YEAR
);
1213 /* Only set from 2.6.16 onwards */
1214 rtc_tm
->tm_wday
= CMOS_READ(RTC_DAY_OF_WEEK
);
1216 #ifdef CONFIG_MACH_DECSTATION
1217 real_year
= CMOS_READ(RTC_DEC_YEAR
);
1219 ctrl
= CMOS_READ(RTC_CONTROL
);
1220 spin_unlock_irqrestore(&rtc_lock
, flags
);
1222 if (!(ctrl
& RTC_DM_BINARY
) || RTC_ALWAYS_BCD
) {
1223 rtc_tm
->tm_sec
= bcd2bin(rtc_tm
->tm_sec
);
1224 rtc_tm
->tm_min
= bcd2bin(rtc_tm
->tm_min
);
1225 rtc_tm
->tm_hour
= bcd2bin(rtc_tm
->tm_hour
);
1226 rtc_tm
->tm_mday
= bcd2bin(rtc_tm
->tm_mday
);
1227 rtc_tm
->tm_mon
= bcd2bin(rtc_tm
->tm_mon
);
1228 rtc_tm
->tm_year
= bcd2bin(rtc_tm
->tm_year
);
1229 rtc_tm
->tm_wday
= bcd2bin(rtc_tm
->tm_wday
);
1232 #ifdef CONFIG_MACH_DECSTATION
1233 rtc_tm
->tm_year
+= real_year
- 72;
1237 * Account for differences between how the RTC uses the values
1238 * and how they are defined in a struct rtc_time;
1240 rtc_tm
->tm_year
+= epoch
- 1900;
1241 if (rtc_tm
->tm_year
<= 69)
1242 rtc_tm
->tm_year
+= 100;
1247 static void get_rtc_alm_time(struct rtc_time
*alm_tm
)
1252 * Only the values that we read from the RTC are set. That
1253 * means only tm_hour, tm_min, and tm_sec.
1255 spin_lock_irq(&rtc_lock
);
1256 alm_tm
->tm_sec
= CMOS_READ(RTC_SECONDS_ALARM
);
1257 alm_tm
->tm_min
= CMOS_READ(RTC_MINUTES_ALARM
);
1258 alm_tm
->tm_hour
= CMOS_READ(RTC_HOURS_ALARM
);
1259 ctrl
= CMOS_READ(RTC_CONTROL
);
1260 spin_unlock_irq(&rtc_lock
);
1262 if (!(ctrl
& RTC_DM_BINARY
) || RTC_ALWAYS_BCD
) {
1263 alm_tm
->tm_sec
= bcd2bin(alm_tm
->tm_sec
);
1264 alm_tm
->tm_min
= bcd2bin(alm_tm
->tm_min
);
1265 alm_tm
->tm_hour
= bcd2bin(alm_tm
->tm_hour
);
1271 * Used to disable/enable interrupts for any one of UIE, AIE, PIE.
1272 * Rumour has it that if you frob the interrupt enable/disable
1273 * bits in RTC_CONTROL, you should read RTC_INTR_FLAGS, to
1274 * ensure you actually start getting interrupts. Probably for
1275 * compatibility with older/broken chipset RTC implementations.
1276 * We also clear out any old irq data after an ioctl() that
1277 * meddles with the interrupt enable/disable bits.
1280 static void mask_rtc_irq_bit_locked(unsigned char bit
)
1284 if (hpet_mask_rtc_irq_bit(bit
))
1286 val
= CMOS_READ(RTC_CONTROL
);
1288 CMOS_WRITE(val
, RTC_CONTROL
);
1289 CMOS_READ(RTC_INTR_FLAGS
);
1294 static void set_rtc_irq_bit_locked(unsigned char bit
)
1298 if (hpet_set_rtc_irq_bit(bit
))
1300 val
= CMOS_READ(RTC_CONTROL
);
1302 CMOS_WRITE(val
, RTC_CONTROL
);
1303 CMOS_READ(RTC_INTR_FLAGS
);
1309 MODULE_AUTHOR("Paul Gortmaker");
1310 MODULE_LICENSE("GPL");
1311 MODULE_ALIAS_MISCDEV(RTC_MINOR
);