1 // SPDX-License-Identifier: GPL-2.0-only
4 * Helper functions for bitmap.h.
6 #include <linux/export.h>
7 #include <linux/thread_info.h>
8 #include <linux/ctype.h>
9 #include <linux/errno.h>
10 #include <linux/bitmap.h>
11 #include <linux/bitops.h>
12 #include <linux/bug.h>
13 #include <linux/kernel.h>
15 #include <linux/slab.h>
16 #include <linux/string.h>
17 #include <linux/uaccess.h>
24 * DOC: bitmap introduction
26 * bitmaps provide an array of bits, implemented using an an
27 * array of unsigned longs. The number of valid bits in a
28 * given bitmap does _not_ need to be an exact multiple of
31 * The possible unused bits in the last, partially used word
32 * of a bitmap are 'don't care'. The implementation makes
33 * no particular effort to keep them zero. It ensures that
34 * their value will not affect the results of any operation.
35 * The bitmap operations that return Boolean (bitmap_empty,
36 * for example) or scalar (bitmap_weight, for example) results
37 * carefully filter out these unused bits from impacting their
40 * The byte ordering of bitmaps is more natural on little
41 * endian architectures. See the big-endian headers
42 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
43 * for the best explanations of this ordering.
46 int __bitmap_equal(const unsigned long *bitmap1
,
47 const unsigned long *bitmap2
, unsigned int bits
)
49 unsigned int k
, lim
= bits
/BITS_PER_LONG
;
50 for (k
= 0; k
< lim
; ++k
)
51 if (bitmap1
[k
] != bitmap2
[k
])
54 if (bits
% BITS_PER_LONG
)
55 if ((bitmap1
[k
] ^ bitmap2
[k
]) & BITMAP_LAST_WORD_MASK(bits
))
60 EXPORT_SYMBOL(__bitmap_equal
);
62 void __bitmap_complement(unsigned long *dst
, const unsigned long *src
, unsigned int bits
)
64 unsigned int k
, lim
= BITS_TO_LONGS(bits
);
65 for (k
= 0; k
< lim
; ++k
)
68 EXPORT_SYMBOL(__bitmap_complement
);
71 * __bitmap_shift_right - logical right shift of the bits in a bitmap
72 * @dst : destination bitmap
73 * @src : source bitmap
74 * @shift : shift by this many bits
75 * @nbits : bitmap size, in bits
77 * Shifting right (dividing) means moving bits in the MS -> LS bit
78 * direction. Zeros are fed into the vacated MS positions and the
79 * LS bits shifted off the bottom are lost.
81 void __bitmap_shift_right(unsigned long *dst
, const unsigned long *src
,
82 unsigned shift
, unsigned nbits
)
84 unsigned k
, lim
= BITS_TO_LONGS(nbits
);
85 unsigned off
= shift
/BITS_PER_LONG
, rem
= shift
% BITS_PER_LONG
;
86 unsigned long mask
= BITMAP_LAST_WORD_MASK(nbits
);
87 for (k
= 0; off
+ k
< lim
; ++k
) {
88 unsigned long upper
, lower
;
91 * If shift is not word aligned, take lower rem bits of
92 * word above and make them the top rem bits of result.
94 if (!rem
|| off
+ k
+ 1 >= lim
)
97 upper
= src
[off
+ k
+ 1];
98 if (off
+ k
+ 1 == lim
- 1)
100 upper
<<= (BITS_PER_LONG
- rem
);
102 lower
= src
[off
+ k
];
103 if (off
+ k
== lim
- 1)
106 dst
[k
] = lower
| upper
;
109 memset(&dst
[lim
- off
], 0, off
*sizeof(unsigned long));
111 EXPORT_SYMBOL(__bitmap_shift_right
);
115 * __bitmap_shift_left - logical left shift of the bits in a bitmap
116 * @dst : destination bitmap
117 * @src : source bitmap
118 * @shift : shift by this many bits
119 * @nbits : bitmap size, in bits
121 * Shifting left (multiplying) means moving bits in the LS -> MS
122 * direction. Zeros are fed into the vacated LS bit positions
123 * and those MS bits shifted off the top are lost.
126 void __bitmap_shift_left(unsigned long *dst
, const unsigned long *src
,
127 unsigned int shift
, unsigned int nbits
)
130 unsigned int lim
= BITS_TO_LONGS(nbits
);
131 unsigned int off
= shift
/BITS_PER_LONG
, rem
= shift
% BITS_PER_LONG
;
132 for (k
= lim
- off
- 1; k
>= 0; --k
) {
133 unsigned long upper
, lower
;
136 * If shift is not word aligned, take upper rem bits of
137 * word below and make them the bottom rem bits of result.
140 lower
= src
[k
- 1] >> (BITS_PER_LONG
- rem
);
143 upper
= src
[k
] << rem
;
144 dst
[k
+ off
] = lower
| upper
;
147 memset(dst
, 0, off
*sizeof(unsigned long));
149 EXPORT_SYMBOL(__bitmap_shift_left
);
151 int __bitmap_and(unsigned long *dst
, const unsigned long *bitmap1
,
152 const unsigned long *bitmap2
, unsigned int bits
)
155 unsigned int lim
= bits
/BITS_PER_LONG
;
156 unsigned long result
= 0;
158 for (k
= 0; k
< lim
; k
++)
159 result
|= (dst
[k
] = bitmap1
[k
] & bitmap2
[k
]);
160 if (bits
% BITS_PER_LONG
)
161 result
|= (dst
[k
] = bitmap1
[k
] & bitmap2
[k
] &
162 BITMAP_LAST_WORD_MASK(bits
));
165 EXPORT_SYMBOL(__bitmap_and
);
167 void __bitmap_or(unsigned long *dst
, const unsigned long *bitmap1
,
168 const unsigned long *bitmap2
, unsigned int bits
)
171 unsigned int nr
= BITS_TO_LONGS(bits
);
173 for (k
= 0; k
< nr
; k
++)
174 dst
[k
] = bitmap1
[k
] | bitmap2
[k
];
176 EXPORT_SYMBOL(__bitmap_or
);
178 void __bitmap_xor(unsigned long *dst
, const unsigned long *bitmap1
,
179 const unsigned long *bitmap2
, unsigned int bits
)
182 unsigned int nr
= BITS_TO_LONGS(bits
);
184 for (k
= 0; k
< nr
; k
++)
185 dst
[k
] = bitmap1
[k
] ^ bitmap2
[k
];
187 EXPORT_SYMBOL(__bitmap_xor
);
189 int __bitmap_andnot(unsigned long *dst
, const unsigned long *bitmap1
,
190 const unsigned long *bitmap2
, unsigned int bits
)
193 unsigned int lim
= bits
/BITS_PER_LONG
;
194 unsigned long result
= 0;
196 for (k
= 0; k
< lim
; k
++)
197 result
|= (dst
[k
] = bitmap1
[k
] & ~bitmap2
[k
]);
198 if (bits
% BITS_PER_LONG
)
199 result
|= (dst
[k
] = bitmap1
[k
] & ~bitmap2
[k
] &
200 BITMAP_LAST_WORD_MASK(bits
));
203 EXPORT_SYMBOL(__bitmap_andnot
);
205 int __bitmap_intersects(const unsigned long *bitmap1
,
206 const unsigned long *bitmap2
, unsigned int bits
)
208 unsigned int k
, lim
= bits
/BITS_PER_LONG
;
209 for (k
= 0; k
< lim
; ++k
)
210 if (bitmap1
[k
] & bitmap2
[k
])
213 if (bits
% BITS_PER_LONG
)
214 if ((bitmap1
[k
] & bitmap2
[k
]) & BITMAP_LAST_WORD_MASK(bits
))
218 EXPORT_SYMBOL(__bitmap_intersects
);
220 int __bitmap_subset(const unsigned long *bitmap1
,
221 const unsigned long *bitmap2
, unsigned int bits
)
223 unsigned int k
, lim
= bits
/BITS_PER_LONG
;
224 for (k
= 0; k
< lim
; ++k
)
225 if (bitmap1
[k
] & ~bitmap2
[k
])
228 if (bits
% BITS_PER_LONG
)
229 if ((bitmap1
[k
] & ~bitmap2
[k
]) & BITMAP_LAST_WORD_MASK(bits
))
233 EXPORT_SYMBOL(__bitmap_subset
);
235 int __bitmap_weight(const unsigned long *bitmap
, unsigned int bits
)
237 unsigned int k
, lim
= bits
/BITS_PER_LONG
;
240 for (k
= 0; k
< lim
; k
++)
241 w
+= hweight_long(bitmap
[k
]);
243 if (bits
% BITS_PER_LONG
)
244 w
+= hweight_long(bitmap
[k
] & BITMAP_LAST_WORD_MASK(bits
));
248 EXPORT_SYMBOL(__bitmap_weight
);
250 void __bitmap_set(unsigned long *map
, unsigned int start
, int len
)
252 unsigned long *p
= map
+ BIT_WORD(start
);
253 const unsigned int size
= start
+ len
;
254 int bits_to_set
= BITS_PER_LONG
- (start
% BITS_PER_LONG
);
255 unsigned long mask_to_set
= BITMAP_FIRST_WORD_MASK(start
);
257 while (len
- bits_to_set
>= 0) {
260 bits_to_set
= BITS_PER_LONG
;
265 mask_to_set
&= BITMAP_LAST_WORD_MASK(size
);
269 EXPORT_SYMBOL(__bitmap_set
);
271 void __bitmap_clear(unsigned long *map
, unsigned int start
, int len
)
273 unsigned long *p
= map
+ BIT_WORD(start
);
274 const unsigned int size
= start
+ len
;
275 int bits_to_clear
= BITS_PER_LONG
- (start
% BITS_PER_LONG
);
276 unsigned long mask_to_clear
= BITMAP_FIRST_WORD_MASK(start
);
278 while (len
- bits_to_clear
>= 0) {
279 *p
&= ~mask_to_clear
;
280 len
-= bits_to_clear
;
281 bits_to_clear
= BITS_PER_LONG
;
282 mask_to_clear
= ~0UL;
286 mask_to_clear
&= BITMAP_LAST_WORD_MASK(size
);
287 *p
&= ~mask_to_clear
;
290 EXPORT_SYMBOL(__bitmap_clear
);
293 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
294 * @map: The address to base the search on
295 * @size: The bitmap size in bits
296 * @start: The bitnumber to start searching at
297 * @nr: The number of zeroed bits we're looking for
298 * @align_mask: Alignment mask for zero area
299 * @align_offset: Alignment offset for zero area.
301 * The @align_mask should be one less than a power of 2; the effect is that
302 * the bit offset of all zero areas this function finds plus @align_offset
303 * is multiple of that power of 2.
305 unsigned long bitmap_find_next_zero_area_off(unsigned long *map
,
309 unsigned long align_mask
,
310 unsigned long align_offset
)
312 unsigned long index
, end
, i
;
314 index
= find_next_zero_bit(map
, size
, start
);
316 /* Align allocation */
317 index
= __ALIGN_MASK(index
+ align_offset
, align_mask
) - align_offset
;
322 i
= find_next_bit(map
, end
, index
);
329 EXPORT_SYMBOL(bitmap_find_next_zero_area_off
);
332 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
333 * second version by Paul Jackson, third by Joe Korty.
337 #define nbits_to_hold_value(val) fls(val)
338 #define BASEDEC 10 /* fancier cpuset lists input in decimal */
341 * __bitmap_parse - convert an ASCII hex string into a bitmap.
342 * @buf: pointer to buffer containing string.
343 * @buflen: buffer size in bytes. If string is smaller than this
344 * then it must be terminated with a \0.
345 * @is_user: location of buffer, 0 indicates kernel space
346 * @maskp: pointer to bitmap array that will contain result.
347 * @nmaskbits: size of bitmap, in bits.
349 * Commas group hex digits into chunks. Each chunk defines exactly 32
350 * bits of the resultant bitmask. No chunk may specify a value larger
351 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
352 * then leading 0-bits are prepended. %-EINVAL is returned for illegal
353 * characters and for grouping errors such as "1,,5", ",44", "," and "".
354 * Leading and trailing whitespace accepted, but not embedded whitespace.
356 int __bitmap_parse(const char *buf
, unsigned int buflen
,
357 int is_user
, unsigned long *maskp
,
360 int c
, old_c
, totaldigits
, ndigits
, nchunks
, nbits
;
362 const char __user __force
*ubuf
= (const char __user __force
*)buf
;
364 bitmap_zero(maskp
, nmaskbits
);
366 nchunks
= nbits
= totaldigits
= c
= 0;
369 ndigits
= totaldigits
;
371 /* Get the next chunk of the bitmap */
375 if (__get_user(c
, ubuf
++))
385 * If the last character was a space and the current
386 * character isn't '\0', we've got embedded whitespace.
387 * This is a no-no, so throw an error.
389 if (totaldigits
&& c
&& isspace(old_c
))
392 /* A '\0' or a ',' signal the end of the chunk */
393 if (c
== '\0' || c
== ',')
400 * Make sure there are at least 4 free bits in 'chunk'.
401 * If not, this hexdigit will overflow 'chunk', so
404 if (chunk
& ~((1UL << (CHUNKSZ
- 4)) - 1))
407 chunk
= (chunk
<< 4) | hex_to_bin(c
);
410 if (ndigits
== totaldigits
)
412 if (nchunks
== 0 && chunk
== 0)
415 __bitmap_shift_left(maskp
, maskp
, CHUNKSZ
, nmaskbits
);
418 nbits
+= (nchunks
== 1) ? nbits_to_hold_value(chunk
) : CHUNKSZ
;
419 if (nbits
> nmaskbits
)
421 } while (buflen
&& c
== ',');
425 EXPORT_SYMBOL(__bitmap_parse
);
428 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
430 * @ubuf: pointer to user buffer containing string.
431 * @ulen: buffer size in bytes. If string is smaller than this
432 * then it must be terminated with a \0.
433 * @maskp: pointer to bitmap array that will contain result.
434 * @nmaskbits: size of bitmap, in bits.
436 * Wrapper for __bitmap_parse(), providing it with user buffer.
438 * We cannot have this as an inline function in bitmap.h because it needs
439 * linux/uaccess.h to get the access_ok() declaration and this causes
440 * cyclic dependencies.
442 int bitmap_parse_user(const char __user
*ubuf
,
443 unsigned int ulen
, unsigned long *maskp
,
446 if (!access_ok(ubuf
, ulen
))
448 return __bitmap_parse((const char __force
*)ubuf
,
449 ulen
, 1, maskp
, nmaskbits
);
452 EXPORT_SYMBOL(bitmap_parse_user
);
455 * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string
456 * @list: indicates whether the bitmap must be list
457 * @buf: page aligned buffer into which string is placed
458 * @maskp: pointer to bitmap to convert
459 * @nmaskbits: size of bitmap, in bits
461 * Output format is a comma-separated list of decimal numbers and
462 * ranges if list is specified or hex digits grouped into comma-separated
463 * sets of 8 digits/set. Returns the number of characters written to buf.
465 * It is assumed that @buf is a pointer into a PAGE_SIZE, page-aligned
466 * area and that sufficient storage remains at @buf to accommodate the
467 * bitmap_print_to_pagebuf() output. Returns the number of characters
468 * actually printed to @buf, excluding terminating '\0'.
470 int bitmap_print_to_pagebuf(bool list
, char *buf
, const unsigned long *maskp
,
473 ptrdiff_t len
= PAGE_SIZE
- offset_in_page(buf
);
475 return list
? scnprintf(buf
, len
, "%*pbl\n", nmaskbits
, maskp
) :
476 scnprintf(buf
, len
, "%*pb\n", nmaskbits
, maskp
);
478 EXPORT_SYMBOL(bitmap_print_to_pagebuf
);
481 * Region 9-38:4/10 describes the following bitmap structure:
483 * .........****......****......****......
485 * start off group_len end
490 unsigned int group_len
;
494 static int bitmap_set_region(const struct region
*r
,
495 unsigned long *bitmap
, int nbits
)
502 for (start
= r
->start
; start
<= r
->end
; start
+= r
->group_len
)
503 bitmap_set(bitmap
, start
, min(r
->end
- start
+ 1, r
->off
));
508 static int bitmap_check_region(const struct region
*r
)
510 if (r
->start
> r
->end
|| r
->group_len
== 0 || r
->off
> r
->group_len
)
516 static const char *bitmap_getnum(const char *str
, unsigned int *num
)
518 unsigned long long n
;
521 len
= _parse_integer(str
, 10, &n
);
523 return ERR_PTR(-EINVAL
);
524 if (len
& KSTRTOX_OVERFLOW
|| n
!= (unsigned int)n
)
525 return ERR_PTR(-EOVERFLOW
);
531 static inline bool end_of_str(char c
)
533 return c
== '\0' || c
== '\n';
536 static inline bool __end_of_region(char c
)
538 return isspace(c
) || c
== ',';
541 static inline bool end_of_region(char c
)
543 return __end_of_region(c
) || end_of_str(c
);
547 * The format allows commas and whitespases at the beginning
550 static const char *bitmap_find_region(const char *str
)
552 while (__end_of_region(*str
))
555 return end_of_str(*str
) ? NULL
: str
;
558 static const char *bitmap_parse_region(const char *str
, struct region
*r
)
560 str
= bitmap_getnum(str
, &r
->start
);
564 if (end_of_region(*str
))
568 return ERR_PTR(-EINVAL
);
570 str
= bitmap_getnum(str
+ 1, &r
->end
);
574 if (end_of_region(*str
))
578 return ERR_PTR(-EINVAL
);
580 str
= bitmap_getnum(str
+ 1, &r
->off
);
585 return ERR_PTR(-EINVAL
);
587 return bitmap_getnum(str
+ 1, &r
->group_len
);
593 r
->group_len
= r
->end
+ 1;
595 return end_of_str(*str
) ? NULL
: str
;
599 * bitmap_parselist - convert list format ASCII string to bitmap
600 * @buf: read user string from this buffer; must be terminated
602 * @maskp: write resulting mask here
603 * @nmaskbits: number of bits in mask to be written
605 * Input format is a comma-separated list of decimal numbers and
606 * ranges. Consecutively set bits are shown as two hyphen-separated
607 * decimal numbers, the smallest and largest bit numbers set in
609 * Optionally each range can be postfixed to denote that only parts of it
610 * should be set. The range will divided to groups of specific size.
611 * From each group will be used only defined amount of bits.
612 * Syntax: range:used_size/group_size
613 * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769
615 * Returns: 0 on success, -errno on invalid input strings. Error values:
617 * - ``-EINVAL``: wrong region format
618 * - ``-EINVAL``: invalid character in string
619 * - ``-ERANGE``: bit number specified too large for mask
620 * - ``-EOVERFLOW``: integer overflow in the input parameters
622 int bitmap_parselist(const char *buf
, unsigned long *maskp
, int nmaskbits
)
627 bitmap_zero(maskp
, nmaskbits
);
630 buf
= bitmap_find_region(buf
);
634 buf
= bitmap_parse_region(buf
, &r
);
638 ret
= bitmap_check_region(&r
);
642 ret
= bitmap_set_region(&r
, maskp
, nmaskbits
);
649 EXPORT_SYMBOL(bitmap_parselist
);
653 * bitmap_parselist_user()
655 * @ubuf: pointer to user buffer containing string.
656 * @ulen: buffer size in bytes. If string is smaller than this
657 * then it must be terminated with a \0.
658 * @maskp: pointer to bitmap array that will contain result.
659 * @nmaskbits: size of bitmap, in bits.
661 * Wrapper for bitmap_parselist(), providing it with user buffer.
663 int bitmap_parselist_user(const char __user
*ubuf
,
664 unsigned int ulen
, unsigned long *maskp
,
670 buf
= memdup_user_nul(ubuf
, ulen
);
674 ret
= bitmap_parselist(buf
, maskp
, nmaskbits
);
679 EXPORT_SYMBOL(bitmap_parselist_user
);
684 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
685 * @buf: pointer to a bitmap
686 * @pos: a bit position in @buf (0 <= @pos < @nbits)
687 * @nbits: number of valid bit positions in @buf
689 * Map the bit at position @pos in @buf (of length @nbits) to the
690 * ordinal of which set bit it is. If it is not set or if @pos
691 * is not a valid bit position, map to -1.
693 * If for example, just bits 4 through 7 are set in @buf, then @pos
694 * values 4 through 7 will get mapped to 0 through 3, respectively,
695 * and other @pos values will get mapped to -1. When @pos value 7
696 * gets mapped to (returns) @ord value 3 in this example, that means
697 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
699 * The bit positions 0 through @bits are valid positions in @buf.
701 static int bitmap_pos_to_ord(const unsigned long *buf
, unsigned int pos
, unsigned int nbits
)
703 if (pos
>= nbits
|| !test_bit(pos
, buf
))
706 return __bitmap_weight(buf
, pos
);
710 * bitmap_ord_to_pos - find position of n-th set bit in bitmap
711 * @buf: pointer to bitmap
712 * @ord: ordinal bit position (n-th set bit, n >= 0)
713 * @nbits: number of valid bit positions in @buf
715 * Map the ordinal offset of bit @ord in @buf to its position in @buf.
716 * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord
717 * >= weight(buf), returns @nbits.
719 * If for example, just bits 4 through 7 are set in @buf, then @ord
720 * values 0 through 3 will get mapped to 4 through 7, respectively,
721 * and all other @ord values returns @nbits. When @ord value 3
722 * gets mapped to (returns) @pos value 7 in this example, that means
723 * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
725 * The bit positions 0 through @nbits-1 are valid positions in @buf.
727 unsigned int bitmap_ord_to_pos(const unsigned long *buf
, unsigned int ord
, unsigned int nbits
)
731 for (pos
= find_first_bit(buf
, nbits
);
733 pos
= find_next_bit(buf
, nbits
, pos
+ 1))
740 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
741 * @dst: remapped result
742 * @src: subset to be remapped
743 * @old: defines domain of map
744 * @new: defines range of map
745 * @nbits: number of bits in each of these bitmaps
747 * Let @old and @new define a mapping of bit positions, such that
748 * whatever position is held by the n-th set bit in @old is mapped
749 * to the n-th set bit in @new. In the more general case, allowing
750 * for the possibility that the weight 'w' of @new is less than the
751 * weight of @old, map the position of the n-th set bit in @old to
752 * the position of the m-th set bit in @new, where m == n % w.
754 * If either of the @old and @new bitmaps are empty, or if @src and
755 * @dst point to the same location, then this routine copies @src
758 * The positions of unset bits in @old are mapped to themselves
759 * (the identify map).
761 * Apply the above specified mapping to @src, placing the result in
762 * @dst, clearing any bits previously set in @dst.
764 * For example, lets say that @old has bits 4 through 7 set, and
765 * @new has bits 12 through 15 set. This defines the mapping of bit
766 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
767 * bit positions unchanged. So if say @src comes into this routine
768 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
771 void bitmap_remap(unsigned long *dst
, const unsigned long *src
,
772 const unsigned long *old
, const unsigned long *new,
775 unsigned int oldbit
, w
;
777 if (dst
== src
) /* following doesn't handle inplace remaps */
779 bitmap_zero(dst
, nbits
);
781 w
= bitmap_weight(new, nbits
);
782 for_each_set_bit(oldbit
, src
, nbits
) {
783 int n
= bitmap_pos_to_ord(old
, oldbit
, nbits
);
786 set_bit(oldbit
, dst
); /* identity map */
788 set_bit(bitmap_ord_to_pos(new, n
% w
, nbits
), dst
);
793 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
794 * @oldbit: bit position to be mapped
795 * @old: defines domain of map
796 * @new: defines range of map
797 * @bits: number of bits in each of these bitmaps
799 * Let @old and @new define a mapping of bit positions, such that
800 * whatever position is held by the n-th set bit in @old is mapped
801 * to the n-th set bit in @new. In the more general case, allowing
802 * for the possibility that the weight 'w' of @new is less than the
803 * weight of @old, map the position of the n-th set bit in @old to
804 * the position of the m-th set bit in @new, where m == n % w.
806 * The positions of unset bits in @old are mapped to themselves
807 * (the identify map).
809 * Apply the above specified mapping to bit position @oldbit, returning
810 * the new bit position.
812 * For example, lets say that @old has bits 4 through 7 set, and
813 * @new has bits 12 through 15 set. This defines the mapping of bit
814 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
815 * bit positions unchanged. So if say @oldbit is 5, then this routine
818 int bitmap_bitremap(int oldbit
, const unsigned long *old
,
819 const unsigned long *new, int bits
)
821 int w
= bitmap_weight(new, bits
);
822 int n
= bitmap_pos_to_ord(old
, oldbit
, bits
);
826 return bitmap_ord_to_pos(new, n
% w
, bits
);
830 * bitmap_onto - translate one bitmap relative to another
831 * @dst: resulting translated bitmap
832 * @orig: original untranslated bitmap
833 * @relmap: bitmap relative to which translated
834 * @bits: number of bits in each of these bitmaps
836 * Set the n-th bit of @dst iff there exists some m such that the
837 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
838 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
839 * (If you understood the previous sentence the first time your
840 * read it, you're overqualified for your current job.)
842 * In other words, @orig is mapped onto (surjectively) @dst,
843 * using the map { <n, m> | the n-th bit of @relmap is the
844 * m-th set bit of @relmap }.
846 * Any set bits in @orig above bit number W, where W is the
847 * weight of (number of set bits in) @relmap are mapped nowhere.
848 * In particular, if for all bits m set in @orig, m >= W, then
849 * @dst will end up empty. In situations where the possibility
850 * of such an empty result is not desired, one way to avoid it is
851 * to use the bitmap_fold() operator, below, to first fold the
852 * @orig bitmap over itself so that all its set bits x are in the
853 * range 0 <= x < W. The bitmap_fold() operator does this by
854 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
856 * Example [1] for bitmap_onto():
857 * Let's say @relmap has bits 30-39 set, and @orig has bits
858 * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine,
859 * @dst will have bits 31, 33, 35, 37 and 39 set.
861 * When bit 0 is set in @orig, it means turn on the bit in
862 * @dst corresponding to whatever is the first bit (if any)
863 * that is turned on in @relmap. Since bit 0 was off in the
864 * above example, we leave off that bit (bit 30) in @dst.
866 * When bit 1 is set in @orig (as in the above example), it
867 * means turn on the bit in @dst corresponding to whatever
868 * is the second bit that is turned on in @relmap. The second
869 * bit in @relmap that was turned on in the above example was
870 * bit 31, so we turned on bit 31 in @dst.
872 * Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
873 * because they were the 4th, 6th, 8th and 10th set bits
874 * set in @relmap, and the 4th, 6th, 8th and 10th bits of
875 * @orig (i.e. bits 3, 5, 7 and 9) were also set.
877 * When bit 11 is set in @orig, it means turn on the bit in
878 * @dst corresponding to whatever is the twelfth bit that is
879 * turned on in @relmap. In the above example, there were
880 * only ten bits turned on in @relmap (30..39), so that bit
881 * 11 was set in @orig had no affect on @dst.
883 * Example [2] for bitmap_fold() + bitmap_onto():
884 * Let's say @relmap has these ten bits set::
886 * 40 41 42 43 45 48 53 61 74 95
888 * (for the curious, that's 40 plus the first ten terms of the
889 * Fibonacci sequence.)
891 * Further lets say we use the following code, invoking
892 * bitmap_fold() then bitmap_onto, as suggested above to
893 * avoid the possibility of an empty @dst result::
895 * unsigned long *tmp; // a temporary bitmap's bits
897 * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
898 * bitmap_onto(dst, tmp, relmap, bits);
900 * Then this table shows what various values of @dst would be, for
901 * various @orig's. I list the zero-based positions of each set bit.
902 * The tmp column shows the intermediate result, as computed by
903 * using bitmap_fold() to fold the @orig bitmap modulo ten
904 * (the weight of @relmap):
906 * =============== ============== =================
912 * 1 3 5 7 1 3 5 7 41 43 48 61
913 * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45
914 * 0 9 18 27 0 9 8 7 40 61 74 95
916 * 0 11 22 33 0 1 2 3 40 41 42 43
917 * 0 12 24 36 0 2 4 6 40 42 45 53
918 * 78 102 211 1 2 8 41 42 74 [#f1]_
919 * =============== ============== =================
923 * For these marked lines, if we hadn't first done bitmap_fold()
924 * into tmp, then the @dst result would have been empty.
926 * If either of @orig or @relmap is empty (no set bits), then @dst
927 * will be returned empty.
929 * If (as explained above) the only set bits in @orig are in positions
930 * m where m >= W, (where W is the weight of @relmap) then @dst will
931 * once again be returned empty.
933 * All bits in @dst not set by the above rule are cleared.
935 void bitmap_onto(unsigned long *dst
, const unsigned long *orig
,
936 const unsigned long *relmap
, unsigned int bits
)
938 unsigned int n
, m
; /* same meaning as in above comment */
940 if (dst
== orig
) /* following doesn't handle inplace mappings */
942 bitmap_zero(dst
, bits
);
945 * The following code is a more efficient, but less
946 * obvious, equivalent to the loop:
947 * for (m = 0; m < bitmap_weight(relmap, bits); m++) {
948 * n = bitmap_ord_to_pos(orig, m, bits);
949 * if (test_bit(m, orig))
955 for_each_set_bit(n
, relmap
, bits
) {
956 /* m == bitmap_pos_to_ord(relmap, n, bits) */
957 if (test_bit(m
, orig
))
964 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
965 * @dst: resulting smaller bitmap
966 * @orig: original larger bitmap
967 * @sz: specified size
968 * @nbits: number of bits in each of these bitmaps
970 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
971 * Clear all other bits in @dst. See further the comment and
972 * Example [2] for bitmap_onto() for why and how to use this.
974 void bitmap_fold(unsigned long *dst
, const unsigned long *orig
,
975 unsigned int sz
, unsigned int nbits
)
979 if (dst
== orig
) /* following doesn't handle inplace mappings */
981 bitmap_zero(dst
, nbits
);
983 for_each_set_bit(oldbit
, orig
, nbits
)
984 set_bit(oldbit
% sz
, dst
);
986 #endif /* CONFIG_NUMA */
989 * Common code for bitmap_*_region() routines.
990 * bitmap: array of unsigned longs corresponding to the bitmap
991 * pos: the beginning of the region
992 * order: region size (log base 2 of number of bits)
993 * reg_op: operation(s) to perform on that region of bitmap
995 * Can set, verify and/or release a region of bits in a bitmap,
996 * depending on which combination of REG_OP_* flag bits is set.
998 * A region of a bitmap is a sequence of bits in the bitmap, of
999 * some size '1 << order' (a power of two), aligned to that same
1000 * '1 << order' power of two.
1002 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
1003 * Returns 0 in all other cases and reg_ops.
1007 REG_OP_ISFREE
, /* true if region is all zero bits */
1008 REG_OP_ALLOC
, /* set all bits in region */
1009 REG_OP_RELEASE
, /* clear all bits in region */
1012 static int __reg_op(unsigned long *bitmap
, unsigned int pos
, int order
, int reg_op
)
1014 int nbits_reg
; /* number of bits in region */
1015 int index
; /* index first long of region in bitmap */
1016 int offset
; /* bit offset region in bitmap[index] */
1017 int nlongs_reg
; /* num longs spanned by region in bitmap */
1018 int nbitsinlong
; /* num bits of region in each spanned long */
1019 unsigned long mask
; /* bitmask for one long of region */
1020 int i
; /* scans bitmap by longs */
1021 int ret
= 0; /* return value */
1024 * Either nlongs_reg == 1 (for small orders that fit in one long)
1025 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
1027 nbits_reg
= 1 << order
;
1028 index
= pos
/ BITS_PER_LONG
;
1029 offset
= pos
- (index
* BITS_PER_LONG
);
1030 nlongs_reg
= BITS_TO_LONGS(nbits_reg
);
1031 nbitsinlong
= min(nbits_reg
, BITS_PER_LONG
);
1034 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
1035 * overflows if nbitsinlong == BITS_PER_LONG.
1037 mask
= (1UL << (nbitsinlong
- 1));
1043 for (i
= 0; i
< nlongs_reg
; i
++) {
1044 if (bitmap
[index
+ i
] & mask
)
1047 ret
= 1; /* all bits in region free (zero) */
1051 for (i
= 0; i
< nlongs_reg
; i
++)
1052 bitmap
[index
+ i
] |= mask
;
1055 case REG_OP_RELEASE
:
1056 for (i
= 0; i
< nlongs_reg
; i
++)
1057 bitmap
[index
+ i
] &= ~mask
;
1065 * bitmap_find_free_region - find a contiguous aligned mem region
1066 * @bitmap: array of unsigned longs corresponding to the bitmap
1067 * @bits: number of bits in the bitmap
1068 * @order: region size (log base 2 of number of bits) to find
1070 * Find a region of free (zero) bits in a @bitmap of @bits bits and
1071 * allocate them (set them to one). Only consider regions of length
1072 * a power (@order) of two, aligned to that power of two, which
1073 * makes the search algorithm much faster.
1075 * Return the bit offset in bitmap of the allocated region,
1076 * or -errno on failure.
1078 int bitmap_find_free_region(unsigned long *bitmap
, unsigned int bits
, int order
)
1080 unsigned int pos
, end
; /* scans bitmap by regions of size order */
1082 for (pos
= 0 ; (end
= pos
+ (1U << order
)) <= bits
; pos
= end
) {
1083 if (!__reg_op(bitmap
, pos
, order
, REG_OP_ISFREE
))
1085 __reg_op(bitmap
, pos
, order
, REG_OP_ALLOC
);
1090 EXPORT_SYMBOL(bitmap_find_free_region
);
1093 * bitmap_release_region - release allocated bitmap region
1094 * @bitmap: array of unsigned longs corresponding to the bitmap
1095 * @pos: beginning of bit region to release
1096 * @order: region size (log base 2 of number of bits) to release
1098 * This is the complement to __bitmap_find_free_region() and releases
1099 * the found region (by clearing it in the bitmap).
1103 void bitmap_release_region(unsigned long *bitmap
, unsigned int pos
, int order
)
1105 __reg_op(bitmap
, pos
, order
, REG_OP_RELEASE
);
1107 EXPORT_SYMBOL(bitmap_release_region
);
1110 * bitmap_allocate_region - allocate bitmap region
1111 * @bitmap: array of unsigned longs corresponding to the bitmap
1112 * @pos: beginning of bit region to allocate
1113 * @order: region size (log base 2 of number of bits) to allocate
1115 * Allocate (set bits in) a specified region of a bitmap.
1117 * Return 0 on success, or %-EBUSY if specified region wasn't
1118 * free (not all bits were zero).
1120 int bitmap_allocate_region(unsigned long *bitmap
, unsigned int pos
, int order
)
1122 if (!__reg_op(bitmap
, pos
, order
, REG_OP_ISFREE
))
1124 return __reg_op(bitmap
, pos
, order
, REG_OP_ALLOC
);
1126 EXPORT_SYMBOL(bitmap_allocate_region
);
1129 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1130 * @dst: destination buffer
1131 * @src: bitmap to copy
1132 * @nbits: number of bits in the bitmap
1134 * Require nbits % BITS_PER_LONG == 0.
1137 void bitmap_copy_le(unsigned long *dst
, const unsigned long *src
, unsigned int nbits
)
1141 for (i
= 0; i
< nbits
/BITS_PER_LONG
; i
++) {
1142 if (BITS_PER_LONG
== 64)
1143 dst
[i
] = cpu_to_le64(src
[i
]);
1145 dst
[i
] = cpu_to_le32(src
[i
]);
1148 EXPORT_SYMBOL(bitmap_copy_le
);
1151 unsigned long *bitmap_alloc(unsigned int nbits
, gfp_t flags
)
1153 return kmalloc_array(BITS_TO_LONGS(nbits
), sizeof(unsigned long),
1156 EXPORT_SYMBOL(bitmap_alloc
);
1158 unsigned long *bitmap_zalloc(unsigned int nbits
, gfp_t flags
)
1160 return bitmap_alloc(nbits
, flags
| __GFP_ZERO
);
1162 EXPORT_SYMBOL(bitmap_zalloc
);
1164 void bitmap_free(const unsigned long *bitmap
)
1168 EXPORT_SYMBOL(bitmap_free
);
1170 #if BITS_PER_LONG == 64
1172 * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap
1173 * @bitmap: array of unsigned longs, the destination bitmap
1174 * @buf: array of u32 (in host byte order), the source bitmap
1175 * @nbits: number of bits in @bitmap
1177 void bitmap_from_arr32(unsigned long *bitmap
, const u32
*buf
, unsigned int nbits
)
1179 unsigned int i
, halfwords
;
1181 halfwords
= DIV_ROUND_UP(nbits
, 32);
1182 for (i
= 0; i
< halfwords
; i
++) {
1183 bitmap
[i
/2] = (unsigned long) buf
[i
];
1184 if (++i
< halfwords
)
1185 bitmap
[i
/2] |= ((unsigned long) buf
[i
]) << 32;
1188 /* Clear tail bits in last word beyond nbits. */
1189 if (nbits
% BITS_PER_LONG
)
1190 bitmap
[(halfwords
- 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits
);
1192 EXPORT_SYMBOL(bitmap_from_arr32
);
1195 * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits
1196 * @buf: array of u32 (in host byte order), the dest bitmap
1197 * @bitmap: array of unsigned longs, the source bitmap
1198 * @nbits: number of bits in @bitmap
1200 void bitmap_to_arr32(u32
*buf
, const unsigned long *bitmap
, unsigned int nbits
)
1202 unsigned int i
, halfwords
;
1204 halfwords
= DIV_ROUND_UP(nbits
, 32);
1205 for (i
= 0; i
< halfwords
; i
++) {
1206 buf
[i
] = (u32
) (bitmap
[i
/2] & UINT_MAX
);
1207 if (++i
< halfwords
)
1208 buf
[i
] = (u32
) (bitmap
[i
/2] >> 32);
1211 /* Clear tail bits in last element of array beyond nbits. */
1212 if (nbits
% BITS_PER_LONG
)
1213 buf
[halfwords
- 1] &= (u32
) (UINT_MAX
>> ((-nbits
) & 31));
1215 EXPORT_SYMBOL(bitmap_to_arr32
);