spi: sprd: adi: Remove redundant address bits setting
[linux/fpc-iii.git] / lib / bitmap.c
blobbbe2589e8497d147447d3528f2787e8ac748bdcc
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * lib/bitmap.c
4 * Helper functions for bitmap.h.
5 */
6 #include <linux/export.h>
7 #include <linux/thread_info.h>
8 #include <linux/ctype.h>
9 #include <linux/errno.h>
10 #include <linux/bitmap.h>
11 #include <linux/bitops.h>
12 #include <linux/bug.h>
13 #include <linux/kernel.h>
14 #include <linux/mm.h>
15 #include <linux/slab.h>
16 #include <linux/string.h>
17 #include <linux/uaccess.h>
19 #include <asm/page.h>
21 #include "kstrtox.h"
23 /**
24 * DOC: bitmap introduction
26 * bitmaps provide an array of bits, implemented using an an
27 * array of unsigned longs. The number of valid bits in a
28 * given bitmap does _not_ need to be an exact multiple of
29 * BITS_PER_LONG.
31 * The possible unused bits in the last, partially used word
32 * of a bitmap are 'don't care'. The implementation makes
33 * no particular effort to keep them zero. It ensures that
34 * their value will not affect the results of any operation.
35 * The bitmap operations that return Boolean (bitmap_empty,
36 * for example) or scalar (bitmap_weight, for example) results
37 * carefully filter out these unused bits from impacting their
38 * results.
40 * The byte ordering of bitmaps is more natural on little
41 * endian architectures. See the big-endian headers
42 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
43 * for the best explanations of this ordering.
46 int __bitmap_equal(const unsigned long *bitmap1,
47 const unsigned long *bitmap2, unsigned int bits)
49 unsigned int k, lim = bits/BITS_PER_LONG;
50 for (k = 0; k < lim; ++k)
51 if (bitmap1[k] != bitmap2[k])
52 return 0;
54 if (bits % BITS_PER_LONG)
55 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
56 return 0;
58 return 1;
60 EXPORT_SYMBOL(__bitmap_equal);
62 void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
64 unsigned int k, lim = BITS_TO_LONGS(bits);
65 for (k = 0; k < lim; ++k)
66 dst[k] = ~src[k];
68 EXPORT_SYMBOL(__bitmap_complement);
70 /**
71 * __bitmap_shift_right - logical right shift of the bits in a bitmap
72 * @dst : destination bitmap
73 * @src : source bitmap
74 * @shift : shift by this many bits
75 * @nbits : bitmap size, in bits
77 * Shifting right (dividing) means moving bits in the MS -> LS bit
78 * direction. Zeros are fed into the vacated MS positions and the
79 * LS bits shifted off the bottom are lost.
81 void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
82 unsigned shift, unsigned nbits)
84 unsigned k, lim = BITS_TO_LONGS(nbits);
85 unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
86 unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
87 for (k = 0; off + k < lim; ++k) {
88 unsigned long upper, lower;
91 * If shift is not word aligned, take lower rem bits of
92 * word above and make them the top rem bits of result.
94 if (!rem || off + k + 1 >= lim)
95 upper = 0;
96 else {
97 upper = src[off + k + 1];
98 if (off + k + 1 == lim - 1)
99 upper &= mask;
100 upper <<= (BITS_PER_LONG - rem);
102 lower = src[off + k];
103 if (off + k == lim - 1)
104 lower &= mask;
105 lower >>= rem;
106 dst[k] = lower | upper;
108 if (off)
109 memset(&dst[lim - off], 0, off*sizeof(unsigned long));
111 EXPORT_SYMBOL(__bitmap_shift_right);
115 * __bitmap_shift_left - logical left shift of the bits in a bitmap
116 * @dst : destination bitmap
117 * @src : source bitmap
118 * @shift : shift by this many bits
119 * @nbits : bitmap size, in bits
121 * Shifting left (multiplying) means moving bits in the LS -> MS
122 * direction. Zeros are fed into the vacated LS bit positions
123 * and those MS bits shifted off the top are lost.
126 void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
127 unsigned int shift, unsigned int nbits)
129 int k;
130 unsigned int lim = BITS_TO_LONGS(nbits);
131 unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
132 for (k = lim - off - 1; k >= 0; --k) {
133 unsigned long upper, lower;
136 * If shift is not word aligned, take upper rem bits of
137 * word below and make them the bottom rem bits of result.
139 if (rem && k > 0)
140 lower = src[k - 1] >> (BITS_PER_LONG - rem);
141 else
142 lower = 0;
143 upper = src[k] << rem;
144 dst[k + off] = lower | upper;
146 if (off)
147 memset(dst, 0, off*sizeof(unsigned long));
149 EXPORT_SYMBOL(__bitmap_shift_left);
151 int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
152 const unsigned long *bitmap2, unsigned int bits)
154 unsigned int k;
155 unsigned int lim = bits/BITS_PER_LONG;
156 unsigned long result = 0;
158 for (k = 0; k < lim; k++)
159 result |= (dst[k] = bitmap1[k] & bitmap2[k]);
160 if (bits % BITS_PER_LONG)
161 result |= (dst[k] = bitmap1[k] & bitmap2[k] &
162 BITMAP_LAST_WORD_MASK(bits));
163 return result != 0;
165 EXPORT_SYMBOL(__bitmap_and);
167 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
168 const unsigned long *bitmap2, unsigned int bits)
170 unsigned int k;
171 unsigned int nr = BITS_TO_LONGS(bits);
173 for (k = 0; k < nr; k++)
174 dst[k] = bitmap1[k] | bitmap2[k];
176 EXPORT_SYMBOL(__bitmap_or);
178 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
179 const unsigned long *bitmap2, unsigned int bits)
181 unsigned int k;
182 unsigned int nr = BITS_TO_LONGS(bits);
184 for (k = 0; k < nr; k++)
185 dst[k] = bitmap1[k] ^ bitmap2[k];
187 EXPORT_SYMBOL(__bitmap_xor);
189 int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
190 const unsigned long *bitmap2, unsigned int bits)
192 unsigned int k;
193 unsigned int lim = bits/BITS_PER_LONG;
194 unsigned long result = 0;
196 for (k = 0; k < lim; k++)
197 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
198 if (bits % BITS_PER_LONG)
199 result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
200 BITMAP_LAST_WORD_MASK(bits));
201 return result != 0;
203 EXPORT_SYMBOL(__bitmap_andnot);
205 int __bitmap_intersects(const unsigned long *bitmap1,
206 const unsigned long *bitmap2, unsigned int bits)
208 unsigned int k, lim = bits/BITS_PER_LONG;
209 for (k = 0; k < lim; ++k)
210 if (bitmap1[k] & bitmap2[k])
211 return 1;
213 if (bits % BITS_PER_LONG)
214 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
215 return 1;
216 return 0;
218 EXPORT_SYMBOL(__bitmap_intersects);
220 int __bitmap_subset(const unsigned long *bitmap1,
221 const unsigned long *bitmap2, unsigned int bits)
223 unsigned int k, lim = bits/BITS_PER_LONG;
224 for (k = 0; k < lim; ++k)
225 if (bitmap1[k] & ~bitmap2[k])
226 return 0;
228 if (bits % BITS_PER_LONG)
229 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
230 return 0;
231 return 1;
233 EXPORT_SYMBOL(__bitmap_subset);
235 int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
237 unsigned int k, lim = bits/BITS_PER_LONG;
238 int w = 0;
240 for (k = 0; k < lim; k++)
241 w += hweight_long(bitmap[k]);
243 if (bits % BITS_PER_LONG)
244 w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
246 return w;
248 EXPORT_SYMBOL(__bitmap_weight);
250 void __bitmap_set(unsigned long *map, unsigned int start, int len)
252 unsigned long *p = map + BIT_WORD(start);
253 const unsigned int size = start + len;
254 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
255 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
257 while (len - bits_to_set >= 0) {
258 *p |= mask_to_set;
259 len -= bits_to_set;
260 bits_to_set = BITS_PER_LONG;
261 mask_to_set = ~0UL;
262 p++;
264 if (len) {
265 mask_to_set &= BITMAP_LAST_WORD_MASK(size);
266 *p |= mask_to_set;
269 EXPORT_SYMBOL(__bitmap_set);
271 void __bitmap_clear(unsigned long *map, unsigned int start, int len)
273 unsigned long *p = map + BIT_WORD(start);
274 const unsigned int size = start + len;
275 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
276 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
278 while (len - bits_to_clear >= 0) {
279 *p &= ~mask_to_clear;
280 len -= bits_to_clear;
281 bits_to_clear = BITS_PER_LONG;
282 mask_to_clear = ~0UL;
283 p++;
285 if (len) {
286 mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
287 *p &= ~mask_to_clear;
290 EXPORT_SYMBOL(__bitmap_clear);
293 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
294 * @map: The address to base the search on
295 * @size: The bitmap size in bits
296 * @start: The bitnumber to start searching at
297 * @nr: The number of zeroed bits we're looking for
298 * @align_mask: Alignment mask for zero area
299 * @align_offset: Alignment offset for zero area.
301 * The @align_mask should be one less than a power of 2; the effect is that
302 * the bit offset of all zero areas this function finds plus @align_offset
303 * is multiple of that power of 2.
305 unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
306 unsigned long size,
307 unsigned long start,
308 unsigned int nr,
309 unsigned long align_mask,
310 unsigned long align_offset)
312 unsigned long index, end, i;
313 again:
314 index = find_next_zero_bit(map, size, start);
316 /* Align allocation */
317 index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
319 end = index + nr;
320 if (end > size)
321 return end;
322 i = find_next_bit(map, end, index);
323 if (i < end) {
324 start = i + 1;
325 goto again;
327 return index;
329 EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
332 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
333 * second version by Paul Jackson, third by Joe Korty.
336 #define CHUNKSZ 32
337 #define nbits_to_hold_value(val) fls(val)
338 #define BASEDEC 10 /* fancier cpuset lists input in decimal */
341 * __bitmap_parse - convert an ASCII hex string into a bitmap.
342 * @buf: pointer to buffer containing string.
343 * @buflen: buffer size in bytes. If string is smaller than this
344 * then it must be terminated with a \0.
345 * @is_user: location of buffer, 0 indicates kernel space
346 * @maskp: pointer to bitmap array that will contain result.
347 * @nmaskbits: size of bitmap, in bits.
349 * Commas group hex digits into chunks. Each chunk defines exactly 32
350 * bits of the resultant bitmask. No chunk may specify a value larger
351 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
352 * then leading 0-bits are prepended. %-EINVAL is returned for illegal
353 * characters and for grouping errors such as "1,,5", ",44", "," and "".
354 * Leading and trailing whitespace accepted, but not embedded whitespace.
356 int __bitmap_parse(const char *buf, unsigned int buflen,
357 int is_user, unsigned long *maskp,
358 int nmaskbits)
360 int c, old_c, totaldigits, ndigits, nchunks, nbits;
361 u32 chunk;
362 const char __user __force *ubuf = (const char __user __force *)buf;
364 bitmap_zero(maskp, nmaskbits);
366 nchunks = nbits = totaldigits = c = 0;
367 do {
368 chunk = 0;
369 ndigits = totaldigits;
371 /* Get the next chunk of the bitmap */
372 while (buflen) {
373 old_c = c;
374 if (is_user) {
375 if (__get_user(c, ubuf++))
376 return -EFAULT;
378 else
379 c = *buf++;
380 buflen--;
381 if (isspace(c))
382 continue;
385 * If the last character was a space and the current
386 * character isn't '\0', we've got embedded whitespace.
387 * This is a no-no, so throw an error.
389 if (totaldigits && c && isspace(old_c))
390 return -EINVAL;
392 /* A '\0' or a ',' signal the end of the chunk */
393 if (c == '\0' || c == ',')
394 break;
396 if (!isxdigit(c))
397 return -EINVAL;
400 * Make sure there are at least 4 free bits in 'chunk'.
401 * If not, this hexdigit will overflow 'chunk', so
402 * throw an error.
404 if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
405 return -EOVERFLOW;
407 chunk = (chunk << 4) | hex_to_bin(c);
408 totaldigits++;
410 if (ndigits == totaldigits)
411 return -EINVAL;
412 if (nchunks == 0 && chunk == 0)
413 continue;
415 __bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
416 *maskp |= chunk;
417 nchunks++;
418 nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
419 if (nbits > nmaskbits)
420 return -EOVERFLOW;
421 } while (buflen && c == ',');
423 return 0;
425 EXPORT_SYMBOL(__bitmap_parse);
428 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
430 * @ubuf: pointer to user buffer containing string.
431 * @ulen: buffer size in bytes. If string is smaller than this
432 * then it must be terminated with a \0.
433 * @maskp: pointer to bitmap array that will contain result.
434 * @nmaskbits: size of bitmap, in bits.
436 * Wrapper for __bitmap_parse(), providing it with user buffer.
438 * We cannot have this as an inline function in bitmap.h because it needs
439 * linux/uaccess.h to get the access_ok() declaration and this causes
440 * cyclic dependencies.
442 int bitmap_parse_user(const char __user *ubuf,
443 unsigned int ulen, unsigned long *maskp,
444 int nmaskbits)
446 if (!access_ok(ubuf, ulen))
447 return -EFAULT;
448 return __bitmap_parse((const char __force *)ubuf,
449 ulen, 1, maskp, nmaskbits);
452 EXPORT_SYMBOL(bitmap_parse_user);
455 * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string
456 * @list: indicates whether the bitmap must be list
457 * @buf: page aligned buffer into which string is placed
458 * @maskp: pointer to bitmap to convert
459 * @nmaskbits: size of bitmap, in bits
461 * Output format is a comma-separated list of decimal numbers and
462 * ranges if list is specified or hex digits grouped into comma-separated
463 * sets of 8 digits/set. Returns the number of characters written to buf.
465 * It is assumed that @buf is a pointer into a PAGE_SIZE, page-aligned
466 * area and that sufficient storage remains at @buf to accommodate the
467 * bitmap_print_to_pagebuf() output. Returns the number of characters
468 * actually printed to @buf, excluding terminating '\0'.
470 int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
471 int nmaskbits)
473 ptrdiff_t len = PAGE_SIZE - offset_in_page(buf);
475 return list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) :
476 scnprintf(buf, len, "%*pb\n", nmaskbits, maskp);
478 EXPORT_SYMBOL(bitmap_print_to_pagebuf);
481 * Region 9-38:4/10 describes the following bitmap structure:
482 * 0 9 12 18 38
483 * .........****......****......****......
484 * ^ ^ ^ ^
485 * start off group_len end
487 struct region {
488 unsigned int start;
489 unsigned int off;
490 unsigned int group_len;
491 unsigned int end;
494 static int bitmap_set_region(const struct region *r,
495 unsigned long *bitmap, int nbits)
497 unsigned int start;
499 if (r->end >= nbits)
500 return -ERANGE;
502 for (start = r->start; start <= r->end; start += r->group_len)
503 bitmap_set(bitmap, start, min(r->end - start + 1, r->off));
505 return 0;
508 static int bitmap_check_region(const struct region *r)
510 if (r->start > r->end || r->group_len == 0 || r->off > r->group_len)
511 return -EINVAL;
513 return 0;
516 static const char *bitmap_getnum(const char *str, unsigned int *num)
518 unsigned long long n;
519 unsigned int len;
521 len = _parse_integer(str, 10, &n);
522 if (!len)
523 return ERR_PTR(-EINVAL);
524 if (len & KSTRTOX_OVERFLOW || n != (unsigned int)n)
525 return ERR_PTR(-EOVERFLOW);
527 *num = n;
528 return str + len;
531 static inline bool end_of_str(char c)
533 return c == '\0' || c == '\n';
536 static inline bool __end_of_region(char c)
538 return isspace(c) || c == ',';
541 static inline bool end_of_region(char c)
543 return __end_of_region(c) || end_of_str(c);
547 * The format allows commas and whitespases at the beginning
548 * of the region.
550 static const char *bitmap_find_region(const char *str)
552 while (__end_of_region(*str))
553 str++;
555 return end_of_str(*str) ? NULL : str;
558 static const char *bitmap_parse_region(const char *str, struct region *r)
560 str = bitmap_getnum(str, &r->start);
561 if (IS_ERR(str))
562 return str;
564 if (end_of_region(*str))
565 goto no_end;
567 if (*str != '-')
568 return ERR_PTR(-EINVAL);
570 str = bitmap_getnum(str + 1, &r->end);
571 if (IS_ERR(str))
572 return str;
574 if (end_of_region(*str))
575 goto no_pattern;
577 if (*str != ':')
578 return ERR_PTR(-EINVAL);
580 str = bitmap_getnum(str + 1, &r->off);
581 if (IS_ERR(str))
582 return str;
584 if (*str != '/')
585 return ERR_PTR(-EINVAL);
587 return bitmap_getnum(str + 1, &r->group_len);
589 no_end:
590 r->end = r->start;
591 no_pattern:
592 r->off = r->end + 1;
593 r->group_len = r->end + 1;
595 return end_of_str(*str) ? NULL : str;
599 * bitmap_parselist - convert list format ASCII string to bitmap
600 * @buf: read user string from this buffer; must be terminated
601 * with a \0 or \n.
602 * @maskp: write resulting mask here
603 * @nmaskbits: number of bits in mask to be written
605 * Input format is a comma-separated list of decimal numbers and
606 * ranges. Consecutively set bits are shown as two hyphen-separated
607 * decimal numbers, the smallest and largest bit numbers set in
608 * the range.
609 * Optionally each range can be postfixed to denote that only parts of it
610 * should be set. The range will divided to groups of specific size.
611 * From each group will be used only defined amount of bits.
612 * Syntax: range:used_size/group_size
613 * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769
615 * Returns: 0 on success, -errno on invalid input strings. Error values:
617 * - ``-EINVAL``: wrong region format
618 * - ``-EINVAL``: invalid character in string
619 * - ``-ERANGE``: bit number specified too large for mask
620 * - ``-EOVERFLOW``: integer overflow in the input parameters
622 int bitmap_parselist(const char *buf, unsigned long *maskp, int nmaskbits)
624 struct region r;
625 long ret;
627 bitmap_zero(maskp, nmaskbits);
629 while (buf) {
630 buf = bitmap_find_region(buf);
631 if (buf == NULL)
632 return 0;
634 buf = bitmap_parse_region(buf, &r);
635 if (IS_ERR(buf))
636 return PTR_ERR(buf);
638 ret = bitmap_check_region(&r);
639 if (ret)
640 return ret;
642 ret = bitmap_set_region(&r, maskp, nmaskbits);
643 if (ret)
644 return ret;
647 return 0;
649 EXPORT_SYMBOL(bitmap_parselist);
653 * bitmap_parselist_user()
655 * @ubuf: pointer to user buffer containing string.
656 * @ulen: buffer size in bytes. If string is smaller than this
657 * then it must be terminated with a \0.
658 * @maskp: pointer to bitmap array that will contain result.
659 * @nmaskbits: size of bitmap, in bits.
661 * Wrapper for bitmap_parselist(), providing it with user buffer.
663 int bitmap_parselist_user(const char __user *ubuf,
664 unsigned int ulen, unsigned long *maskp,
665 int nmaskbits)
667 char *buf;
668 int ret;
670 buf = memdup_user_nul(ubuf, ulen);
671 if (IS_ERR(buf))
672 return PTR_ERR(buf);
674 ret = bitmap_parselist(buf, maskp, nmaskbits);
676 kfree(buf);
677 return ret;
679 EXPORT_SYMBOL(bitmap_parselist_user);
682 #ifdef CONFIG_NUMA
684 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
685 * @buf: pointer to a bitmap
686 * @pos: a bit position in @buf (0 <= @pos < @nbits)
687 * @nbits: number of valid bit positions in @buf
689 * Map the bit at position @pos in @buf (of length @nbits) to the
690 * ordinal of which set bit it is. If it is not set or if @pos
691 * is not a valid bit position, map to -1.
693 * If for example, just bits 4 through 7 are set in @buf, then @pos
694 * values 4 through 7 will get mapped to 0 through 3, respectively,
695 * and other @pos values will get mapped to -1. When @pos value 7
696 * gets mapped to (returns) @ord value 3 in this example, that means
697 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
699 * The bit positions 0 through @bits are valid positions in @buf.
701 static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
703 if (pos >= nbits || !test_bit(pos, buf))
704 return -1;
706 return __bitmap_weight(buf, pos);
710 * bitmap_ord_to_pos - find position of n-th set bit in bitmap
711 * @buf: pointer to bitmap
712 * @ord: ordinal bit position (n-th set bit, n >= 0)
713 * @nbits: number of valid bit positions in @buf
715 * Map the ordinal offset of bit @ord in @buf to its position in @buf.
716 * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord
717 * >= weight(buf), returns @nbits.
719 * If for example, just bits 4 through 7 are set in @buf, then @ord
720 * values 0 through 3 will get mapped to 4 through 7, respectively,
721 * and all other @ord values returns @nbits. When @ord value 3
722 * gets mapped to (returns) @pos value 7 in this example, that means
723 * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
725 * The bit positions 0 through @nbits-1 are valid positions in @buf.
727 unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits)
729 unsigned int pos;
731 for (pos = find_first_bit(buf, nbits);
732 pos < nbits && ord;
733 pos = find_next_bit(buf, nbits, pos + 1))
734 ord--;
736 return pos;
740 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
741 * @dst: remapped result
742 * @src: subset to be remapped
743 * @old: defines domain of map
744 * @new: defines range of map
745 * @nbits: number of bits in each of these bitmaps
747 * Let @old and @new define a mapping of bit positions, such that
748 * whatever position is held by the n-th set bit in @old is mapped
749 * to the n-th set bit in @new. In the more general case, allowing
750 * for the possibility that the weight 'w' of @new is less than the
751 * weight of @old, map the position of the n-th set bit in @old to
752 * the position of the m-th set bit in @new, where m == n % w.
754 * If either of the @old and @new bitmaps are empty, or if @src and
755 * @dst point to the same location, then this routine copies @src
756 * to @dst.
758 * The positions of unset bits in @old are mapped to themselves
759 * (the identify map).
761 * Apply the above specified mapping to @src, placing the result in
762 * @dst, clearing any bits previously set in @dst.
764 * For example, lets say that @old has bits 4 through 7 set, and
765 * @new has bits 12 through 15 set. This defines the mapping of bit
766 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
767 * bit positions unchanged. So if say @src comes into this routine
768 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
769 * 13 and 15 set.
771 void bitmap_remap(unsigned long *dst, const unsigned long *src,
772 const unsigned long *old, const unsigned long *new,
773 unsigned int nbits)
775 unsigned int oldbit, w;
777 if (dst == src) /* following doesn't handle inplace remaps */
778 return;
779 bitmap_zero(dst, nbits);
781 w = bitmap_weight(new, nbits);
782 for_each_set_bit(oldbit, src, nbits) {
783 int n = bitmap_pos_to_ord(old, oldbit, nbits);
785 if (n < 0 || w == 0)
786 set_bit(oldbit, dst); /* identity map */
787 else
788 set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst);
793 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
794 * @oldbit: bit position to be mapped
795 * @old: defines domain of map
796 * @new: defines range of map
797 * @bits: number of bits in each of these bitmaps
799 * Let @old and @new define a mapping of bit positions, such that
800 * whatever position is held by the n-th set bit in @old is mapped
801 * to the n-th set bit in @new. In the more general case, allowing
802 * for the possibility that the weight 'w' of @new is less than the
803 * weight of @old, map the position of the n-th set bit in @old to
804 * the position of the m-th set bit in @new, where m == n % w.
806 * The positions of unset bits in @old are mapped to themselves
807 * (the identify map).
809 * Apply the above specified mapping to bit position @oldbit, returning
810 * the new bit position.
812 * For example, lets say that @old has bits 4 through 7 set, and
813 * @new has bits 12 through 15 set. This defines the mapping of bit
814 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
815 * bit positions unchanged. So if say @oldbit is 5, then this routine
816 * returns 13.
818 int bitmap_bitremap(int oldbit, const unsigned long *old,
819 const unsigned long *new, int bits)
821 int w = bitmap_weight(new, bits);
822 int n = bitmap_pos_to_ord(old, oldbit, bits);
823 if (n < 0 || w == 0)
824 return oldbit;
825 else
826 return bitmap_ord_to_pos(new, n % w, bits);
830 * bitmap_onto - translate one bitmap relative to another
831 * @dst: resulting translated bitmap
832 * @orig: original untranslated bitmap
833 * @relmap: bitmap relative to which translated
834 * @bits: number of bits in each of these bitmaps
836 * Set the n-th bit of @dst iff there exists some m such that the
837 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
838 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
839 * (If you understood the previous sentence the first time your
840 * read it, you're overqualified for your current job.)
842 * In other words, @orig is mapped onto (surjectively) @dst,
843 * using the map { <n, m> | the n-th bit of @relmap is the
844 * m-th set bit of @relmap }.
846 * Any set bits in @orig above bit number W, where W is the
847 * weight of (number of set bits in) @relmap are mapped nowhere.
848 * In particular, if for all bits m set in @orig, m >= W, then
849 * @dst will end up empty. In situations where the possibility
850 * of such an empty result is not desired, one way to avoid it is
851 * to use the bitmap_fold() operator, below, to first fold the
852 * @orig bitmap over itself so that all its set bits x are in the
853 * range 0 <= x < W. The bitmap_fold() operator does this by
854 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
856 * Example [1] for bitmap_onto():
857 * Let's say @relmap has bits 30-39 set, and @orig has bits
858 * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine,
859 * @dst will have bits 31, 33, 35, 37 and 39 set.
861 * When bit 0 is set in @orig, it means turn on the bit in
862 * @dst corresponding to whatever is the first bit (if any)
863 * that is turned on in @relmap. Since bit 0 was off in the
864 * above example, we leave off that bit (bit 30) in @dst.
866 * When bit 1 is set in @orig (as in the above example), it
867 * means turn on the bit in @dst corresponding to whatever
868 * is the second bit that is turned on in @relmap. The second
869 * bit in @relmap that was turned on in the above example was
870 * bit 31, so we turned on bit 31 in @dst.
872 * Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
873 * because they were the 4th, 6th, 8th and 10th set bits
874 * set in @relmap, and the 4th, 6th, 8th and 10th bits of
875 * @orig (i.e. bits 3, 5, 7 and 9) were also set.
877 * When bit 11 is set in @orig, it means turn on the bit in
878 * @dst corresponding to whatever is the twelfth bit that is
879 * turned on in @relmap. In the above example, there were
880 * only ten bits turned on in @relmap (30..39), so that bit
881 * 11 was set in @orig had no affect on @dst.
883 * Example [2] for bitmap_fold() + bitmap_onto():
884 * Let's say @relmap has these ten bits set::
886 * 40 41 42 43 45 48 53 61 74 95
888 * (for the curious, that's 40 plus the first ten terms of the
889 * Fibonacci sequence.)
891 * Further lets say we use the following code, invoking
892 * bitmap_fold() then bitmap_onto, as suggested above to
893 * avoid the possibility of an empty @dst result::
895 * unsigned long *tmp; // a temporary bitmap's bits
897 * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
898 * bitmap_onto(dst, tmp, relmap, bits);
900 * Then this table shows what various values of @dst would be, for
901 * various @orig's. I list the zero-based positions of each set bit.
902 * The tmp column shows the intermediate result, as computed by
903 * using bitmap_fold() to fold the @orig bitmap modulo ten
904 * (the weight of @relmap):
906 * =============== ============== =================
907 * @orig tmp @dst
908 * 0 0 40
909 * 1 1 41
910 * 9 9 95
911 * 10 0 40 [#f1]_
912 * 1 3 5 7 1 3 5 7 41 43 48 61
913 * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45
914 * 0 9 18 27 0 9 8 7 40 61 74 95
915 * 0 10 20 30 0 40
916 * 0 11 22 33 0 1 2 3 40 41 42 43
917 * 0 12 24 36 0 2 4 6 40 42 45 53
918 * 78 102 211 1 2 8 41 42 74 [#f1]_
919 * =============== ============== =================
921 * .. [#f1]
923 * For these marked lines, if we hadn't first done bitmap_fold()
924 * into tmp, then the @dst result would have been empty.
926 * If either of @orig or @relmap is empty (no set bits), then @dst
927 * will be returned empty.
929 * If (as explained above) the only set bits in @orig are in positions
930 * m where m >= W, (where W is the weight of @relmap) then @dst will
931 * once again be returned empty.
933 * All bits in @dst not set by the above rule are cleared.
935 void bitmap_onto(unsigned long *dst, const unsigned long *orig,
936 const unsigned long *relmap, unsigned int bits)
938 unsigned int n, m; /* same meaning as in above comment */
940 if (dst == orig) /* following doesn't handle inplace mappings */
941 return;
942 bitmap_zero(dst, bits);
945 * The following code is a more efficient, but less
946 * obvious, equivalent to the loop:
947 * for (m = 0; m < bitmap_weight(relmap, bits); m++) {
948 * n = bitmap_ord_to_pos(orig, m, bits);
949 * if (test_bit(m, orig))
950 * set_bit(n, dst);
954 m = 0;
955 for_each_set_bit(n, relmap, bits) {
956 /* m == bitmap_pos_to_ord(relmap, n, bits) */
957 if (test_bit(m, orig))
958 set_bit(n, dst);
959 m++;
964 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
965 * @dst: resulting smaller bitmap
966 * @orig: original larger bitmap
967 * @sz: specified size
968 * @nbits: number of bits in each of these bitmaps
970 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
971 * Clear all other bits in @dst. See further the comment and
972 * Example [2] for bitmap_onto() for why and how to use this.
974 void bitmap_fold(unsigned long *dst, const unsigned long *orig,
975 unsigned int sz, unsigned int nbits)
977 unsigned int oldbit;
979 if (dst == orig) /* following doesn't handle inplace mappings */
980 return;
981 bitmap_zero(dst, nbits);
983 for_each_set_bit(oldbit, orig, nbits)
984 set_bit(oldbit % sz, dst);
986 #endif /* CONFIG_NUMA */
989 * Common code for bitmap_*_region() routines.
990 * bitmap: array of unsigned longs corresponding to the bitmap
991 * pos: the beginning of the region
992 * order: region size (log base 2 of number of bits)
993 * reg_op: operation(s) to perform on that region of bitmap
995 * Can set, verify and/or release a region of bits in a bitmap,
996 * depending on which combination of REG_OP_* flag bits is set.
998 * A region of a bitmap is a sequence of bits in the bitmap, of
999 * some size '1 << order' (a power of two), aligned to that same
1000 * '1 << order' power of two.
1002 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
1003 * Returns 0 in all other cases and reg_ops.
1006 enum {
1007 REG_OP_ISFREE, /* true if region is all zero bits */
1008 REG_OP_ALLOC, /* set all bits in region */
1009 REG_OP_RELEASE, /* clear all bits in region */
1012 static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
1014 int nbits_reg; /* number of bits in region */
1015 int index; /* index first long of region in bitmap */
1016 int offset; /* bit offset region in bitmap[index] */
1017 int nlongs_reg; /* num longs spanned by region in bitmap */
1018 int nbitsinlong; /* num bits of region in each spanned long */
1019 unsigned long mask; /* bitmask for one long of region */
1020 int i; /* scans bitmap by longs */
1021 int ret = 0; /* return value */
1024 * Either nlongs_reg == 1 (for small orders that fit in one long)
1025 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
1027 nbits_reg = 1 << order;
1028 index = pos / BITS_PER_LONG;
1029 offset = pos - (index * BITS_PER_LONG);
1030 nlongs_reg = BITS_TO_LONGS(nbits_reg);
1031 nbitsinlong = min(nbits_reg, BITS_PER_LONG);
1034 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
1035 * overflows if nbitsinlong == BITS_PER_LONG.
1037 mask = (1UL << (nbitsinlong - 1));
1038 mask += mask - 1;
1039 mask <<= offset;
1041 switch (reg_op) {
1042 case REG_OP_ISFREE:
1043 for (i = 0; i < nlongs_reg; i++) {
1044 if (bitmap[index + i] & mask)
1045 goto done;
1047 ret = 1; /* all bits in region free (zero) */
1048 break;
1050 case REG_OP_ALLOC:
1051 for (i = 0; i < nlongs_reg; i++)
1052 bitmap[index + i] |= mask;
1053 break;
1055 case REG_OP_RELEASE:
1056 for (i = 0; i < nlongs_reg; i++)
1057 bitmap[index + i] &= ~mask;
1058 break;
1060 done:
1061 return ret;
1065 * bitmap_find_free_region - find a contiguous aligned mem region
1066 * @bitmap: array of unsigned longs corresponding to the bitmap
1067 * @bits: number of bits in the bitmap
1068 * @order: region size (log base 2 of number of bits) to find
1070 * Find a region of free (zero) bits in a @bitmap of @bits bits and
1071 * allocate them (set them to one). Only consider regions of length
1072 * a power (@order) of two, aligned to that power of two, which
1073 * makes the search algorithm much faster.
1075 * Return the bit offset in bitmap of the allocated region,
1076 * or -errno on failure.
1078 int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
1080 unsigned int pos, end; /* scans bitmap by regions of size order */
1082 for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
1083 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1084 continue;
1085 __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1086 return pos;
1088 return -ENOMEM;
1090 EXPORT_SYMBOL(bitmap_find_free_region);
1093 * bitmap_release_region - release allocated bitmap region
1094 * @bitmap: array of unsigned longs corresponding to the bitmap
1095 * @pos: beginning of bit region to release
1096 * @order: region size (log base 2 of number of bits) to release
1098 * This is the complement to __bitmap_find_free_region() and releases
1099 * the found region (by clearing it in the bitmap).
1101 * No return value.
1103 void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
1105 __reg_op(bitmap, pos, order, REG_OP_RELEASE);
1107 EXPORT_SYMBOL(bitmap_release_region);
1110 * bitmap_allocate_region - allocate bitmap region
1111 * @bitmap: array of unsigned longs corresponding to the bitmap
1112 * @pos: beginning of bit region to allocate
1113 * @order: region size (log base 2 of number of bits) to allocate
1115 * Allocate (set bits in) a specified region of a bitmap.
1117 * Return 0 on success, or %-EBUSY if specified region wasn't
1118 * free (not all bits were zero).
1120 int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
1122 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1123 return -EBUSY;
1124 return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1126 EXPORT_SYMBOL(bitmap_allocate_region);
1129 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1130 * @dst: destination buffer
1131 * @src: bitmap to copy
1132 * @nbits: number of bits in the bitmap
1134 * Require nbits % BITS_PER_LONG == 0.
1136 #ifdef __BIG_ENDIAN
1137 void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits)
1139 unsigned int i;
1141 for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1142 if (BITS_PER_LONG == 64)
1143 dst[i] = cpu_to_le64(src[i]);
1144 else
1145 dst[i] = cpu_to_le32(src[i]);
1148 EXPORT_SYMBOL(bitmap_copy_le);
1149 #endif
1151 unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags)
1153 return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long),
1154 flags);
1156 EXPORT_SYMBOL(bitmap_alloc);
1158 unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags)
1160 return bitmap_alloc(nbits, flags | __GFP_ZERO);
1162 EXPORT_SYMBOL(bitmap_zalloc);
1164 void bitmap_free(const unsigned long *bitmap)
1166 kfree(bitmap);
1168 EXPORT_SYMBOL(bitmap_free);
1170 #if BITS_PER_LONG == 64
1172 * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap
1173 * @bitmap: array of unsigned longs, the destination bitmap
1174 * @buf: array of u32 (in host byte order), the source bitmap
1175 * @nbits: number of bits in @bitmap
1177 void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits)
1179 unsigned int i, halfwords;
1181 halfwords = DIV_ROUND_UP(nbits, 32);
1182 for (i = 0; i < halfwords; i++) {
1183 bitmap[i/2] = (unsigned long) buf[i];
1184 if (++i < halfwords)
1185 bitmap[i/2] |= ((unsigned long) buf[i]) << 32;
1188 /* Clear tail bits in last word beyond nbits. */
1189 if (nbits % BITS_PER_LONG)
1190 bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits);
1192 EXPORT_SYMBOL(bitmap_from_arr32);
1195 * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits
1196 * @buf: array of u32 (in host byte order), the dest bitmap
1197 * @bitmap: array of unsigned longs, the source bitmap
1198 * @nbits: number of bits in @bitmap
1200 void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits)
1202 unsigned int i, halfwords;
1204 halfwords = DIV_ROUND_UP(nbits, 32);
1205 for (i = 0; i < halfwords; i++) {
1206 buf[i] = (u32) (bitmap[i/2] & UINT_MAX);
1207 if (++i < halfwords)
1208 buf[i] = (u32) (bitmap[i/2] >> 32);
1211 /* Clear tail bits in last element of array beyond nbits. */
1212 if (nbits % BITS_PER_LONG)
1213 buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31));
1215 EXPORT_SYMBOL(bitmap_to_arr32);
1217 #endif