dt-bindings: add Marvell core PLL and clock divider PMU documentation
[linux/fpc-iii.git] / net / ipv4 / udp.c
blob24ec14f9825c20834eca20b820ec953ba108da52
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * The User Datagram Protocol (UDP).
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
12 * Hirokazu Takahashi, <taka@valinux.co.jp>
14 * Fixes:
15 * Alan Cox : verify_area() calls
16 * Alan Cox : stopped close while in use off icmp
17 * messages. Not a fix but a botch that
18 * for udp at least is 'valid'.
19 * Alan Cox : Fixed icmp handling properly
20 * Alan Cox : Correct error for oversized datagrams
21 * Alan Cox : Tidied select() semantics.
22 * Alan Cox : udp_err() fixed properly, also now
23 * select and read wake correctly on errors
24 * Alan Cox : udp_send verify_area moved to avoid mem leak
25 * Alan Cox : UDP can count its memory
26 * Alan Cox : send to an unknown connection causes
27 * an ECONNREFUSED off the icmp, but
28 * does NOT close.
29 * Alan Cox : Switched to new sk_buff handlers. No more backlog!
30 * Alan Cox : Using generic datagram code. Even smaller and the PEEK
31 * bug no longer crashes it.
32 * Fred Van Kempen : Net2e support for sk->broadcast.
33 * Alan Cox : Uses skb_free_datagram
34 * Alan Cox : Added get/set sockopt support.
35 * Alan Cox : Broadcasting without option set returns EACCES.
36 * Alan Cox : No wakeup calls. Instead we now use the callbacks.
37 * Alan Cox : Use ip_tos and ip_ttl
38 * Alan Cox : SNMP Mibs
39 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
40 * Matt Dillon : UDP length checks.
41 * Alan Cox : Smarter af_inet used properly.
42 * Alan Cox : Use new kernel side addressing.
43 * Alan Cox : Incorrect return on truncated datagram receive.
44 * Arnt Gulbrandsen : New udp_send and stuff
45 * Alan Cox : Cache last socket
46 * Alan Cox : Route cache
47 * Jon Peatfield : Minor efficiency fix to sendto().
48 * Mike Shaver : RFC1122 checks.
49 * Alan Cox : Nonblocking error fix.
50 * Willy Konynenberg : Transparent proxying support.
51 * Mike McLagan : Routing by source
52 * David S. Miller : New socket lookup architecture.
53 * Last socket cache retained as it
54 * does have a high hit rate.
55 * Olaf Kirch : Don't linearise iovec on sendmsg.
56 * Andi Kleen : Some cleanups, cache destination entry
57 * for connect.
58 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
59 * Melvin Smith : Check msg_name not msg_namelen in sendto(),
60 * return ENOTCONN for unconnected sockets (POSIX)
61 * Janos Farkas : don't deliver multi/broadcasts to a different
62 * bound-to-device socket
63 * Hirokazu Takahashi : HW checksumming for outgoing UDP
64 * datagrams.
65 * Hirokazu Takahashi : sendfile() on UDP works now.
66 * Arnaldo C. Melo : convert /proc/net/udp to seq_file
67 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
68 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
69 * a single port at the same time.
70 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71 * James Chapman : Add L2TP encapsulation type.
74 * This program is free software; you can redistribute it and/or
75 * modify it under the terms of the GNU General Public License
76 * as published by the Free Software Foundation; either version
77 * 2 of the License, or (at your option) any later version.
80 #define pr_fmt(fmt) "UDP: " fmt
82 #include <asm/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/inetdevice.h>
94 #include <linux/in.h>
95 #include <linux/errno.h>
96 #include <linux/timer.h>
97 #include <linux/mm.h>
98 #include <linux/inet.h>
99 #include <linux/netdevice.h>
100 #include <linux/slab.h>
101 #include <net/tcp_states.h>
102 #include <linux/skbuff.h>
103 #include <linux/netdevice.h>
104 #include <linux/proc_fs.h>
105 #include <linux/seq_file.h>
106 #include <net/net_namespace.h>
107 #include <net/icmp.h>
108 #include <net/inet_hashtables.h>
109 #include <net/route.h>
110 #include <net/checksum.h>
111 #include <net/xfrm.h>
112 #include <trace/events/udp.h>
113 #include <linux/static_key.h>
114 #include <trace/events/skb.h>
115 #include <net/busy_poll.h>
116 #include "udp_impl.h"
118 struct udp_table udp_table __read_mostly;
119 EXPORT_SYMBOL(udp_table);
121 long sysctl_udp_mem[3] __read_mostly;
122 EXPORT_SYMBOL(sysctl_udp_mem);
124 int sysctl_udp_rmem_min __read_mostly;
125 EXPORT_SYMBOL(sysctl_udp_rmem_min);
127 int sysctl_udp_wmem_min __read_mostly;
128 EXPORT_SYMBOL(sysctl_udp_wmem_min);
130 atomic_long_t udp_memory_allocated;
131 EXPORT_SYMBOL(udp_memory_allocated);
133 #define MAX_UDP_PORTS 65536
134 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
136 static int udp_lib_lport_inuse(struct net *net, __u16 num,
137 const struct udp_hslot *hslot,
138 unsigned long *bitmap,
139 struct sock *sk,
140 int (*saddr_comp)(const struct sock *sk1,
141 const struct sock *sk2),
142 unsigned int log)
144 struct sock *sk2;
145 struct hlist_nulls_node *node;
146 kuid_t uid = sock_i_uid(sk);
148 sk_nulls_for_each(sk2, node, &hslot->head) {
149 if (net_eq(sock_net(sk2), net) &&
150 sk2 != sk &&
151 (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
152 (!sk2->sk_reuse || !sk->sk_reuse) &&
153 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
154 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
155 (!sk2->sk_reuseport || !sk->sk_reuseport ||
156 !uid_eq(uid, sock_i_uid(sk2))) &&
157 saddr_comp(sk, sk2)) {
158 if (!bitmap)
159 return 1;
160 __set_bit(udp_sk(sk2)->udp_port_hash >> log, bitmap);
163 return 0;
167 * Note: we still hold spinlock of primary hash chain, so no other writer
168 * can insert/delete a socket with local_port == num
170 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
171 struct udp_hslot *hslot2,
172 struct sock *sk,
173 int (*saddr_comp)(const struct sock *sk1,
174 const struct sock *sk2))
176 struct sock *sk2;
177 struct hlist_nulls_node *node;
178 kuid_t uid = sock_i_uid(sk);
179 int res = 0;
181 spin_lock(&hslot2->lock);
182 udp_portaddr_for_each_entry(sk2, node, &hslot2->head) {
183 if (net_eq(sock_net(sk2), net) &&
184 sk2 != sk &&
185 (udp_sk(sk2)->udp_port_hash == num) &&
186 (!sk2->sk_reuse || !sk->sk_reuse) &&
187 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
188 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
189 (!sk2->sk_reuseport || !sk->sk_reuseport ||
190 !uid_eq(uid, sock_i_uid(sk2))) &&
191 saddr_comp(sk, sk2)) {
192 res = 1;
193 break;
196 spin_unlock(&hslot2->lock);
197 return res;
201 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
203 * @sk: socket struct in question
204 * @snum: port number to look up
205 * @saddr_comp: AF-dependent comparison of bound local IP addresses
206 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
207 * with NULL address
209 int udp_lib_get_port(struct sock *sk, unsigned short snum,
210 int (*saddr_comp)(const struct sock *sk1,
211 const struct sock *sk2),
212 unsigned int hash2_nulladdr)
214 struct udp_hslot *hslot, *hslot2;
215 struct udp_table *udptable = sk->sk_prot->h.udp_table;
216 int error = 1;
217 struct net *net = sock_net(sk);
219 if (!snum) {
220 int low, high, remaining;
221 unsigned int rand;
222 unsigned short first, last;
223 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
225 inet_get_local_port_range(net, &low, &high);
226 remaining = (high - low) + 1;
228 rand = prandom_u32();
229 first = reciprocal_scale(rand, remaining) + low;
231 * force rand to be an odd multiple of UDP_HTABLE_SIZE
233 rand = (rand | 1) * (udptable->mask + 1);
234 last = first + udptable->mask + 1;
235 do {
236 hslot = udp_hashslot(udptable, net, first);
237 bitmap_zero(bitmap, PORTS_PER_CHAIN);
238 spin_lock_bh(&hslot->lock);
239 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
240 saddr_comp, udptable->log);
242 snum = first;
244 * Iterate on all possible values of snum for this hash.
245 * Using steps of an odd multiple of UDP_HTABLE_SIZE
246 * give us randomization and full range coverage.
248 do {
249 if (low <= snum && snum <= high &&
250 !test_bit(snum >> udptable->log, bitmap) &&
251 !inet_is_local_reserved_port(net, snum))
252 goto found;
253 snum += rand;
254 } while (snum != first);
255 spin_unlock_bh(&hslot->lock);
256 } while (++first != last);
257 goto fail;
258 } else {
259 hslot = udp_hashslot(udptable, net, snum);
260 spin_lock_bh(&hslot->lock);
261 if (hslot->count > 10) {
262 int exist;
263 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
265 slot2 &= udptable->mask;
266 hash2_nulladdr &= udptable->mask;
268 hslot2 = udp_hashslot2(udptable, slot2);
269 if (hslot->count < hslot2->count)
270 goto scan_primary_hash;
272 exist = udp_lib_lport_inuse2(net, snum, hslot2,
273 sk, saddr_comp);
274 if (!exist && (hash2_nulladdr != slot2)) {
275 hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
276 exist = udp_lib_lport_inuse2(net, snum, hslot2,
277 sk, saddr_comp);
279 if (exist)
280 goto fail_unlock;
281 else
282 goto found;
284 scan_primary_hash:
285 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
286 saddr_comp, 0))
287 goto fail_unlock;
289 found:
290 inet_sk(sk)->inet_num = snum;
291 udp_sk(sk)->udp_port_hash = snum;
292 udp_sk(sk)->udp_portaddr_hash ^= snum;
293 if (sk_unhashed(sk)) {
294 sk_nulls_add_node_rcu(sk, &hslot->head);
295 hslot->count++;
296 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
298 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
299 spin_lock(&hslot2->lock);
300 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
301 &hslot2->head);
302 hslot2->count++;
303 spin_unlock(&hslot2->lock);
305 error = 0;
306 fail_unlock:
307 spin_unlock_bh(&hslot->lock);
308 fail:
309 return error;
311 EXPORT_SYMBOL(udp_lib_get_port);
313 static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
315 struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
317 return (!ipv6_only_sock(sk2) &&
318 (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr ||
319 inet1->inet_rcv_saddr == inet2->inet_rcv_saddr));
322 static u32 udp4_portaddr_hash(const struct net *net, __be32 saddr,
323 unsigned int port)
325 return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
328 int udp_v4_get_port(struct sock *sk, unsigned short snum)
330 unsigned int hash2_nulladdr =
331 udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
332 unsigned int hash2_partial =
333 udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
335 /* precompute partial secondary hash */
336 udp_sk(sk)->udp_portaddr_hash = hash2_partial;
337 return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
340 static inline int compute_score(struct sock *sk, struct net *net,
341 __be32 saddr, unsigned short hnum, __be16 sport,
342 __be32 daddr, __be16 dport, int dif)
344 int score;
345 struct inet_sock *inet;
347 if (!net_eq(sock_net(sk), net) ||
348 udp_sk(sk)->udp_port_hash != hnum ||
349 ipv6_only_sock(sk))
350 return -1;
352 score = (sk->sk_family == PF_INET) ? 2 : 1;
353 inet = inet_sk(sk);
355 if (inet->inet_rcv_saddr) {
356 if (inet->inet_rcv_saddr != daddr)
357 return -1;
358 score += 4;
361 if (inet->inet_daddr) {
362 if (inet->inet_daddr != saddr)
363 return -1;
364 score += 4;
367 if (inet->inet_dport) {
368 if (inet->inet_dport != sport)
369 return -1;
370 score += 4;
373 if (sk->sk_bound_dev_if) {
374 if (sk->sk_bound_dev_if != dif)
375 return -1;
376 score += 4;
378 if (sk->sk_incoming_cpu == raw_smp_processor_id())
379 score++;
380 return score;
384 * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num)
386 static inline int compute_score2(struct sock *sk, struct net *net,
387 __be32 saddr, __be16 sport,
388 __be32 daddr, unsigned int hnum, int dif)
390 int score;
391 struct inet_sock *inet;
393 if (!net_eq(sock_net(sk), net) ||
394 ipv6_only_sock(sk))
395 return -1;
397 inet = inet_sk(sk);
399 if (inet->inet_rcv_saddr != daddr ||
400 inet->inet_num != hnum)
401 return -1;
403 score = (sk->sk_family == PF_INET) ? 2 : 1;
405 if (inet->inet_daddr) {
406 if (inet->inet_daddr != saddr)
407 return -1;
408 score += 4;
411 if (inet->inet_dport) {
412 if (inet->inet_dport != sport)
413 return -1;
414 score += 4;
417 if (sk->sk_bound_dev_if) {
418 if (sk->sk_bound_dev_if != dif)
419 return -1;
420 score += 4;
423 if (sk->sk_incoming_cpu == raw_smp_processor_id())
424 score++;
426 return score;
429 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
430 const __u16 lport, const __be32 faddr,
431 const __be16 fport)
433 static u32 udp_ehash_secret __read_mostly;
435 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
437 return __inet_ehashfn(laddr, lport, faddr, fport,
438 udp_ehash_secret + net_hash_mix(net));
441 /* called with read_rcu_lock() */
442 static struct sock *udp4_lib_lookup2(struct net *net,
443 __be32 saddr, __be16 sport,
444 __be32 daddr, unsigned int hnum, int dif,
445 struct udp_hslot *hslot2, unsigned int slot2)
447 struct sock *sk, *result;
448 struct hlist_nulls_node *node;
449 int score, badness, matches = 0, reuseport = 0;
450 u32 hash = 0;
452 begin:
453 result = NULL;
454 badness = 0;
455 udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
456 score = compute_score2(sk, net, saddr, sport,
457 daddr, hnum, dif);
458 if (score > badness) {
459 result = sk;
460 badness = score;
461 reuseport = sk->sk_reuseport;
462 if (reuseport) {
463 hash = udp_ehashfn(net, daddr, hnum,
464 saddr, sport);
465 matches = 1;
467 } else if (score == badness && reuseport) {
468 matches++;
469 if (reciprocal_scale(hash, matches) == 0)
470 result = sk;
471 hash = next_pseudo_random32(hash);
475 * if the nulls value we got at the end of this lookup is
476 * not the expected one, we must restart lookup.
477 * We probably met an item that was moved to another chain.
479 if (get_nulls_value(node) != slot2)
480 goto begin;
481 if (result) {
482 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
483 result = NULL;
484 else if (unlikely(compute_score2(result, net, saddr, sport,
485 daddr, hnum, dif) < badness)) {
486 sock_put(result);
487 goto begin;
490 return result;
493 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
494 * harder than this. -DaveM
496 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
497 __be16 sport, __be32 daddr, __be16 dport,
498 int dif, struct udp_table *udptable)
500 struct sock *sk, *result;
501 struct hlist_nulls_node *node;
502 unsigned short hnum = ntohs(dport);
503 unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
504 struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
505 int score, badness, matches = 0, reuseport = 0;
506 u32 hash = 0;
508 rcu_read_lock();
509 if (hslot->count > 10) {
510 hash2 = udp4_portaddr_hash(net, daddr, hnum);
511 slot2 = hash2 & udptable->mask;
512 hslot2 = &udptable->hash2[slot2];
513 if (hslot->count < hslot2->count)
514 goto begin;
516 result = udp4_lib_lookup2(net, saddr, sport,
517 daddr, hnum, dif,
518 hslot2, slot2);
519 if (!result) {
520 hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
521 slot2 = hash2 & udptable->mask;
522 hslot2 = &udptable->hash2[slot2];
523 if (hslot->count < hslot2->count)
524 goto begin;
526 result = udp4_lib_lookup2(net, saddr, sport,
527 htonl(INADDR_ANY), hnum, dif,
528 hslot2, slot2);
530 rcu_read_unlock();
531 return result;
533 begin:
534 result = NULL;
535 badness = 0;
536 sk_nulls_for_each_rcu(sk, node, &hslot->head) {
537 score = compute_score(sk, net, saddr, hnum, sport,
538 daddr, dport, dif);
539 if (score > badness) {
540 result = sk;
541 badness = score;
542 reuseport = sk->sk_reuseport;
543 if (reuseport) {
544 hash = udp_ehashfn(net, daddr, hnum,
545 saddr, sport);
546 matches = 1;
548 } else if (score == badness && reuseport) {
549 matches++;
550 if (reciprocal_scale(hash, matches) == 0)
551 result = sk;
552 hash = next_pseudo_random32(hash);
556 * if the nulls value we got at the end of this lookup is
557 * not the expected one, we must restart lookup.
558 * We probably met an item that was moved to another chain.
560 if (get_nulls_value(node) != slot)
561 goto begin;
563 if (result) {
564 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
565 result = NULL;
566 else if (unlikely(compute_score(result, net, saddr, hnum, sport,
567 daddr, dport, dif) < badness)) {
568 sock_put(result);
569 goto begin;
572 rcu_read_unlock();
573 return result;
575 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
577 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
578 __be16 sport, __be16 dport,
579 struct udp_table *udptable)
581 const struct iphdr *iph = ip_hdr(skb);
583 return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport,
584 iph->daddr, dport, inet_iif(skb),
585 udptable);
588 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
589 __be32 daddr, __be16 dport, int dif)
591 return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, &udp_table);
593 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
595 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
596 __be16 loc_port, __be32 loc_addr,
597 __be16 rmt_port, __be32 rmt_addr,
598 int dif, unsigned short hnum)
600 struct inet_sock *inet = inet_sk(sk);
602 if (!net_eq(sock_net(sk), net) ||
603 udp_sk(sk)->udp_port_hash != hnum ||
604 (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
605 (inet->inet_dport != rmt_port && inet->inet_dport) ||
606 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
607 ipv6_only_sock(sk) ||
608 (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif))
609 return false;
610 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif))
611 return false;
612 return true;
616 * This routine is called by the ICMP module when it gets some
617 * sort of error condition. If err < 0 then the socket should
618 * be closed and the error returned to the user. If err > 0
619 * it's just the icmp type << 8 | icmp code.
620 * Header points to the ip header of the error packet. We move
621 * on past this. Then (as it used to claim before adjustment)
622 * header points to the first 8 bytes of the udp header. We need
623 * to find the appropriate port.
626 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
628 struct inet_sock *inet;
629 const struct iphdr *iph = (const struct iphdr *)skb->data;
630 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
631 const int type = icmp_hdr(skb)->type;
632 const int code = icmp_hdr(skb)->code;
633 struct sock *sk;
634 int harderr;
635 int err;
636 struct net *net = dev_net(skb->dev);
638 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
639 iph->saddr, uh->source, skb->dev->ifindex, udptable);
640 if (!sk) {
641 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
642 return; /* No socket for error */
645 err = 0;
646 harderr = 0;
647 inet = inet_sk(sk);
649 switch (type) {
650 default:
651 case ICMP_TIME_EXCEEDED:
652 err = EHOSTUNREACH;
653 break;
654 case ICMP_SOURCE_QUENCH:
655 goto out;
656 case ICMP_PARAMETERPROB:
657 err = EPROTO;
658 harderr = 1;
659 break;
660 case ICMP_DEST_UNREACH:
661 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
662 ipv4_sk_update_pmtu(skb, sk, info);
663 if (inet->pmtudisc != IP_PMTUDISC_DONT) {
664 err = EMSGSIZE;
665 harderr = 1;
666 break;
668 goto out;
670 err = EHOSTUNREACH;
671 if (code <= NR_ICMP_UNREACH) {
672 harderr = icmp_err_convert[code].fatal;
673 err = icmp_err_convert[code].errno;
675 break;
676 case ICMP_REDIRECT:
677 ipv4_sk_redirect(skb, sk);
678 goto out;
682 * RFC1122: OK. Passes ICMP errors back to application, as per
683 * 4.1.3.3.
685 if (!inet->recverr) {
686 if (!harderr || sk->sk_state != TCP_ESTABLISHED)
687 goto out;
688 } else
689 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
691 sk->sk_err = err;
692 sk->sk_error_report(sk);
693 out:
694 sock_put(sk);
697 void udp_err(struct sk_buff *skb, u32 info)
699 __udp4_lib_err(skb, info, &udp_table);
703 * Throw away all pending data and cancel the corking. Socket is locked.
705 void udp_flush_pending_frames(struct sock *sk)
707 struct udp_sock *up = udp_sk(sk);
709 if (up->pending) {
710 up->len = 0;
711 up->pending = 0;
712 ip_flush_pending_frames(sk);
715 EXPORT_SYMBOL(udp_flush_pending_frames);
718 * udp4_hwcsum - handle outgoing HW checksumming
719 * @skb: sk_buff containing the filled-in UDP header
720 * (checksum field must be zeroed out)
721 * @src: source IP address
722 * @dst: destination IP address
724 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
726 struct udphdr *uh = udp_hdr(skb);
727 int offset = skb_transport_offset(skb);
728 int len = skb->len - offset;
729 int hlen = len;
730 __wsum csum = 0;
732 if (!skb_has_frag_list(skb)) {
734 * Only one fragment on the socket.
736 skb->csum_start = skb_transport_header(skb) - skb->head;
737 skb->csum_offset = offsetof(struct udphdr, check);
738 uh->check = ~csum_tcpudp_magic(src, dst, len,
739 IPPROTO_UDP, 0);
740 } else {
741 struct sk_buff *frags;
744 * HW-checksum won't work as there are two or more
745 * fragments on the socket so that all csums of sk_buffs
746 * should be together
748 skb_walk_frags(skb, frags) {
749 csum = csum_add(csum, frags->csum);
750 hlen -= frags->len;
753 csum = skb_checksum(skb, offset, hlen, csum);
754 skb->ip_summed = CHECKSUM_NONE;
756 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
757 if (uh->check == 0)
758 uh->check = CSUM_MANGLED_0;
761 EXPORT_SYMBOL_GPL(udp4_hwcsum);
763 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
764 * for the simple case like when setting the checksum for a UDP tunnel.
766 void udp_set_csum(bool nocheck, struct sk_buff *skb,
767 __be32 saddr, __be32 daddr, int len)
769 struct udphdr *uh = udp_hdr(skb);
771 if (nocheck)
772 uh->check = 0;
773 else if (skb_is_gso(skb))
774 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
775 else if (skb_dst(skb) && skb_dst(skb)->dev &&
776 (skb_dst(skb)->dev->features & NETIF_F_V4_CSUM)) {
778 BUG_ON(skb->ip_summed == CHECKSUM_PARTIAL);
780 skb->ip_summed = CHECKSUM_PARTIAL;
781 skb->csum_start = skb_transport_header(skb) - skb->head;
782 skb->csum_offset = offsetof(struct udphdr, check);
783 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
784 } else {
785 __wsum csum;
787 BUG_ON(skb->ip_summed == CHECKSUM_PARTIAL);
789 uh->check = 0;
790 csum = skb_checksum(skb, 0, len, 0);
791 uh->check = udp_v4_check(len, saddr, daddr, csum);
792 if (uh->check == 0)
793 uh->check = CSUM_MANGLED_0;
795 skb->ip_summed = CHECKSUM_UNNECESSARY;
798 EXPORT_SYMBOL(udp_set_csum);
800 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
802 struct sock *sk = skb->sk;
803 struct inet_sock *inet = inet_sk(sk);
804 struct udphdr *uh;
805 int err = 0;
806 int is_udplite = IS_UDPLITE(sk);
807 int offset = skb_transport_offset(skb);
808 int len = skb->len - offset;
809 __wsum csum = 0;
812 * Create a UDP header
814 uh = udp_hdr(skb);
815 uh->source = inet->inet_sport;
816 uh->dest = fl4->fl4_dport;
817 uh->len = htons(len);
818 uh->check = 0;
820 if (is_udplite) /* UDP-Lite */
821 csum = udplite_csum(skb);
823 else if (sk->sk_no_check_tx) { /* UDP csum disabled */
825 skb->ip_summed = CHECKSUM_NONE;
826 goto send;
828 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
830 udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
831 goto send;
833 } else
834 csum = udp_csum(skb);
836 /* add protocol-dependent pseudo-header */
837 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
838 sk->sk_protocol, csum);
839 if (uh->check == 0)
840 uh->check = CSUM_MANGLED_0;
842 send:
843 err = ip_send_skb(sock_net(sk), skb);
844 if (err) {
845 if (err == -ENOBUFS && !inet->recverr) {
846 UDP_INC_STATS_USER(sock_net(sk),
847 UDP_MIB_SNDBUFERRORS, is_udplite);
848 err = 0;
850 } else
851 UDP_INC_STATS_USER(sock_net(sk),
852 UDP_MIB_OUTDATAGRAMS, is_udplite);
853 return err;
857 * Push out all pending data as one UDP datagram. Socket is locked.
859 int udp_push_pending_frames(struct sock *sk)
861 struct udp_sock *up = udp_sk(sk);
862 struct inet_sock *inet = inet_sk(sk);
863 struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
864 struct sk_buff *skb;
865 int err = 0;
867 skb = ip_finish_skb(sk, fl4);
868 if (!skb)
869 goto out;
871 err = udp_send_skb(skb, fl4);
873 out:
874 up->len = 0;
875 up->pending = 0;
876 return err;
878 EXPORT_SYMBOL(udp_push_pending_frames);
880 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
882 struct inet_sock *inet = inet_sk(sk);
883 struct udp_sock *up = udp_sk(sk);
884 struct flowi4 fl4_stack;
885 struct flowi4 *fl4;
886 int ulen = len;
887 struct ipcm_cookie ipc;
888 struct rtable *rt = NULL;
889 int free = 0;
890 int connected = 0;
891 __be32 daddr, faddr, saddr;
892 __be16 dport;
893 u8 tos;
894 int err, is_udplite = IS_UDPLITE(sk);
895 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
896 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
897 struct sk_buff *skb;
898 struct ip_options_data opt_copy;
900 if (len > 0xFFFF)
901 return -EMSGSIZE;
904 * Check the flags.
907 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
908 return -EOPNOTSUPP;
910 ipc.opt = NULL;
911 ipc.tx_flags = 0;
912 ipc.ttl = 0;
913 ipc.tos = -1;
915 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
917 fl4 = &inet->cork.fl.u.ip4;
918 if (up->pending) {
920 * There are pending frames.
921 * The socket lock must be held while it's corked.
923 lock_sock(sk);
924 if (likely(up->pending)) {
925 if (unlikely(up->pending != AF_INET)) {
926 release_sock(sk);
927 return -EINVAL;
929 goto do_append_data;
931 release_sock(sk);
933 ulen += sizeof(struct udphdr);
936 * Get and verify the address.
938 if (msg->msg_name) {
939 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
940 if (msg->msg_namelen < sizeof(*usin))
941 return -EINVAL;
942 if (usin->sin_family != AF_INET) {
943 if (usin->sin_family != AF_UNSPEC)
944 return -EAFNOSUPPORT;
947 daddr = usin->sin_addr.s_addr;
948 dport = usin->sin_port;
949 if (dport == 0)
950 return -EINVAL;
951 } else {
952 if (sk->sk_state != TCP_ESTABLISHED)
953 return -EDESTADDRREQ;
954 daddr = inet->inet_daddr;
955 dport = inet->inet_dport;
956 /* Open fast path for connected socket.
957 Route will not be used, if at least one option is set.
959 connected = 1;
961 ipc.addr = inet->inet_saddr;
963 ipc.oif = sk->sk_bound_dev_if;
965 sock_tx_timestamp(sk, &ipc.tx_flags);
967 if (msg->msg_controllen) {
968 err = ip_cmsg_send(sock_net(sk), msg, &ipc,
969 sk->sk_family == AF_INET6);
970 if (err)
971 return err;
972 if (ipc.opt)
973 free = 1;
974 connected = 0;
976 if (!ipc.opt) {
977 struct ip_options_rcu *inet_opt;
979 rcu_read_lock();
980 inet_opt = rcu_dereference(inet->inet_opt);
981 if (inet_opt) {
982 memcpy(&opt_copy, inet_opt,
983 sizeof(*inet_opt) + inet_opt->opt.optlen);
984 ipc.opt = &opt_copy.opt;
986 rcu_read_unlock();
989 saddr = ipc.addr;
990 ipc.addr = faddr = daddr;
992 if (ipc.opt && ipc.opt->opt.srr) {
993 if (!daddr)
994 return -EINVAL;
995 faddr = ipc.opt->opt.faddr;
996 connected = 0;
998 tos = get_rttos(&ipc, inet);
999 if (sock_flag(sk, SOCK_LOCALROUTE) ||
1000 (msg->msg_flags & MSG_DONTROUTE) ||
1001 (ipc.opt && ipc.opt->opt.is_strictroute)) {
1002 tos |= RTO_ONLINK;
1003 connected = 0;
1006 if (ipv4_is_multicast(daddr)) {
1007 if (!ipc.oif)
1008 ipc.oif = inet->mc_index;
1009 if (!saddr)
1010 saddr = inet->mc_addr;
1011 connected = 0;
1012 } else if (!ipc.oif)
1013 ipc.oif = inet->uc_index;
1015 if (connected)
1016 rt = (struct rtable *)sk_dst_check(sk, 0);
1018 if (!rt) {
1019 struct net *net = sock_net(sk);
1020 __u8 flow_flags = inet_sk_flowi_flags(sk);
1022 fl4 = &fl4_stack;
1024 flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1025 RT_SCOPE_UNIVERSE, sk->sk_protocol,
1026 flow_flags,
1027 faddr, saddr, dport, inet->inet_sport);
1029 if (!saddr && ipc.oif)
1030 l3mdev_get_saddr(net, ipc.oif, fl4);
1032 security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1033 rt = ip_route_output_flow(net, fl4, sk);
1034 if (IS_ERR(rt)) {
1035 err = PTR_ERR(rt);
1036 rt = NULL;
1037 if (err == -ENETUNREACH)
1038 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1039 goto out;
1042 err = -EACCES;
1043 if ((rt->rt_flags & RTCF_BROADCAST) &&
1044 !sock_flag(sk, SOCK_BROADCAST))
1045 goto out;
1046 if (connected)
1047 sk_dst_set(sk, dst_clone(&rt->dst));
1050 if (msg->msg_flags&MSG_CONFIRM)
1051 goto do_confirm;
1052 back_from_confirm:
1054 saddr = fl4->saddr;
1055 if (!ipc.addr)
1056 daddr = ipc.addr = fl4->daddr;
1058 /* Lockless fast path for the non-corking case. */
1059 if (!corkreq) {
1060 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1061 sizeof(struct udphdr), &ipc, &rt,
1062 msg->msg_flags);
1063 err = PTR_ERR(skb);
1064 if (!IS_ERR_OR_NULL(skb))
1065 err = udp_send_skb(skb, fl4);
1066 goto out;
1069 lock_sock(sk);
1070 if (unlikely(up->pending)) {
1071 /* The socket is already corked while preparing it. */
1072 /* ... which is an evident application bug. --ANK */
1073 release_sock(sk);
1075 net_dbg_ratelimited("cork app bug 2\n");
1076 err = -EINVAL;
1077 goto out;
1080 * Now cork the socket to pend data.
1082 fl4 = &inet->cork.fl.u.ip4;
1083 fl4->daddr = daddr;
1084 fl4->saddr = saddr;
1085 fl4->fl4_dport = dport;
1086 fl4->fl4_sport = inet->inet_sport;
1087 up->pending = AF_INET;
1089 do_append_data:
1090 up->len += ulen;
1091 err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1092 sizeof(struct udphdr), &ipc, &rt,
1093 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1094 if (err)
1095 udp_flush_pending_frames(sk);
1096 else if (!corkreq)
1097 err = udp_push_pending_frames(sk);
1098 else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1099 up->pending = 0;
1100 release_sock(sk);
1102 out:
1103 ip_rt_put(rt);
1104 if (free)
1105 kfree(ipc.opt);
1106 if (!err)
1107 return len;
1109 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
1110 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1111 * we don't have a good statistic (IpOutDiscards but it can be too many
1112 * things). We could add another new stat but at least for now that
1113 * seems like overkill.
1115 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1116 UDP_INC_STATS_USER(sock_net(sk),
1117 UDP_MIB_SNDBUFERRORS, is_udplite);
1119 return err;
1121 do_confirm:
1122 dst_confirm(&rt->dst);
1123 if (!(msg->msg_flags&MSG_PROBE) || len)
1124 goto back_from_confirm;
1125 err = 0;
1126 goto out;
1128 EXPORT_SYMBOL(udp_sendmsg);
1130 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1131 size_t size, int flags)
1133 struct inet_sock *inet = inet_sk(sk);
1134 struct udp_sock *up = udp_sk(sk);
1135 int ret;
1137 if (flags & MSG_SENDPAGE_NOTLAST)
1138 flags |= MSG_MORE;
1140 if (!up->pending) {
1141 struct msghdr msg = { .msg_flags = flags|MSG_MORE };
1143 /* Call udp_sendmsg to specify destination address which
1144 * sendpage interface can't pass.
1145 * This will succeed only when the socket is connected.
1147 ret = udp_sendmsg(sk, &msg, 0);
1148 if (ret < 0)
1149 return ret;
1152 lock_sock(sk);
1154 if (unlikely(!up->pending)) {
1155 release_sock(sk);
1157 net_dbg_ratelimited("udp cork app bug 3\n");
1158 return -EINVAL;
1161 ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1162 page, offset, size, flags);
1163 if (ret == -EOPNOTSUPP) {
1164 release_sock(sk);
1165 return sock_no_sendpage(sk->sk_socket, page, offset,
1166 size, flags);
1168 if (ret < 0) {
1169 udp_flush_pending_frames(sk);
1170 goto out;
1173 up->len += size;
1174 if (!(up->corkflag || (flags&MSG_MORE)))
1175 ret = udp_push_pending_frames(sk);
1176 if (!ret)
1177 ret = size;
1178 out:
1179 release_sock(sk);
1180 return ret;
1184 * first_packet_length - return length of first packet in receive queue
1185 * @sk: socket
1187 * Drops all bad checksum frames, until a valid one is found.
1188 * Returns the length of found skb, or 0 if none is found.
1190 static unsigned int first_packet_length(struct sock *sk)
1192 struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
1193 struct sk_buff *skb;
1194 unsigned int res;
1196 __skb_queue_head_init(&list_kill);
1198 spin_lock_bh(&rcvq->lock);
1199 while ((skb = skb_peek(rcvq)) != NULL &&
1200 udp_lib_checksum_complete(skb)) {
1201 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS,
1202 IS_UDPLITE(sk));
1203 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1204 IS_UDPLITE(sk));
1205 atomic_inc(&sk->sk_drops);
1206 __skb_unlink(skb, rcvq);
1207 __skb_queue_tail(&list_kill, skb);
1209 res = skb ? skb->len : 0;
1210 spin_unlock_bh(&rcvq->lock);
1212 if (!skb_queue_empty(&list_kill)) {
1213 bool slow = lock_sock_fast(sk);
1215 __skb_queue_purge(&list_kill);
1216 sk_mem_reclaim_partial(sk);
1217 unlock_sock_fast(sk, slow);
1219 return res;
1223 * IOCTL requests applicable to the UDP protocol
1226 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1228 switch (cmd) {
1229 case SIOCOUTQ:
1231 int amount = sk_wmem_alloc_get(sk);
1233 return put_user(amount, (int __user *)arg);
1236 case SIOCINQ:
1238 unsigned int amount = first_packet_length(sk);
1240 if (amount)
1242 * We will only return the amount
1243 * of this packet since that is all
1244 * that will be read.
1246 amount -= sizeof(struct udphdr);
1248 return put_user(amount, (int __user *)arg);
1251 default:
1252 return -ENOIOCTLCMD;
1255 return 0;
1257 EXPORT_SYMBOL(udp_ioctl);
1260 * This should be easy, if there is something there we
1261 * return it, otherwise we block.
1264 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1265 int flags, int *addr_len)
1267 struct inet_sock *inet = inet_sk(sk);
1268 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1269 struct sk_buff *skb;
1270 unsigned int ulen, copied;
1271 int peeked, off = 0;
1272 int err;
1273 int is_udplite = IS_UDPLITE(sk);
1274 bool slow;
1276 if (flags & MSG_ERRQUEUE)
1277 return ip_recv_error(sk, msg, len, addr_len);
1279 try_again:
1280 skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
1281 &peeked, &off, &err);
1282 if (!skb)
1283 goto out;
1285 ulen = skb->len - sizeof(struct udphdr);
1286 copied = len;
1287 if (copied > ulen)
1288 copied = ulen;
1289 else if (copied < ulen)
1290 msg->msg_flags |= MSG_TRUNC;
1293 * If checksum is needed at all, try to do it while copying the
1294 * data. If the data is truncated, or if we only want a partial
1295 * coverage checksum (UDP-Lite), do it before the copy.
1298 if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
1299 if (udp_lib_checksum_complete(skb))
1300 goto csum_copy_err;
1303 if (skb_csum_unnecessary(skb))
1304 err = skb_copy_datagram_msg(skb, sizeof(struct udphdr),
1305 msg, copied);
1306 else {
1307 err = skb_copy_and_csum_datagram_msg(skb, sizeof(struct udphdr),
1308 msg);
1310 if (err == -EINVAL)
1311 goto csum_copy_err;
1314 if (unlikely(err)) {
1315 trace_kfree_skb(skb, udp_recvmsg);
1316 if (!peeked) {
1317 atomic_inc(&sk->sk_drops);
1318 UDP_INC_STATS_USER(sock_net(sk),
1319 UDP_MIB_INERRORS, is_udplite);
1321 goto out_free;
1324 if (!peeked)
1325 UDP_INC_STATS_USER(sock_net(sk),
1326 UDP_MIB_INDATAGRAMS, is_udplite);
1328 sock_recv_ts_and_drops(msg, sk, skb);
1330 /* Copy the address. */
1331 if (sin) {
1332 sin->sin_family = AF_INET;
1333 sin->sin_port = udp_hdr(skb)->source;
1334 sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1335 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1336 *addr_len = sizeof(*sin);
1338 if (inet->cmsg_flags)
1339 ip_cmsg_recv_offset(msg, skb, sizeof(struct udphdr));
1341 err = copied;
1342 if (flags & MSG_TRUNC)
1343 err = ulen;
1345 out_free:
1346 skb_free_datagram_locked(sk, skb);
1347 out:
1348 return err;
1350 csum_copy_err:
1351 slow = lock_sock_fast(sk);
1352 if (!skb_kill_datagram(sk, skb, flags)) {
1353 UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1354 UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1356 unlock_sock_fast(sk, slow);
1358 /* starting over for a new packet, but check if we need to yield */
1359 cond_resched();
1360 msg->msg_flags &= ~MSG_TRUNC;
1361 goto try_again;
1364 int udp_disconnect(struct sock *sk, int flags)
1366 struct inet_sock *inet = inet_sk(sk);
1368 * 1003.1g - break association.
1371 sk->sk_state = TCP_CLOSE;
1372 inet->inet_daddr = 0;
1373 inet->inet_dport = 0;
1374 sock_rps_reset_rxhash(sk);
1375 sk->sk_bound_dev_if = 0;
1376 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1377 inet_reset_saddr(sk);
1379 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1380 sk->sk_prot->unhash(sk);
1381 inet->inet_sport = 0;
1383 sk_dst_reset(sk);
1384 return 0;
1386 EXPORT_SYMBOL(udp_disconnect);
1388 void udp_lib_unhash(struct sock *sk)
1390 if (sk_hashed(sk)) {
1391 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1392 struct udp_hslot *hslot, *hslot2;
1394 hslot = udp_hashslot(udptable, sock_net(sk),
1395 udp_sk(sk)->udp_port_hash);
1396 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1398 spin_lock_bh(&hslot->lock);
1399 if (sk_nulls_del_node_init_rcu(sk)) {
1400 hslot->count--;
1401 inet_sk(sk)->inet_num = 0;
1402 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1404 spin_lock(&hslot2->lock);
1405 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1406 hslot2->count--;
1407 spin_unlock(&hslot2->lock);
1409 spin_unlock_bh(&hslot->lock);
1412 EXPORT_SYMBOL(udp_lib_unhash);
1415 * inet_rcv_saddr was changed, we must rehash secondary hash
1417 void udp_lib_rehash(struct sock *sk, u16 newhash)
1419 if (sk_hashed(sk)) {
1420 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1421 struct udp_hslot *hslot, *hslot2, *nhslot2;
1423 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1424 nhslot2 = udp_hashslot2(udptable, newhash);
1425 udp_sk(sk)->udp_portaddr_hash = newhash;
1426 if (hslot2 != nhslot2) {
1427 hslot = udp_hashslot(udptable, sock_net(sk),
1428 udp_sk(sk)->udp_port_hash);
1429 /* we must lock primary chain too */
1430 spin_lock_bh(&hslot->lock);
1432 spin_lock(&hslot2->lock);
1433 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1434 hslot2->count--;
1435 spin_unlock(&hslot2->lock);
1437 spin_lock(&nhslot2->lock);
1438 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1439 &nhslot2->head);
1440 nhslot2->count++;
1441 spin_unlock(&nhslot2->lock);
1443 spin_unlock_bh(&hslot->lock);
1447 EXPORT_SYMBOL(udp_lib_rehash);
1449 static void udp_v4_rehash(struct sock *sk)
1451 u16 new_hash = udp4_portaddr_hash(sock_net(sk),
1452 inet_sk(sk)->inet_rcv_saddr,
1453 inet_sk(sk)->inet_num);
1454 udp_lib_rehash(sk, new_hash);
1457 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1459 int rc;
1461 if (inet_sk(sk)->inet_daddr) {
1462 sock_rps_save_rxhash(sk, skb);
1463 sk_mark_napi_id(sk, skb);
1464 sk_incoming_cpu_update(sk);
1467 rc = sock_queue_rcv_skb(sk, skb);
1468 if (rc < 0) {
1469 int is_udplite = IS_UDPLITE(sk);
1471 /* Note that an ENOMEM error is charged twice */
1472 if (rc == -ENOMEM)
1473 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1474 is_udplite);
1475 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1476 kfree_skb(skb);
1477 trace_udp_fail_queue_rcv_skb(rc, sk);
1478 return -1;
1481 return 0;
1485 static struct static_key udp_encap_needed __read_mostly;
1486 void udp_encap_enable(void)
1488 if (!static_key_enabled(&udp_encap_needed))
1489 static_key_slow_inc(&udp_encap_needed);
1491 EXPORT_SYMBOL(udp_encap_enable);
1493 /* returns:
1494 * -1: error
1495 * 0: success
1496 * >0: "udp encap" protocol resubmission
1498 * Note that in the success and error cases, the skb is assumed to
1499 * have either been requeued or freed.
1501 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1503 struct udp_sock *up = udp_sk(sk);
1504 int rc;
1505 int is_udplite = IS_UDPLITE(sk);
1508 * Charge it to the socket, dropping if the queue is full.
1510 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1511 goto drop;
1512 nf_reset(skb);
1514 if (static_key_false(&udp_encap_needed) && up->encap_type) {
1515 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1518 * This is an encapsulation socket so pass the skb to
1519 * the socket's udp_encap_rcv() hook. Otherwise, just
1520 * fall through and pass this up the UDP socket.
1521 * up->encap_rcv() returns the following value:
1522 * =0 if skb was successfully passed to the encap
1523 * handler or was discarded by it.
1524 * >0 if skb should be passed on to UDP.
1525 * <0 if skb should be resubmitted as proto -N
1528 /* if we're overly short, let UDP handle it */
1529 encap_rcv = ACCESS_ONCE(up->encap_rcv);
1530 if (skb->len > sizeof(struct udphdr) && encap_rcv) {
1531 int ret;
1533 /* Verify checksum before giving to encap */
1534 if (udp_lib_checksum_complete(skb))
1535 goto csum_error;
1537 ret = encap_rcv(sk, skb);
1538 if (ret <= 0) {
1539 UDP_INC_STATS_BH(sock_net(sk),
1540 UDP_MIB_INDATAGRAMS,
1541 is_udplite);
1542 return -ret;
1546 /* FALLTHROUGH -- it's a UDP Packet */
1550 * UDP-Lite specific tests, ignored on UDP sockets
1552 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) {
1555 * MIB statistics other than incrementing the error count are
1556 * disabled for the following two types of errors: these depend
1557 * on the application settings, not on the functioning of the
1558 * protocol stack as such.
1560 * RFC 3828 here recommends (sec 3.3): "There should also be a
1561 * way ... to ... at least let the receiving application block
1562 * delivery of packets with coverage values less than a value
1563 * provided by the application."
1565 if (up->pcrlen == 0) { /* full coverage was set */
1566 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
1567 UDP_SKB_CB(skb)->cscov, skb->len);
1568 goto drop;
1570 /* The next case involves violating the min. coverage requested
1571 * by the receiver. This is subtle: if receiver wants x and x is
1572 * greater than the buffersize/MTU then receiver will complain
1573 * that it wants x while sender emits packets of smaller size y.
1574 * Therefore the above ...()->partial_cov statement is essential.
1576 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) {
1577 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
1578 UDP_SKB_CB(skb)->cscov, up->pcrlen);
1579 goto drop;
1583 if (rcu_access_pointer(sk->sk_filter) &&
1584 udp_lib_checksum_complete(skb))
1585 goto csum_error;
1587 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
1588 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1589 is_udplite);
1590 goto drop;
1593 rc = 0;
1595 ipv4_pktinfo_prepare(sk, skb);
1596 bh_lock_sock(sk);
1597 if (!sock_owned_by_user(sk))
1598 rc = __udp_queue_rcv_skb(sk, skb);
1599 else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
1600 bh_unlock_sock(sk);
1601 goto drop;
1603 bh_unlock_sock(sk);
1605 return rc;
1607 csum_error:
1608 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1609 drop:
1610 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1611 atomic_inc(&sk->sk_drops);
1612 kfree_skb(skb);
1613 return -1;
1616 static void flush_stack(struct sock **stack, unsigned int count,
1617 struct sk_buff *skb, unsigned int final)
1619 unsigned int i;
1620 struct sk_buff *skb1 = NULL;
1621 struct sock *sk;
1623 for (i = 0; i < count; i++) {
1624 sk = stack[i];
1625 if (likely(!skb1))
1626 skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC);
1628 if (!skb1) {
1629 atomic_inc(&sk->sk_drops);
1630 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1631 IS_UDPLITE(sk));
1632 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1633 IS_UDPLITE(sk));
1636 if (skb1 && udp_queue_rcv_skb(sk, skb1) <= 0)
1637 skb1 = NULL;
1639 sock_put(sk);
1641 if (unlikely(skb1))
1642 kfree_skb(skb1);
1645 /* For TCP sockets, sk_rx_dst is protected by socket lock
1646 * For UDP, we use xchg() to guard against concurrent changes.
1648 static void udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
1650 struct dst_entry *old;
1652 dst_hold(dst);
1653 old = xchg(&sk->sk_rx_dst, dst);
1654 dst_release(old);
1658 * Multicasts and broadcasts go to each listener.
1660 * Note: called only from the BH handler context.
1662 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1663 struct udphdr *uh,
1664 __be32 saddr, __be32 daddr,
1665 struct udp_table *udptable,
1666 int proto)
1668 struct sock *sk, *stack[256 / sizeof(struct sock *)];
1669 struct hlist_nulls_node *node;
1670 unsigned short hnum = ntohs(uh->dest);
1671 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
1672 int dif = skb->dev->ifindex;
1673 unsigned int count = 0, offset = offsetof(typeof(*sk), sk_nulls_node);
1674 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
1675 bool inner_flushed = false;
1677 if (use_hash2) {
1678 hash2_any = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
1679 udp_table.mask;
1680 hash2 = udp4_portaddr_hash(net, daddr, hnum) & udp_table.mask;
1681 start_lookup:
1682 hslot = &udp_table.hash2[hash2];
1683 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
1686 spin_lock(&hslot->lock);
1687 sk_nulls_for_each_entry_offset(sk, node, &hslot->head, offset) {
1688 if (__udp_is_mcast_sock(net, sk,
1689 uh->dest, daddr,
1690 uh->source, saddr,
1691 dif, hnum)) {
1692 if (unlikely(count == ARRAY_SIZE(stack))) {
1693 flush_stack(stack, count, skb, ~0);
1694 inner_flushed = true;
1695 count = 0;
1697 stack[count++] = sk;
1698 sock_hold(sk);
1702 spin_unlock(&hslot->lock);
1704 /* Also lookup *:port if we are using hash2 and haven't done so yet. */
1705 if (use_hash2 && hash2 != hash2_any) {
1706 hash2 = hash2_any;
1707 goto start_lookup;
1711 * do the slow work with no lock held
1713 if (count) {
1714 flush_stack(stack, count, skb, count - 1);
1715 } else {
1716 if (!inner_flushed)
1717 UDP_INC_STATS_BH(net, UDP_MIB_IGNOREDMULTI,
1718 proto == IPPROTO_UDPLITE);
1719 consume_skb(skb);
1721 return 0;
1724 /* Initialize UDP checksum. If exited with zero value (success),
1725 * CHECKSUM_UNNECESSARY means, that no more checks are required.
1726 * Otherwise, csum completion requires chacksumming packet body,
1727 * including udp header and folding it to skb->csum.
1729 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1730 int proto)
1732 int err;
1734 UDP_SKB_CB(skb)->partial_cov = 0;
1735 UDP_SKB_CB(skb)->cscov = skb->len;
1737 if (proto == IPPROTO_UDPLITE) {
1738 err = udplite_checksum_init(skb, uh);
1739 if (err)
1740 return err;
1743 return skb_checksum_init_zero_check(skb, proto, uh->check,
1744 inet_compute_pseudo);
1748 * All we need to do is get the socket, and then do a checksum.
1751 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1752 int proto)
1754 struct sock *sk;
1755 struct udphdr *uh;
1756 unsigned short ulen;
1757 struct rtable *rt = skb_rtable(skb);
1758 __be32 saddr, daddr;
1759 struct net *net = dev_net(skb->dev);
1762 * Validate the packet.
1764 if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1765 goto drop; /* No space for header. */
1767 uh = udp_hdr(skb);
1768 ulen = ntohs(uh->len);
1769 saddr = ip_hdr(skb)->saddr;
1770 daddr = ip_hdr(skb)->daddr;
1772 if (ulen > skb->len)
1773 goto short_packet;
1775 if (proto == IPPROTO_UDP) {
1776 /* UDP validates ulen. */
1777 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1778 goto short_packet;
1779 uh = udp_hdr(skb);
1782 if (udp4_csum_init(skb, uh, proto))
1783 goto csum_error;
1785 sk = skb_steal_sock(skb);
1786 if (sk) {
1787 struct dst_entry *dst = skb_dst(skb);
1788 int ret;
1790 if (unlikely(sk->sk_rx_dst != dst))
1791 udp_sk_rx_dst_set(sk, dst);
1793 ret = udp_queue_rcv_skb(sk, skb);
1794 sock_put(sk);
1795 /* a return value > 0 means to resubmit the input, but
1796 * it wants the return to be -protocol, or 0
1798 if (ret > 0)
1799 return -ret;
1800 return 0;
1803 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1804 return __udp4_lib_mcast_deliver(net, skb, uh,
1805 saddr, daddr, udptable, proto);
1807 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1808 if (sk) {
1809 int ret;
1811 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
1812 skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
1813 inet_compute_pseudo);
1815 ret = udp_queue_rcv_skb(sk, skb);
1816 sock_put(sk);
1818 /* a return value > 0 means to resubmit the input, but
1819 * it wants the return to be -protocol, or 0
1821 if (ret > 0)
1822 return -ret;
1823 return 0;
1826 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1827 goto drop;
1828 nf_reset(skb);
1830 /* No socket. Drop packet silently, if checksum is wrong */
1831 if (udp_lib_checksum_complete(skb))
1832 goto csum_error;
1834 UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1835 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1838 * Hmm. We got an UDP packet to a port to which we
1839 * don't wanna listen. Ignore it.
1841 kfree_skb(skb);
1842 return 0;
1844 short_packet:
1845 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1846 proto == IPPROTO_UDPLITE ? "Lite" : "",
1847 &saddr, ntohs(uh->source),
1848 ulen, skb->len,
1849 &daddr, ntohs(uh->dest));
1850 goto drop;
1852 csum_error:
1854 * RFC1122: OK. Discards the bad packet silently (as far as
1855 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1857 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1858 proto == IPPROTO_UDPLITE ? "Lite" : "",
1859 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
1860 ulen);
1861 UDP_INC_STATS_BH(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
1862 drop:
1863 UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1864 kfree_skb(skb);
1865 return 0;
1868 /* We can only early demux multicast if there is a single matching socket.
1869 * If more than one socket found returns NULL
1871 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
1872 __be16 loc_port, __be32 loc_addr,
1873 __be16 rmt_port, __be32 rmt_addr,
1874 int dif)
1876 struct sock *sk, *result;
1877 struct hlist_nulls_node *node;
1878 unsigned short hnum = ntohs(loc_port);
1879 unsigned int count, slot = udp_hashfn(net, hnum, udp_table.mask);
1880 struct udp_hslot *hslot = &udp_table.hash[slot];
1882 /* Do not bother scanning a too big list */
1883 if (hslot->count > 10)
1884 return NULL;
1886 rcu_read_lock();
1887 begin:
1888 count = 0;
1889 result = NULL;
1890 sk_nulls_for_each_rcu(sk, node, &hslot->head) {
1891 if (__udp_is_mcast_sock(net, sk,
1892 loc_port, loc_addr,
1893 rmt_port, rmt_addr,
1894 dif, hnum)) {
1895 result = sk;
1896 ++count;
1900 * if the nulls value we got at the end of this lookup is
1901 * not the expected one, we must restart lookup.
1902 * We probably met an item that was moved to another chain.
1904 if (get_nulls_value(node) != slot)
1905 goto begin;
1907 if (result) {
1908 if (count != 1 ||
1909 unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
1910 result = NULL;
1911 else if (unlikely(!__udp_is_mcast_sock(net, result,
1912 loc_port, loc_addr,
1913 rmt_port, rmt_addr,
1914 dif, hnum))) {
1915 sock_put(result);
1916 result = NULL;
1919 rcu_read_unlock();
1920 return result;
1923 /* For unicast we should only early demux connected sockets or we can
1924 * break forwarding setups. The chains here can be long so only check
1925 * if the first socket is an exact match and if not move on.
1927 static struct sock *__udp4_lib_demux_lookup(struct net *net,
1928 __be16 loc_port, __be32 loc_addr,
1929 __be16 rmt_port, __be32 rmt_addr,
1930 int dif)
1932 struct sock *sk, *result;
1933 struct hlist_nulls_node *node;
1934 unsigned short hnum = ntohs(loc_port);
1935 unsigned int hash2 = udp4_portaddr_hash(net, loc_addr, hnum);
1936 unsigned int slot2 = hash2 & udp_table.mask;
1937 struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
1938 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
1939 const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
1941 rcu_read_lock();
1942 result = NULL;
1943 udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
1944 if (INET_MATCH(sk, net, acookie,
1945 rmt_addr, loc_addr, ports, dif))
1946 result = sk;
1947 /* Only check first socket in chain */
1948 break;
1951 if (result) {
1952 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
1953 result = NULL;
1954 else if (unlikely(!INET_MATCH(sk, net, acookie,
1955 rmt_addr, loc_addr,
1956 ports, dif))) {
1957 sock_put(result);
1958 result = NULL;
1961 rcu_read_unlock();
1962 return result;
1965 void udp_v4_early_demux(struct sk_buff *skb)
1967 struct net *net = dev_net(skb->dev);
1968 const struct iphdr *iph;
1969 const struct udphdr *uh;
1970 struct sock *sk;
1971 struct dst_entry *dst;
1972 int dif = skb->dev->ifindex;
1973 int ours;
1975 /* validate the packet */
1976 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
1977 return;
1979 iph = ip_hdr(skb);
1980 uh = udp_hdr(skb);
1982 if (skb->pkt_type == PACKET_BROADCAST ||
1983 skb->pkt_type == PACKET_MULTICAST) {
1984 struct in_device *in_dev = __in_dev_get_rcu(skb->dev);
1986 if (!in_dev)
1987 return;
1989 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
1990 iph->protocol);
1991 if (!ours)
1992 return;
1993 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
1994 uh->source, iph->saddr, dif);
1995 } else if (skb->pkt_type == PACKET_HOST) {
1996 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
1997 uh->source, iph->saddr, dif);
1998 } else {
1999 return;
2002 if (!sk)
2003 return;
2005 skb->sk = sk;
2006 skb->destructor = sock_efree;
2007 dst = READ_ONCE(sk->sk_rx_dst);
2009 if (dst)
2010 dst = dst_check(dst, 0);
2011 if (dst) {
2012 /* DST_NOCACHE can not be used without taking a reference */
2013 if (dst->flags & DST_NOCACHE) {
2014 if (likely(atomic_inc_not_zero(&dst->__refcnt)))
2015 skb_dst_set(skb, dst);
2016 } else {
2017 skb_dst_set_noref(skb, dst);
2022 int udp_rcv(struct sk_buff *skb)
2024 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2027 void udp_destroy_sock(struct sock *sk)
2029 struct udp_sock *up = udp_sk(sk);
2030 bool slow = lock_sock_fast(sk);
2031 udp_flush_pending_frames(sk);
2032 unlock_sock_fast(sk, slow);
2033 if (static_key_false(&udp_encap_needed) && up->encap_type) {
2034 void (*encap_destroy)(struct sock *sk);
2035 encap_destroy = ACCESS_ONCE(up->encap_destroy);
2036 if (encap_destroy)
2037 encap_destroy(sk);
2042 * Socket option code for UDP
2044 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2045 char __user *optval, unsigned int optlen,
2046 int (*push_pending_frames)(struct sock *))
2048 struct udp_sock *up = udp_sk(sk);
2049 int val, valbool;
2050 int err = 0;
2051 int is_udplite = IS_UDPLITE(sk);
2053 if (optlen < sizeof(int))
2054 return -EINVAL;
2056 if (get_user(val, (int __user *)optval))
2057 return -EFAULT;
2059 valbool = val ? 1 : 0;
2061 switch (optname) {
2062 case UDP_CORK:
2063 if (val != 0) {
2064 up->corkflag = 1;
2065 } else {
2066 up->corkflag = 0;
2067 lock_sock(sk);
2068 push_pending_frames(sk);
2069 release_sock(sk);
2071 break;
2073 case UDP_ENCAP:
2074 switch (val) {
2075 case 0:
2076 case UDP_ENCAP_ESPINUDP:
2077 case UDP_ENCAP_ESPINUDP_NON_IKE:
2078 up->encap_rcv = xfrm4_udp_encap_rcv;
2079 /* FALLTHROUGH */
2080 case UDP_ENCAP_L2TPINUDP:
2081 up->encap_type = val;
2082 udp_encap_enable();
2083 break;
2084 default:
2085 err = -ENOPROTOOPT;
2086 break;
2088 break;
2090 case UDP_NO_CHECK6_TX:
2091 up->no_check6_tx = valbool;
2092 break;
2094 case UDP_NO_CHECK6_RX:
2095 up->no_check6_rx = valbool;
2096 break;
2099 * UDP-Lite's partial checksum coverage (RFC 3828).
2101 /* The sender sets actual checksum coverage length via this option.
2102 * The case coverage > packet length is handled by send module. */
2103 case UDPLITE_SEND_CSCOV:
2104 if (!is_udplite) /* Disable the option on UDP sockets */
2105 return -ENOPROTOOPT;
2106 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2107 val = 8;
2108 else if (val > USHRT_MAX)
2109 val = USHRT_MAX;
2110 up->pcslen = val;
2111 up->pcflag |= UDPLITE_SEND_CC;
2112 break;
2114 /* The receiver specifies a minimum checksum coverage value. To make
2115 * sense, this should be set to at least 8 (as done below). If zero is
2116 * used, this again means full checksum coverage. */
2117 case UDPLITE_RECV_CSCOV:
2118 if (!is_udplite) /* Disable the option on UDP sockets */
2119 return -ENOPROTOOPT;
2120 if (val != 0 && val < 8) /* Avoid silly minimal values. */
2121 val = 8;
2122 else if (val > USHRT_MAX)
2123 val = USHRT_MAX;
2124 up->pcrlen = val;
2125 up->pcflag |= UDPLITE_RECV_CC;
2126 break;
2128 default:
2129 err = -ENOPROTOOPT;
2130 break;
2133 return err;
2135 EXPORT_SYMBOL(udp_lib_setsockopt);
2137 int udp_setsockopt(struct sock *sk, int level, int optname,
2138 char __user *optval, unsigned int optlen)
2140 if (level == SOL_UDP || level == SOL_UDPLITE)
2141 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2142 udp_push_pending_frames);
2143 return ip_setsockopt(sk, level, optname, optval, optlen);
2146 #ifdef CONFIG_COMPAT
2147 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2148 char __user *optval, unsigned int optlen)
2150 if (level == SOL_UDP || level == SOL_UDPLITE)
2151 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2152 udp_push_pending_frames);
2153 return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2155 #endif
2157 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2158 char __user *optval, int __user *optlen)
2160 struct udp_sock *up = udp_sk(sk);
2161 int val, len;
2163 if (get_user(len, optlen))
2164 return -EFAULT;
2166 len = min_t(unsigned int, len, sizeof(int));
2168 if (len < 0)
2169 return -EINVAL;
2171 switch (optname) {
2172 case UDP_CORK:
2173 val = up->corkflag;
2174 break;
2176 case UDP_ENCAP:
2177 val = up->encap_type;
2178 break;
2180 case UDP_NO_CHECK6_TX:
2181 val = up->no_check6_tx;
2182 break;
2184 case UDP_NO_CHECK6_RX:
2185 val = up->no_check6_rx;
2186 break;
2188 /* The following two cannot be changed on UDP sockets, the return is
2189 * always 0 (which corresponds to the full checksum coverage of UDP). */
2190 case UDPLITE_SEND_CSCOV:
2191 val = up->pcslen;
2192 break;
2194 case UDPLITE_RECV_CSCOV:
2195 val = up->pcrlen;
2196 break;
2198 default:
2199 return -ENOPROTOOPT;
2202 if (put_user(len, optlen))
2203 return -EFAULT;
2204 if (copy_to_user(optval, &val, len))
2205 return -EFAULT;
2206 return 0;
2208 EXPORT_SYMBOL(udp_lib_getsockopt);
2210 int udp_getsockopt(struct sock *sk, int level, int optname,
2211 char __user *optval, int __user *optlen)
2213 if (level == SOL_UDP || level == SOL_UDPLITE)
2214 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2215 return ip_getsockopt(sk, level, optname, optval, optlen);
2218 #ifdef CONFIG_COMPAT
2219 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2220 char __user *optval, int __user *optlen)
2222 if (level == SOL_UDP || level == SOL_UDPLITE)
2223 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2224 return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2226 #endif
2228 * udp_poll - wait for a UDP event.
2229 * @file - file struct
2230 * @sock - socket
2231 * @wait - poll table
2233 * This is same as datagram poll, except for the special case of
2234 * blocking sockets. If application is using a blocking fd
2235 * and a packet with checksum error is in the queue;
2236 * then it could get return from select indicating data available
2237 * but then block when reading it. Add special case code
2238 * to work around these arguably broken applications.
2240 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2242 unsigned int mask = datagram_poll(file, sock, wait);
2243 struct sock *sk = sock->sk;
2245 sock_rps_record_flow(sk);
2247 /* Check for false positives due to checksum errors */
2248 if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2249 !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk))
2250 mask &= ~(POLLIN | POLLRDNORM);
2252 return mask;
2255 EXPORT_SYMBOL(udp_poll);
2257 struct proto udp_prot = {
2258 .name = "UDP",
2259 .owner = THIS_MODULE,
2260 .close = udp_lib_close,
2261 .connect = ip4_datagram_connect,
2262 .disconnect = udp_disconnect,
2263 .ioctl = udp_ioctl,
2264 .destroy = udp_destroy_sock,
2265 .setsockopt = udp_setsockopt,
2266 .getsockopt = udp_getsockopt,
2267 .sendmsg = udp_sendmsg,
2268 .recvmsg = udp_recvmsg,
2269 .sendpage = udp_sendpage,
2270 .backlog_rcv = __udp_queue_rcv_skb,
2271 .release_cb = ip4_datagram_release_cb,
2272 .hash = udp_lib_hash,
2273 .unhash = udp_lib_unhash,
2274 .rehash = udp_v4_rehash,
2275 .get_port = udp_v4_get_port,
2276 .memory_allocated = &udp_memory_allocated,
2277 .sysctl_mem = sysctl_udp_mem,
2278 .sysctl_wmem = &sysctl_udp_wmem_min,
2279 .sysctl_rmem = &sysctl_udp_rmem_min,
2280 .obj_size = sizeof(struct udp_sock),
2281 .slab_flags = SLAB_DESTROY_BY_RCU,
2282 .h.udp_table = &udp_table,
2283 #ifdef CONFIG_COMPAT
2284 .compat_setsockopt = compat_udp_setsockopt,
2285 .compat_getsockopt = compat_udp_getsockopt,
2286 #endif
2287 .clear_sk = sk_prot_clear_portaddr_nulls,
2289 EXPORT_SYMBOL(udp_prot);
2291 /* ------------------------------------------------------------------------ */
2292 #ifdef CONFIG_PROC_FS
2294 static struct sock *udp_get_first(struct seq_file *seq, int start)
2296 struct sock *sk;
2297 struct udp_iter_state *state = seq->private;
2298 struct net *net = seq_file_net(seq);
2300 for (state->bucket = start; state->bucket <= state->udp_table->mask;
2301 ++state->bucket) {
2302 struct hlist_nulls_node *node;
2303 struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
2305 if (hlist_nulls_empty(&hslot->head))
2306 continue;
2308 spin_lock_bh(&hslot->lock);
2309 sk_nulls_for_each(sk, node, &hslot->head) {
2310 if (!net_eq(sock_net(sk), net))
2311 continue;
2312 if (sk->sk_family == state->family)
2313 goto found;
2315 spin_unlock_bh(&hslot->lock);
2317 sk = NULL;
2318 found:
2319 return sk;
2322 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2324 struct udp_iter_state *state = seq->private;
2325 struct net *net = seq_file_net(seq);
2327 do {
2328 sk = sk_nulls_next(sk);
2329 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
2331 if (!sk) {
2332 if (state->bucket <= state->udp_table->mask)
2333 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2334 return udp_get_first(seq, state->bucket + 1);
2336 return sk;
2339 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2341 struct sock *sk = udp_get_first(seq, 0);
2343 if (sk)
2344 while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2345 --pos;
2346 return pos ? NULL : sk;
2349 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2351 struct udp_iter_state *state = seq->private;
2352 state->bucket = MAX_UDP_PORTS;
2354 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2357 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2359 struct sock *sk;
2361 if (v == SEQ_START_TOKEN)
2362 sk = udp_get_idx(seq, 0);
2363 else
2364 sk = udp_get_next(seq, v);
2366 ++*pos;
2367 return sk;
2370 static void udp_seq_stop(struct seq_file *seq, void *v)
2372 struct udp_iter_state *state = seq->private;
2374 if (state->bucket <= state->udp_table->mask)
2375 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2378 int udp_seq_open(struct inode *inode, struct file *file)
2380 struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
2381 struct udp_iter_state *s;
2382 int err;
2384 err = seq_open_net(inode, file, &afinfo->seq_ops,
2385 sizeof(struct udp_iter_state));
2386 if (err < 0)
2387 return err;
2389 s = ((struct seq_file *)file->private_data)->private;
2390 s->family = afinfo->family;
2391 s->udp_table = afinfo->udp_table;
2392 return err;
2394 EXPORT_SYMBOL(udp_seq_open);
2396 /* ------------------------------------------------------------------------ */
2397 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2399 struct proc_dir_entry *p;
2400 int rc = 0;
2402 afinfo->seq_ops.start = udp_seq_start;
2403 afinfo->seq_ops.next = udp_seq_next;
2404 afinfo->seq_ops.stop = udp_seq_stop;
2406 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2407 afinfo->seq_fops, afinfo);
2408 if (!p)
2409 rc = -ENOMEM;
2410 return rc;
2412 EXPORT_SYMBOL(udp_proc_register);
2414 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2416 remove_proc_entry(afinfo->name, net->proc_net);
2418 EXPORT_SYMBOL(udp_proc_unregister);
2420 /* ------------------------------------------------------------------------ */
2421 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2422 int bucket)
2424 struct inet_sock *inet = inet_sk(sp);
2425 __be32 dest = inet->inet_daddr;
2426 __be32 src = inet->inet_rcv_saddr;
2427 __u16 destp = ntohs(inet->inet_dport);
2428 __u16 srcp = ntohs(inet->inet_sport);
2430 seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2431 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
2432 bucket, src, srcp, dest, destp, sp->sk_state,
2433 sk_wmem_alloc_get(sp),
2434 sk_rmem_alloc_get(sp),
2435 0, 0L, 0,
2436 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2437 0, sock_i_ino(sp),
2438 atomic_read(&sp->sk_refcnt), sp,
2439 atomic_read(&sp->sk_drops));
2442 int udp4_seq_show(struct seq_file *seq, void *v)
2444 seq_setwidth(seq, 127);
2445 if (v == SEQ_START_TOKEN)
2446 seq_puts(seq, " sl local_address rem_address st tx_queue "
2447 "rx_queue tr tm->when retrnsmt uid timeout "
2448 "inode ref pointer drops");
2449 else {
2450 struct udp_iter_state *state = seq->private;
2452 udp4_format_sock(v, seq, state->bucket);
2454 seq_pad(seq, '\n');
2455 return 0;
2458 static const struct file_operations udp_afinfo_seq_fops = {
2459 .owner = THIS_MODULE,
2460 .open = udp_seq_open,
2461 .read = seq_read,
2462 .llseek = seq_lseek,
2463 .release = seq_release_net
2466 /* ------------------------------------------------------------------------ */
2467 static struct udp_seq_afinfo udp4_seq_afinfo = {
2468 .name = "udp",
2469 .family = AF_INET,
2470 .udp_table = &udp_table,
2471 .seq_fops = &udp_afinfo_seq_fops,
2472 .seq_ops = {
2473 .show = udp4_seq_show,
2477 static int __net_init udp4_proc_init_net(struct net *net)
2479 return udp_proc_register(net, &udp4_seq_afinfo);
2482 static void __net_exit udp4_proc_exit_net(struct net *net)
2484 udp_proc_unregister(net, &udp4_seq_afinfo);
2487 static struct pernet_operations udp4_net_ops = {
2488 .init = udp4_proc_init_net,
2489 .exit = udp4_proc_exit_net,
2492 int __init udp4_proc_init(void)
2494 return register_pernet_subsys(&udp4_net_ops);
2497 void udp4_proc_exit(void)
2499 unregister_pernet_subsys(&udp4_net_ops);
2501 #endif /* CONFIG_PROC_FS */
2503 static __initdata unsigned long uhash_entries;
2504 static int __init set_uhash_entries(char *str)
2506 ssize_t ret;
2508 if (!str)
2509 return 0;
2511 ret = kstrtoul(str, 0, &uhash_entries);
2512 if (ret)
2513 return 0;
2515 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2516 uhash_entries = UDP_HTABLE_SIZE_MIN;
2517 return 1;
2519 __setup("uhash_entries=", set_uhash_entries);
2521 void __init udp_table_init(struct udp_table *table, const char *name)
2523 unsigned int i;
2525 table->hash = alloc_large_system_hash(name,
2526 2 * sizeof(struct udp_hslot),
2527 uhash_entries,
2528 21, /* one slot per 2 MB */
2530 &table->log,
2531 &table->mask,
2532 UDP_HTABLE_SIZE_MIN,
2533 64 * 1024);
2535 table->hash2 = table->hash + (table->mask + 1);
2536 for (i = 0; i <= table->mask; i++) {
2537 INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i);
2538 table->hash[i].count = 0;
2539 spin_lock_init(&table->hash[i].lock);
2541 for (i = 0; i <= table->mask; i++) {
2542 INIT_HLIST_NULLS_HEAD(&table->hash2[i].head, i);
2543 table->hash2[i].count = 0;
2544 spin_lock_init(&table->hash2[i].lock);
2548 u32 udp_flow_hashrnd(void)
2550 static u32 hashrnd __read_mostly;
2552 net_get_random_once(&hashrnd, sizeof(hashrnd));
2554 return hashrnd;
2556 EXPORT_SYMBOL(udp_flow_hashrnd);
2558 void __init udp_init(void)
2560 unsigned long limit;
2562 udp_table_init(&udp_table, "UDP");
2563 limit = nr_free_buffer_pages() / 8;
2564 limit = max(limit, 128UL);
2565 sysctl_udp_mem[0] = limit / 4 * 3;
2566 sysctl_udp_mem[1] = limit;
2567 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2569 sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2570 sysctl_udp_wmem_min = SK_MEM_QUANTUM;