2 * Simple NUMA memory policy for the Linux kernel.
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
8 * NUMA policy allows the user to give hints in which node(s) memory should
11 * Support four policies per VMA and per process:
13 * The VMA policy has priority over the process policy for a page fault.
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
22 * bind Only allocate memory on a specific set of nodes,
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
28 * preferred Try a specific node first before normal fallback.
29 * As a special case node -1 here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
57 fix mmap readahead to honour policy and enable policy for any page cache
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
62 handle mremap for shared memory (currently ignored for the policy)
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
68 #include <linux/mempolicy.h>
70 #include <linux/highmem.h>
71 #include <linux/hugetlb.h>
72 #include <linux/kernel.h>
73 #include <linux/sched.h>
74 #include <linux/nodemask.h>
75 #include <linux/cpuset.h>
76 #include <linux/slab.h>
77 #include <linux/string.h>
78 #include <linux/export.h>
79 #include <linux/nsproxy.h>
80 #include <linux/interrupt.h>
81 #include <linux/init.h>
82 #include <linux/compat.h>
83 #include <linux/swap.h>
84 #include <linux/seq_file.h>
85 #include <linux/proc_fs.h>
86 #include <linux/migrate.h>
87 #include <linux/ksm.h>
88 #include <linux/rmap.h>
89 #include <linux/security.h>
90 #include <linux/syscalls.h>
91 #include <linux/ctype.h>
92 #include <linux/mm_inline.h>
94 #include <asm/tlbflush.h>
95 #include <asm/uaccess.h>
96 #include <linux/random.h>
101 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
102 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
104 static struct kmem_cache
*policy_cache
;
105 static struct kmem_cache
*sn_cache
;
107 /* Highest zone. An specific allocation for a zone below that is not
109 enum zone_type policy_zone
= 0;
112 * run-time system-wide default policy => local allocation
114 static struct mempolicy default_policy
= {
115 .refcnt
= ATOMIC_INIT(1), /* never free it */
116 .mode
= MPOL_PREFERRED
,
117 .flags
= MPOL_F_LOCAL
,
120 static const struct mempolicy_operations
{
121 int (*create
)(struct mempolicy
*pol
, const nodemask_t
*nodes
);
123 * If read-side task has no lock to protect task->mempolicy, write-side
124 * task will rebind the task->mempolicy by two step. The first step is
125 * setting all the newly nodes, and the second step is cleaning all the
126 * disallowed nodes. In this way, we can avoid finding no node to alloc
128 * If we have a lock to protect task->mempolicy in read-side, we do
132 * MPOL_REBIND_ONCE - do rebind work at once
133 * MPOL_REBIND_STEP1 - set all the newly nodes
134 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
136 void (*rebind
)(struct mempolicy
*pol
, const nodemask_t
*nodes
,
137 enum mpol_rebind_step step
);
138 } mpol_ops
[MPOL_MAX
];
140 /* Check that the nodemask contains at least one populated zone */
141 static int is_valid_nodemask(const nodemask_t
*nodemask
)
145 for_each_node_mask(nd
, *nodemask
) {
148 for (k
= 0; k
<= policy_zone
; k
++) {
149 z
= &NODE_DATA(nd
)->node_zones
[k
];
150 if (z
->present_pages
> 0)
158 static inline int mpol_store_user_nodemask(const struct mempolicy
*pol
)
160 return pol
->flags
& MPOL_MODE_FLAGS
;
163 static void mpol_relative_nodemask(nodemask_t
*ret
, const nodemask_t
*orig
,
164 const nodemask_t
*rel
)
167 nodes_fold(tmp
, *orig
, nodes_weight(*rel
));
168 nodes_onto(*ret
, tmp
, *rel
);
171 static int mpol_new_interleave(struct mempolicy
*pol
, const nodemask_t
*nodes
)
173 if (nodes_empty(*nodes
))
175 pol
->v
.nodes
= *nodes
;
179 static int mpol_new_preferred(struct mempolicy
*pol
, const nodemask_t
*nodes
)
182 pol
->flags
|= MPOL_F_LOCAL
; /* local allocation */
183 else if (nodes_empty(*nodes
))
184 return -EINVAL
; /* no allowed nodes */
186 pol
->v
.preferred_node
= first_node(*nodes
);
190 static int mpol_new_bind(struct mempolicy
*pol
, const nodemask_t
*nodes
)
192 if (!is_valid_nodemask(nodes
))
194 pol
->v
.nodes
= *nodes
;
199 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
200 * any, for the new policy. mpol_new() has already validated the nodes
201 * parameter with respect to the policy mode and flags. But, we need to
202 * handle an empty nodemask with MPOL_PREFERRED here.
204 * Must be called holding task's alloc_lock to protect task's mems_allowed
205 * and mempolicy. May also be called holding the mmap_semaphore for write.
207 static int mpol_set_nodemask(struct mempolicy
*pol
,
208 const nodemask_t
*nodes
, struct nodemask_scratch
*nsc
)
212 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
215 /* Check N_HIGH_MEMORY */
216 nodes_and(nsc
->mask1
,
217 cpuset_current_mems_allowed
, node_states
[N_HIGH_MEMORY
]);
220 if (pol
->mode
== MPOL_PREFERRED
&& nodes_empty(*nodes
))
221 nodes
= NULL
; /* explicit local allocation */
223 if (pol
->flags
& MPOL_F_RELATIVE_NODES
)
224 mpol_relative_nodemask(&nsc
->mask2
, nodes
,&nsc
->mask1
);
226 nodes_and(nsc
->mask2
, *nodes
, nsc
->mask1
);
228 if (mpol_store_user_nodemask(pol
))
229 pol
->w
.user_nodemask
= *nodes
;
231 pol
->w
.cpuset_mems_allowed
=
232 cpuset_current_mems_allowed
;
236 ret
= mpol_ops
[pol
->mode
].create(pol
, &nsc
->mask2
);
238 ret
= mpol_ops
[pol
->mode
].create(pol
, NULL
);
243 * This function just creates a new policy, does some check and simple
244 * initialization. You must invoke mpol_set_nodemask() to set nodes.
246 static struct mempolicy
*mpol_new(unsigned short mode
, unsigned short flags
,
249 struct mempolicy
*policy
;
251 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
252 mode
, flags
, nodes
? nodes_addr(*nodes
)[0] : -1);
254 if (mode
== MPOL_DEFAULT
) {
255 if (nodes
&& !nodes_empty(*nodes
))
256 return ERR_PTR(-EINVAL
);
257 return NULL
; /* simply delete any existing policy */
262 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
263 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
264 * All other modes require a valid pointer to a non-empty nodemask.
266 if (mode
== MPOL_PREFERRED
) {
267 if (nodes_empty(*nodes
)) {
268 if (((flags
& MPOL_F_STATIC_NODES
) ||
269 (flags
& MPOL_F_RELATIVE_NODES
)))
270 return ERR_PTR(-EINVAL
);
272 } else if (nodes_empty(*nodes
))
273 return ERR_PTR(-EINVAL
);
274 policy
= kmem_cache_alloc(policy_cache
, GFP_KERNEL
);
276 return ERR_PTR(-ENOMEM
);
277 atomic_set(&policy
->refcnt
, 1);
279 policy
->flags
= flags
;
284 /* Slow path of a mpol destructor. */
285 void __mpol_put(struct mempolicy
*p
)
287 if (!atomic_dec_and_test(&p
->refcnt
))
289 kmem_cache_free(policy_cache
, p
);
292 static void mpol_rebind_default(struct mempolicy
*pol
, const nodemask_t
*nodes
,
293 enum mpol_rebind_step step
)
299 * MPOL_REBIND_ONCE - do rebind work at once
300 * MPOL_REBIND_STEP1 - set all the newly nodes
301 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
303 static void mpol_rebind_nodemask(struct mempolicy
*pol
, const nodemask_t
*nodes
,
304 enum mpol_rebind_step step
)
308 if (pol
->flags
& MPOL_F_STATIC_NODES
)
309 nodes_and(tmp
, pol
->w
.user_nodemask
, *nodes
);
310 else if (pol
->flags
& MPOL_F_RELATIVE_NODES
)
311 mpol_relative_nodemask(&tmp
, &pol
->w
.user_nodemask
, nodes
);
314 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
317 if (step
== MPOL_REBIND_ONCE
|| step
== MPOL_REBIND_STEP1
) {
318 nodes_remap(tmp
, pol
->v
.nodes
,
319 pol
->w
.cpuset_mems_allowed
, *nodes
);
320 pol
->w
.cpuset_mems_allowed
= step
? tmp
: *nodes
;
321 } else if (step
== MPOL_REBIND_STEP2
) {
322 tmp
= pol
->w
.cpuset_mems_allowed
;
323 pol
->w
.cpuset_mems_allowed
= *nodes
;
328 if (nodes_empty(tmp
))
331 if (step
== MPOL_REBIND_STEP1
)
332 nodes_or(pol
->v
.nodes
, pol
->v
.nodes
, tmp
);
333 else if (step
== MPOL_REBIND_ONCE
|| step
== MPOL_REBIND_STEP2
)
338 if (!node_isset(current
->il_next
, tmp
)) {
339 current
->il_next
= next_node(current
->il_next
, tmp
);
340 if (current
->il_next
>= MAX_NUMNODES
)
341 current
->il_next
= first_node(tmp
);
342 if (current
->il_next
>= MAX_NUMNODES
)
343 current
->il_next
= numa_node_id();
347 static void mpol_rebind_preferred(struct mempolicy
*pol
,
348 const nodemask_t
*nodes
,
349 enum mpol_rebind_step step
)
353 if (pol
->flags
& MPOL_F_STATIC_NODES
) {
354 int node
= first_node(pol
->w
.user_nodemask
);
356 if (node_isset(node
, *nodes
)) {
357 pol
->v
.preferred_node
= node
;
358 pol
->flags
&= ~MPOL_F_LOCAL
;
360 pol
->flags
|= MPOL_F_LOCAL
;
361 } else if (pol
->flags
& MPOL_F_RELATIVE_NODES
) {
362 mpol_relative_nodemask(&tmp
, &pol
->w
.user_nodemask
, nodes
);
363 pol
->v
.preferred_node
= first_node(tmp
);
364 } else if (!(pol
->flags
& MPOL_F_LOCAL
)) {
365 pol
->v
.preferred_node
= node_remap(pol
->v
.preferred_node
,
366 pol
->w
.cpuset_mems_allowed
,
368 pol
->w
.cpuset_mems_allowed
= *nodes
;
373 * mpol_rebind_policy - Migrate a policy to a different set of nodes
375 * If read-side task has no lock to protect task->mempolicy, write-side
376 * task will rebind the task->mempolicy by two step. The first step is
377 * setting all the newly nodes, and the second step is cleaning all the
378 * disallowed nodes. In this way, we can avoid finding no node to alloc
380 * If we have a lock to protect task->mempolicy in read-side, we do
384 * MPOL_REBIND_ONCE - do rebind work at once
385 * MPOL_REBIND_STEP1 - set all the newly nodes
386 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
388 static void mpol_rebind_policy(struct mempolicy
*pol
, const nodemask_t
*newmask
,
389 enum mpol_rebind_step step
)
393 if (!mpol_store_user_nodemask(pol
) && step
== 0 &&
394 nodes_equal(pol
->w
.cpuset_mems_allowed
, *newmask
))
397 if (step
== MPOL_REBIND_STEP1
&& (pol
->flags
& MPOL_F_REBINDING
))
400 if (step
== MPOL_REBIND_STEP2
&& !(pol
->flags
& MPOL_F_REBINDING
))
403 if (step
== MPOL_REBIND_STEP1
)
404 pol
->flags
|= MPOL_F_REBINDING
;
405 else if (step
== MPOL_REBIND_STEP2
)
406 pol
->flags
&= ~MPOL_F_REBINDING
;
407 else if (step
>= MPOL_REBIND_NSTEP
)
410 mpol_ops
[pol
->mode
].rebind(pol
, newmask
, step
);
414 * Wrapper for mpol_rebind_policy() that just requires task
415 * pointer, and updates task mempolicy.
417 * Called with task's alloc_lock held.
420 void mpol_rebind_task(struct task_struct
*tsk
, const nodemask_t
*new,
421 enum mpol_rebind_step step
)
423 mpol_rebind_policy(tsk
->mempolicy
, new, step
);
427 * Rebind each vma in mm to new nodemask.
429 * Call holding a reference to mm. Takes mm->mmap_sem during call.
432 void mpol_rebind_mm(struct mm_struct
*mm
, nodemask_t
*new)
434 struct vm_area_struct
*vma
;
436 down_write(&mm
->mmap_sem
);
437 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
)
438 mpol_rebind_policy(vma
->vm_policy
, new, MPOL_REBIND_ONCE
);
439 up_write(&mm
->mmap_sem
);
442 static const struct mempolicy_operations mpol_ops
[MPOL_MAX
] = {
444 .rebind
= mpol_rebind_default
,
446 [MPOL_INTERLEAVE
] = {
447 .create
= mpol_new_interleave
,
448 .rebind
= mpol_rebind_nodemask
,
451 .create
= mpol_new_preferred
,
452 .rebind
= mpol_rebind_preferred
,
455 .create
= mpol_new_bind
,
456 .rebind
= mpol_rebind_nodemask
,
460 static void migrate_page_add(struct page
*page
, struct list_head
*pagelist
,
461 unsigned long flags
);
463 /* Scan through pages checking if pages follow certain conditions. */
464 static int check_pte_range(struct vm_area_struct
*vma
, pmd_t
*pmd
,
465 unsigned long addr
, unsigned long end
,
466 const nodemask_t
*nodes
, unsigned long flags
,
473 orig_pte
= pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
478 if (!pte_present(*pte
))
480 page
= vm_normal_page(vma
, addr
, *pte
);
484 * vm_normal_page() filters out zero pages, but there might
485 * still be PageReserved pages to skip, perhaps in a VDSO.
486 * And we cannot move PageKsm pages sensibly or safely yet.
488 if (PageReserved(page
) || PageKsm(page
))
490 nid
= page_to_nid(page
);
491 if (node_isset(nid
, *nodes
) == !!(flags
& MPOL_MF_INVERT
))
494 if (flags
& (MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
))
495 migrate_page_add(page
, private, flags
);
498 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
499 pte_unmap_unlock(orig_pte
, ptl
);
503 static inline int check_pmd_range(struct vm_area_struct
*vma
, pud_t
*pud
,
504 unsigned long addr
, unsigned long end
,
505 const nodemask_t
*nodes
, unsigned long flags
,
511 pmd
= pmd_offset(pud
, addr
);
513 next
= pmd_addr_end(addr
, end
);
514 split_huge_page_pmd(vma
->vm_mm
, pmd
);
515 if (pmd_none_or_trans_huge_or_clear_bad(pmd
))
517 if (check_pte_range(vma
, pmd
, addr
, next
, nodes
,
520 } while (pmd
++, addr
= next
, addr
!= end
);
524 static inline int check_pud_range(struct vm_area_struct
*vma
, pgd_t
*pgd
,
525 unsigned long addr
, unsigned long end
,
526 const nodemask_t
*nodes
, unsigned long flags
,
532 pud
= pud_offset(pgd
, addr
);
534 next
= pud_addr_end(addr
, end
);
535 if (pud_none_or_clear_bad(pud
))
537 if (check_pmd_range(vma
, pud
, addr
, next
, nodes
,
540 } while (pud
++, addr
= next
, addr
!= end
);
544 static inline int check_pgd_range(struct vm_area_struct
*vma
,
545 unsigned long addr
, unsigned long end
,
546 const nodemask_t
*nodes
, unsigned long flags
,
552 pgd
= pgd_offset(vma
->vm_mm
, addr
);
554 next
= pgd_addr_end(addr
, end
);
555 if (pgd_none_or_clear_bad(pgd
))
557 if (check_pud_range(vma
, pgd
, addr
, next
, nodes
,
560 } while (pgd
++, addr
= next
, addr
!= end
);
565 * Check if all pages in a range are on a set of nodes.
566 * If pagelist != NULL then isolate pages from the LRU and
567 * put them on the pagelist.
569 static struct vm_area_struct
*
570 check_range(struct mm_struct
*mm
, unsigned long start
, unsigned long end
,
571 const nodemask_t
*nodes
, unsigned long flags
, void *private)
574 struct vm_area_struct
*first
, *vma
, *prev
;
577 first
= find_vma(mm
, start
);
579 return ERR_PTR(-EFAULT
);
581 for (vma
= first
; vma
&& vma
->vm_start
< end
; vma
= vma
->vm_next
) {
582 if (!(flags
& MPOL_MF_DISCONTIG_OK
)) {
583 if (!vma
->vm_next
&& vma
->vm_end
< end
)
584 return ERR_PTR(-EFAULT
);
585 if (prev
&& prev
->vm_end
< vma
->vm_start
)
586 return ERR_PTR(-EFAULT
);
588 if (!is_vm_hugetlb_page(vma
) &&
589 ((flags
& MPOL_MF_STRICT
) ||
590 ((flags
& (MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
)) &&
591 vma_migratable(vma
)))) {
592 unsigned long endvma
= vma
->vm_end
;
596 if (vma
->vm_start
> start
)
597 start
= vma
->vm_start
;
598 err
= check_pgd_range(vma
, start
, endvma
, nodes
,
601 first
= ERR_PTR(err
);
610 /* Apply policy to a single VMA */
611 static int policy_vma(struct vm_area_struct
*vma
, struct mempolicy
*new)
614 struct mempolicy
*old
= vma
->vm_policy
;
616 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
617 vma
->vm_start
, vma
->vm_end
, vma
->vm_pgoff
,
618 vma
->vm_ops
, vma
->vm_file
,
619 vma
->vm_ops
? vma
->vm_ops
->set_policy
: NULL
);
621 if (vma
->vm_ops
&& vma
->vm_ops
->set_policy
)
622 err
= vma
->vm_ops
->set_policy(vma
, new);
625 vma
->vm_policy
= new;
631 /* Step 2: apply policy to a range and do splits. */
632 static int mbind_range(struct mm_struct
*mm
, unsigned long start
,
633 unsigned long end
, struct mempolicy
*new_pol
)
635 struct vm_area_struct
*next
;
636 struct vm_area_struct
*prev
;
637 struct vm_area_struct
*vma
;
640 unsigned long vmstart
;
643 vma
= find_vma_prev(mm
, start
, &prev
);
644 if (!vma
|| vma
->vm_start
> start
)
647 if (start
> vma
->vm_start
)
650 for (; vma
&& vma
->vm_start
< end
; prev
= vma
, vma
= next
) {
652 vmstart
= max(start
, vma
->vm_start
);
653 vmend
= min(end
, vma
->vm_end
);
655 if (mpol_equal(vma_policy(vma
), new_pol
))
658 pgoff
= vma
->vm_pgoff
+
659 ((vmstart
- vma
->vm_start
) >> PAGE_SHIFT
);
660 prev
= vma_merge(mm
, prev
, vmstart
, vmend
, vma
->vm_flags
,
661 vma
->anon_vma
, vma
->vm_file
, pgoff
,
668 if (vma
->vm_start
!= vmstart
) {
669 err
= split_vma(vma
->vm_mm
, vma
, vmstart
, 1);
673 if (vma
->vm_end
!= vmend
) {
674 err
= split_vma(vma
->vm_mm
, vma
, vmend
, 0);
678 err
= policy_vma(vma
, new_pol
);
688 * Update task->flags PF_MEMPOLICY bit: set iff non-default
689 * mempolicy. Allows more rapid checking of this (combined perhaps
690 * with other PF_* flag bits) on memory allocation hot code paths.
692 * If called from outside this file, the task 'p' should -only- be
693 * a newly forked child not yet visible on the task list, because
694 * manipulating the task flags of a visible task is not safe.
696 * The above limitation is why this routine has the funny name
697 * mpol_fix_fork_child_flag().
699 * It is also safe to call this with a task pointer of current,
700 * which the static wrapper mpol_set_task_struct_flag() does,
701 * for use within this file.
704 void mpol_fix_fork_child_flag(struct task_struct
*p
)
707 p
->flags
|= PF_MEMPOLICY
;
709 p
->flags
&= ~PF_MEMPOLICY
;
712 static void mpol_set_task_struct_flag(void)
714 mpol_fix_fork_child_flag(current
);
717 /* Set the process memory policy */
718 static long do_set_mempolicy(unsigned short mode
, unsigned short flags
,
721 struct mempolicy
*new, *old
;
722 struct mm_struct
*mm
= current
->mm
;
723 NODEMASK_SCRATCH(scratch
);
729 new = mpol_new(mode
, flags
, nodes
);
735 * prevent changing our mempolicy while show_numa_maps()
737 * Note: do_set_mempolicy() can be called at init time
741 down_write(&mm
->mmap_sem
);
743 ret
= mpol_set_nodemask(new, nodes
, scratch
);
745 task_unlock(current
);
747 up_write(&mm
->mmap_sem
);
751 old
= current
->mempolicy
;
752 current
->mempolicy
= new;
753 mpol_set_task_struct_flag();
754 if (new && new->mode
== MPOL_INTERLEAVE
&&
755 nodes_weight(new->v
.nodes
))
756 current
->il_next
= first_node(new->v
.nodes
);
757 task_unlock(current
);
759 up_write(&mm
->mmap_sem
);
764 NODEMASK_SCRATCH_FREE(scratch
);
769 * Return nodemask for policy for get_mempolicy() query
771 * Called with task's alloc_lock held
773 static void get_policy_nodemask(struct mempolicy
*p
, nodemask_t
*nodes
)
776 if (p
== &default_policy
)
782 case MPOL_INTERLEAVE
:
786 if (!(p
->flags
& MPOL_F_LOCAL
))
787 node_set(p
->v
.preferred_node
, *nodes
);
788 /* else return empty node mask for local allocation */
795 static int lookup_node(struct mm_struct
*mm
, unsigned long addr
)
800 err
= get_user_pages(current
, mm
, addr
& PAGE_MASK
, 1, 0, 0, &p
, NULL
);
802 err
= page_to_nid(p
);
808 /* Retrieve NUMA policy */
809 static long do_get_mempolicy(int *policy
, nodemask_t
*nmask
,
810 unsigned long addr
, unsigned long flags
)
813 struct mm_struct
*mm
= current
->mm
;
814 struct vm_area_struct
*vma
= NULL
;
815 struct mempolicy
*pol
= current
->mempolicy
;
818 ~(unsigned long)(MPOL_F_NODE
|MPOL_F_ADDR
|MPOL_F_MEMS_ALLOWED
))
821 if (flags
& MPOL_F_MEMS_ALLOWED
) {
822 if (flags
& (MPOL_F_NODE
|MPOL_F_ADDR
))
824 *policy
= 0; /* just so it's initialized */
826 *nmask
= cpuset_current_mems_allowed
;
827 task_unlock(current
);
831 if (flags
& MPOL_F_ADDR
) {
833 * Do NOT fall back to task policy if the
834 * vma/shared policy at addr is NULL. We
835 * want to return MPOL_DEFAULT in this case.
837 down_read(&mm
->mmap_sem
);
838 vma
= find_vma_intersection(mm
, addr
, addr
+1);
840 up_read(&mm
->mmap_sem
);
843 if (vma
->vm_ops
&& vma
->vm_ops
->get_policy
)
844 pol
= vma
->vm_ops
->get_policy(vma
, addr
);
846 pol
= vma
->vm_policy
;
851 pol
= &default_policy
; /* indicates default behavior */
853 if (flags
& MPOL_F_NODE
) {
854 if (flags
& MPOL_F_ADDR
) {
855 err
= lookup_node(mm
, addr
);
859 } else if (pol
== current
->mempolicy
&&
860 pol
->mode
== MPOL_INTERLEAVE
) {
861 *policy
= current
->il_next
;
867 *policy
= pol
== &default_policy
? MPOL_DEFAULT
:
870 * Internal mempolicy flags must be masked off before exposing
871 * the policy to userspace.
873 *policy
|= (pol
->flags
& MPOL_MODE_FLAGS
);
877 up_read(¤t
->mm
->mmap_sem
);
883 if (mpol_store_user_nodemask(pol
)) {
884 *nmask
= pol
->w
.user_nodemask
;
887 get_policy_nodemask(pol
, nmask
);
888 task_unlock(current
);
895 up_read(¤t
->mm
->mmap_sem
);
899 #ifdef CONFIG_MIGRATION
903 static void migrate_page_add(struct page
*page
, struct list_head
*pagelist
,
907 * Avoid migrating a page that is shared with others.
909 if ((flags
& MPOL_MF_MOVE_ALL
) || page_mapcount(page
) == 1) {
910 if (!isolate_lru_page(page
)) {
911 list_add_tail(&page
->lru
, pagelist
);
912 inc_zone_page_state(page
, NR_ISOLATED_ANON
+
913 page_is_file_cache(page
));
918 static struct page
*new_node_page(struct page
*page
, unsigned long node
, int **x
)
920 return alloc_pages_exact_node(node
, GFP_HIGHUSER_MOVABLE
, 0);
924 * Migrate pages from one node to a target node.
925 * Returns error or the number of pages not migrated.
927 static int migrate_to_node(struct mm_struct
*mm
, int source
, int dest
,
933 struct vm_area_struct
*vma
;
936 node_set(source
, nmask
);
938 vma
= check_range(mm
, mm
->mmap
->vm_start
, mm
->task_size
, &nmask
,
939 flags
| MPOL_MF_DISCONTIG_OK
, &pagelist
);
943 if (!list_empty(&pagelist
)) {
944 err
= migrate_pages(&pagelist
, new_node_page
, dest
,
947 putback_lru_pages(&pagelist
);
954 * Move pages between the two nodesets so as to preserve the physical
955 * layout as much as possible.
957 * Returns the number of page that could not be moved.
959 int do_migrate_pages(struct mm_struct
*mm
,
960 const nodemask_t
*from_nodes
, const nodemask_t
*to_nodes
, int flags
)
966 err
= migrate_prep();
970 down_read(&mm
->mmap_sem
);
972 err
= migrate_vmas(mm
, from_nodes
, to_nodes
, flags
);
977 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
978 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
979 * bit in 'tmp', and return that <source, dest> pair for migration.
980 * The pair of nodemasks 'to' and 'from' define the map.
982 * If no pair of bits is found that way, fallback to picking some
983 * pair of 'source' and 'dest' bits that are not the same. If the
984 * 'source' and 'dest' bits are the same, this represents a node
985 * that will be migrating to itself, so no pages need move.
987 * If no bits are left in 'tmp', or if all remaining bits left
988 * in 'tmp' correspond to the same bit in 'to', return false
989 * (nothing left to migrate).
991 * This lets us pick a pair of nodes to migrate between, such that
992 * if possible the dest node is not already occupied by some other
993 * source node, minimizing the risk of overloading the memory on a
994 * node that would happen if we migrated incoming memory to a node
995 * before migrating outgoing memory source that same node.
997 * A single scan of tmp is sufficient. As we go, we remember the
998 * most recent <s, d> pair that moved (s != d). If we find a pair
999 * that not only moved, but what's better, moved to an empty slot
1000 * (d is not set in tmp), then we break out then, with that pair.
1001 * Otherwise when we finish scanning from_tmp, we at least have the
1002 * most recent <s, d> pair that moved. If we get all the way through
1003 * the scan of tmp without finding any node that moved, much less
1004 * moved to an empty node, then there is nothing left worth migrating.
1008 while (!nodes_empty(tmp
)) {
1013 for_each_node_mask(s
, tmp
) {
1014 d
= node_remap(s
, *from_nodes
, *to_nodes
);
1018 source
= s
; /* Node moved. Memorize */
1021 /* dest not in remaining from nodes? */
1022 if (!node_isset(dest
, tmp
))
1028 node_clear(source
, tmp
);
1029 err
= migrate_to_node(mm
, source
, dest
, flags
);
1036 up_read(&mm
->mmap_sem
);
1044 * Allocate a new page for page migration based on vma policy.
1045 * Start assuming that page is mapped by vma pointed to by @private.
1046 * Search forward from there, if not. N.B., this assumes that the
1047 * list of pages handed to migrate_pages()--which is how we get here--
1048 * is in virtual address order.
1050 static struct page
*new_vma_page(struct page
*page
, unsigned long private, int **x
)
1052 struct vm_area_struct
*vma
= (struct vm_area_struct
*)private;
1053 unsigned long uninitialized_var(address
);
1056 address
= page_address_in_vma(page
, vma
);
1057 if (address
!= -EFAULT
)
1063 * if !vma, alloc_page_vma() will use task or system default policy
1065 return alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, address
);
1069 static void migrate_page_add(struct page
*page
, struct list_head
*pagelist
,
1070 unsigned long flags
)
1074 int do_migrate_pages(struct mm_struct
*mm
,
1075 const nodemask_t
*from_nodes
, const nodemask_t
*to_nodes
, int flags
)
1080 static struct page
*new_vma_page(struct page
*page
, unsigned long private, int **x
)
1086 static long do_mbind(unsigned long start
, unsigned long len
,
1087 unsigned short mode
, unsigned short mode_flags
,
1088 nodemask_t
*nmask
, unsigned long flags
)
1090 struct vm_area_struct
*vma
;
1091 struct mm_struct
*mm
= current
->mm
;
1092 struct mempolicy
*new;
1095 LIST_HEAD(pagelist
);
1097 if (flags
& ~(unsigned long)(MPOL_MF_STRICT
|
1098 MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
))
1100 if ((flags
& MPOL_MF_MOVE_ALL
) && !capable(CAP_SYS_NICE
))
1103 if (start
& ~PAGE_MASK
)
1106 if (mode
== MPOL_DEFAULT
)
1107 flags
&= ~MPOL_MF_STRICT
;
1109 len
= (len
+ PAGE_SIZE
- 1) & PAGE_MASK
;
1117 new = mpol_new(mode
, mode_flags
, nmask
);
1119 return PTR_ERR(new);
1122 * If we are using the default policy then operation
1123 * on discontinuous address spaces is okay after all
1126 flags
|= MPOL_MF_DISCONTIG_OK
;
1128 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1129 start
, start
+ len
, mode
, mode_flags
,
1130 nmask
? nodes_addr(*nmask
)[0] : -1);
1132 if (flags
& (MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
)) {
1134 err
= migrate_prep();
1139 NODEMASK_SCRATCH(scratch
);
1141 down_write(&mm
->mmap_sem
);
1143 err
= mpol_set_nodemask(new, nmask
, scratch
);
1144 task_unlock(current
);
1146 up_write(&mm
->mmap_sem
);
1149 NODEMASK_SCRATCH_FREE(scratch
);
1154 vma
= check_range(mm
, start
, end
, nmask
,
1155 flags
| MPOL_MF_INVERT
, &pagelist
);
1161 err
= mbind_range(mm
, start
, end
, new);
1163 if (!list_empty(&pagelist
)) {
1164 nr_failed
= migrate_pages(&pagelist
, new_vma_page
,
1168 putback_lru_pages(&pagelist
);
1171 if (!err
&& nr_failed
&& (flags
& MPOL_MF_STRICT
))
1174 putback_lru_pages(&pagelist
);
1176 up_write(&mm
->mmap_sem
);
1183 * User space interface with variable sized bitmaps for nodelists.
1186 /* Copy a node mask from user space. */
1187 static int get_nodes(nodemask_t
*nodes
, const unsigned long __user
*nmask
,
1188 unsigned long maxnode
)
1191 unsigned long nlongs
;
1192 unsigned long endmask
;
1195 nodes_clear(*nodes
);
1196 if (maxnode
== 0 || !nmask
)
1198 if (maxnode
> PAGE_SIZE
*BITS_PER_BYTE
)
1201 nlongs
= BITS_TO_LONGS(maxnode
);
1202 if ((maxnode
% BITS_PER_LONG
) == 0)
1205 endmask
= (1UL << (maxnode
% BITS_PER_LONG
)) - 1;
1207 /* When the user specified more nodes than supported just check
1208 if the non supported part is all zero. */
1209 if (nlongs
> BITS_TO_LONGS(MAX_NUMNODES
)) {
1210 if (nlongs
> PAGE_SIZE
/sizeof(long))
1212 for (k
= BITS_TO_LONGS(MAX_NUMNODES
); k
< nlongs
; k
++) {
1214 if (get_user(t
, nmask
+ k
))
1216 if (k
== nlongs
- 1) {
1222 nlongs
= BITS_TO_LONGS(MAX_NUMNODES
);
1226 if (copy_from_user(nodes_addr(*nodes
), nmask
, nlongs
*sizeof(unsigned long)))
1228 nodes_addr(*nodes
)[nlongs
-1] &= endmask
;
1232 /* Copy a kernel node mask to user space */
1233 static int copy_nodes_to_user(unsigned long __user
*mask
, unsigned long maxnode
,
1236 unsigned long copy
= ALIGN(maxnode
-1, 64) / 8;
1237 const int nbytes
= BITS_TO_LONGS(MAX_NUMNODES
) * sizeof(long);
1239 if (copy
> nbytes
) {
1240 if (copy
> PAGE_SIZE
)
1242 if (clear_user((char __user
*)mask
+ nbytes
, copy
- nbytes
))
1246 return copy_to_user(mask
, nodes_addr(*nodes
), copy
) ? -EFAULT
: 0;
1249 SYSCALL_DEFINE6(mbind
, unsigned long, start
, unsigned long, len
,
1250 unsigned long, mode
, unsigned long __user
*, nmask
,
1251 unsigned long, maxnode
, unsigned, flags
)
1255 unsigned short mode_flags
;
1257 mode_flags
= mode
& MPOL_MODE_FLAGS
;
1258 mode
&= ~MPOL_MODE_FLAGS
;
1259 if (mode
>= MPOL_MAX
)
1261 if ((mode_flags
& MPOL_F_STATIC_NODES
) &&
1262 (mode_flags
& MPOL_F_RELATIVE_NODES
))
1264 err
= get_nodes(&nodes
, nmask
, maxnode
);
1267 return do_mbind(start
, len
, mode
, mode_flags
, &nodes
, flags
);
1270 /* Set the process memory policy */
1271 SYSCALL_DEFINE3(set_mempolicy
, int, mode
, unsigned long __user
*, nmask
,
1272 unsigned long, maxnode
)
1276 unsigned short flags
;
1278 flags
= mode
& MPOL_MODE_FLAGS
;
1279 mode
&= ~MPOL_MODE_FLAGS
;
1280 if ((unsigned int)mode
>= MPOL_MAX
)
1282 if ((flags
& MPOL_F_STATIC_NODES
) && (flags
& MPOL_F_RELATIVE_NODES
))
1284 err
= get_nodes(&nodes
, nmask
, maxnode
);
1287 return do_set_mempolicy(mode
, flags
, &nodes
);
1290 SYSCALL_DEFINE4(migrate_pages
, pid_t
, pid
, unsigned long, maxnode
,
1291 const unsigned long __user
*, old_nodes
,
1292 const unsigned long __user
*, new_nodes
)
1294 const struct cred
*cred
= current_cred(), *tcred
;
1295 struct mm_struct
*mm
= NULL
;
1296 struct task_struct
*task
;
1297 nodemask_t task_nodes
;
1301 NODEMASK_SCRATCH(scratch
);
1306 old
= &scratch
->mask1
;
1307 new = &scratch
->mask2
;
1309 err
= get_nodes(old
, old_nodes
, maxnode
);
1313 err
= get_nodes(new, new_nodes
, maxnode
);
1317 /* Find the mm_struct */
1319 task
= pid
? find_task_by_vpid(pid
) : current
;
1325 mm
= get_task_mm(task
);
1333 * Check if this process has the right to modify the specified
1334 * process. The right exists if the process has administrative
1335 * capabilities, superuser privileges or the same
1336 * userid as the target process.
1339 tcred
= __task_cred(task
);
1340 if (cred
->euid
!= tcred
->suid
&& cred
->euid
!= tcred
->uid
&&
1341 cred
->uid
!= tcred
->suid
&& cred
->uid
!= tcred
->uid
&&
1342 !capable(CAP_SYS_NICE
)) {
1349 task_nodes
= cpuset_mems_allowed(task
);
1350 /* Is the user allowed to access the target nodes? */
1351 if (!nodes_subset(*new, task_nodes
) && !capable(CAP_SYS_NICE
)) {
1356 if (!nodes_subset(*new, node_states
[N_HIGH_MEMORY
])) {
1361 err
= security_task_movememory(task
);
1365 err
= do_migrate_pages(mm
, old
, new,
1366 capable(CAP_SYS_NICE
) ? MPOL_MF_MOVE_ALL
: MPOL_MF_MOVE
);
1370 NODEMASK_SCRATCH_FREE(scratch
);
1376 /* Retrieve NUMA policy */
1377 SYSCALL_DEFINE5(get_mempolicy
, int __user
*, policy
,
1378 unsigned long __user
*, nmask
, unsigned long, maxnode
,
1379 unsigned long, addr
, unsigned long, flags
)
1382 int uninitialized_var(pval
);
1385 if (nmask
!= NULL
&& maxnode
< MAX_NUMNODES
)
1388 err
= do_get_mempolicy(&pval
, &nodes
, addr
, flags
);
1393 if (policy
&& put_user(pval
, policy
))
1397 err
= copy_nodes_to_user(nmask
, maxnode
, &nodes
);
1402 #ifdef CONFIG_COMPAT
1404 asmlinkage
long compat_sys_get_mempolicy(int __user
*policy
,
1405 compat_ulong_t __user
*nmask
,
1406 compat_ulong_t maxnode
,
1407 compat_ulong_t addr
, compat_ulong_t flags
)
1410 unsigned long __user
*nm
= NULL
;
1411 unsigned long nr_bits
, alloc_size
;
1412 DECLARE_BITMAP(bm
, MAX_NUMNODES
);
1414 nr_bits
= min_t(unsigned long, maxnode
-1, MAX_NUMNODES
);
1415 alloc_size
= ALIGN(nr_bits
, BITS_PER_LONG
) / 8;
1418 nm
= compat_alloc_user_space(alloc_size
);
1420 err
= sys_get_mempolicy(policy
, nm
, nr_bits
+1, addr
, flags
);
1422 if (!err
&& nmask
) {
1423 unsigned long copy_size
;
1424 copy_size
= min_t(unsigned long, sizeof(bm
), alloc_size
);
1425 err
= copy_from_user(bm
, nm
, copy_size
);
1426 /* ensure entire bitmap is zeroed */
1427 err
|= clear_user(nmask
, ALIGN(maxnode
-1, 8) / 8);
1428 err
|= compat_put_bitmap(nmask
, bm
, nr_bits
);
1434 asmlinkage
long compat_sys_set_mempolicy(int mode
, compat_ulong_t __user
*nmask
,
1435 compat_ulong_t maxnode
)
1438 unsigned long __user
*nm
= NULL
;
1439 unsigned long nr_bits
, alloc_size
;
1440 DECLARE_BITMAP(bm
, MAX_NUMNODES
);
1442 nr_bits
= min_t(unsigned long, maxnode
-1, MAX_NUMNODES
);
1443 alloc_size
= ALIGN(nr_bits
, BITS_PER_LONG
) / 8;
1446 err
= compat_get_bitmap(bm
, nmask
, nr_bits
);
1447 nm
= compat_alloc_user_space(alloc_size
);
1448 err
|= copy_to_user(nm
, bm
, alloc_size
);
1454 return sys_set_mempolicy(mode
, nm
, nr_bits
+1);
1457 asmlinkage
long compat_sys_mbind(compat_ulong_t start
, compat_ulong_t len
,
1458 compat_ulong_t mode
, compat_ulong_t __user
*nmask
,
1459 compat_ulong_t maxnode
, compat_ulong_t flags
)
1462 unsigned long __user
*nm
= NULL
;
1463 unsigned long nr_bits
, alloc_size
;
1466 nr_bits
= min_t(unsigned long, maxnode
-1, MAX_NUMNODES
);
1467 alloc_size
= ALIGN(nr_bits
, BITS_PER_LONG
) / 8;
1470 err
= compat_get_bitmap(nodes_addr(bm
), nmask
, nr_bits
);
1471 nm
= compat_alloc_user_space(alloc_size
);
1472 err
|= copy_to_user(nm
, nodes_addr(bm
), alloc_size
);
1478 return sys_mbind(start
, len
, mode
, nm
, nr_bits
+1, flags
);
1484 * get_vma_policy(@task, @vma, @addr)
1485 * @task - task for fallback if vma policy == default
1486 * @vma - virtual memory area whose policy is sought
1487 * @addr - address in @vma for shared policy lookup
1489 * Returns effective policy for a VMA at specified address.
1490 * Falls back to @task or system default policy, as necessary.
1491 * Current or other task's task mempolicy and non-shared vma policies
1492 * are protected by the task's mmap_sem, which must be held for read by
1494 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1495 * count--added by the get_policy() vm_op, as appropriate--to protect against
1496 * freeing by another task. It is the caller's responsibility to free the
1497 * extra reference for shared policies.
1499 struct mempolicy
*get_vma_policy(struct task_struct
*task
,
1500 struct vm_area_struct
*vma
, unsigned long addr
)
1502 struct mempolicy
*pol
= task
->mempolicy
;
1505 if (vma
->vm_ops
&& vma
->vm_ops
->get_policy
) {
1506 struct mempolicy
*vpol
= vma
->vm_ops
->get_policy(vma
,
1510 } else if (vma
->vm_policy
)
1511 pol
= vma
->vm_policy
;
1514 pol
= &default_policy
;
1519 * Return a nodemask representing a mempolicy for filtering nodes for
1522 static nodemask_t
*policy_nodemask(gfp_t gfp
, struct mempolicy
*policy
)
1524 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1525 if (unlikely(policy
->mode
== MPOL_BIND
) &&
1526 gfp_zone(gfp
) >= policy_zone
&&
1527 cpuset_nodemask_valid_mems_allowed(&policy
->v
.nodes
))
1528 return &policy
->v
.nodes
;
1533 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1534 static struct zonelist
*policy_zonelist(gfp_t gfp
, struct mempolicy
*policy
,
1537 switch (policy
->mode
) {
1538 case MPOL_PREFERRED
:
1539 if (!(policy
->flags
& MPOL_F_LOCAL
))
1540 nd
= policy
->v
.preferred_node
;
1544 * Normally, MPOL_BIND allocations are node-local within the
1545 * allowed nodemask. However, if __GFP_THISNODE is set and the
1546 * current node isn't part of the mask, we use the zonelist for
1547 * the first node in the mask instead.
1549 if (unlikely(gfp
& __GFP_THISNODE
) &&
1550 unlikely(!node_isset(nd
, policy
->v
.nodes
)))
1551 nd
= first_node(policy
->v
.nodes
);
1556 return node_zonelist(nd
, gfp
);
1559 /* Do dynamic interleaving for a process */
1560 static unsigned interleave_nodes(struct mempolicy
*policy
)
1563 struct task_struct
*me
= current
;
1566 next
= next_node(nid
, policy
->v
.nodes
);
1567 if (next
>= MAX_NUMNODES
)
1568 next
= first_node(policy
->v
.nodes
);
1569 if (next
< MAX_NUMNODES
)
1575 * Depending on the memory policy provide a node from which to allocate the
1577 * @policy must be protected by freeing by the caller. If @policy is
1578 * the current task's mempolicy, this protection is implicit, as only the
1579 * task can change it's policy. The system default policy requires no
1582 unsigned slab_node(struct mempolicy
*policy
)
1584 if (!policy
|| policy
->flags
& MPOL_F_LOCAL
)
1585 return numa_node_id();
1587 switch (policy
->mode
) {
1588 case MPOL_PREFERRED
:
1590 * handled MPOL_F_LOCAL above
1592 return policy
->v
.preferred_node
;
1594 case MPOL_INTERLEAVE
:
1595 return interleave_nodes(policy
);
1599 * Follow bind policy behavior and start allocation at the
1602 struct zonelist
*zonelist
;
1604 enum zone_type highest_zoneidx
= gfp_zone(GFP_KERNEL
);
1605 zonelist
= &NODE_DATA(numa_node_id())->node_zonelists
[0];
1606 (void)first_zones_zonelist(zonelist
, highest_zoneidx
,
1609 return zone
? zone
->node
: numa_node_id();
1617 /* Do static interleaving for a VMA with known offset. */
1618 static unsigned offset_il_node(struct mempolicy
*pol
,
1619 struct vm_area_struct
*vma
, unsigned long off
)
1621 unsigned nnodes
= nodes_weight(pol
->v
.nodes
);
1627 return numa_node_id();
1628 target
= (unsigned int)off
% nnodes
;
1631 nid
= next_node(nid
, pol
->v
.nodes
);
1633 } while (c
<= target
);
1637 /* Determine a node number for interleave */
1638 static inline unsigned interleave_nid(struct mempolicy
*pol
,
1639 struct vm_area_struct
*vma
, unsigned long addr
, int shift
)
1645 * for small pages, there is no difference between
1646 * shift and PAGE_SHIFT, so the bit-shift is safe.
1647 * for huge pages, since vm_pgoff is in units of small
1648 * pages, we need to shift off the always 0 bits to get
1651 BUG_ON(shift
< PAGE_SHIFT
);
1652 off
= vma
->vm_pgoff
>> (shift
- PAGE_SHIFT
);
1653 off
+= (addr
- vma
->vm_start
) >> shift
;
1654 return offset_il_node(pol
, vma
, off
);
1656 return interleave_nodes(pol
);
1660 * Return the bit number of a random bit set in the nodemask.
1661 * (returns -1 if nodemask is empty)
1663 int node_random(const nodemask_t
*maskp
)
1667 w
= nodes_weight(*maskp
);
1669 bit
= bitmap_ord_to_pos(maskp
->bits
,
1670 get_random_int() % w
, MAX_NUMNODES
);
1674 #ifdef CONFIG_HUGETLBFS
1676 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1677 * @vma = virtual memory area whose policy is sought
1678 * @addr = address in @vma for shared policy lookup and interleave policy
1679 * @gfp_flags = for requested zone
1680 * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1681 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1683 * Returns a zonelist suitable for a huge page allocation and a pointer
1684 * to the struct mempolicy for conditional unref after allocation.
1685 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1686 * @nodemask for filtering the zonelist.
1688 * Must be protected by get_mems_allowed()
1690 struct zonelist
*huge_zonelist(struct vm_area_struct
*vma
, unsigned long addr
,
1691 gfp_t gfp_flags
, struct mempolicy
**mpol
,
1692 nodemask_t
**nodemask
)
1694 struct zonelist
*zl
;
1696 *mpol
= get_vma_policy(current
, vma
, addr
);
1697 *nodemask
= NULL
; /* assume !MPOL_BIND */
1699 if (unlikely((*mpol
)->mode
== MPOL_INTERLEAVE
)) {
1700 zl
= node_zonelist(interleave_nid(*mpol
, vma
, addr
,
1701 huge_page_shift(hstate_vma(vma
))), gfp_flags
);
1703 zl
= policy_zonelist(gfp_flags
, *mpol
, numa_node_id());
1704 if ((*mpol
)->mode
== MPOL_BIND
)
1705 *nodemask
= &(*mpol
)->v
.nodes
;
1711 * init_nodemask_of_mempolicy
1713 * If the current task's mempolicy is "default" [NULL], return 'false'
1714 * to indicate default policy. Otherwise, extract the policy nodemask
1715 * for 'bind' or 'interleave' policy into the argument nodemask, or
1716 * initialize the argument nodemask to contain the single node for
1717 * 'preferred' or 'local' policy and return 'true' to indicate presence
1718 * of non-default mempolicy.
1720 * We don't bother with reference counting the mempolicy [mpol_get/put]
1721 * because the current task is examining it's own mempolicy and a task's
1722 * mempolicy is only ever changed by the task itself.
1724 * N.B., it is the caller's responsibility to free a returned nodemask.
1726 bool init_nodemask_of_mempolicy(nodemask_t
*mask
)
1728 struct mempolicy
*mempolicy
;
1731 if (!(mask
&& current
->mempolicy
))
1735 mempolicy
= current
->mempolicy
;
1736 switch (mempolicy
->mode
) {
1737 case MPOL_PREFERRED
:
1738 if (mempolicy
->flags
& MPOL_F_LOCAL
)
1739 nid
= numa_node_id();
1741 nid
= mempolicy
->v
.preferred_node
;
1742 init_nodemask_of_node(mask
, nid
);
1747 case MPOL_INTERLEAVE
:
1748 *mask
= mempolicy
->v
.nodes
;
1754 task_unlock(current
);
1761 * mempolicy_nodemask_intersects
1763 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1764 * policy. Otherwise, check for intersection between mask and the policy
1765 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1766 * policy, always return true since it may allocate elsewhere on fallback.
1768 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1770 bool mempolicy_nodemask_intersects(struct task_struct
*tsk
,
1771 const nodemask_t
*mask
)
1773 struct mempolicy
*mempolicy
;
1779 mempolicy
= tsk
->mempolicy
;
1783 switch (mempolicy
->mode
) {
1784 case MPOL_PREFERRED
:
1786 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1787 * allocate from, they may fallback to other nodes when oom.
1788 * Thus, it's possible for tsk to have allocated memory from
1793 case MPOL_INTERLEAVE
:
1794 ret
= nodes_intersects(mempolicy
->v
.nodes
, *mask
);
1804 /* Allocate a page in interleaved policy.
1805 Own path because it needs to do special accounting. */
1806 static struct page
*alloc_page_interleave(gfp_t gfp
, unsigned order
,
1809 struct zonelist
*zl
;
1812 zl
= node_zonelist(nid
, gfp
);
1813 page
= __alloc_pages(gfp
, order
, zl
);
1814 if (page
&& page_zone(page
) == zonelist_zone(&zl
->_zonerefs
[0]))
1815 inc_zone_page_state(page
, NUMA_INTERLEAVE_HIT
);
1820 * alloc_pages_vma - Allocate a page for a VMA.
1823 * %GFP_USER user allocation.
1824 * %GFP_KERNEL kernel allocations,
1825 * %GFP_HIGHMEM highmem/user allocations,
1826 * %GFP_FS allocation should not call back into a file system.
1827 * %GFP_ATOMIC don't sleep.
1829 * @order:Order of the GFP allocation.
1830 * @vma: Pointer to VMA or NULL if not available.
1831 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1833 * This function allocates a page from the kernel page pool and applies
1834 * a NUMA policy associated with the VMA or the current process.
1835 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1836 * mm_struct of the VMA to prevent it from going away. Should be used for
1837 * all allocations for pages that will be mapped into
1838 * user space. Returns NULL when no page can be allocated.
1840 * Should be called with the mm_sem of the vma hold.
1843 alloc_pages_vma(gfp_t gfp
, int order
, struct vm_area_struct
*vma
,
1844 unsigned long addr
, int node
)
1846 struct mempolicy
*pol
= get_vma_policy(current
, vma
, addr
);
1847 struct zonelist
*zl
;
1851 if (unlikely(pol
->mode
== MPOL_INTERLEAVE
)) {
1854 nid
= interleave_nid(pol
, vma
, addr
, PAGE_SHIFT
+ order
);
1856 page
= alloc_page_interleave(gfp
, order
, nid
);
1860 zl
= policy_zonelist(gfp
, pol
, node
);
1861 if (unlikely(mpol_needs_cond_ref(pol
))) {
1863 * slow path: ref counted shared policy
1865 struct page
*page
= __alloc_pages_nodemask(gfp
, order
,
1866 zl
, policy_nodemask(gfp
, pol
));
1872 * fast path: default or task policy
1874 page
= __alloc_pages_nodemask(gfp
, order
, zl
,
1875 policy_nodemask(gfp
, pol
));
1881 * alloc_pages_current - Allocate pages.
1884 * %GFP_USER user allocation,
1885 * %GFP_KERNEL kernel allocation,
1886 * %GFP_HIGHMEM highmem allocation,
1887 * %GFP_FS don't call back into a file system.
1888 * %GFP_ATOMIC don't sleep.
1889 * @order: Power of two of allocation size in pages. 0 is a single page.
1891 * Allocate a page from the kernel page pool. When not in
1892 * interrupt context and apply the current process NUMA policy.
1893 * Returns NULL when no page can be allocated.
1895 * Don't call cpuset_update_task_memory_state() unless
1896 * 1) it's ok to take cpuset_sem (can WAIT), and
1897 * 2) allocating for current task (not interrupt).
1899 struct page
*alloc_pages_current(gfp_t gfp
, unsigned order
)
1901 struct mempolicy
*pol
= current
->mempolicy
;
1904 if (!pol
|| in_interrupt() || (gfp
& __GFP_THISNODE
))
1905 pol
= &default_policy
;
1909 * No reference counting needed for current->mempolicy
1910 * nor system default_policy
1912 if (pol
->mode
== MPOL_INTERLEAVE
)
1913 page
= alloc_page_interleave(gfp
, order
, interleave_nodes(pol
));
1915 page
= __alloc_pages_nodemask(gfp
, order
,
1916 policy_zonelist(gfp
, pol
, numa_node_id()),
1917 policy_nodemask(gfp
, pol
));
1921 EXPORT_SYMBOL(alloc_pages_current
);
1924 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
1925 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1926 * with the mems_allowed returned by cpuset_mems_allowed(). This
1927 * keeps mempolicies cpuset relative after its cpuset moves. See
1928 * further kernel/cpuset.c update_nodemask().
1930 * current's mempolicy may be rebinded by the other task(the task that changes
1931 * cpuset's mems), so we needn't do rebind work for current task.
1934 /* Slow path of a mempolicy duplicate */
1935 struct mempolicy
*__mpol_dup(struct mempolicy
*old
)
1937 struct mempolicy
*new = kmem_cache_alloc(policy_cache
, GFP_KERNEL
);
1940 return ERR_PTR(-ENOMEM
);
1942 /* task's mempolicy is protected by alloc_lock */
1943 if (old
== current
->mempolicy
) {
1946 task_unlock(current
);
1951 if (current_cpuset_is_being_rebound()) {
1952 nodemask_t mems
= cpuset_mems_allowed(current
);
1953 if (new->flags
& MPOL_F_REBINDING
)
1954 mpol_rebind_policy(new, &mems
, MPOL_REBIND_STEP2
);
1956 mpol_rebind_policy(new, &mems
, MPOL_REBIND_ONCE
);
1959 atomic_set(&new->refcnt
, 1);
1964 * If *frompol needs [has] an extra ref, copy *frompol to *tompol ,
1965 * eliminate the * MPOL_F_* flags that require conditional ref and
1966 * [NOTE!!!] drop the extra ref. Not safe to reference *frompol directly
1967 * after return. Use the returned value.
1969 * Allows use of a mempolicy for, e.g., multiple allocations with a single
1970 * policy lookup, even if the policy needs/has extra ref on lookup.
1971 * shmem_readahead needs this.
1973 struct mempolicy
*__mpol_cond_copy(struct mempolicy
*tompol
,
1974 struct mempolicy
*frompol
)
1976 if (!mpol_needs_cond_ref(frompol
))
1980 tompol
->flags
&= ~MPOL_F_SHARED
; /* copy doesn't need unref */
1981 __mpol_put(frompol
);
1985 /* Slow path of a mempolicy comparison */
1986 int __mpol_equal(struct mempolicy
*a
, struct mempolicy
*b
)
1990 if (a
->mode
!= b
->mode
)
1992 if (a
->flags
!= b
->flags
)
1994 if (mpol_store_user_nodemask(a
))
1995 if (!nodes_equal(a
->w
.user_nodemask
, b
->w
.user_nodemask
))
2001 case MPOL_INTERLEAVE
:
2002 return nodes_equal(a
->v
.nodes
, b
->v
.nodes
);
2003 case MPOL_PREFERRED
:
2004 return a
->v
.preferred_node
== b
->v
.preferred_node
;
2012 * Shared memory backing store policy support.
2014 * Remember policies even when nobody has shared memory mapped.
2015 * The policies are kept in Red-Black tree linked from the inode.
2016 * They are protected by the sp->lock spinlock, which should be held
2017 * for any accesses to the tree.
2020 /* lookup first element intersecting start-end */
2021 /* Caller holds sp->lock */
2022 static struct sp_node
*
2023 sp_lookup(struct shared_policy
*sp
, unsigned long start
, unsigned long end
)
2025 struct rb_node
*n
= sp
->root
.rb_node
;
2028 struct sp_node
*p
= rb_entry(n
, struct sp_node
, nd
);
2030 if (start
>= p
->end
)
2032 else if (end
<= p
->start
)
2040 struct sp_node
*w
= NULL
;
2041 struct rb_node
*prev
= rb_prev(n
);
2044 w
= rb_entry(prev
, struct sp_node
, nd
);
2045 if (w
->end
<= start
)
2049 return rb_entry(n
, struct sp_node
, nd
);
2052 /* Insert a new shared policy into the list. */
2053 /* Caller holds sp->lock */
2054 static void sp_insert(struct shared_policy
*sp
, struct sp_node
*new)
2056 struct rb_node
**p
= &sp
->root
.rb_node
;
2057 struct rb_node
*parent
= NULL
;
2062 nd
= rb_entry(parent
, struct sp_node
, nd
);
2063 if (new->start
< nd
->start
)
2065 else if (new->end
> nd
->end
)
2066 p
= &(*p
)->rb_right
;
2070 rb_link_node(&new->nd
, parent
, p
);
2071 rb_insert_color(&new->nd
, &sp
->root
);
2072 pr_debug("inserting %lx-%lx: %d\n", new->start
, new->end
,
2073 new->policy
? new->policy
->mode
: 0);
2076 /* Find shared policy intersecting idx */
2078 mpol_shared_policy_lookup(struct shared_policy
*sp
, unsigned long idx
)
2080 struct mempolicy
*pol
= NULL
;
2083 if (!sp
->root
.rb_node
)
2085 spin_lock(&sp
->lock
);
2086 sn
= sp_lookup(sp
, idx
, idx
+1);
2088 mpol_get(sn
->policy
);
2091 spin_unlock(&sp
->lock
);
2095 static void sp_delete(struct shared_policy
*sp
, struct sp_node
*n
)
2097 pr_debug("deleting %lx-l%lx\n", n
->start
, n
->end
);
2098 rb_erase(&n
->nd
, &sp
->root
);
2099 mpol_put(n
->policy
);
2100 kmem_cache_free(sn_cache
, n
);
2103 static struct sp_node
*sp_alloc(unsigned long start
, unsigned long end
,
2104 struct mempolicy
*pol
)
2106 struct sp_node
*n
= kmem_cache_alloc(sn_cache
, GFP_KERNEL
);
2113 pol
->flags
|= MPOL_F_SHARED
; /* for unref */
2118 /* Replace a policy range. */
2119 static int shared_policy_replace(struct shared_policy
*sp
, unsigned long start
,
2120 unsigned long end
, struct sp_node
*new)
2122 struct sp_node
*n
, *new2
= NULL
;
2125 spin_lock(&sp
->lock
);
2126 n
= sp_lookup(sp
, start
, end
);
2127 /* Take care of old policies in the same range. */
2128 while (n
&& n
->start
< end
) {
2129 struct rb_node
*next
= rb_next(&n
->nd
);
2130 if (n
->start
>= start
) {
2136 /* Old policy spanning whole new range. */
2139 spin_unlock(&sp
->lock
);
2140 new2
= sp_alloc(end
, n
->end
, n
->policy
);
2146 sp_insert(sp
, new2
);
2154 n
= rb_entry(next
, struct sp_node
, nd
);
2158 spin_unlock(&sp
->lock
);
2160 mpol_put(new2
->policy
);
2161 kmem_cache_free(sn_cache
, new2
);
2167 * mpol_shared_policy_init - initialize shared policy for inode
2168 * @sp: pointer to inode shared policy
2169 * @mpol: struct mempolicy to install
2171 * Install non-NULL @mpol in inode's shared policy rb-tree.
2172 * On entry, the current task has a reference on a non-NULL @mpol.
2173 * This must be released on exit.
2174 * This is called at get_inode() calls and we can use GFP_KERNEL.
2176 void mpol_shared_policy_init(struct shared_policy
*sp
, struct mempolicy
*mpol
)
2180 sp
->root
= RB_ROOT
; /* empty tree == default mempolicy */
2181 spin_lock_init(&sp
->lock
);
2184 struct vm_area_struct pvma
;
2185 struct mempolicy
*new;
2186 NODEMASK_SCRATCH(scratch
);
2190 /* contextualize the tmpfs mount point mempolicy */
2191 new = mpol_new(mpol
->mode
, mpol
->flags
, &mpol
->w
.user_nodemask
);
2193 goto free_scratch
; /* no valid nodemask intersection */
2196 ret
= mpol_set_nodemask(new, &mpol
->w
.user_nodemask
, scratch
);
2197 task_unlock(current
);
2201 /* Create pseudo-vma that contains just the policy */
2202 memset(&pvma
, 0, sizeof(struct vm_area_struct
));
2203 pvma
.vm_end
= TASK_SIZE
; /* policy covers entire file */
2204 mpol_set_shared_policy(sp
, &pvma
, new); /* adds ref */
2207 mpol_put(new); /* drop initial ref */
2209 NODEMASK_SCRATCH_FREE(scratch
);
2211 mpol_put(mpol
); /* drop our incoming ref on sb mpol */
2215 int mpol_set_shared_policy(struct shared_policy
*info
,
2216 struct vm_area_struct
*vma
, struct mempolicy
*npol
)
2219 struct sp_node
*new = NULL
;
2220 unsigned long sz
= vma_pages(vma
);
2222 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2224 sz
, npol
? npol
->mode
: -1,
2225 npol
? npol
->flags
: -1,
2226 npol
? nodes_addr(npol
->v
.nodes
)[0] : -1);
2229 new = sp_alloc(vma
->vm_pgoff
, vma
->vm_pgoff
+ sz
, npol
);
2233 err
= shared_policy_replace(info
, vma
->vm_pgoff
, vma
->vm_pgoff
+sz
, new);
2235 kmem_cache_free(sn_cache
, new);
2239 /* Free a backing policy store on inode delete. */
2240 void mpol_free_shared_policy(struct shared_policy
*p
)
2243 struct rb_node
*next
;
2245 if (!p
->root
.rb_node
)
2247 spin_lock(&p
->lock
);
2248 next
= rb_first(&p
->root
);
2250 n
= rb_entry(next
, struct sp_node
, nd
);
2251 next
= rb_next(&n
->nd
);
2252 rb_erase(&n
->nd
, &p
->root
);
2253 mpol_put(n
->policy
);
2254 kmem_cache_free(sn_cache
, n
);
2256 spin_unlock(&p
->lock
);
2259 /* assumes fs == KERNEL_DS */
2260 void __init
numa_policy_init(void)
2262 nodemask_t interleave_nodes
;
2263 unsigned long largest
= 0;
2264 int nid
, prefer
= 0;
2266 policy_cache
= kmem_cache_create("numa_policy",
2267 sizeof(struct mempolicy
),
2268 0, SLAB_PANIC
, NULL
);
2270 sn_cache
= kmem_cache_create("shared_policy_node",
2271 sizeof(struct sp_node
),
2272 0, SLAB_PANIC
, NULL
);
2275 * Set interleaving policy for system init. Interleaving is only
2276 * enabled across suitably sized nodes (default is >= 16MB), or
2277 * fall back to the largest node if they're all smaller.
2279 nodes_clear(interleave_nodes
);
2280 for_each_node_state(nid
, N_HIGH_MEMORY
) {
2281 unsigned long total_pages
= node_present_pages(nid
);
2283 /* Preserve the largest node */
2284 if (largest
< total_pages
) {
2285 largest
= total_pages
;
2289 /* Interleave this node? */
2290 if ((total_pages
<< PAGE_SHIFT
) >= (16 << 20))
2291 node_set(nid
, interleave_nodes
);
2294 /* All too small, use the largest */
2295 if (unlikely(nodes_empty(interleave_nodes
)))
2296 node_set(prefer
, interleave_nodes
);
2298 if (do_set_mempolicy(MPOL_INTERLEAVE
, 0, &interleave_nodes
))
2299 printk("numa_policy_init: interleaving failed\n");
2302 /* Reset policy of current process to default */
2303 void numa_default_policy(void)
2305 do_set_mempolicy(MPOL_DEFAULT
, 0, NULL
);
2309 * Parse and format mempolicy from/to strings
2313 * "local" is pseudo-policy: MPOL_PREFERRED with MPOL_F_LOCAL flag
2314 * Used only for mpol_parse_str() and mpol_to_str()
2316 #define MPOL_LOCAL MPOL_MAX
2317 static const char * const policy_modes
[] =
2319 [MPOL_DEFAULT
] = "default",
2320 [MPOL_PREFERRED
] = "prefer",
2321 [MPOL_BIND
] = "bind",
2322 [MPOL_INTERLEAVE
] = "interleave",
2323 [MPOL_LOCAL
] = "local"
2329 * mpol_parse_str - parse string to mempolicy
2330 * @str: string containing mempolicy to parse
2331 * @mpol: pointer to struct mempolicy pointer, returned on success.
2332 * @no_context: flag whether to "contextualize" the mempolicy
2335 * <mode>[=<flags>][:<nodelist>]
2337 * if @no_context is true, save the input nodemask in w.user_nodemask in
2338 * the returned mempolicy. This will be used to "clone" the mempolicy in
2339 * a specific context [cpuset] at a later time. Used to parse tmpfs mpol
2340 * mount option. Note that if 'static' or 'relative' mode flags were
2341 * specified, the input nodemask will already have been saved. Saving
2342 * it again is redundant, but safe.
2344 * On success, returns 0, else 1
2346 int mpol_parse_str(char *str
, struct mempolicy
**mpol
, int no_context
)
2348 struct mempolicy
*new = NULL
;
2349 unsigned short mode
;
2350 unsigned short uninitialized_var(mode_flags
);
2352 char *nodelist
= strchr(str
, ':');
2353 char *flags
= strchr(str
, '=');
2357 /* NUL-terminate mode or flags string */
2359 if (nodelist_parse(nodelist
, nodes
))
2361 if (!nodes_subset(nodes
, node_states
[N_HIGH_MEMORY
]))
2367 *flags
++ = '\0'; /* terminate mode string */
2369 for (mode
= 0; mode
<= MPOL_LOCAL
; mode
++) {
2370 if (!strcmp(str
, policy_modes
[mode
])) {
2374 if (mode
> MPOL_LOCAL
)
2378 case MPOL_PREFERRED
:
2380 * Insist on a nodelist of one node only
2383 char *rest
= nodelist
;
2384 while (isdigit(*rest
))
2390 case MPOL_INTERLEAVE
:
2392 * Default to online nodes with memory if no nodelist
2395 nodes
= node_states
[N_HIGH_MEMORY
];
2399 * Don't allow a nodelist; mpol_new() checks flags
2403 mode
= MPOL_PREFERRED
;
2407 * Insist on a empty nodelist
2414 * Insist on a nodelist
2423 * Currently, we only support two mutually exclusive
2426 if (!strcmp(flags
, "static"))
2427 mode_flags
|= MPOL_F_STATIC_NODES
;
2428 else if (!strcmp(flags
, "relative"))
2429 mode_flags
|= MPOL_F_RELATIVE_NODES
;
2434 new = mpol_new(mode
, mode_flags
, &nodes
);
2439 /* save for contextualization */
2440 new->w
.user_nodemask
= nodes
;
2443 NODEMASK_SCRATCH(scratch
);
2446 ret
= mpol_set_nodemask(new, &nodes
, scratch
);
2447 task_unlock(current
);
2450 NODEMASK_SCRATCH_FREE(scratch
);
2459 /* Restore string for error message */
2468 #endif /* CONFIG_TMPFS */
2471 * mpol_to_str - format a mempolicy structure for printing
2472 * @buffer: to contain formatted mempolicy string
2473 * @maxlen: length of @buffer
2474 * @pol: pointer to mempolicy to be formatted
2475 * @no_context: "context free" mempolicy - use nodemask in w.user_nodemask
2477 * Convert a mempolicy into a string.
2478 * Returns the number of characters in buffer (if positive)
2479 * or an error (negative)
2481 int mpol_to_str(char *buffer
, int maxlen
, struct mempolicy
*pol
, int no_context
)
2486 unsigned short mode
;
2487 unsigned short flags
= pol
? pol
->flags
: 0;
2490 * Sanity check: room for longest mode, flag and some nodes
2492 VM_BUG_ON(maxlen
< strlen("interleave") + strlen("relative") + 16);
2494 if (!pol
|| pol
== &default_policy
)
2495 mode
= MPOL_DEFAULT
;
2504 case MPOL_PREFERRED
:
2506 if (flags
& MPOL_F_LOCAL
)
2507 mode
= MPOL_LOCAL
; /* pseudo-policy */
2509 node_set(pol
->v
.preferred_node
, nodes
);
2514 case MPOL_INTERLEAVE
:
2516 nodes
= pol
->w
.user_nodemask
;
2518 nodes
= pol
->v
.nodes
;
2525 l
= strlen(policy_modes
[mode
]);
2526 if (buffer
+ maxlen
< p
+ l
+ 1)
2529 strcpy(p
, policy_modes
[mode
]);
2532 if (flags
& MPOL_MODE_FLAGS
) {
2533 if (buffer
+ maxlen
< p
+ 2)
2538 * Currently, the only defined flags are mutually exclusive
2540 if (flags
& MPOL_F_STATIC_NODES
)
2541 p
+= snprintf(p
, buffer
+ maxlen
- p
, "static");
2542 else if (flags
& MPOL_F_RELATIVE_NODES
)
2543 p
+= snprintf(p
, buffer
+ maxlen
- p
, "relative");
2546 if (!nodes_empty(nodes
)) {
2547 if (buffer
+ maxlen
< p
+ 2)
2550 p
+= nodelist_scnprintf(p
, buffer
+ maxlen
- p
, nodes
);