1 // SPDX-License-Identifier: GPL-2.0
3 * IOMMU API for Renesas VMSA-compatible IPMMU
4 * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
6 * Copyright (C) 2014 Renesas Electronics Corporation
9 #include <linux/bitmap.h>
10 #include <linux/delay.h>
11 #include <linux/dma-iommu.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/err.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/interrupt.h>
18 #include <linux/io-pgtable.h>
19 #include <linux/iommu.h>
21 #include <linux/of_device.h>
22 #include <linux/of_iommu.h>
23 #include <linux/of_platform.h>
24 #include <linux/platform_device.h>
25 #include <linux/sizes.h>
26 #include <linux/slab.h>
27 #include <linux/sys_soc.h>
29 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
30 #include <asm/dma-iommu.h>
31 #include <asm/pgalloc.h>
33 #define arm_iommu_create_mapping(...) NULL
34 #define arm_iommu_attach_device(...) -ENODEV
35 #define arm_iommu_release_mapping(...) do {} while (0)
36 #define arm_iommu_detach_device(...) do {} while (0)
39 #define IPMMU_CTX_MAX 8U
40 #define IPMMU_CTX_INVALID -1
42 #define IPMMU_UTLB_MAX 48U
44 struct ipmmu_features
{
45 bool use_ns_alias_offset
;
46 bool has_cache_leaf_nodes
;
47 unsigned int number_of_contexts
;
48 unsigned int num_utlbs
;
50 bool twobit_imttbcr_sl0
;
51 bool reserved_context
;
54 struct ipmmu_vmsa_device
{
57 struct iommu_device iommu
;
58 struct ipmmu_vmsa_device
*root
;
59 const struct ipmmu_features
*features
;
61 spinlock_t lock
; /* Protects ctx and domains[] */
62 DECLARE_BITMAP(ctx
, IPMMU_CTX_MAX
);
63 struct ipmmu_vmsa_domain
*domains
[IPMMU_CTX_MAX
];
64 s8 utlb_ctx
[IPMMU_UTLB_MAX
];
66 struct iommu_group
*group
;
67 struct dma_iommu_mapping
*mapping
;
70 struct ipmmu_vmsa_domain
{
71 struct ipmmu_vmsa_device
*mmu
;
72 struct iommu_domain io_domain
;
74 struct io_pgtable_cfg cfg
;
75 struct io_pgtable_ops
*iop
;
77 unsigned int context_id
;
78 struct mutex mutex
; /* Protects mappings */
81 static struct ipmmu_vmsa_domain
*to_vmsa_domain(struct iommu_domain
*dom
)
83 return container_of(dom
, struct ipmmu_vmsa_domain
, io_domain
);
86 static struct ipmmu_vmsa_device
*to_ipmmu(struct device
*dev
)
88 struct iommu_fwspec
*fwspec
= dev_iommu_fwspec_get(dev
);
90 return fwspec
? fwspec
->iommu_priv
: NULL
;
93 #define TLB_LOOP_TIMEOUT 100 /* 100us */
95 /* -----------------------------------------------------------------------------
96 * Registers Definition
99 #define IM_NS_ALIAS_OFFSET 0x800
101 #define IM_CTX_SIZE 0x40
104 #define IMCTR_TRE (1 << 17)
105 #define IMCTR_AFE (1 << 16)
106 #define IMCTR_RTSEL_MASK (3 << 4)
107 #define IMCTR_RTSEL_SHIFT 4
108 #define IMCTR_TREN (1 << 3)
109 #define IMCTR_INTEN (1 << 2)
110 #define IMCTR_FLUSH (1 << 1)
111 #define IMCTR_MMUEN (1 << 0)
113 #define IMCAAR 0x0004
115 #define IMTTBCR 0x0008
116 #define IMTTBCR_EAE (1 << 31)
117 #define IMTTBCR_PMB (1 << 30)
118 #define IMTTBCR_SH1_NON_SHAREABLE (0 << 28)
119 #define IMTTBCR_SH1_OUTER_SHAREABLE (2 << 28)
120 #define IMTTBCR_SH1_INNER_SHAREABLE (3 << 28)
121 #define IMTTBCR_SH1_MASK (3 << 28)
122 #define IMTTBCR_ORGN1_NC (0 << 26)
123 #define IMTTBCR_ORGN1_WB_WA (1 << 26)
124 #define IMTTBCR_ORGN1_WT (2 << 26)
125 #define IMTTBCR_ORGN1_WB (3 << 26)
126 #define IMTTBCR_ORGN1_MASK (3 << 26)
127 #define IMTTBCR_IRGN1_NC (0 << 24)
128 #define IMTTBCR_IRGN1_WB_WA (1 << 24)
129 #define IMTTBCR_IRGN1_WT (2 << 24)
130 #define IMTTBCR_IRGN1_WB (3 << 24)
131 #define IMTTBCR_IRGN1_MASK (3 << 24)
132 #define IMTTBCR_TSZ1_MASK (7 << 16)
133 #define IMTTBCR_TSZ1_SHIFT 16
134 #define IMTTBCR_SH0_NON_SHAREABLE (0 << 12)
135 #define IMTTBCR_SH0_OUTER_SHAREABLE (2 << 12)
136 #define IMTTBCR_SH0_INNER_SHAREABLE (3 << 12)
137 #define IMTTBCR_SH0_MASK (3 << 12)
138 #define IMTTBCR_ORGN0_NC (0 << 10)
139 #define IMTTBCR_ORGN0_WB_WA (1 << 10)
140 #define IMTTBCR_ORGN0_WT (2 << 10)
141 #define IMTTBCR_ORGN0_WB (3 << 10)
142 #define IMTTBCR_ORGN0_MASK (3 << 10)
143 #define IMTTBCR_IRGN0_NC (0 << 8)
144 #define IMTTBCR_IRGN0_WB_WA (1 << 8)
145 #define IMTTBCR_IRGN0_WT (2 << 8)
146 #define IMTTBCR_IRGN0_WB (3 << 8)
147 #define IMTTBCR_IRGN0_MASK (3 << 8)
148 #define IMTTBCR_SL0_LVL_2 (0 << 4)
149 #define IMTTBCR_SL0_LVL_1 (1 << 4)
150 #define IMTTBCR_TSZ0_MASK (7 << 0)
151 #define IMTTBCR_TSZ0_SHIFT O
153 #define IMTTBCR_SL0_TWOBIT_LVL_3 (0 << 6)
154 #define IMTTBCR_SL0_TWOBIT_LVL_2 (1 << 6)
155 #define IMTTBCR_SL0_TWOBIT_LVL_1 (2 << 6)
157 #define IMBUSCR 0x000c
158 #define IMBUSCR_DVM (1 << 2)
159 #define IMBUSCR_BUSSEL_SYS (0 << 0)
160 #define IMBUSCR_BUSSEL_CCI (1 << 0)
161 #define IMBUSCR_BUSSEL_IMCAAR (2 << 0)
162 #define IMBUSCR_BUSSEL_CCI_IMCAAR (3 << 0)
163 #define IMBUSCR_BUSSEL_MASK (3 << 0)
165 #define IMTTLBR0 0x0010
166 #define IMTTUBR0 0x0014
167 #define IMTTLBR1 0x0018
168 #define IMTTUBR1 0x001c
171 #define IMSTR_ERRLVL_MASK (3 << 12)
172 #define IMSTR_ERRLVL_SHIFT 12
173 #define IMSTR_ERRCODE_TLB_FORMAT (1 << 8)
174 #define IMSTR_ERRCODE_ACCESS_PERM (4 << 8)
175 #define IMSTR_ERRCODE_SECURE_ACCESS (5 << 8)
176 #define IMSTR_ERRCODE_MASK (7 << 8)
177 #define IMSTR_MHIT (1 << 4)
178 #define IMSTR_ABORT (1 << 2)
179 #define IMSTR_PF (1 << 1)
180 #define IMSTR_TF (1 << 0)
182 #define IMMAIR0 0x0028
183 #define IMMAIR1 0x002c
184 #define IMMAIR_ATTR_MASK 0xff
185 #define IMMAIR_ATTR_DEVICE 0x04
186 #define IMMAIR_ATTR_NC 0x44
187 #define IMMAIR_ATTR_WBRWA 0xff
188 #define IMMAIR_ATTR_SHIFT(n) ((n) << 3)
189 #define IMMAIR_ATTR_IDX_NC 0
190 #define IMMAIR_ATTR_IDX_WBRWA 1
191 #define IMMAIR_ATTR_IDX_DEV 2
193 #define IMELAR 0x0030 /* IMEAR on R-Car Gen2 */
194 #define IMEUAR 0x0034 /* R-Car Gen3 only */
196 #define IMPCTR 0x0200
197 #define IMPSTR 0x0208
198 #define IMPEAR 0x020c
199 #define IMPMBA(n) (0x0280 + ((n) * 4))
200 #define IMPMBD(n) (0x02c0 + ((n) * 4))
202 #define IMUCTR(n) ((n) < 32 ? IMUCTR0(n) : IMUCTR32(n))
203 #define IMUCTR0(n) (0x0300 + ((n) * 16))
204 #define IMUCTR32(n) (0x0600 + (((n) - 32) * 16))
205 #define IMUCTR_FIXADDEN (1 << 31)
206 #define IMUCTR_FIXADD_MASK (0xff << 16)
207 #define IMUCTR_FIXADD_SHIFT 16
208 #define IMUCTR_TTSEL_MMU(n) ((n) << 4)
209 #define IMUCTR_TTSEL_PMB (8 << 4)
210 #define IMUCTR_TTSEL_MASK (15 << 4)
211 #define IMUCTR_FLUSH (1 << 1)
212 #define IMUCTR_MMUEN (1 << 0)
214 #define IMUASID(n) ((n) < 32 ? IMUASID0(n) : IMUASID32(n))
215 #define IMUASID0(n) (0x0308 + ((n) * 16))
216 #define IMUASID32(n) (0x0608 + (((n) - 32) * 16))
217 #define IMUASID_ASID8_MASK (0xff << 8)
218 #define IMUASID_ASID8_SHIFT 8
219 #define IMUASID_ASID0_MASK (0xff << 0)
220 #define IMUASID_ASID0_SHIFT 0
222 /* -----------------------------------------------------------------------------
223 * Root device handling
226 static struct platform_driver ipmmu_driver
;
228 static bool ipmmu_is_root(struct ipmmu_vmsa_device
*mmu
)
230 return mmu
->root
== mmu
;
233 static int __ipmmu_check_device(struct device
*dev
, void *data
)
235 struct ipmmu_vmsa_device
*mmu
= dev_get_drvdata(dev
);
236 struct ipmmu_vmsa_device
**rootp
= data
;
238 if (ipmmu_is_root(mmu
))
244 static struct ipmmu_vmsa_device
*ipmmu_find_root(void)
246 struct ipmmu_vmsa_device
*root
= NULL
;
248 return driver_for_each_device(&ipmmu_driver
.driver
, NULL
, &root
,
249 __ipmmu_check_device
) == 0 ? root
: NULL
;
252 /* -----------------------------------------------------------------------------
256 static u32
ipmmu_read(struct ipmmu_vmsa_device
*mmu
, unsigned int offset
)
258 return ioread32(mmu
->base
+ offset
);
261 static void ipmmu_write(struct ipmmu_vmsa_device
*mmu
, unsigned int offset
,
264 iowrite32(data
, mmu
->base
+ offset
);
267 static u32
ipmmu_ctx_read_root(struct ipmmu_vmsa_domain
*domain
,
270 return ipmmu_read(domain
->mmu
->root
,
271 domain
->context_id
* IM_CTX_SIZE
+ reg
);
274 static void ipmmu_ctx_write_root(struct ipmmu_vmsa_domain
*domain
,
275 unsigned int reg
, u32 data
)
277 ipmmu_write(domain
->mmu
->root
,
278 domain
->context_id
* IM_CTX_SIZE
+ reg
, data
);
281 static void ipmmu_ctx_write_all(struct ipmmu_vmsa_domain
*domain
,
282 unsigned int reg
, u32 data
)
284 if (domain
->mmu
!= domain
->mmu
->root
)
285 ipmmu_write(domain
->mmu
,
286 domain
->context_id
* IM_CTX_SIZE
+ reg
, data
);
288 ipmmu_write(domain
->mmu
->root
,
289 domain
->context_id
* IM_CTX_SIZE
+ reg
, data
);
292 /* -----------------------------------------------------------------------------
293 * TLB and microTLB Management
296 /* Wait for any pending TLB invalidations to complete */
297 static void ipmmu_tlb_sync(struct ipmmu_vmsa_domain
*domain
)
299 unsigned int count
= 0;
301 while (ipmmu_ctx_read_root(domain
, IMCTR
) & IMCTR_FLUSH
) {
303 if (++count
== TLB_LOOP_TIMEOUT
) {
304 dev_err_ratelimited(domain
->mmu
->dev
,
305 "TLB sync timed out -- MMU may be deadlocked\n");
312 static void ipmmu_tlb_invalidate(struct ipmmu_vmsa_domain
*domain
)
316 reg
= ipmmu_ctx_read_root(domain
, IMCTR
);
318 ipmmu_ctx_write_all(domain
, IMCTR
, reg
);
320 ipmmu_tlb_sync(domain
);
324 * Enable MMU translation for the microTLB.
326 static void ipmmu_utlb_enable(struct ipmmu_vmsa_domain
*domain
,
329 struct ipmmu_vmsa_device
*mmu
= domain
->mmu
;
332 * TODO: Reference-count the microTLB as several bus masters can be
333 * connected to the same microTLB.
336 /* TODO: What should we set the ASID to ? */
337 ipmmu_write(mmu
, IMUASID(utlb
), 0);
338 /* TODO: Do we need to flush the microTLB ? */
339 ipmmu_write(mmu
, IMUCTR(utlb
),
340 IMUCTR_TTSEL_MMU(domain
->context_id
) | IMUCTR_FLUSH
|
342 mmu
->utlb_ctx
[utlb
] = domain
->context_id
;
346 * Disable MMU translation for the microTLB.
348 static void ipmmu_utlb_disable(struct ipmmu_vmsa_domain
*domain
,
351 struct ipmmu_vmsa_device
*mmu
= domain
->mmu
;
353 ipmmu_write(mmu
, IMUCTR(utlb
), 0);
354 mmu
->utlb_ctx
[utlb
] = IPMMU_CTX_INVALID
;
357 static void ipmmu_tlb_flush_all(void *cookie
)
359 struct ipmmu_vmsa_domain
*domain
= cookie
;
361 ipmmu_tlb_invalidate(domain
);
364 static void ipmmu_tlb_add_flush(unsigned long iova
, size_t size
,
365 size_t granule
, bool leaf
, void *cookie
)
367 /* The hardware doesn't support selective TLB flush. */
370 static const struct iommu_gather_ops ipmmu_gather_ops
= {
371 .tlb_flush_all
= ipmmu_tlb_flush_all
,
372 .tlb_add_flush
= ipmmu_tlb_add_flush
,
373 .tlb_sync
= ipmmu_tlb_flush_all
,
376 /* -----------------------------------------------------------------------------
377 * Domain/Context Management
380 static int ipmmu_domain_allocate_context(struct ipmmu_vmsa_device
*mmu
,
381 struct ipmmu_vmsa_domain
*domain
)
386 spin_lock_irqsave(&mmu
->lock
, flags
);
388 ret
= find_first_zero_bit(mmu
->ctx
, mmu
->num_ctx
);
389 if (ret
!= mmu
->num_ctx
) {
390 mmu
->domains
[ret
] = domain
;
391 set_bit(ret
, mmu
->ctx
);
395 spin_unlock_irqrestore(&mmu
->lock
, flags
);
400 static void ipmmu_domain_free_context(struct ipmmu_vmsa_device
*mmu
,
401 unsigned int context_id
)
405 spin_lock_irqsave(&mmu
->lock
, flags
);
407 clear_bit(context_id
, mmu
->ctx
);
408 mmu
->domains
[context_id
] = NULL
;
410 spin_unlock_irqrestore(&mmu
->lock
, flags
);
413 static void ipmmu_domain_setup_context(struct ipmmu_vmsa_domain
*domain
)
419 ttbr
= domain
->cfg
.arm_lpae_s1_cfg
.ttbr
[0];
420 ipmmu_ctx_write_root(domain
, IMTTLBR0
, ttbr
);
421 ipmmu_ctx_write_root(domain
, IMTTUBR0
, ttbr
>> 32);
425 * We use long descriptors with inner-shareable WBWA tables and allocate
426 * the whole 32-bit VA space to TTBR0.
428 if (domain
->mmu
->features
->twobit_imttbcr_sl0
)
429 tmp
= IMTTBCR_SL0_TWOBIT_LVL_1
;
431 tmp
= IMTTBCR_SL0_LVL_1
;
433 ipmmu_ctx_write_root(domain
, IMTTBCR
, IMTTBCR_EAE
|
434 IMTTBCR_SH0_INNER_SHAREABLE
| IMTTBCR_ORGN0_WB_WA
|
435 IMTTBCR_IRGN0_WB_WA
| tmp
);
438 ipmmu_ctx_write_root(domain
, IMMAIR0
,
439 domain
->cfg
.arm_lpae_s1_cfg
.mair
[0]);
442 if (domain
->mmu
->features
->setup_imbuscr
)
443 ipmmu_ctx_write_root(domain
, IMBUSCR
,
444 ipmmu_ctx_read_root(domain
, IMBUSCR
) &
445 ~(IMBUSCR_DVM
| IMBUSCR_BUSSEL_MASK
));
449 * Clear all interrupt flags.
451 ipmmu_ctx_write_root(domain
, IMSTR
, ipmmu_ctx_read_root(domain
, IMSTR
));
455 * Enable the MMU and interrupt generation. The long-descriptor
456 * translation table format doesn't use TEX remapping. Don't enable AF
457 * software management as we have no use for it. Flush the TLB as
458 * required when modifying the context registers.
460 ipmmu_ctx_write_all(domain
, IMCTR
,
461 IMCTR_INTEN
| IMCTR_FLUSH
| IMCTR_MMUEN
);
464 static int ipmmu_domain_init_context(struct ipmmu_vmsa_domain
*domain
)
469 * Allocate the page table operations.
471 * VMSA states in section B3.6.3 "Control of Secure or Non-secure memory
472 * access, Long-descriptor format" that the NStable bit being set in a
473 * table descriptor will result in the NStable and NS bits of all child
474 * entries being ignored and considered as being set. The IPMMU seems
475 * not to comply with this, as it generates a secure access page fault
476 * if any of the NStable and NS bits isn't set when running in
479 domain
->cfg
.quirks
= IO_PGTABLE_QUIRK_ARM_NS
;
480 domain
->cfg
.pgsize_bitmap
= SZ_1G
| SZ_2M
| SZ_4K
;
481 domain
->cfg
.ias
= 32;
482 domain
->cfg
.oas
= 40;
483 domain
->cfg
.tlb
= &ipmmu_gather_ops
;
484 domain
->io_domain
.geometry
.aperture_end
= DMA_BIT_MASK(32);
485 domain
->io_domain
.geometry
.force_aperture
= true;
487 * TODO: Add support for coherent walk through CCI with DVM and remove
488 * cache handling. For now, delegate it to the io-pgtable code.
490 domain
->cfg
.coherent_walk
= false;
491 domain
->cfg
.iommu_dev
= domain
->mmu
->root
->dev
;
494 * Find an unused context.
496 ret
= ipmmu_domain_allocate_context(domain
->mmu
->root
, domain
);
500 domain
->context_id
= ret
;
502 domain
->iop
= alloc_io_pgtable_ops(ARM_32_LPAE_S1
, &domain
->cfg
,
505 ipmmu_domain_free_context(domain
->mmu
->root
,
510 ipmmu_domain_setup_context(domain
);
514 static void ipmmu_domain_destroy_context(struct ipmmu_vmsa_domain
*domain
)
520 * Disable the context. Flush the TLB as required when modifying the
523 * TODO: Is TLB flush really needed ?
525 ipmmu_ctx_write_all(domain
, IMCTR
, IMCTR_FLUSH
);
526 ipmmu_tlb_sync(domain
);
527 ipmmu_domain_free_context(domain
->mmu
->root
, domain
->context_id
);
530 /* -----------------------------------------------------------------------------
534 static irqreturn_t
ipmmu_domain_irq(struct ipmmu_vmsa_domain
*domain
)
536 const u32 err_mask
= IMSTR_MHIT
| IMSTR_ABORT
| IMSTR_PF
| IMSTR_TF
;
537 struct ipmmu_vmsa_device
*mmu
= domain
->mmu
;
541 status
= ipmmu_ctx_read_root(domain
, IMSTR
);
542 if (!(status
& err_mask
))
545 iova
= ipmmu_ctx_read_root(domain
, IMELAR
);
546 if (IS_ENABLED(CONFIG_64BIT
))
547 iova
|= (u64
)ipmmu_ctx_read_root(domain
, IMEUAR
) << 32;
550 * Clear the error status flags. Unlike traditional interrupt flag
551 * registers that must be cleared by writing 1, this status register
552 * seems to require 0. The error address register must be read before,
553 * otherwise its value will be 0.
555 ipmmu_ctx_write_root(domain
, IMSTR
, 0);
557 /* Log fatal errors. */
558 if (status
& IMSTR_MHIT
)
559 dev_err_ratelimited(mmu
->dev
, "Multiple TLB hits @0x%lx\n",
561 if (status
& IMSTR_ABORT
)
562 dev_err_ratelimited(mmu
->dev
, "Page Table Walk Abort @0x%lx\n",
565 if (!(status
& (IMSTR_PF
| IMSTR_TF
)))
569 * Try to handle page faults and translation faults.
571 * TODO: We need to look up the faulty device based on the I/O VA. Use
572 * the IOMMU device for now.
574 if (!report_iommu_fault(&domain
->io_domain
, mmu
->dev
, iova
, 0))
577 dev_err_ratelimited(mmu
->dev
,
578 "Unhandled fault: status 0x%08x iova 0x%lx\n",
584 static irqreturn_t
ipmmu_irq(int irq
, void *dev
)
586 struct ipmmu_vmsa_device
*mmu
= dev
;
587 irqreturn_t status
= IRQ_NONE
;
591 spin_lock_irqsave(&mmu
->lock
, flags
);
594 * Check interrupts for all active contexts.
596 for (i
= 0; i
< mmu
->num_ctx
; i
++) {
597 if (!mmu
->domains
[i
])
599 if (ipmmu_domain_irq(mmu
->domains
[i
]) == IRQ_HANDLED
)
600 status
= IRQ_HANDLED
;
603 spin_unlock_irqrestore(&mmu
->lock
, flags
);
608 /* -----------------------------------------------------------------------------
612 static struct iommu_domain
*__ipmmu_domain_alloc(unsigned type
)
614 struct ipmmu_vmsa_domain
*domain
;
616 domain
= kzalloc(sizeof(*domain
), GFP_KERNEL
);
620 mutex_init(&domain
->mutex
);
622 return &domain
->io_domain
;
625 static struct iommu_domain
*ipmmu_domain_alloc(unsigned type
)
627 struct iommu_domain
*io_domain
= NULL
;
630 case IOMMU_DOMAIN_UNMANAGED
:
631 io_domain
= __ipmmu_domain_alloc(type
);
634 case IOMMU_DOMAIN_DMA
:
635 io_domain
= __ipmmu_domain_alloc(type
);
636 if (io_domain
&& iommu_get_dma_cookie(io_domain
)) {
646 static void ipmmu_domain_free(struct iommu_domain
*io_domain
)
648 struct ipmmu_vmsa_domain
*domain
= to_vmsa_domain(io_domain
);
651 * Free the domain resources. We assume that all devices have already
654 iommu_put_dma_cookie(io_domain
);
655 ipmmu_domain_destroy_context(domain
);
656 free_io_pgtable_ops(domain
->iop
);
660 static int ipmmu_attach_device(struct iommu_domain
*io_domain
,
663 struct iommu_fwspec
*fwspec
= dev_iommu_fwspec_get(dev
);
664 struct ipmmu_vmsa_device
*mmu
= to_ipmmu(dev
);
665 struct ipmmu_vmsa_domain
*domain
= to_vmsa_domain(io_domain
);
670 dev_err(dev
, "Cannot attach to IPMMU\n");
674 mutex_lock(&domain
->mutex
);
677 /* The domain hasn't been used yet, initialize it. */
679 ret
= ipmmu_domain_init_context(domain
);
681 dev_err(dev
, "Unable to initialize IPMMU context\n");
684 dev_info(dev
, "Using IPMMU context %u\n",
687 } else if (domain
->mmu
!= mmu
) {
689 * Something is wrong, we can't attach two devices using
690 * different IOMMUs to the same domain.
692 dev_err(dev
, "Can't attach IPMMU %s to domain on IPMMU %s\n",
693 dev_name(mmu
->dev
), dev_name(domain
->mmu
->dev
));
696 dev_info(dev
, "Reusing IPMMU context %u\n", domain
->context_id
);
698 mutex_unlock(&domain
->mutex
);
703 for (i
= 0; i
< fwspec
->num_ids
; ++i
)
704 ipmmu_utlb_enable(domain
, fwspec
->ids
[i
]);
709 static void ipmmu_detach_device(struct iommu_domain
*io_domain
,
712 struct iommu_fwspec
*fwspec
= dev_iommu_fwspec_get(dev
);
713 struct ipmmu_vmsa_domain
*domain
= to_vmsa_domain(io_domain
);
716 for (i
= 0; i
< fwspec
->num_ids
; ++i
)
717 ipmmu_utlb_disable(domain
, fwspec
->ids
[i
]);
720 * TODO: Optimize by disabling the context when no device is attached.
724 static int ipmmu_map(struct iommu_domain
*io_domain
, unsigned long iova
,
725 phys_addr_t paddr
, size_t size
, int prot
)
727 struct ipmmu_vmsa_domain
*domain
= to_vmsa_domain(io_domain
);
732 return domain
->iop
->map(domain
->iop
, iova
, paddr
, size
, prot
);
735 static size_t ipmmu_unmap(struct iommu_domain
*io_domain
, unsigned long iova
,
738 struct ipmmu_vmsa_domain
*domain
= to_vmsa_domain(io_domain
);
740 return domain
->iop
->unmap(domain
->iop
, iova
, size
);
743 static void ipmmu_iotlb_sync(struct iommu_domain
*io_domain
)
745 struct ipmmu_vmsa_domain
*domain
= to_vmsa_domain(io_domain
);
748 ipmmu_tlb_flush_all(domain
);
751 static phys_addr_t
ipmmu_iova_to_phys(struct iommu_domain
*io_domain
,
754 struct ipmmu_vmsa_domain
*domain
= to_vmsa_domain(io_domain
);
756 /* TODO: Is locking needed ? */
758 return domain
->iop
->iova_to_phys(domain
->iop
, iova
);
761 static int ipmmu_init_platform_device(struct device
*dev
,
762 struct of_phandle_args
*args
)
764 struct iommu_fwspec
*fwspec
= dev_iommu_fwspec_get(dev
);
765 struct platform_device
*ipmmu_pdev
;
767 ipmmu_pdev
= of_find_device_by_node(args
->np
);
771 fwspec
->iommu_priv
= platform_get_drvdata(ipmmu_pdev
);
776 static const struct soc_device_attribute soc_rcar_gen3
[] = {
777 { .soc_id
= "r8a774a1", },
778 { .soc_id
= "r8a774c0", },
779 { .soc_id
= "r8a7795", },
780 { .soc_id
= "r8a7796", },
781 { .soc_id
= "r8a77965", },
782 { .soc_id
= "r8a77970", },
783 { .soc_id
= "r8a77990", },
784 { .soc_id
= "r8a77995", },
788 static const struct soc_device_attribute soc_rcar_gen3_whitelist
[] = {
789 { .soc_id
= "r8a774c0", },
790 { .soc_id
= "r8a7795", .revision
= "ES3.*" },
791 { .soc_id
= "r8a77965", },
792 { .soc_id
= "r8a77990", },
793 { .soc_id
= "r8a77995", },
797 static const char * const rcar_gen3_slave_whitelist
[] = {
800 static bool ipmmu_slave_whitelist(struct device
*dev
)
805 * For R-Car Gen3 use a white list to opt-in slave devices.
806 * For Other SoCs, this returns true anyway.
808 if (!soc_device_match(soc_rcar_gen3
))
811 /* Check whether this R-Car Gen3 can use the IPMMU correctly or not */
812 if (!soc_device_match(soc_rcar_gen3_whitelist
))
815 /* Check whether this slave device can work with the IPMMU */
816 for (i
= 0; i
< ARRAY_SIZE(rcar_gen3_slave_whitelist
); i
++) {
817 if (!strcmp(dev_name(dev
), rcar_gen3_slave_whitelist
[i
]))
821 /* Otherwise, do not allow use of IPMMU */
825 static int ipmmu_of_xlate(struct device
*dev
,
826 struct of_phandle_args
*spec
)
828 if (!ipmmu_slave_whitelist(dev
))
831 iommu_fwspec_add_ids(dev
, spec
->args
, 1);
833 /* Initialize once - xlate() will call multiple times */
837 return ipmmu_init_platform_device(dev
, spec
);
840 static int ipmmu_init_arm_mapping(struct device
*dev
)
842 struct ipmmu_vmsa_device
*mmu
= to_ipmmu(dev
);
843 struct iommu_group
*group
;
846 /* Create a device group and add the device to it. */
847 group
= iommu_group_alloc();
849 dev_err(dev
, "Failed to allocate IOMMU group\n");
850 return PTR_ERR(group
);
853 ret
= iommu_group_add_device(group
, dev
);
854 iommu_group_put(group
);
857 dev_err(dev
, "Failed to add device to IPMMU group\n");
862 * Create the ARM mapping, used by the ARM DMA mapping core to allocate
863 * VAs. This will allocate a corresponding IOMMU domain.
866 * - Create one mapping per context (TLB).
867 * - Make the mapping size configurable ? We currently use a 2GB mapping
868 * at a 1GB offset to ensure that NULL VAs will fault.
871 struct dma_iommu_mapping
*mapping
;
873 mapping
= arm_iommu_create_mapping(&platform_bus_type
,
875 if (IS_ERR(mapping
)) {
876 dev_err(mmu
->dev
, "failed to create ARM IOMMU mapping\n");
877 ret
= PTR_ERR(mapping
);
881 mmu
->mapping
= mapping
;
884 /* Attach the ARM VA mapping to the device. */
885 ret
= arm_iommu_attach_device(dev
, mmu
->mapping
);
887 dev_err(dev
, "Failed to attach device to VA mapping\n");
894 iommu_group_remove_device(dev
);
896 arm_iommu_release_mapping(mmu
->mapping
);
901 static int ipmmu_add_device(struct device
*dev
)
903 struct ipmmu_vmsa_device
*mmu
= to_ipmmu(dev
);
904 struct iommu_group
*group
;
908 * Only let through devices that have been verified in xlate()
913 if (IS_ENABLED(CONFIG_ARM
) && !IS_ENABLED(CONFIG_IOMMU_DMA
)) {
914 ret
= ipmmu_init_arm_mapping(dev
);
918 group
= iommu_group_get_for_dev(dev
);
920 return PTR_ERR(group
);
922 iommu_group_put(group
);
925 iommu_device_link(&mmu
->iommu
, dev
);
929 static void ipmmu_remove_device(struct device
*dev
)
931 struct ipmmu_vmsa_device
*mmu
= to_ipmmu(dev
);
933 iommu_device_unlink(&mmu
->iommu
, dev
);
934 arm_iommu_detach_device(dev
);
935 iommu_group_remove_device(dev
);
938 static struct iommu_group
*ipmmu_find_group(struct device
*dev
)
940 struct ipmmu_vmsa_device
*mmu
= to_ipmmu(dev
);
941 struct iommu_group
*group
;
944 return iommu_group_ref_get(mmu
->group
);
946 group
= iommu_group_alloc();
953 static const struct iommu_ops ipmmu_ops
= {
954 .domain_alloc
= ipmmu_domain_alloc
,
955 .domain_free
= ipmmu_domain_free
,
956 .attach_dev
= ipmmu_attach_device
,
957 .detach_dev
= ipmmu_detach_device
,
959 .unmap
= ipmmu_unmap
,
960 .flush_iotlb_all
= ipmmu_iotlb_sync
,
961 .iotlb_sync
= ipmmu_iotlb_sync
,
962 .iova_to_phys
= ipmmu_iova_to_phys
,
963 .add_device
= ipmmu_add_device
,
964 .remove_device
= ipmmu_remove_device
,
965 .device_group
= ipmmu_find_group
,
966 .pgsize_bitmap
= SZ_1G
| SZ_2M
| SZ_4K
,
967 .of_xlate
= ipmmu_of_xlate
,
970 /* -----------------------------------------------------------------------------
971 * Probe/remove and init
974 static void ipmmu_device_reset(struct ipmmu_vmsa_device
*mmu
)
978 /* Disable all contexts. */
979 for (i
= 0; i
< mmu
->num_ctx
; ++i
)
980 ipmmu_write(mmu
, i
* IM_CTX_SIZE
+ IMCTR
, 0);
983 static const struct ipmmu_features ipmmu_features_default
= {
984 .use_ns_alias_offset
= true,
985 .has_cache_leaf_nodes
= false,
986 .number_of_contexts
= 1, /* software only tested with one context */
988 .setup_imbuscr
= true,
989 .twobit_imttbcr_sl0
= false,
990 .reserved_context
= false,
993 static const struct ipmmu_features ipmmu_features_rcar_gen3
= {
994 .use_ns_alias_offset
= false,
995 .has_cache_leaf_nodes
= true,
996 .number_of_contexts
= 8,
998 .setup_imbuscr
= false,
999 .twobit_imttbcr_sl0
= true,
1000 .reserved_context
= true,
1003 static const struct of_device_id ipmmu_of_ids
[] = {
1005 .compatible
= "renesas,ipmmu-vmsa",
1006 .data
= &ipmmu_features_default
,
1008 .compatible
= "renesas,ipmmu-r8a774a1",
1009 .data
= &ipmmu_features_rcar_gen3
,
1011 .compatible
= "renesas,ipmmu-r8a774c0",
1012 .data
= &ipmmu_features_rcar_gen3
,
1014 .compatible
= "renesas,ipmmu-r8a7795",
1015 .data
= &ipmmu_features_rcar_gen3
,
1017 .compatible
= "renesas,ipmmu-r8a7796",
1018 .data
= &ipmmu_features_rcar_gen3
,
1020 .compatible
= "renesas,ipmmu-r8a77965",
1021 .data
= &ipmmu_features_rcar_gen3
,
1023 .compatible
= "renesas,ipmmu-r8a77970",
1024 .data
= &ipmmu_features_rcar_gen3
,
1026 .compatible
= "renesas,ipmmu-r8a77990",
1027 .data
= &ipmmu_features_rcar_gen3
,
1029 .compatible
= "renesas,ipmmu-r8a77995",
1030 .data
= &ipmmu_features_rcar_gen3
,
1036 static int ipmmu_probe(struct platform_device
*pdev
)
1038 struct ipmmu_vmsa_device
*mmu
;
1039 struct resource
*res
;
1043 mmu
= devm_kzalloc(&pdev
->dev
, sizeof(*mmu
), GFP_KERNEL
);
1045 dev_err(&pdev
->dev
, "cannot allocate device data\n");
1049 mmu
->dev
= &pdev
->dev
;
1050 spin_lock_init(&mmu
->lock
);
1051 bitmap_zero(mmu
->ctx
, IPMMU_CTX_MAX
);
1052 mmu
->features
= of_device_get_match_data(&pdev
->dev
);
1053 memset(mmu
->utlb_ctx
, IPMMU_CTX_INVALID
, mmu
->features
->num_utlbs
);
1054 dma_set_mask_and_coherent(&pdev
->dev
, DMA_BIT_MASK(40));
1056 /* Map I/O memory and request IRQ. */
1057 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1058 mmu
->base
= devm_ioremap_resource(&pdev
->dev
, res
);
1059 if (IS_ERR(mmu
->base
))
1060 return PTR_ERR(mmu
->base
);
1063 * The IPMMU has two register banks, for secure and non-secure modes.
1064 * The bank mapped at the beginning of the IPMMU address space
1065 * corresponds to the running mode of the CPU. When running in secure
1066 * mode the non-secure register bank is also available at an offset.
1068 * Secure mode operation isn't clearly documented and is thus currently
1069 * not implemented in the driver. Furthermore, preliminary tests of
1070 * non-secure operation with the main register bank were not successful.
1071 * Offset the registers base unconditionally to point to the non-secure
1072 * alias space for now.
1074 if (mmu
->features
->use_ns_alias_offset
)
1075 mmu
->base
+= IM_NS_ALIAS_OFFSET
;
1077 mmu
->num_ctx
= min(IPMMU_CTX_MAX
, mmu
->features
->number_of_contexts
);
1079 irq
= platform_get_irq(pdev
, 0);
1082 * Determine if this IPMMU instance is a root device by checking for
1083 * the lack of has_cache_leaf_nodes flag or renesas,ipmmu-main property.
1085 if (!mmu
->features
->has_cache_leaf_nodes
||
1086 !of_find_property(pdev
->dev
.of_node
, "renesas,ipmmu-main", NULL
))
1089 mmu
->root
= ipmmu_find_root();
1092 * Wait until the root device has been registered for sure.
1095 return -EPROBE_DEFER
;
1097 /* Root devices have mandatory IRQs */
1098 if (ipmmu_is_root(mmu
)) {
1100 dev_err(&pdev
->dev
, "no IRQ found\n");
1104 ret
= devm_request_irq(&pdev
->dev
, irq
, ipmmu_irq
, 0,
1105 dev_name(&pdev
->dev
), mmu
);
1107 dev_err(&pdev
->dev
, "failed to request IRQ %d\n", irq
);
1111 ipmmu_device_reset(mmu
);
1113 if (mmu
->features
->reserved_context
) {
1114 dev_info(&pdev
->dev
, "IPMMU context 0 is reserved\n");
1115 set_bit(0, mmu
->ctx
);
1120 * Register the IPMMU to the IOMMU subsystem in the following cases:
1121 * - R-Car Gen2 IPMMU (all devices registered)
1122 * - R-Car Gen3 IPMMU (leaf devices only - skip root IPMMU-MM device)
1124 if (!mmu
->features
->has_cache_leaf_nodes
|| !ipmmu_is_root(mmu
)) {
1125 ret
= iommu_device_sysfs_add(&mmu
->iommu
, &pdev
->dev
, NULL
,
1126 dev_name(&pdev
->dev
));
1130 iommu_device_set_ops(&mmu
->iommu
, &ipmmu_ops
);
1131 iommu_device_set_fwnode(&mmu
->iommu
,
1132 &pdev
->dev
.of_node
->fwnode
);
1134 ret
= iommu_device_register(&mmu
->iommu
);
1138 #if defined(CONFIG_IOMMU_DMA)
1139 if (!iommu_present(&platform_bus_type
))
1140 bus_set_iommu(&platform_bus_type
, &ipmmu_ops
);
1145 * We can't create the ARM mapping here as it requires the bus to have
1146 * an IOMMU, which only happens when bus_set_iommu() is called in
1147 * ipmmu_init() after the probe function returns.
1150 platform_set_drvdata(pdev
, mmu
);
1155 static int ipmmu_remove(struct platform_device
*pdev
)
1157 struct ipmmu_vmsa_device
*mmu
= platform_get_drvdata(pdev
);
1159 iommu_device_sysfs_remove(&mmu
->iommu
);
1160 iommu_device_unregister(&mmu
->iommu
);
1162 arm_iommu_release_mapping(mmu
->mapping
);
1164 ipmmu_device_reset(mmu
);
1169 #ifdef CONFIG_PM_SLEEP
1170 static int ipmmu_resume_noirq(struct device
*dev
)
1172 struct ipmmu_vmsa_device
*mmu
= dev_get_drvdata(dev
);
1175 /* Reset root MMU and restore contexts */
1176 if (ipmmu_is_root(mmu
)) {
1177 ipmmu_device_reset(mmu
);
1179 for (i
= 0; i
< mmu
->num_ctx
; i
++) {
1180 if (!mmu
->domains
[i
])
1183 ipmmu_domain_setup_context(mmu
->domains
[i
]);
1187 /* Re-enable active micro-TLBs */
1188 for (i
= 0; i
< mmu
->features
->num_utlbs
; i
++) {
1189 if (mmu
->utlb_ctx
[i
] == IPMMU_CTX_INVALID
)
1192 ipmmu_utlb_enable(mmu
->root
->domains
[mmu
->utlb_ctx
[i
]], i
);
1198 static const struct dev_pm_ops ipmmu_pm
= {
1199 SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(NULL
, ipmmu_resume_noirq
)
1201 #define DEV_PM_OPS &ipmmu_pm
1203 #define DEV_PM_OPS NULL
1204 #endif /* CONFIG_PM_SLEEP */
1206 static struct platform_driver ipmmu_driver
= {
1208 .name
= "ipmmu-vmsa",
1209 .of_match_table
= of_match_ptr(ipmmu_of_ids
),
1212 .probe
= ipmmu_probe
,
1213 .remove
= ipmmu_remove
,
1216 static int __init
ipmmu_init(void)
1218 struct device_node
*np
;
1219 static bool setup_done
;
1225 np
= of_find_matching_node(NULL
, ipmmu_of_ids
);
1231 ret
= platform_driver_register(&ipmmu_driver
);
1235 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
1236 if (!iommu_present(&platform_bus_type
))
1237 bus_set_iommu(&platform_bus_type
, &ipmmu_ops
);
1243 subsys_initcall(ipmmu_init
);