2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
5 * Implements an efficient asynchronous io interface.
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
9 * See ../COPYING for licensing terms.
11 #define pr_fmt(fmt) "%s: " fmt, __func__
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/errno.h>
16 #include <linux/time.h>
17 #include <linux/aio_abi.h>
18 #include <linux/export.h>
19 #include <linux/syscalls.h>
20 #include <linux/backing-dev.h>
21 #include <linux/uio.h>
23 #include <linux/sched.h>
25 #include <linux/file.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/timer.h>
32 #include <linux/aio.h>
33 #include <linux/highmem.h>
34 #include <linux/workqueue.h>
35 #include <linux/security.h>
36 #include <linux/eventfd.h>
37 #include <linux/blkdev.h>
38 #include <linux/compat.h>
39 #include <linux/migrate.h>
40 #include <linux/ramfs.h>
41 #include <linux/percpu-refcount.h>
42 #include <linux/mount.h>
44 #include <asm/kmap_types.h>
45 #include <asm/uaccess.h>
49 #define AIO_RING_MAGIC 0xa10a10a1
50 #define AIO_RING_COMPAT_FEATURES 1
51 #define AIO_RING_INCOMPAT_FEATURES 0
53 unsigned id
; /* kernel internal index number */
54 unsigned nr
; /* number of io_events */
55 unsigned head
; /* Written to by userland or under ring_lock
56 * mutex by aio_read_events_ring(). */
60 unsigned compat_features
;
61 unsigned incompat_features
;
62 unsigned header_length
; /* size of aio_ring */
65 struct io_event io_events
[0];
66 }; /* 128 bytes + ring size */
68 #define AIO_RING_PAGES 8
73 struct kioctx
*table
[];
77 unsigned reqs_available
;
81 struct percpu_ref users
;
84 struct percpu_ref reqs
;
86 unsigned long user_id
;
88 struct __percpu kioctx_cpu
*cpu
;
91 * For percpu reqs_available, number of slots we move to/from global
96 * This is what userspace passed to io_setup(), it's not used for
97 * anything but counting against the global max_reqs quota.
99 * The real limit is nr_events - 1, which will be larger (see
104 /* Size of ringbuffer, in units of struct io_event */
107 unsigned long mmap_base
;
108 unsigned long mmap_size
;
110 struct page
**ring_pages
;
113 struct work_struct free_work
;
116 * signals when all in-flight requests are done
118 struct completion
*requests_done
;
122 * This counts the number of available slots in the ringbuffer,
123 * so we avoid overflowing it: it's decremented (if positive)
124 * when allocating a kiocb and incremented when the resulting
125 * io_event is pulled off the ringbuffer.
127 * We batch accesses to it with a percpu version.
129 atomic_t reqs_available
;
130 } ____cacheline_aligned_in_smp
;
134 struct list_head active_reqs
; /* used for cancellation */
135 } ____cacheline_aligned_in_smp
;
138 struct mutex ring_lock
;
139 wait_queue_head_t wait
;
140 } ____cacheline_aligned_in_smp
;
144 unsigned completed_events
;
145 spinlock_t completion_lock
;
146 } ____cacheline_aligned_in_smp
;
148 struct page
*internal_pages
[AIO_RING_PAGES
];
149 struct file
*aio_ring_file
;
154 /*------ sysctl variables----*/
155 static DEFINE_SPINLOCK(aio_nr_lock
);
156 unsigned long aio_nr
; /* current system wide number of aio requests */
157 unsigned long aio_max_nr
= 0x10000; /* system wide maximum number of aio requests */
158 /*----end sysctl variables---*/
160 static struct kmem_cache
*kiocb_cachep
;
161 static struct kmem_cache
*kioctx_cachep
;
163 static struct vfsmount
*aio_mnt
;
165 static const struct file_operations aio_ring_fops
;
166 static const struct address_space_operations aio_ctx_aops
;
168 /* Backing dev info for aio fs.
169 * -no dirty page accounting or writeback happens
171 static struct backing_dev_info aio_fs_backing_dev_info
= {
174 .capabilities
= BDI_CAP_NO_ACCT_AND_WRITEBACK
| BDI_CAP_MAP_COPY
,
177 static struct file
*aio_private_file(struct kioctx
*ctx
, loff_t nr_pages
)
179 struct qstr
this = QSTR_INIT("[aio]", 5);
182 struct inode
*inode
= alloc_anon_inode(aio_mnt
->mnt_sb
);
184 return ERR_CAST(inode
);
186 inode
->i_mapping
->a_ops
= &aio_ctx_aops
;
187 inode
->i_mapping
->private_data
= ctx
;
188 inode
->i_mapping
->backing_dev_info
= &aio_fs_backing_dev_info
;
189 inode
->i_size
= PAGE_SIZE
* nr_pages
;
191 path
.dentry
= d_alloc_pseudo(aio_mnt
->mnt_sb
, &this);
194 return ERR_PTR(-ENOMEM
);
196 path
.mnt
= mntget(aio_mnt
);
198 d_instantiate(path
.dentry
, inode
);
199 file
= alloc_file(&path
, FMODE_READ
| FMODE_WRITE
, &aio_ring_fops
);
205 file
->f_flags
= O_RDWR
;
209 static struct dentry
*aio_mount(struct file_system_type
*fs_type
,
210 int flags
, const char *dev_name
, void *data
)
212 static const struct dentry_operations ops
= {
213 .d_dname
= simple_dname
,
215 return mount_pseudo(fs_type
, "aio:", NULL
, &ops
, AIO_RING_MAGIC
);
219 * Creates the slab caches used by the aio routines, panic on
220 * failure as this is done early during the boot sequence.
222 static int __init
aio_setup(void)
224 static struct file_system_type aio_fs
= {
227 .kill_sb
= kill_anon_super
,
229 aio_mnt
= kern_mount(&aio_fs
);
231 panic("Failed to create aio fs mount.");
233 if (bdi_init(&aio_fs_backing_dev_info
))
234 panic("Failed to init aio fs backing dev info.");
236 kiocb_cachep
= KMEM_CACHE(kiocb
, SLAB_HWCACHE_ALIGN
|SLAB_PANIC
);
237 kioctx_cachep
= KMEM_CACHE(kioctx
,SLAB_HWCACHE_ALIGN
|SLAB_PANIC
);
239 pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page
));
243 __initcall(aio_setup
);
245 static void put_aio_ring_file(struct kioctx
*ctx
)
247 struct file
*aio_ring_file
= ctx
->aio_ring_file
;
249 truncate_setsize(aio_ring_file
->f_inode
, 0);
251 /* Prevent further access to the kioctx from migratepages */
252 spin_lock(&aio_ring_file
->f_inode
->i_mapping
->private_lock
);
253 aio_ring_file
->f_inode
->i_mapping
->private_data
= NULL
;
254 ctx
->aio_ring_file
= NULL
;
255 spin_unlock(&aio_ring_file
->f_inode
->i_mapping
->private_lock
);
261 static void aio_free_ring(struct kioctx
*ctx
)
265 /* Disconnect the kiotx from the ring file. This prevents future
266 * accesses to the kioctx from page migration.
268 put_aio_ring_file(ctx
);
270 for (i
= 0; i
< ctx
->nr_pages
; i
++) {
272 pr_debug("pid(%d) [%d] page->count=%d\n", current
->pid
, i
,
273 page_count(ctx
->ring_pages
[i
]));
274 page
= ctx
->ring_pages
[i
];
277 ctx
->ring_pages
[i
] = NULL
;
281 if (ctx
->ring_pages
&& ctx
->ring_pages
!= ctx
->internal_pages
) {
282 kfree(ctx
->ring_pages
);
283 ctx
->ring_pages
= NULL
;
287 static int aio_ring_mmap(struct file
*file
, struct vm_area_struct
*vma
)
289 vma
->vm_flags
|= VM_DONTEXPAND
;
290 vma
->vm_ops
= &generic_file_vm_ops
;
294 static void aio_ring_remap(struct file
*file
, struct vm_area_struct
*vma
)
296 struct mm_struct
*mm
= vma
->vm_mm
;
297 struct kioctx_table
*table
;
300 spin_lock(&mm
->ioctx_lock
);
302 table
= rcu_dereference(mm
->ioctx_table
);
303 for (i
= 0; i
< table
->nr
; i
++) {
306 ctx
= table
->table
[i
];
307 if (ctx
&& ctx
->aio_ring_file
== file
) {
308 ctx
->user_id
= ctx
->mmap_base
= vma
->vm_start
;
314 spin_unlock(&mm
->ioctx_lock
);
317 static const struct file_operations aio_ring_fops
= {
318 .mmap
= aio_ring_mmap
,
319 .mremap
= aio_ring_remap
,
322 #if IS_ENABLED(CONFIG_MIGRATION)
323 static int aio_migratepage(struct address_space
*mapping
, struct page
*new,
324 struct page
*old
, enum migrate_mode mode
)
333 /* mapping->private_lock here protects against the kioctx teardown. */
334 spin_lock(&mapping
->private_lock
);
335 ctx
= mapping
->private_data
;
341 /* The ring_lock mutex. The prevents aio_read_events() from writing
342 * to the ring's head, and prevents page migration from mucking in
343 * a partially initialized kiotx.
345 if (!mutex_trylock(&ctx
->ring_lock
)) {
351 if (idx
< (pgoff_t
)ctx
->nr_pages
) {
352 /* Make sure the old page hasn't already been changed */
353 if (ctx
->ring_pages
[idx
] != old
)
361 /* Writeback must be complete */
362 BUG_ON(PageWriteback(old
));
365 rc
= migrate_page_move_mapping(mapping
, new, old
, NULL
, mode
, 1);
366 if (rc
!= MIGRATEPAGE_SUCCESS
) {
371 /* Take completion_lock to prevent other writes to the ring buffer
372 * while the old page is copied to the new. This prevents new
373 * events from being lost.
375 spin_lock_irqsave(&ctx
->completion_lock
, flags
);
376 migrate_page_copy(new, old
);
377 BUG_ON(ctx
->ring_pages
[idx
] != old
);
378 ctx
->ring_pages
[idx
] = new;
379 spin_unlock_irqrestore(&ctx
->completion_lock
, flags
);
381 /* The old page is no longer accessible. */
385 mutex_unlock(&ctx
->ring_lock
);
387 spin_unlock(&mapping
->private_lock
);
392 static const struct address_space_operations aio_ctx_aops
= {
393 .set_page_dirty
= __set_page_dirty_no_writeback
,
394 #if IS_ENABLED(CONFIG_MIGRATION)
395 .migratepage
= aio_migratepage
,
399 static int aio_setup_ring(struct kioctx
*ctx
)
401 struct aio_ring
*ring
;
402 unsigned nr_events
= ctx
->max_reqs
;
403 struct mm_struct
*mm
= current
->mm
;
404 unsigned long size
, unused
;
409 /* Compensate for the ring buffer's head/tail overlap entry */
410 nr_events
+= 2; /* 1 is required, 2 for good luck */
412 size
= sizeof(struct aio_ring
);
413 size
+= sizeof(struct io_event
) * nr_events
;
415 nr_pages
= PFN_UP(size
);
419 file
= aio_private_file(ctx
, nr_pages
);
421 ctx
->aio_ring_file
= NULL
;
425 ctx
->aio_ring_file
= file
;
426 nr_events
= (PAGE_SIZE
* nr_pages
- sizeof(struct aio_ring
))
427 / sizeof(struct io_event
);
429 ctx
->ring_pages
= ctx
->internal_pages
;
430 if (nr_pages
> AIO_RING_PAGES
) {
431 ctx
->ring_pages
= kcalloc(nr_pages
, sizeof(struct page
*),
433 if (!ctx
->ring_pages
) {
434 put_aio_ring_file(ctx
);
439 for (i
= 0; i
< nr_pages
; i
++) {
441 page
= find_or_create_page(file
->f_inode
->i_mapping
,
442 i
, GFP_HIGHUSER
| __GFP_ZERO
);
445 pr_debug("pid(%d) page[%d]->count=%d\n",
446 current
->pid
, i
, page_count(page
));
447 SetPageUptodate(page
);
450 ctx
->ring_pages
[i
] = page
;
454 if (unlikely(i
!= nr_pages
)) {
459 ctx
->mmap_size
= nr_pages
* PAGE_SIZE
;
460 pr_debug("attempting mmap of %lu bytes\n", ctx
->mmap_size
);
462 down_write(&mm
->mmap_sem
);
463 ctx
->mmap_base
= do_mmap_pgoff(ctx
->aio_ring_file
, 0, ctx
->mmap_size
,
464 PROT_READ
| PROT_WRITE
,
465 MAP_SHARED
, 0, &unused
);
466 up_write(&mm
->mmap_sem
);
467 if (IS_ERR((void *)ctx
->mmap_base
)) {
473 pr_debug("mmap address: 0x%08lx\n", ctx
->mmap_base
);
475 ctx
->user_id
= ctx
->mmap_base
;
476 ctx
->nr_events
= nr_events
; /* trusted copy */
478 ring
= kmap_atomic(ctx
->ring_pages
[0]);
479 ring
->nr
= nr_events
; /* user copy */
481 ring
->head
= ring
->tail
= 0;
482 ring
->magic
= AIO_RING_MAGIC
;
483 ring
->compat_features
= AIO_RING_COMPAT_FEATURES
;
484 ring
->incompat_features
= AIO_RING_INCOMPAT_FEATURES
;
485 ring
->header_length
= sizeof(struct aio_ring
);
487 flush_dcache_page(ctx
->ring_pages
[0]);
492 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
493 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
494 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
496 void kiocb_set_cancel_fn(struct kiocb
*req
, kiocb_cancel_fn
*cancel
)
498 struct kioctx
*ctx
= req
->ki_ctx
;
501 spin_lock_irqsave(&ctx
->ctx_lock
, flags
);
503 if (!req
->ki_list
.next
)
504 list_add(&req
->ki_list
, &ctx
->active_reqs
);
506 req
->ki_cancel
= cancel
;
508 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
510 EXPORT_SYMBOL(kiocb_set_cancel_fn
);
512 static int kiocb_cancel(struct kiocb
*kiocb
)
514 kiocb_cancel_fn
*old
, *cancel
;
517 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
518 * actually has a cancel function, hence the cmpxchg()
521 cancel
= ACCESS_ONCE(kiocb
->ki_cancel
);
523 if (!cancel
|| cancel
== KIOCB_CANCELLED
)
527 cancel
= cmpxchg(&kiocb
->ki_cancel
, old
, KIOCB_CANCELLED
);
528 } while (cancel
!= old
);
530 return cancel(kiocb
);
533 static void free_ioctx(struct work_struct
*work
)
535 struct kioctx
*ctx
= container_of(work
, struct kioctx
, free_work
);
537 pr_debug("freeing %p\n", ctx
);
540 free_percpu(ctx
->cpu
);
541 percpu_ref_exit(&ctx
->reqs
);
542 percpu_ref_exit(&ctx
->users
);
543 kmem_cache_free(kioctx_cachep
, ctx
);
546 static void free_ioctx_reqs(struct percpu_ref
*ref
)
548 struct kioctx
*ctx
= container_of(ref
, struct kioctx
, reqs
);
550 /* At this point we know that there are no any in-flight requests */
551 if (ctx
->requests_done
)
552 complete(ctx
->requests_done
);
554 INIT_WORK(&ctx
->free_work
, free_ioctx
);
555 schedule_work(&ctx
->free_work
);
559 * When this function runs, the kioctx has been removed from the "hash table"
560 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
561 * now it's safe to cancel any that need to be.
563 static void free_ioctx_users(struct percpu_ref
*ref
)
565 struct kioctx
*ctx
= container_of(ref
, struct kioctx
, users
);
568 spin_lock_irq(&ctx
->ctx_lock
);
570 while (!list_empty(&ctx
->active_reqs
)) {
571 req
= list_first_entry(&ctx
->active_reqs
,
572 struct kiocb
, ki_list
);
574 list_del_init(&req
->ki_list
);
578 spin_unlock_irq(&ctx
->ctx_lock
);
580 percpu_ref_kill(&ctx
->reqs
);
581 percpu_ref_put(&ctx
->reqs
);
584 static int ioctx_add_table(struct kioctx
*ctx
, struct mm_struct
*mm
)
587 struct kioctx_table
*table
, *old
;
588 struct aio_ring
*ring
;
590 spin_lock(&mm
->ioctx_lock
);
591 table
= rcu_dereference_raw(mm
->ioctx_table
);
595 for (i
= 0; i
< table
->nr
; i
++)
596 if (!table
->table
[i
]) {
598 table
->table
[i
] = ctx
;
599 spin_unlock(&mm
->ioctx_lock
);
601 /* While kioctx setup is in progress,
602 * we are protected from page migration
603 * changes ring_pages by ->ring_lock.
605 ring
= kmap_atomic(ctx
->ring_pages
[0]);
611 new_nr
= (table
? table
->nr
: 1) * 4;
612 spin_unlock(&mm
->ioctx_lock
);
614 table
= kzalloc(sizeof(*table
) + sizeof(struct kioctx
*) *
621 spin_lock(&mm
->ioctx_lock
);
622 old
= rcu_dereference_raw(mm
->ioctx_table
);
625 rcu_assign_pointer(mm
->ioctx_table
, table
);
626 } else if (table
->nr
> old
->nr
) {
627 memcpy(table
->table
, old
->table
,
628 old
->nr
* sizeof(struct kioctx
*));
630 rcu_assign_pointer(mm
->ioctx_table
, table
);
639 static void aio_nr_sub(unsigned nr
)
641 spin_lock(&aio_nr_lock
);
642 if (WARN_ON(aio_nr
- nr
> aio_nr
))
646 spin_unlock(&aio_nr_lock
);
650 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
652 static struct kioctx
*ioctx_alloc(unsigned nr_events
)
654 struct mm_struct
*mm
= current
->mm
;
659 * We keep track of the number of available ringbuffer slots, to prevent
660 * overflow (reqs_available), and we also use percpu counters for this.
662 * So since up to half the slots might be on other cpu's percpu counters
663 * and unavailable, double nr_events so userspace sees what they
664 * expected: additionally, we move req_batch slots to/from percpu
665 * counters at a time, so make sure that isn't 0:
667 nr_events
= max(nr_events
, num_possible_cpus() * 4);
670 /* Prevent overflows */
671 if ((nr_events
> (0x10000000U
/ sizeof(struct io_event
))) ||
672 (nr_events
> (0x10000000U
/ sizeof(struct kiocb
)))) {
673 pr_debug("ENOMEM: nr_events too high\n");
674 return ERR_PTR(-EINVAL
);
677 if (!nr_events
|| (unsigned long)nr_events
> (aio_max_nr
* 2UL))
678 return ERR_PTR(-EAGAIN
);
680 ctx
= kmem_cache_zalloc(kioctx_cachep
, GFP_KERNEL
);
682 return ERR_PTR(-ENOMEM
);
684 ctx
->max_reqs
= nr_events
;
686 spin_lock_init(&ctx
->ctx_lock
);
687 spin_lock_init(&ctx
->completion_lock
);
688 mutex_init(&ctx
->ring_lock
);
689 /* Protect against page migration throughout kiotx setup by keeping
690 * the ring_lock mutex held until setup is complete. */
691 mutex_lock(&ctx
->ring_lock
);
692 init_waitqueue_head(&ctx
->wait
);
694 INIT_LIST_HEAD(&ctx
->active_reqs
);
696 if (percpu_ref_init(&ctx
->users
, free_ioctx_users
, 0, GFP_KERNEL
))
699 if (percpu_ref_init(&ctx
->reqs
, free_ioctx_reqs
, 0, GFP_KERNEL
))
702 ctx
->cpu
= alloc_percpu(struct kioctx_cpu
);
706 err
= aio_setup_ring(ctx
);
710 atomic_set(&ctx
->reqs_available
, ctx
->nr_events
- 1);
711 ctx
->req_batch
= (ctx
->nr_events
- 1) / (num_possible_cpus() * 4);
712 if (ctx
->req_batch
< 1)
715 /* limit the number of system wide aios */
716 spin_lock(&aio_nr_lock
);
717 if (aio_nr
+ nr_events
> (aio_max_nr
* 2UL) ||
718 aio_nr
+ nr_events
< aio_nr
) {
719 spin_unlock(&aio_nr_lock
);
723 aio_nr
+= ctx
->max_reqs
;
724 spin_unlock(&aio_nr_lock
);
726 percpu_ref_get(&ctx
->users
); /* io_setup() will drop this ref */
727 percpu_ref_get(&ctx
->reqs
); /* free_ioctx_users() will drop this */
729 err
= ioctx_add_table(ctx
, mm
);
733 /* Release the ring_lock mutex now that all setup is complete. */
734 mutex_unlock(&ctx
->ring_lock
);
736 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
737 ctx
, ctx
->user_id
, mm
, ctx
->nr_events
);
741 aio_nr_sub(ctx
->max_reqs
);
745 mutex_unlock(&ctx
->ring_lock
);
746 free_percpu(ctx
->cpu
);
747 percpu_ref_exit(&ctx
->reqs
);
748 percpu_ref_exit(&ctx
->users
);
749 kmem_cache_free(kioctx_cachep
, ctx
);
750 pr_debug("error allocating ioctx %d\n", err
);
755 * Cancels all outstanding aio requests on an aio context. Used
756 * when the processes owning a context have all exited to encourage
757 * the rapid destruction of the kioctx.
759 static int kill_ioctx(struct mm_struct
*mm
, struct kioctx
*ctx
,
760 struct completion
*requests_done
)
762 struct kioctx_table
*table
;
764 if (atomic_xchg(&ctx
->dead
, 1))
768 spin_lock(&mm
->ioctx_lock
);
769 table
= rcu_dereference_raw(mm
->ioctx_table
);
770 WARN_ON(ctx
!= table
->table
[ctx
->id
]);
771 table
->table
[ctx
->id
] = NULL
;
772 spin_unlock(&mm
->ioctx_lock
);
774 /* percpu_ref_kill() will do the necessary call_rcu() */
775 wake_up_all(&ctx
->wait
);
778 * It'd be more correct to do this in free_ioctx(), after all
779 * the outstanding kiocbs have finished - but by then io_destroy
780 * has already returned, so io_setup() could potentially return
781 * -EAGAIN with no ioctxs actually in use (as far as userspace
784 aio_nr_sub(ctx
->max_reqs
);
787 vm_munmap(ctx
->mmap_base
, ctx
->mmap_size
);
789 ctx
->requests_done
= requests_done
;
790 percpu_ref_kill(&ctx
->users
);
794 /* wait_on_sync_kiocb:
795 * Waits on the given sync kiocb to complete.
797 ssize_t
wait_on_sync_kiocb(struct kiocb
*req
)
799 while (!req
->ki_ctx
) {
800 set_current_state(TASK_UNINTERRUPTIBLE
);
805 __set_current_state(TASK_RUNNING
);
806 return req
->ki_user_data
;
808 EXPORT_SYMBOL(wait_on_sync_kiocb
);
811 * exit_aio: called when the last user of mm goes away. At this point, there is
812 * no way for any new requests to be submited or any of the io_* syscalls to be
813 * called on the context.
815 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
818 void exit_aio(struct mm_struct
*mm
)
820 struct kioctx_table
*table
= rcu_dereference_raw(mm
->ioctx_table
);
826 for (i
= 0; i
< table
->nr
; ++i
) {
827 struct kioctx
*ctx
= table
->table
[i
];
828 struct completion requests_done
=
829 COMPLETION_INITIALIZER_ONSTACK(requests_done
);
834 * We don't need to bother with munmap() here - exit_mmap(mm)
835 * is coming and it'll unmap everything. And we simply can't,
836 * this is not necessarily our ->mm.
837 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
838 * that it needs to unmap the area, just set it to 0.
841 kill_ioctx(mm
, ctx
, &requests_done
);
843 /* Wait until all IO for the context are done. */
844 wait_for_completion(&requests_done
);
847 RCU_INIT_POINTER(mm
->ioctx_table
, NULL
);
851 static void put_reqs_available(struct kioctx
*ctx
, unsigned nr
)
853 struct kioctx_cpu
*kcpu
;
856 local_irq_save(flags
);
857 kcpu
= this_cpu_ptr(ctx
->cpu
);
858 kcpu
->reqs_available
+= nr
;
860 while (kcpu
->reqs_available
>= ctx
->req_batch
* 2) {
861 kcpu
->reqs_available
-= ctx
->req_batch
;
862 atomic_add(ctx
->req_batch
, &ctx
->reqs_available
);
865 local_irq_restore(flags
);
868 static bool get_reqs_available(struct kioctx
*ctx
)
870 struct kioctx_cpu
*kcpu
;
874 local_irq_save(flags
);
875 kcpu
= this_cpu_ptr(ctx
->cpu
);
876 if (!kcpu
->reqs_available
) {
877 int old
, avail
= atomic_read(&ctx
->reqs_available
);
880 if (avail
< ctx
->req_batch
)
884 avail
= atomic_cmpxchg(&ctx
->reqs_available
,
885 avail
, avail
- ctx
->req_batch
);
886 } while (avail
!= old
);
888 kcpu
->reqs_available
+= ctx
->req_batch
;
892 kcpu
->reqs_available
--;
894 local_irq_restore(flags
);
898 /* refill_reqs_available
899 * Updates the reqs_available reference counts used for tracking the
900 * number of free slots in the completion ring. This can be called
901 * from aio_complete() (to optimistically update reqs_available) or
902 * from aio_get_req() (the we're out of events case). It must be
903 * called holding ctx->completion_lock.
905 static void refill_reqs_available(struct kioctx
*ctx
, unsigned head
,
908 unsigned events_in_ring
, completed
;
910 /* Clamp head since userland can write to it. */
911 head
%= ctx
->nr_events
;
913 events_in_ring
= tail
- head
;
915 events_in_ring
= ctx
->nr_events
- (head
- tail
);
917 completed
= ctx
->completed_events
;
918 if (events_in_ring
< completed
)
919 completed
-= events_in_ring
;
926 ctx
->completed_events
-= completed
;
927 put_reqs_available(ctx
, completed
);
930 /* user_refill_reqs_available
931 * Called to refill reqs_available when aio_get_req() encounters an
932 * out of space in the completion ring.
934 static void user_refill_reqs_available(struct kioctx
*ctx
)
936 spin_lock_irq(&ctx
->completion_lock
);
937 if (ctx
->completed_events
) {
938 struct aio_ring
*ring
;
941 /* Access of ring->head may race with aio_read_events_ring()
942 * here, but that's okay since whether we read the old version
943 * or the new version, and either will be valid. The important
944 * part is that head cannot pass tail since we prevent
945 * aio_complete() from updating tail by holding
946 * ctx->completion_lock. Even if head is invalid, the check
947 * against ctx->completed_events below will make sure we do the
950 ring
= kmap_atomic(ctx
->ring_pages
[0]);
954 refill_reqs_available(ctx
, head
, ctx
->tail
);
957 spin_unlock_irq(&ctx
->completion_lock
);
961 * Allocate a slot for an aio request.
962 * Returns NULL if no requests are free.
964 static inline struct kiocb
*aio_get_req(struct kioctx
*ctx
)
968 if (!get_reqs_available(ctx
)) {
969 user_refill_reqs_available(ctx
);
970 if (!get_reqs_available(ctx
))
974 req
= kmem_cache_alloc(kiocb_cachep
, GFP_KERNEL
|__GFP_ZERO
);
978 percpu_ref_get(&ctx
->reqs
);
983 put_reqs_available(ctx
, 1);
987 static void kiocb_free(struct kiocb
*req
)
991 if (req
->ki_eventfd
!= NULL
)
992 eventfd_ctx_put(req
->ki_eventfd
);
993 kmem_cache_free(kiocb_cachep
, req
);
996 static struct kioctx
*lookup_ioctx(unsigned long ctx_id
)
998 struct aio_ring __user
*ring
= (void __user
*)ctx_id
;
999 struct mm_struct
*mm
= current
->mm
;
1000 struct kioctx
*ctx
, *ret
= NULL
;
1001 struct kioctx_table
*table
;
1004 if (get_user(id
, &ring
->id
))
1008 table
= rcu_dereference(mm
->ioctx_table
);
1010 if (!table
|| id
>= table
->nr
)
1013 ctx
= table
->table
[id
];
1014 if (ctx
&& ctx
->user_id
== ctx_id
) {
1015 percpu_ref_get(&ctx
->users
);
1024 * Called when the io request on the given iocb is complete.
1026 void aio_complete(struct kiocb
*iocb
, long res
, long res2
)
1028 struct kioctx
*ctx
= iocb
->ki_ctx
;
1029 struct aio_ring
*ring
;
1030 struct io_event
*ev_page
, *event
;
1031 unsigned tail
, pos
, head
;
1032 unsigned long flags
;
1035 * Special case handling for sync iocbs:
1036 * - events go directly into the iocb for fast handling
1037 * - the sync task with the iocb in its stack holds the single iocb
1038 * ref, no other paths have a way to get another ref
1039 * - the sync task helpfully left a reference to itself in the iocb
1041 if (is_sync_kiocb(iocb
)) {
1042 iocb
->ki_user_data
= res
;
1044 iocb
->ki_ctx
= ERR_PTR(-EXDEV
);
1045 wake_up_process(iocb
->ki_obj
.tsk
);
1049 if (iocb
->ki_list
.next
) {
1050 unsigned long flags
;
1052 spin_lock_irqsave(&ctx
->ctx_lock
, flags
);
1053 list_del(&iocb
->ki_list
);
1054 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
1058 * Add a completion event to the ring buffer. Must be done holding
1059 * ctx->completion_lock to prevent other code from messing with the tail
1060 * pointer since we might be called from irq context.
1062 spin_lock_irqsave(&ctx
->completion_lock
, flags
);
1065 pos
= tail
+ AIO_EVENTS_OFFSET
;
1067 if (++tail
>= ctx
->nr_events
)
1070 ev_page
= kmap_atomic(ctx
->ring_pages
[pos
/ AIO_EVENTS_PER_PAGE
]);
1071 event
= ev_page
+ pos
% AIO_EVENTS_PER_PAGE
;
1073 event
->obj
= (u64
)(unsigned long)iocb
->ki_obj
.user
;
1074 event
->data
= iocb
->ki_user_data
;
1078 kunmap_atomic(ev_page
);
1079 flush_dcache_page(ctx
->ring_pages
[pos
/ AIO_EVENTS_PER_PAGE
]);
1081 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
1082 ctx
, tail
, iocb
, iocb
->ki_obj
.user
, iocb
->ki_user_data
,
1085 /* after flagging the request as done, we
1086 * must never even look at it again
1088 smp_wmb(); /* make event visible before updating tail */
1092 ring
= kmap_atomic(ctx
->ring_pages
[0]);
1095 kunmap_atomic(ring
);
1096 flush_dcache_page(ctx
->ring_pages
[0]);
1098 ctx
->completed_events
++;
1099 if (ctx
->completed_events
> 1)
1100 refill_reqs_available(ctx
, head
, tail
);
1101 spin_unlock_irqrestore(&ctx
->completion_lock
, flags
);
1103 pr_debug("added to ring %p at [%u]\n", iocb
, tail
);
1106 * Check if the user asked us to deliver the result through an
1107 * eventfd. The eventfd_signal() function is safe to be called
1110 if (iocb
->ki_eventfd
!= NULL
)
1111 eventfd_signal(iocb
->ki_eventfd
, 1);
1113 /* everything turned out well, dispose of the aiocb. */
1117 * We have to order our ring_info tail store above and test
1118 * of the wait list below outside the wait lock. This is
1119 * like in wake_up_bit() where clearing a bit has to be
1120 * ordered with the unlocked test.
1124 if (waitqueue_active(&ctx
->wait
))
1125 wake_up(&ctx
->wait
);
1127 percpu_ref_put(&ctx
->reqs
);
1129 EXPORT_SYMBOL(aio_complete
);
1131 /* aio_read_events_ring
1132 * Pull an event off of the ioctx's event ring. Returns the number of
1135 static long aio_read_events_ring(struct kioctx
*ctx
,
1136 struct io_event __user
*event
, long nr
)
1138 struct aio_ring
*ring
;
1139 unsigned head
, tail
, pos
;
1143 mutex_lock(&ctx
->ring_lock
);
1145 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
1146 ring
= kmap_atomic(ctx
->ring_pages
[0]);
1149 kunmap_atomic(ring
);
1152 * Ensure that once we've read the current tail pointer, that
1153 * we also see the events that were stored up to the tail.
1157 pr_debug("h%u t%u m%u\n", head
, tail
, ctx
->nr_events
);
1162 head
%= ctx
->nr_events
;
1163 tail
%= ctx
->nr_events
;
1167 struct io_event
*ev
;
1170 avail
= (head
<= tail
? tail
: ctx
->nr_events
) - head
;
1174 avail
= min(avail
, nr
- ret
);
1175 avail
= min_t(long, avail
, AIO_EVENTS_PER_PAGE
-
1176 ((head
+ AIO_EVENTS_OFFSET
) % AIO_EVENTS_PER_PAGE
));
1178 pos
= head
+ AIO_EVENTS_OFFSET
;
1179 page
= ctx
->ring_pages
[pos
/ AIO_EVENTS_PER_PAGE
];
1180 pos
%= AIO_EVENTS_PER_PAGE
;
1183 copy_ret
= copy_to_user(event
+ ret
, ev
+ pos
,
1184 sizeof(*ev
) * avail
);
1187 if (unlikely(copy_ret
)) {
1194 head
%= ctx
->nr_events
;
1197 ring
= kmap_atomic(ctx
->ring_pages
[0]);
1199 kunmap_atomic(ring
);
1200 flush_dcache_page(ctx
->ring_pages
[0]);
1202 pr_debug("%li h%u t%u\n", ret
, head
, tail
);
1204 mutex_unlock(&ctx
->ring_lock
);
1209 static bool aio_read_events(struct kioctx
*ctx
, long min_nr
, long nr
,
1210 struct io_event __user
*event
, long *i
)
1212 long ret
= aio_read_events_ring(ctx
, event
+ *i
, nr
- *i
);
1217 if (unlikely(atomic_read(&ctx
->dead
)))
1223 return ret
< 0 || *i
>= min_nr
;
1226 static long read_events(struct kioctx
*ctx
, long min_nr
, long nr
,
1227 struct io_event __user
*event
,
1228 struct timespec __user
*timeout
)
1230 ktime_t until
= { .tv64
= KTIME_MAX
};
1236 if (unlikely(copy_from_user(&ts
, timeout
, sizeof(ts
))))
1239 until
= timespec_to_ktime(ts
);
1243 * Note that aio_read_events() is being called as the conditional - i.e.
1244 * we're calling it after prepare_to_wait() has set task state to
1245 * TASK_INTERRUPTIBLE.
1247 * But aio_read_events() can block, and if it blocks it's going to flip
1248 * the task state back to TASK_RUNNING.
1250 * This should be ok, provided it doesn't flip the state back to
1251 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1252 * will only happen if the mutex_lock() call blocks, and we then find
1253 * the ringbuffer empty. So in practice we should be ok, but it's
1254 * something to be aware of when touching this code.
1256 if (until
.tv64
== 0)
1257 aio_read_events(ctx
, min_nr
, nr
, event
, &ret
);
1259 wait_event_interruptible_hrtimeout(ctx
->wait
,
1260 aio_read_events(ctx
, min_nr
, nr
, event
, &ret
),
1263 if (!ret
&& signal_pending(current
))
1270 * Create an aio_context capable of receiving at least nr_events.
1271 * ctxp must not point to an aio_context that already exists, and
1272 * must be initialized to 0 prior to the call. On successful
1273 * creation of the aio_context, *ctxp is filled in with the resulting
1274 * handle. May fail with -EINVAL if *ctxp is not initialized,
1275 * if the specified nr_events exceeds internal limits. May fail
1276 * with -EAGAIN if the specified nr_events exceeds the user's limit
1277 * of available events. May fail with -ENOMEM if insufficient kernel
1278 * resources are available. May fail with -EFAULT if an invalid
1279 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1282 SYSCALL_DEFINE2(io_setup
, unsigned, nr_events
, aio_context_t __user
*, ctxp
)
1284 struct kioctx
*ioctx
= NULL
;
1288 ret
= get_user(ctx
, ctxp
);
1293 if (unlikely(ctx
|| nr_events
== 0)) {
1294 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1299 ioctx
= ioctx_alloc(nr_events
);
1300 ret
= PTR_ERR(ioctx
);
1301 if (!IS_ERR(ioctx
)) {
1302 ret
= put_user(ioctx
->user_id
, ctxp
);
1304 kill_ioctx(current
->mm
, ioctx
, NULL
);
1305 percpu_ref_put(&ioctx
->users
);
1313 * Destroy the aio_context specified. May cancel any outstanding
1314 * AIOs and block on completion. Will fail with -ENOSYS if not
1315 * implemented. May fail with -EINVAL if the context pointed to
1318 SYSCALL_DEFINE1(io_destroy
, aio_context_t
, ctx
)
1320 struct kioctx
*ioctx
= lookup_ioctx(ctx
);
1321 if (likely(NULL
!= ioctx
)) {
1322 struct completion requests_done
=
1323 COMPLETION_INITIALIZER_ONSTACK(requests_done
);
1326 /* Pass requests_done to kill_ioctx() where it can be set
1327 * in a thread-safe way. If we try to set it here then we have
1328 * a race condition if two io_destroy() called simultaneously.
1330 ret
= kill_ioctx(current
->mm
, ioctx
, &requests_done
);
1331 percpu_ref_put(&ioctx
->users
);
1333 /* Wait until all IO for the context are done. Otherwise kernel
1334 * keep using user-space buffers even if user thinks the context
1338 wait_for_completion(&requests_done
);
1342 pr_debug("EINVAL: io_destroy: invalid context id\n");
1346 typedef ssize_t (aio_rw_op
)(struct kiocb
*, const struct iovec
*,
1347 unsigned long, loff_t
);
1348 typedef ssize_t (rw_iter_op
)(struct kiocb
*, struct iov_iter
*);
1350 static ssize_t
aio_setup_vectored_rw(struct kiocb
*kiocb
,
1351 int rw
, char __user
*buf
,
1352 unsigned long *nr_segs
,
1353 struct iovec
**iovec
,
1358 *nr_segs
= kiocb
->ki_nbytes
;
1360 #ifdef CONFIG_COMPAT
1362 ret
= compat_rw_copy_check_uvector(rw
,
1363 (struct compat_iovec __user
*)buf
,
1364 *nr_segs
, UIO_FASTIOV
, *iovec
, iovec
);
1367 ret
= rw_copy_check_uvector(rw
,
1368 (struct iovec __user
*)buf
,
1369 *nr_segs
, UIO_FASTIOV
, *iovec
, iovec
);
1373 /* ki_nbytes now reflect bytes instead of segs */
1374 kiocb
->ki_nbytes
= ret
;
1378 static ssize_t
aio_setup_single_vector(struct kiocb
*kiocb
,
1379 int rw
, char __user
*buf
,
1380 unsigned long *nr_segs
,
1381 struct iovec
*iovec
)
1383 if (unlikely(!access_ok(!rw
, buf
, kiocb
->ki_nbytes
)))
1386 iovec
->iov_base
= buf
;
1387 iovec
->iov_len
= kiocb
->ki_nbytes
;
1394 * Performs the initial checks and io submission.
1396 static ssize_t
aio_run_iocb(struct kiocb
*req
, unsigned opcode
,
1397 char __user
*buf
, bool compat
)
1399 struct file
*file
= req
->ki_filp
;
1401 unsigned long nr_segs
;
1405 rw_iter_op
*iter_op
;
1406 struct iovec inline_vecs
[UIO_FASTIOV
], *iovec
= inline_vecs
;
1407 struct iov_iter iter
;
1410 case IOCB_CMD_PREAD
:
1411 case IOCB_CMD_PREADV
:
1414 rw_op
= file
->f_op
->aio_read
;
1415 iter_op
= file
->f_op
->read_iter
;
1418 case IOCB_CMD_PWRITE
:
1419 case IOCB_CMD_PWRITEV
:
1422 rw_op
= file
->f_op
->aio_write
;
1423 iter_op
= file
->f_op
->write_iter
;
1426 if (unlikely(!(file
->f_mode
& mode
)))
1429 if (!rw_op
&& !iter_op
)
1432 ret
= (opcode
== IOCB_CMD_PREADV
||
1433 opcode
== IOCB_CMD_PWRITEV
)
1434 ? aio_setup_vectored_rw(req
, rw
, buf
, &nr_segs
,
1436 : aio_setup_single_vector(req
, rw
, buf
, &nr_segs
,
1439 ret
= rw_verify_area(rw
, file
, &req
->ki_pos
, req
->ki_nbytes
);
1441 if (iovec
!= inline_vecs
)
1446 req
->ki_nbytes
= ret
;
1448 /* XXX: move/kill - rw_verify_area()? */
1449 /* This matches the pread()/pwrite() logic */
1450 if (req
->ki_pos
< 0) {
1456 file_start_write(file
);
1459 iov_iter_init(&iter
, rw
, iovec
, nr_segs
, req
->ki_nbytes
);
1460 ret
= iter_op(req
, &iter
);
1462 ret
= rw_op(req
, iovec
, nr_segs
, req
->ki_pos
);
1466 file_end_write(file
);
1469 case IOCB_CMD_FDSYNC
:
1470 if (!file
->f_op
->aio_fsync
)
1473 ret
= file
->f_op
->aio_fsync(req
, 1);
1476 case IOCB_CMD_FSYNC
:
1477 if (!file
->f_op
->aio_fsync
)
1480 ret
= file
->f_op
->aio_fsync(req
, 0);
1484 pr_debug("EINVAL: no operation provided\n");
1488 if (iovec
!= inline_vecs
)
1491 if (ret
!= -EIOCBQUEUED
) {
1493 * There's no easy way to restart the syscall since other AIO's
1494 * may be already running. Just fail this IO with EINTR.
1496 if (unlikely(ret
== -ERESTARTSYS
|| ret
== -ERESTARTNOINTR
||
1497 ret
== -ERESTARTNOHAND
||
1498 ret
== -ERESTART_RESTARTBLOCK
))
1500 aio_complete(req
, ret
, 0);
1506 static int io_submit_one(struct kioctx
*ctx
, struct iocb __user
*user_iocb
,
1507 struct iocb
*iocb
, bool compat
)
1512 /* enforce forwards compatibility on users */
1513 if (unlikely(iocb
->aio_reserved1
|| iocb
->aio_reserved2
)) {
1514 pr_debug("EINVAL: reserve field set\n");
1518 /* prevent overflows */
1520 (iocb
->aio_buf
!= (unsigned long)iocb
->aio_buf
) ||
1521 (iocb
->aio_nbytes
!= (size_t)iocb
->aio_nbytes
) ||
1522 ((ssize_t
)iocb
->aio_nbytes
< 0)
1524 pr_debug("EINVAL: io_submit: overflow check\n");
1528 req
= aio_get_req(ctx
);
1532 req
->ki_filp
= fget(iocb
->aio_fildes
);
1533 if (unlikely(!req
->ki_filp
)) {
1538 if (iocb
->aio_flags
& IOCB_FLAG_RESFD
) {
1540 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1541 * instance of the file* now. The file descriptor must be
1542 * an eventfd() fd, and will be signaled for each completed
1543 * event using the eventfd_signal() function.
1545 req
->ki_eventfd
= eventfd_ctx_fdget((int) iocb
->aio_resfd
);
1546 if (IS_ERR(req
->ki_eventfd
)) {
1547 ret
= PTR_ERR(req
->ki_eventfd
);
1548 req
->ki_eventfd
= NULL
;
1553 ret
= put_user(KIOCB_KEY
, &user_iocb
->aio_key
);
1554 if (unlikely(ret
)) {
1555 pr_debug("EFAULT: aio_key\n");
1559 req
->ki_obj
.user
= user_iocb
;
1560 req
->ki_user_data
= iocb
->aio_data
;
1561 req
->ki_pos
= iocb
->aio_offset
;
1562 req
->ki_nbytes
= iocb
->aio_nbytes
;
1564 ret
= aio_run_iocb(req
, iocb
->aio_lio_opcode
,
1565 (char __user
*)(unsigned long)iocb
->aio_buf
,
1572 put_reqs_available(ctx
, 1);
1573 percpu_ref_put(&ctx
->reqs
);
1578 long do_io_submit(aio_context_t ctx_id
, long nr
,
1579 struct iocb __user
*__user
*iocbpp
, bool compat
)
1584 struct blk_plug plug
;
1586 if (unlikely(nr
< 0))
1589 if (unlikely(nr
> LONG_MAX
/sizeof(*iocbpp
)))
1590 nr
= LONG_MAX
/sizeof(*iocbpp
);
1592 if (unlikely(!access_ok(VERIFY_READ
, iocbpp
, (nr
*sizeof(*iocbpp
)))))
1595 ctx
= lookup_ioctx(ctx_id
);
1596 if (unlikely(!ctx
)) {
1597 pr_debug("EINVAL: invalid context id\n");
1601 blk_start_plug(&plug
);
1604 * AKPM: should this return a partial result if some of the IOs were
1605 * successfully submitted?
1607 for (i
=0; i
<nr
; i
++) {
1608 struct iocb __user
*user_iocb
;
1611 if (unlikely(__get_user(user_iocb
, iocbpp
+ i
))) {
1616 if (unlikely(copy_from_user(&tmp
, user_iocb
, sizeof(tmp
)))) {
1621 ret
= io_submit_one(ctx
, user_iocb
, &tmp
, compat
);
1625 blk_finish_plug(&plug
);
1627 percpu_ref_put(&ctx
->users
);
1632 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1633 * the number of iocbs queued. May return -EINVAL if the aio_context
1634 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1635 * *iocbpp[0] is not properly initialized, if the operation specified
1636 * is invalid for the file descriptor in the iocb. May fail with
1637 * -EFAULT if any of the data structures point to invalid data. May
1638 * fail with -EBADF if the file descriptor specified in the first
1639 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1640 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1641 * fail with -ENOSYS if not implemented.
1643 SYSCALL_DEFINE3(io_submit
, aio_context_t
, ctx_id
, long, nr
,
1644 struct iocb __user
* __user
*, iocbpp
)
1646 return do_io_submit(ctx_id
, nr
, iocbpp
, 0);
1650 * Finds a given iocb for cancellation.
1652 static struct kiocb
*lookup_kiocb(struct kioctx
*ctx
, struct iocb __user
*iocb
,
1655 struct list_head
*pos
;
1657 assert_spin_locked(&ctx
->ctx_lock
);
1659 if (key
!= KIOCB_KEY
)
1662 /* TODO: use a hash or array, this sucks. */
1663 list_for_each(pos
, &ctx
->active_reqs
) {
1664 struct kiocb
*kiocb
= list_kiocb(pos
);
1665 if (kiocb
->ki_obj
.user
== iocb
)
1672 * Attempts to cancel an iocb previously passed to io_submit. If
1673 * the operation is successfully cancelled, the resulting event is
1674 * copied into the memory pointed to by result without being placed
1675 * into the completion queue and 0 is returned. May fail with
1676 * -EFAULT if any of the data structures pointed to are invalid.
1677 * May fail with -EINVAL if aio_context specified by ctx_id is
1678 * invalid. May fail with -EAGAIN if the iocb specified was not
1679 * cancelled. Will fail with -ENOSYS if not implemented.
1681 SYSCALL_DEFINE3(io_cancel
, aio_context_t
, ctx_id
, struct iocb __user
*, iocb
,
1682 struct io_event __user
*, result
)
1685 struct kiocb
*kiocb
;
1689 ret
= get_user(key
, &iocb
->aio_key
);
1693 ctx
= lookup_ioctx(ctx_id
);
1697 spin_lock_irq(&ctx
->ctx_lock
);
1699 kiocb
= lookup_kiocb(ctx
, iocb
, key
);
1701 ret
= kiocb_cancel(kiocb
);
1705 spin_unlock_irq(&ctx
->ctx_lock
);
1709 * The result argument is no longer used - the io_event is
1710 * always delivered via the ring buffer. -EINPROGRESS indicates
1711 * cancellation is progress:
1716 percpu_ref_put(&ctx
->users
);
1722 * Attempts to read at least min_nr events and up to nr events from
1723 * the completion queue for the aio_context specified by ctx_id. If
1724 * it succeeds, the number of read events is returned. May fail with
1725 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1726 * out of range, if timeout is out of range. May fail with -EFAULT
1727 * if any of the memory specified is invalid. May return 0 or
1728 * < min_nr if the timeout specified by timeout has elapsed
1729 * before sufficient events are available, where timeout == NULL
1730 * specifies an infinite timeout. Note that the timeout pointed to by
1731 * timeout is relative. Will fail with -ENOSYS if not implemented.
1733 SYSCALL_DEFINE5(io_getevents
, aio_context_t
, ctx_id
,
1736 struct io_event __user
*, events
,
1737 struct timespec __user
*, timeout
)
1739 struct kioctx
*ioctx
= lookup_ioctx(ctx_id
);
1742 if (likely(ioctx
)) {
1743 if (likely(min_nr
<= nr
&& min_nr
>= 0))
1744 ret
= read_events(ioctx
, min_nr
, nr
, events
, timeout
);
1745 percpu_ref_put(&ioctx
->users
);