spi: sprd: adi: Remove redundant address bits setting
[linux/fpc-iii.git] / drivers / iommu / ipmmu-vmsa.c
blobad0098c0c87c7544f18b70c0bd9dc43913ca0478
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * IOMMU API for Renesas VMSA-compatible IPMMU
4 * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
6 * Copyright (C) 2014 Renesas Electronics Corporation
7 */
9 #include <linux/bitmap.h>
10 #include <linux/delay.h>
11 #include <linux/dma-iommu.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/err.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/io-pgtable.h>
19 #include <linux/iommu.h>
20 #include <linux/of.h>
21 #include <linux/of_device.h>
22 #include <linux/of_iommu.h>
23 #include <linux/of_platform.h>
24 #include <linux/platform_device.h>
25 #include <linux/sizes.h>
26 #include <linux/slab.h>
27 #include <linux/sys_soc.h>
29 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
30 #include <asm/dma-iommu.h>
31 #include <asm/pgalloc.h>
32 #else
33 #define arm_iommu_create_mapping(...) NULL
34 #define arm_iommu_attach_device(...) -ENODEV
35 #define arm_iommu_release_mapping(...) do {} while (0)
36 #define arm_iommu_detach_device(...) do {} while (0)
37 #endif
39 #define IPMMU_CTX_MAX 8U
40 #define IPMMU_CTX_INVALID -1
42 #define IPMMU_UTLB_MAX 48U
44 struct ipmmu_features {
45 bool use_ns_alias_offset;
46 bool has_cache_leaf_nodes;
47 unsigned int number_of_contexts;
48 unsigned int num_utlbs;
49 bool setup_imbuscr;
50 bool twobit_imttbcr_sl0;
51 bool reserved_context;
54 struct ipmmu_vmsa_device {
55 struct device *dev;
56 void __iomem *base;
57 struct iommu_device iommu;
58 struct ipmmu_vmsa_device *root;
59 const struct ipmmu_features *features;
60 unsigned int num_ctx;
61 spinlock_t lock; /* Protects ctx and domains[] */
62 DECLARE_BITMAP(ctx, IPMMU_CTX_MAX);
63 struct ipmmu_vmsa_domain *domains[IPMMU_CTX_MAX];
64 s8 utlb_ctx[IPMMU_UTLB_MAX];
66 struct iommu_group *group;
67 struct dma_iommu_mapping *mapping;
70 struct ipmmu_vmsa_domain {
71 struct ipmmu_vmsa_device *mmu;
72 struct iommu_domain io_domain;
74 struct io_pgtable_cfg cfg;
75 struct io_pgtable_ops *iop;
77 unsigned int context_id;
78 struct mutex mutex; /* Protects mappings */
81 static struct ipmmu_vmsa_domain *to_vmsa_domain(struct iommu_domain *dom)
83 return container_of(dom, struct ipmmu_vmsa_domain, io_domain);
86 static struct ipmmu_vmsa_device *to_ipmmu(struct device *dev)
88 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
90 return fwspec ? fwspec->iommu_priv : NULL;
93 #define TLB_LOOP_TIMEOUT 100 /* 100us */
95 /* -----------------------------------------------------------------------------
96 * Registers Definition
99 #define IM_NS_ALIAS_OFFSET 0x800
101 #define IM_CTX_SIZE 0x40
103 #define IMCTR 0x0000
104 #define IMCTR_TRE (1 << 17)
105 #define IMCTR_AFE (1 << 16)
106 #define IMCTR_RTSEL_MASK (3 << 4)
107 #define IMCTR_RTSEL_SHIFT 4
108 #define IMCTR_TREN (1 << 3)
109 #define IMCTR_INTEN (1 << 2)
110 #define IMCTR_FLUSH (1 << 1)
111 #define IMCTR_MMUEN (1 << 0)
113 #define IMCAAR 0x0004
115 #define IMTTBCR 0x0008
116 #define IMTTBCR_EAE (1 << 31)
117 #define IMTTBCR_PMB (1 << 30)
118 #define IMTTBCR_SH1_NON_SHAREABLE (0 << 28)
119 #define IMTTBCR_SH1_OUTER_SHAREABLE (2 << 28)
120 #define IMTTBCR_SH1_INNER_SHAREABLE (3 << 28)
121 #define IMTTBCR_SH1_MASK (3 << 28)
122 #define IMTTBCR_ORGN1_NC (0 << 26)
123 #define IMTTBCR_ORGN1_WB_WA (1 << 26)
124 #define IMTTBCR_ORGN1_WT (2 << 26)
125 #define IMTTBCR_ORGN1_WB (3 << 26)
126 #define IMTTBCR_ORGN1_MASK (3 << 26)
127 #define IMTTBCR_IRGN1_NC (0 << 24)
128 #define IMTTBCR_IRGN1_WB_WA (1 << 24)
129 #define IMTTBCR_IRGN1_WT (2 << 24)
130 #define IMTTBCR_IRGN1_WB (3 << 24)
131 #define IMTTBCR_IRGN1_MASK (3 << 24)
132 #define IMTTBCR_TSZ1_MASK (7 << 16)
133 #define IMTTBCR_TSZ1_SHIFT 16
134 #define IMTTBCR_SH0_NON_SHAREABLE (0 << 12)
135 #define IMTTBCR_SH0_OUTER_SHAREABLE (2 << 12)
136 #define IMTTBCR_SH0_INNER_SHAREABLE (3 << 12)
137 #define IMTTBCR_SH0_MASK (3 << 12)
138 #define IMTTBCR_ORGN0_NC (0 << 10)
139 #define IMTTBCR_ORGN0_WB_WA (1 << 10)
140 #define IMTTBCR_ORGN0_WT (2 << 10)
141 #define IMTTBCR_ORGN0_WB (3 << 10)
142 #define IMTTBCR_ORGN0_MASK (3 << 10)
143 #define IMTTBCR_IRGN0_NC (0 << 8)
144 #define IMTTBCR_IRGN0_WB_WA (1 << 8)
145 #define IMTTBCR_IRGN0_WT (2 << 8)
146 #define IMTTBCR_IRGN0_WB (3 << 8)
147 #define IMTTBCR_IRGN0_MASK (3 << 8)
148 #define IMTTBCR_SL0_LVL_2 (0 << 4)
149 #define IMTTBCR_SL0_LVL_1 (1 << 4)
150 #define IMTTBCR_TSZ0_MASK (7 << 0)
151 #define IMTTBCR_TSZ0_SHIFT O
153 #define IMTTBCR_SL0_TWOBIT_LVL_3 (0 << 6)
154 #define IMTTBCR_SL0_TWOBIT_LVL_2 (1 << 6)
155 #define IMTTBCR_SL0_TWOBIT_LVL_1 (2 << 6)
157 #define IMBUSCR 0x000c
158 #define IMBUSCR_DVM (1 << 2)
159 #define IMBUSCR_BUSSEL_SYS (0 << 0)
160 #define IMBUSCR_BUSSEL_CCI (1 << 0)
161 #define IMBUSCR_BUSSEL_IMCAAR (2 << 0)
162 #define IMBUSCR_BUSSEL_CCI_IMCAAR (3 << 0)
163 #define IMBUSCR_BUSSEL_MASK (3 << 0)
165 #define IMTTLBR0 0x0010
166 #define IMTTUBR0 0x0014
167 #define IMTTLBR1 0x0018
168 #define IMTTUBR1 0x001c
170 #define IMSTR 0x0020
171 #define IMSTR_ERRLVL_MASK (3 << 12)
172 #define IMSTR_ERRLVL_SHIFT 12
173 #define IMSTR_ERRCODE_TLB_FORMAT (1 << 8)
174 #define IMSTR_ERRCODE_ACCESS_PERM (4 << 8)
175 #define IMSTR_ERRCODE_SECURE_ACCESS (5 << 8)
176 #define IMSTR_ERRCODE_MASK (7 << 8)
177 #define IMSTR_MHIT (1 << 4)
178 #define IMSTR_ABORT (1 << 2)
179 #define IMSTR_PF (1 << 1)
180 #define IMSTR_TF (1 << 0)
182 #define IMMAIR0 0x0028
183 #define IMMAIR1 0x002c
184 #define IMMAIR_ATTR_MASK 0xff
185 #define IMMAIR_ATTR_DEVICE 0x04
186 #define IMMAIR_ATTR_NC 0x44
187 #define IMMAIR_ATTR_WBRWA 0xff
188 #define IMMAIR_ATTR_SHIFT(n) ((n) << 3)
189 #define IMMAIR_ATTR_IDX_NC 0
190 #define IMMAIR_ATTR_IDX_WBRWA 1
191 #define IMMAIR_ATTR_IDX_DEV 2
193 #define IMELAR 0x0030 /* IMEAR on R-Car Gen2 */
194 #define IMEUAR 0x0034 /* R-Car Gen3 only */
196 #define IMPCTR 0x0200
197 #define IMPSTR 0x0208
198 #define IMPEAR 0x020c
199 #define IMPMBA(n) (0x0280 + ((n) * 4))
200 #define IMPMBD(n) (0x02c0 + ((n) * 4))
202 #define IMUCTR(n) ((n) < 32 ? IMUCTR0(n) : IMUCTR32(n))
203 #define IMUCTR0(n) (0x0300 + ((n) * 16))
204 #define IMUCTR32(n) (0x0600 + (((n) - 32) * 16))
205 #define IMUCTR_FIXADDEN (1 << 31)
206 #define IMUCTR_FIXADD_MASK (0xff << 16)
207 #define IMUCTR_FIXADD_SHIFT 16
208 #define IMUCTR_TTSEL_MMU(n) ((n) << 4)
209 #define IMUCTR_TTSEL_PMB (8 << 4)
210 #define IMUCTR_TTSEL_MASK (15 << 4)
211 #define IMUCTR_FLUSH (1 << 1)
212 #define IMUCTR_MMUEN (1 << 0)
214 #define IMUASID(n) ((n) < 32 ? IMUASID0(n) : IMUASID32(n))
215 #define IMUASID0(n) (0x0308 + ((n) * 16))
216 #define IMUASID32(n) (0x0608 + (((n) - 32) * 16))
217 #define IMUASID_ASID8_MASK (0xff << 8)
218 #define IMUASID_ASID8_SHIFT 8
219 #define IMUASID_ASID0_MASK (0xff << 0)
220 #define IMUASID_ASID0_SHIFT 0
222 /* -----------------------------------------------------------------------------
223 * Root device handling
226 static struct platform_driver ipmmu_driver;
228 static bool ipmmu_is_root(struct ipmmu_vmsa_device *mmu)
230 return mmu->root == mmu;
233 static int __ipmmu_check_device(struct device *dev, void *data)
235 struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev);
236 struct ipmmu_vmsa_device **rootp = data;
238 if (ipmmu_is_root(mmu))
239 *rootp = mmu;
241 return 0;
244 static struct ipmmu_vmsa_device *ipmmu_find_root(void)
246 struct ipmmu_vmsa_device *root = NULL;
248 return driver_for_each_device(&ipmmu_driver.driver, NULL, &root,
249 __ipmmu_check_device) == 0 ? root : NULL;
252 /* -----------------------------------------------------------------------------
253 * Read/Write Access
256 static u32 ipmmu_read(struct ipmmu_vmsa_device *mmu, unsigned int offset)
258 return ioread32(mmu->base + offset);
261 static void ipmmu_write(struct ipmmu_vmsa_device *mmu, unsigned int offset,
262 u32 data)
264 iowrite32(data, mmu->base + offset);
267 static u32 ipmmu_ctx_read_root(struct ipmmu_vmsa_domain *domain,
268 unsigned int reg)
270 return ipmmu_read(domain->mmu->root,
271 domain->context_id * IM_CTX_SIZE + reg);
274 static void ipmmu_ctx_write_root(struct ipmmu_vmsa_domain *domain,
275 unsigned int reg, u32 data)
277 ipmmu_write(domain->mmu->root,
278 domain->context_id * IM_CTX_SIZE + reg, data);
281 static void ipmmu_ctx_write_all(struct ipmmu_vmsa_domain *domain,
282 unsigned int reg, u32 data)
284 if (domain->mmu != domain->mmu->root)
285 ipmmu_write(domain->mmu,
286 domain->context_id * IM_CTX_SIZE + reg, data);
288 ipmmu_write(domain->mmu->root,
289 domain->context_id * IM_CTX_SIZE + reg, data);
292 /* -----------------------------------------------------------------------------
293 * TLB and microTLB Management
296 /* Wait for any pending TLB invalidations to complete */
297 static void ipmmu_tlb_sync(struct ipmmu_vmsa_domain *domain)
299 unsigned int count = 0;
301 while (ipmmu_ctx_read_root(domain, IMCTR) & IMCTR_FLUSH) {
302 cpu_relax();
303 if (++count == TLB_LOOP_TIMEOUT) {
304 dev_err_ratelimited(domain->mmu->dev,
305 "TLB sync timed out -- MMU may be deadlocked\n");
306 return;
308 udelay(1);
312 static void ipmmu_tlb_invalidate(struct ipmmu_vmsa_domain *domain)
314 u32 reg;
316 reg = ipmmu_ctx_read_root(domain, IMCTR);
317 reg |= IMCTR_FLUSH;
318 ipmmu_ctx_write_all(domain, IMCTR, reg);
320 ipmmu_tlb_sync(domain);
324 * Enable MMU translation for the microTLB.
326 static void ipmmu_utlb_enable(struct ipmmu_vmsa_domain *domain,
327 unsigned int utlb)
329 struct ipmmu_vmsa_device *mmu = domain->mmu;
332 * TODO: Reference-count the microTLB as several bus masters can be
333 * connected to the same microTLB.
336 /* TODO: What should we set the ASID to ? */
337 ipmmu_write(mmu, IMUASID(utlb), 0);
338 /* TODO: Do we need to flush the microTLB ? */
339 ipmmu_write(mmu, IMUCTR(utlb),
340 IMUCTR_TTSEL_MMU(domain->context_id) | IMUCTR_FLUSH |
341 IMUCTR_MMUEN);
342 mmu->utlb_ctx[utlb] = domain->context_id;
346 * Disable MMU translation for the microTLB.
348 static void ipmmu_utlb_disable(struct ipmmu_vmsa_domain *domain,
349 unsigned int utlb)
351 struct ipmmu_vmsa_device *mmu = domain->mmu;
353 ipmmu_write(mmu, IMUCTR(utlb), 0);
354 mmu->utlb_ctx[utlb] = IPMMU_CTX_INVALID;
357 static void ipmmu_tlb_flush_all(void *cookie)
359 struct ipmmu_vmsa_domain *domain = cookie;
361 ipmmu_tlb_invalidate(domain);
364 static void ipmmu_tlb_add_flush(unsigned long iova, size_t size,
365 size_t granule, bool leaf, void *cookie)
367 /* The hardware doesn't support selective TLB flush. */
370 static const struct iommu_gather_ops ipmmu_gather_ops = {
371 .tlb_flush_all = ipmmu_tlb_flush_all,
372 .tlb_add_flush = ipmmu_tlb_add_flush,
373 .tlb_sync = ipmmu_tlb_flush_all,
376 /* -----------------------------------------------------------------------------
377 * Domain/Context Management
380 static int ipmmu_domain_allocate_context(struct ipmmu_vmsa_device *mmu,
381 struct ipmmu_vmsa_domain *domain)
383 unsigned long flags;
384 int ret;
386 spin_lock_irqsave(&mmu->lock, flags);
388 ret = find_first_zero_bit(mmu->ctx, mmu->num_ctx);
389 if (ret != mmu->num_ctx) {
390 mmu->domains[ret] = domain;
391 set_bit(ret, mmu->ctx);
392 } else
393 ret = -EBUSY;
395 spin_unlock_irqrestore(&mmu->lock, flags);
397 return ret;
400 static void ipmmu_domain_free_context(struct ipmmu_vmsa_device *mmu,
401 unsigned int context_id)
403 unsigned long flags;
405 spin_lock_irqsave(&mmu->lock, flags);
407 clear_bit(context_id, mmu->ctx);
408 mmu->domains[context_id] = NULL;
410 spin_unlock_irqrestore(&mmu->lock, flags);
413 static void ipmmu_domain_setup_context(struct ipmmu_vmsa_domain *domain)
415 u64 ttbr;
416 u32 tmp;
418 /* TTBR0 */
419 ttbr = domain->cfg.arm_lpae_s1_cfg.ttbr[0];
420 ipmmu_ctx_write_root(domain, IMTTLBR0, ttbr);
421 ipmmu_ctx_write_root(domain, IMTTUBR0, ttbr >> 32);
424 * TTBCR
425 * We use long descriptors with inner-shareable WBWA tables and allocate
426 * the whole 32-bit VA space to TTBR0.
428 if (domain->mmu->features->twobit_imttbcr_sl0)
429 tmp = IMTTBCR_SL0_TWOBIT_LVL_1;
430 else
431 tmp = IMTTBCR_SL0_LVL_1;
433 ipmmu_ctx_write_root(domain, IMTTBCR, IMTTBCR_EAE |
434 IMTTBCR_SH0_INNER_SHAREABLE | IMTTBCR_ORGN0_WB_WA |
435 IMTTBCR_IRGN0_WB_WA | tmp);
437 /* MAIR0 */
438 ipmmu_ctx_write_root(domain, IMMAIR0,
439 domain->cfg.arm_lpae_s1_cfg.mair[0]);
441 /* IMBUSCR */
442 if (domain->mmu->features->setup_imbuscr)
443 ipmmu_ctx_write_root(domain, IMBUSCR,
444 ipmmu_ctx_read_root(domain, IMBUSCR) &
445 ~(IMBUSCR_DVM | IMBUSCR_BUSSEL_MASK));
448 * IMSTR
449 * Clear all interrupt flags.
451 ipmmu_ctx_write_root(domain, IMSTR, ipmmu_ctx_read_root(domain, IMSTR));
454 * IMCTR
455 * Enable the MMU and interrupt generation. The long-descriptor
456 * translation table format doesn't use TEX remapping. Don't enable AF
457 * software management as we have no use for it. Flush the TLB as
458 * required when modifying the context registers.
460 ipmmu_ctx_write_all(domain, IMCTR,
461 IMCTR_INTEN | IMCTR_FLUSH | IMCTR_MMUEN);
464 static int ipmmu_domain_init_context(struct ipmmu_vmsa_domain *domain)
466 int ret;
469 * Allocate the page table operations.
471 * VMSA states in section B3.6.3 "Control of Secure or Non-secure memory
472 * access, Long-descriptor format" that the NStable bit being set in a
473 * table descriptor will result in the NStable and NS bits of all child
474 * entries being ignored and considered as being set. The IPMMU seems
475 * not to comply with this, as it generates a secure access page fault
476 * if any of the NStable and NS bits isn't set when running in
477 * non-secure mode.
479 domain->cfg.quirks = IO_PGTABLE_QUIRK_ARM_NS;
480 domain->cfg.pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K;
481 domain->cfg.ias = 32;
482 domain->cfg.oas = 40;
483 domain->cfg.tlb = &ipmmu_gather_ops;
484 domain->io_domain.geometry.aperture_end = DMA_BIT_MASK(32);
485 domain->io_domain.geometry.force_aperture = true;
487 * TODO: Add support for coherent walk through CCI with DVM and remove
488 * cache handling. For now, delegate it to the io-pgtable code.
490 domain->cfg.coherent_walk = false;
491 domain->cfg.iommu_dev = domain->mmu->root->dev;
494 * Find an unused context.
496 ret = ipmmu_domain_allocate_context(domain->mmu->root, domain);
497 if (ret < 0)
498 return ret;
500 domain->context_id = ret;
502 domain->iop = alloc_io_pgtable_ops(ARM_32_LPAE_S1, &domain->cfg,
503 domain);
504 if (!domain->iop) {
505 ipmmu_domain_free_context(domain->mmu->root,
506 domain->context_id);
507 return -EINVAL;
510 ipmmu_domain_setup_context(domain);
511 return 0;
514 static void ipmmu_domain_destroy_context(struct ipmmu_vmsa_domain *domain)
516 if (!domain->mmu)
517 return;
520 * Disable the context. Flush the TLB as required when modifying the
521 * context registers.
523 * TODO: Is TLB flush really needed ?
525 ipmmu_ctx_write_all(domain, IMCTR, IMCTR_FLUSH);
526 ipmmu_tlb_sync(domain);
527 ipmmu_domain_free_context(domain->mmu->root, domain->context_id);
530 /* -----------------------------------------------------------------------------
531 * Fault Handling
534 static irqreturn_t ipmmu_domain_irq(struct ipmmu_vmsa_domain *domain)
536 const u32 err_mask = IMSTR_MHIT | IMSTR_ABORT | IMSTR_PF | IMSTR_TF;
537 struct ipmmu_vmsa_device *mmu = domain->mmu;
538 unsigned long iova;
539 u32 status;
541 status = ipmmu_ctx_read_root(domain, IMSTR);
542 if (!(status & err_mask))
543 return IRQ_NONE;
545 iova = ipmmu_ctx_read_root(domain, IMELAR);
546 if (IS_ENABLED(CONFIG_64BIT))
547 iova |= (u64)ipmmu_ctx_read_root(domain, IMEUAR) << 32;
550 * Clear the error status flags. Unlike traditional interrupt flag
551 * registers that must be cleared by writing 1, this status register
552 * seems to require 0. The error address register must be read before,
553 * otherwise its value will be 0.
555 ipmmu_ctx_write_root(domain, IMSTR, 0);
557 /* Log fatal errors. */
558 if (status & IMSTR_MHIT)
559 dev_err_ratelimited(mmu->dev, "Multiple TLB hits @0x%lx\n",
560 iova);
561 if (status & IMSTR_ABORT)
562 dev_err_ratelimited(mmu->dev, "Page Table Walk Abort @0x%lx\n",
563 iova);
565 if (!(status & (IMSTR_PF | IMSTR_TF)))
566 return IRQ_NONE;
569 * Try to handle page faults and translation faults.
571 * TODO: We need to look up the faulty device based on the I/O VA. Use
572 * the IOMMU device for now.
574 if (!report_iommu_fault(&domain->io_domain, mmu->dev, iova, 0))
575 return IRQ_HANDLED;
577 dev_err_ratelimited(mmu->dev,
578 "Unhandled fault: status 0x%08x iova 0x%lx\n",
579 status, iova);
581 return IRQ_HANDLED;
584 static irqreturn_t ipmmu_irq(int irq, void *dev)
586 struct ipmmu_vmsa_device *mmu = dev;
587 irqreturn_t status = IRQ_NONE;
588 unsigned int i;
589 unsigned long flags;
591 spin_lock_irqsave(&mmu->lock, flags);
594 * Check interrupts for all active contexts.
596 for (i = 0; i < mmu->num_ctx; i++) {
597 if (!mmu->domains[i])
598 continue;
599 if (ipmmu_domain_irq(mmu->domains[i]) == IRQ_HANDLED)
600 status = IRQ_HANDLED;
603 spin_unlock_irqrestore(&mmu->lock, flags);
605 return status;
608 /* -----------------------------------------------------------------------------
609 * IOMMU Operations
612 static struct iommu_domain *__ipmmu_domain_alloc(unsigned type)
614 struct ipmmu_vmsa_domain *domain;
616 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
617 if (!domain)
618 return NULL;
620 mutex_init(&domain->mutex);
622 return &domain->io_domain;
625 static struct iommu_domain *ipmmu_domain_alloc(unsigned type)
627 struct iommu_domain *io_domain = NULL;
629 switch (type) {
630 case IOMMU_DOMAIN_UNMANAGED:
631 io_domain = __ipmmu_domain_alloc(type);
632 break;
634 case IOMMU_DOMAIN_DMA:
635 io_domain = __ipmmu_domain_alloc(type);
636 if (io_domain && iommu_get_dma_cookie(io_domain)) {
637 kfree(io_domain);
638 io_domain = NULL;
640 break;
643 return io_domain;
646 static void ipmmu_domain_free(struct iommu_domain *io_domain)
648 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
651 * Free the domain resources. We assume that all devices have already
652 * been detached.
654 iommu_put_dma_cookie(io_domain);
655 ipmmu_domain_destroy_context(domain);
656 free_io_pgtable_ops(domain->iop);
657 kfree(domain);
660 static int ipmmu_attach_device(struct iommu_domain *io_domain,
661 struct device *dev)
663 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
664 struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
665 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
666 unsigned int i;
667 int ret = 0;
669 if (!mmu) {
670 dev_err(dev, "Cannot attach to IPMMU\n");
671 return -ENXIO;
674 mutex_lock(&domain->mutex);
676 if (!domain->mmu) {
677 /* The domain hasn't been used yet, initialize it. */
678 domain->mmu = mmu;
679 ret = ipmmu_domain_init_context(domain);
680 if (ret < 0) {
681 dev_err(dev, "Unable to initialize IPMMU context\n");
682 domain->mmu = NULL;
683 } else {
684 dev_info(dev, "Using IPMMU context %u\n",
685 domain->context_id);
687 } else if (domain->mmu != mmu) {
689 * Something is wrong, we can't attach two devices using
690 * different IOMMUs to the same domain.
692 dev_err(dev, "Can't attach IPMMU %s to domain on IPMMU %s\n",
693 dev_name(mmu->dev), dev_name(domain->mmu->dev));
694 ret = -EINVAL;
695 } else
696 dev_info(dev, "Reusing IPMMU context %u\n", domain->context_id);
698 mutex_unlock(&domain->mutex);
700 if (ret < 0)
701 return ret;
703 for (i = 0; i < fwspec->num_ids; ++i)
704 ipmmu_utlb_enable(domain, fwspec->ids[i]);
706 return 0;
709 static void ipmmu_detach_device(struct iommu_domain *io_domain,
710 struct device *dev)
712 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
713 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
714 unsigned int i;
716 for (i = 0; i < fwspec->num_ids; ++i)
717 ipmmu_utlb_disable(domain, fwspec->ids[i]);
720 * TODO: Optimize by disabling the context when no device is attached.
724 static int ipmmu_map(struct iommu_domain *io_domain, unsigned long iova,
725 phys_addr_t paddr, size_t size, int prot)
727 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
729 if (!domain)
730 return -ENODEV;
732 return domain->iop->map(domain->iop, iova, paddr, size, prot);
735 static size_t ipmmu_unmap(struct iommu_domain *io_domain, unsigned long iova,
736 size_t size)
738 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
740 return domain->iop->unmap(domain->iop, iova, size);
743 static void ipmmu_iotlb_sync(struct iommu_domain *io_domain)
745 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
747 if (domain->mmu)
748 ipmmu_tlb_flush_all(domain);
751 static phys_addr_t ipmmu_iova_to_phys(struct iommu_domain *io_domain,
752 dma_addr_t iova)
754 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
756 /* TODO: Is locking needed ? */
758 return domain->iop->iova_to_phys(domain->iop, iova);
761 static int ipmmu_init_platform_device(struct device *dev,
762 struct of_phandle_args *args)
764 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
765 struct platform_device *ipmmu_pdev;
767 ipmmu_pdev = of_find_device_by_node(args->np);
768 if (!ipmmu_pdev)
769 return -ENODEV;
771 fwspec->iommu_priv = platform_get_drvdata(ipmmu_pdev);
773 return 0;
776 static const struct soc_device_attribute soc_rcar_gen3[] = {
777 { .soc_id = "r8a774a1", },
778 { .soc_id = "r8a774c0", },
779 { .soc_id = "r8a7795", },
780 { .soc_id = "r8a7796", },
781 { .soc_id = "r8a77965", },
782 { .soc_id = "r8a77970", },
783 { .soc_id = "r8a77990", },
784 { .soc_id = "r8a77995", },
785 { /* sentinel */ }
788 static const struct soc_device_attribute soc_rcar_gen3_whitelist[] = {
789 { .soc_id = "r8a774c0", },
790 { .soc_id = "r8a7795", .revision = "ES3.*" },
791 { .soc_id = "r8a77965", },
792 { .soc_id = "r8a77990", },
793 { .soc_id = "r8a77995", },
794 { /* sentinel */ }
797 static const char * const rcar_gen3_slave_whitelist[] = {
800 static bool ipmmu_slave_whitelist(struct device *dev)
802 unsigned int i;
805 * For R-Car Gen3 use a white list to opt-in slave devices.
806 * For Other SoCs, this returns true anyway.
808 if (!soc_device_match(soc_rcar_gen3))
809 return true;
811 /* Check whether this R-Car Gen3 can use the IPMMU correctly or not */
812 if (!soc_device_match(soc_rcar_gen3_whitelist))
813 return false;
815 /* Check whether this slave device can work with the IPMMU */
816 for (i = 0; i < ARRAY_SIZE(rcar_gen3_slave_whitelist); i++) {
817 if (!strcmp(dev_name(dev), rcar_gen3_slave_whitelist[i]))
818 return true;
821 /* Otherwise, do not allow use of IPMMU */
822 return false;
825 static int ipmmu_of_xlate(struct device *dev,
826 struct of_phandle_args *spec)
828 if (!ipmmu_slave_whitelist(dev))
829 return -ENODEV;
831 iommu_fwspec_add_ids(dev, spec->args, 1);
833 /* Initialize once - xlate() will call multiple times */
834 if (to_ipmmu(dev))
835 return 0;
837 return ipmmu_init_platform_device(dev, spec);
840 static int ipmmu_init_arm_mapping(struct device *dev)
842 struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
843 struct iommu_group *group;
844 int ret;
846 /* Create a device group and add the device to it. */
847 group = iommu_group_alloc();
848 if (IS_ERR(group)) {
849 dev_err(dev, "Failed to allocate IOMMU group\n");
850 return PTR_ERR(group);
853 ret = iommu_group_add_device(group, dev);
854 iommu_group_put(group);
856 if (ret < 0) {
857 dev_err(dev, "Failed to add device to IPMMU group\n");
858 return ret;
862 * Create the ARM mapping, used by the ARM DMA mapping core to allocate
863 * VAs. This will allocate a corresponding IOMMU domain.
865 * TODO:
866 * - Create one mapping per context (TLB).
867 * - Make the mapping size configurable ? We currently use a 2GB mapping
868 * at a 1GB offset to ensure that NULL VAs will fault.
870 if (!mmu->mapping) {
871 struct dma_iommu_mapping *mapping;
873 mapping = arm_iommu_create_mapping(&platform_bus_type,
874 SZ_1G, SZ_2G);
875 if (IS_ERR(mapping)) {
876 dev_err(mmu->dev, "failed to create ARM IOMMU mapping\n");
877 ret = PTR_ERR(mapping);
878 goto error;
881 mmu->mapping = mapping;
884 /* Attach the ARM VA mapping to the device. */
885 ret = arm_iommu_attach_device(dev, mmu->mapping);
886 if (ret < 0) {
887 dev_err(dev, "Failed to attach device to VA mapping\n");
888 goto error;
891 return 0;
893 error:
894 iommu_group_remove_device(dev);
895 if (mmu->mapping)
896 arm_iommu_release_mapping(mmu->mapping);
898 return ret;
901 static int ipmmu_add_device(struct device *dev)
903 struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
904 struct iommu_group *group;
905 int ret;
908 * Only let through devices that have been verified in xlate()
910 if (!mmu)
911 return -ENODEV;
913 if (IS_ENABLED(CONFIG_ARM) && !IS_ENABLED(CONFIG_IOMMU_DMA)) {
914 ret = ipmmu_init_arm_mapping(dev);
915 if (ret)
916 return ret;
917 } else {
918 group = iommu_group_get_for_dev(dev);
919 if (IS_ERR(group))
920 return PTR_ERR(group);
922 iommu_group_put(group);
925 iommu_device_link(&mmu->iommu, dev);
926 return 0;
929 static void ipmmu_remove_device(struct device *dev)
931 struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
933 iommu_device_unlink(&mmu->iommu, dev);
934 arm_iommu_detach_device(dev);
935 iommu_group_remove_device(dev);
938 static struct iommu_group *ipmmu_find_group(struct device *dev)
940 struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
941 struct iommu_group *group;
943 if (mmu->group)
944 return iommu_group_ref_get(mmu->group);
946 group = iommu_group_alloc();
947 if (!IS_ERR(group))
948 mmu->group = group;
950 return group;
953 static const struct iommu_ops ipmmu_ops = {
954 .domain_alloc = ipmmu_domain_alloc,
955 .domain_free = ipmmu_domain_free,
956 .attach_dev = ipmmu_attach_device,
957 .detach_dev = ipmmu_detach_device,
958 .map = ipmmu_map,
959 .unmap = ipmmu_unmap,
960 .flush_iotlb_all = ipmmu_iotlb_sync,
961 .iotlb_sync = ipmmu_iotlb_sync,
962 .iova_to_phys = ipmmu_iova_to_phys,
963 .add_device = ipmmu_add_device,
964 .remove_device = ipmmu_remove_device,
965 .device_group = ipmmu_find_group,
966 .pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K,
967 .of_xlate = ipmmu_of_xlate,
970 /* -----------------------------------------------------------------------------
971 * Probe/remove and init
974 static void ipmmu_device_reset(struct ipmmu_vmsa_device *mmu)
976 unsigned int i;
978 /* Disable all contexts. */
979 for (i = 0; i < mmu->num_ctx; ++i)
980 ipmmu_write(mmu, i * IM_CTX_SIZE + IMCTR, 0);
983 static const struct ipmmu_features ipmmu_features_default = {
984 .use_ns_alias_offset = true,
985 .has_cache_leaf_nodes = false,
986 .number_of_contexts = 1, /* software only tested with one context */
987 .num_utlbs = 32,
988 .setup_imbuscr = true,
989 .twobit_imttbcr_sl0 = false,
990 .reserved_context = false,
993 static const struct ipmmu_features ipmmu_features_rcar_gen3 = {
994 .use_ns_alias_offset = false,
995 .has_cache_leaf_nodes = true,
996 .number_of_contexts = 8,
997 .num_utlbs = 48,
998 .setup_imbuscr = false,
999 .twobit_imttbcr_sl0 = true,
1000 .reserved_context = true,
1003 static const struct of_device_id ipmmu_of_ids[] = {
1005 .compatible = "renesas,ipmmu-vmsa",
1006 .data = &ipmmu_features_default,
1007 }, {
1008 .compatible = "renesas,ipmmu-r8a774a1",
1009 .data = &ipmmu_features_rcar_gen3,
1010 }, {
1011 .compatible = "renesas,ipmmu-r8a774c0",
1012 .data = &ipmmu_features_rcar_gen3,
1013 }, {
1014 .compatible = "renesas,ipmmu-r8a7795",
1015 .data = &ipmmu_features_rcar_gen3,
1016 }, {
1017 .compatible = "renesas,ipmmu-r8a7796",
1018 .data = &ipmmu_features_rcar_gen3,
1019 }, {
1020 .compatible = "renesas,ipmmu-r8a77965",
1021 .data = &ipmmu_features_rcar_gen3,
1022 }, {
1023 .compatible = "renesas,ipmmu-r8a77970",
1024 .data = &ipmmu_features_rcar_gen3,
1025 }, {
1026 .compatible = "renesas,ipmmu-r8a77990",
1027 .data = &ipmmu_features_rcar_gen3,
1028 }, {
1029 .compatible = "renesas,ipmmu-r8a77995",
1030 .data = &ipmmu_features_rcar_gen3,
1031 }, {
1032 /* Terminator */
1036 static int ipmmu_probe(struct platform_device *pdev)
1038 struct ipmmu_vmsa_device *mmu;
1039 struct resource *res;
1040 int irq;
1041 int ret;
1043 mmu = devm_kzalloc(&pdev->dev, sizeof(*mmu), GFP_KERNEL);
1044 if (!mmu) {
1045 dev_err(&pdev->dev, "cannot allocate device data\n");
1046 return -ENOMEM;
1049 mmu->dev = &pdev->dev;
1050 spin_lock_init(&mmu->lock);
1051 bitmap_zero(mmu->ctx, IPMMU_CTX_MAX);
1052 mmu->features = of_device_get_match_data(&pdev->dev);
1053 memset(mmu->utlb_ctx, IPMMU_CTX_INVALID, mmu->features->num_utlbs);
1054 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
1056 /* Map I/O memory and request IRQ. */
1057 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1058 mmu->base = devm_ioremap_resource(&pdev->dev, res);
1059 if (IS_ERR(mmu->base))
1060 return PTR_ERR(mmu->base);
1063 * The IPMMU has two register banks, for secure and non-secure modes.
1064 * The bank mapped at the beginning of the IPMMU address space
1065 * corresponds to the running mode of the CPU. When running in secure
1066 * mode the non-secure register bank is also available at an offset.
1068 * Secure mode operation isn't clearly documented and is thus currently
1069 * not implemented in the driver. Furthermore, preliminary tests of
1070 * non-secure operation with the main register bank were not successful.
1071 * Offset the registers base unconditionally to point to the non-secure
1072 * alias space for now.
1074 if (mmu->features->use_ns_alias_offset)
1075 mmu->base += IM_NS_ALIAS_OFFSET;
1077 mmu->num_ctx = min(IPMMU_CTX_MAX, mmu->features->number_of_contexts);
1079 irq = platform_get_irq(pdev, 0);
1082 * Determine if this IPMMU instance is a root device by checking for
1083 * the lack of has_cache_leaf_nodes flag or renesas,ipmmu-main property.
1085 if (!mmu->features->has_cache_leaf_nodes ||
1086 !of_find_property(pdev->dev.of_node, "renesas,ipmmu-main", NULL))
1087 mmu->root = mmu;
1088 else
1089 mmu->root = ipmmu_find_root();
1092 * Wait until the root device has been registered for sure.
1094 if (!mmu->root)
1095 return -EPROBE_DEFER;
1097 /* Root devices have mandatory IRQs */
1098 if (ipmmu_is_root(mmu)) {
1099 if (irq < 0) {
1100 dev_err(&pdev->dev, "no IRQ found\n");
1101 return irq;
1104 ret = devm_request_irq(&pdev->dev, irq, ipmmu_irq, 0,
1105 dev_name(&pdev->dev), mmu);
1106 if (ret < 0) {
1107 dev_err(&pdev->dev, "failed to request IRQ %d\n", irq);
1108 return ret;
1111 ipmmu_device_reset(mmu);
1113 if (mmu->features->reserved_context) {
1114 dev_info(&pdev->dev, "IPMMU context 0 is reserved\n");
1115 set_bit(0, mmu->ctx);
1120 * Register the IPMMU to the IOMMU subsystem in the following cases:
1121 * - R-Car Gen2 IPMMU (all devices registered)
1122 * - R-Car Gen3 IPMMU (leaf devices only - skip root IPMMU-MM device)
1124 if (!mmu->features->has_cache_leaf_nodes || !ipmmu_is_root(mmu)) {
1125 ret = iommu_device_sysfs_add(&mmu->iommu, &pdev->dev, NULL,
1126 dev_name(&pdev->dev));
1127 if (ret)
1128 return ret;
1130 iommu_device_set_ops(&mmu->iommu, &ipmmu_ops);
1131 iommu_device_set_fwnode(&mmu->iommu,
1132 &pdev->dev.of_node->fwnode);
1134 ret = iommu_device_register(&mmu->iommu);
1135 if (ret)
1136 return ret;
1138 #if defined(CONFIG_IOMMU_DMA)
1139 if (!iommu_present(&platform_bus_type))
1140 bus_set_iommu(&platform_bus_type, &ipmmu_ops);
1141 #endif
1145 * We can't create the ARM mapping here as it requires the bus to have
1146 * an IOMMU, which only happens when bus_set_iommu() is called in
1147 * ipmmu_init() after the probe function returns.
1150 platform_set_drvdata(pdev, mmu);
1152 return 0;
1155 static int ipmmu_remove(struct platform_device *pdev)
1157 struct ipmmu_vmsa_device *mmu = platform_get_drvdata(pdev);
1159 iommu_device_sysfs_remove(&mmu->iommu);
1160 iommu_device_unregister(&mmu->iommu);
1162 arm_iommu_release_mapping(mmu->mapping);
1164 ipmmu_device_reset(mmu);
1166 return 0;
1169 #ifdef CONFIG_PM_SLEEP
1170 static int ipmmu_resume_noirq(struct device *dev)
1172 struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev);
1173 unsigned int i;
1175 /* Reset root MMU and restore contexts */
1176 if (ipmmu_is_root(mmu)) {
1177 ipmmu_device_reset(mmu);
1179 for (i = 0; i < mmu->num_ctx; i++) {
1180 if (!mmu->domains[i])
1181 continue;
1183 ipmmu_domain_setup_context(mmu->domains[i]);
1187 /* Re-enable active micro-TLBs */
1188 for (i = 0; i < mmu->features->num_utlbs; i++) {
1189 if (mmu->utlb_ctx[i] == IPMMU_CTX_INVALID)
1190 continue;
1192 ipmmu_utlb_enable(mmu->root->domains[mmu->utlb_ctx[i]], i);
1195 return 0;
1198 static const struct dev_pm_ops ipmmu_pm = {
1199 SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(NULL, ipmmu_resume_noirq)
1201 #define DEV_PM_OPS &ipmmu_pm
1202 #else
1203 #define DEV_PM_OPS NULL
1204 #endif /* CONFIG_PM_SLEEP */
1206 static struct platform_driver ipmmu_driver = {
1207 .driver = {
1208 .name = "ipmmu-vmsa",
1209 .of_match_table = of_match_ptr(ipmmu_of_ids),
1210 .pm = DEV_PM_OPS,
1212 .probe = ipmmu_probe,
1213 .remove = ipmmu_remove,
1216 static int __init ipmmu_init(void)
1218 struct device_node *np;
1219 static bool setup_done;
1220 int ret;
1222 if (setup_done)
1223 return 0;
1225 np = of_find_matching_node(NULL, ipmmu_of_ids);
1226 if (!np)
1227 return 0;
1229 of_node_put(np);
1231 ret = platform_driver_register(&ipmmu_driver);
1232 if (ret < 0)
1233 return ret;
1235 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
1236 if (!iommu_present(&platform_bus_type))
1237 bus_set_iommu(&platform_bus_type, &ipmmu_ops);
1238 #endif
1240 setup_done = true;
1241 return 0;
1243 subsys_initcall(ipmmu_init);