ipv6: directly include libc-compat.h in ipv6.h
[linux/fpc-iii.git] / fs / aio.c
blob1b7893ecc29654f6d20cf420b24ee20dddbf9038
1 /*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
5 * Implements an efficient asynchronous io interface.
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
9 * See ../COPYING for licensing terms.
11 #define pr_fmt(fmt) "%s: " fmt, __func__
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/errno.h>
16 #include <linux/time.h>
17 #include <linux/aio_abi.h>
18 #include <linux/export.h>
19 #include <linux/syscalls.h>
20 #include <linux/backing-dev.h>
21 #include <linux/uio.h>
23 #include <linux/sched.h>
24 #include <linux/fs.h>
25 #include <linux/file.h>
26 #include <linux/mm.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/timer.h>
32 #include <linux/aio.h>
33 #include <linux/highmem.h>
34 #include <linux/workqueue.h>
35 #include <linux/security.h>
36 #include <linux/eventfd.h>
37 #include <linux/blkdev.h>
38 #include <linux/compat.h>
39 #include <linux/migrate.h>
40 #include <linux/ramfs.h>
41 #include <linux/percpu-refcount.h>
42 #include <linux/mount.h>
44 #include <asm/kmap_types.h>
45 #include <asm/uaccess.h>
47 #include "internal.h"
49 #define AIO_RING_MAGIC 0xa10a10a1
50 #define AIO_RING_COMPAT_FEATURES 1
51 #define AIO_RING_INCOMPAT_FEATURES 0
52 struct aio_ring {
53 unsigned id; /* kernel internal index number */
54 unsigned nr; /* number of io_events */
55 unsigned head; /* Written to by userland or under ring_lock
56 * mutex by aio_read_events_ring(). */
57 unsigned tail;
59 unsigned magic;
60 unsigned compat_features;
61 unsigned incompat_features;
62 unsigned header_length; /* size of aio_ring */
65 struct io_event io_events[0];
66 }; /* 128 bytes + ring size */
68 #define AIO_RING_PAGES 8
70 struct kioctx_table {
71 struct rcu_head rcu;
72 unsigned nr;
73 struct kioctx *table[];
76 struct kioctx_cpu {
77 unsigned reqs_available;
80 struct kioctx {
81 struct percpu_ref users;
82 atomic_t dead;
84 struct percpu_ref reqs;
86 unsigned long user_id;
88 struct __percpu kioctx_cpu *cpu;
91 * For percpu reqs_available, number of slots we move to/from global
92 * counter at a time:
94 unsigned req_batch;
96 * This is what userspace passed to io_setup(), it's not used for
97 * anything but counting against the global max_reqs quota.
99 * The real limit is nr_events - 1, which will be larger (see
100 * aio_setup_ring())
102 unsigned max_reqs;
104 /* Size of ringbuffer, in units of struct io_event */
105 unsigned nr_events;
107 unsigned long mmap_base;
108 unsigned long mmap_size;
110 struct page **ring_pages;
111 long nr_pages;
113 struct work_struct free_work;
116 * signals when all in-flight requests are done
118 struct completion *requests_done;
120 struct {
122 * This counts the number of available slots in the ringbuffer,
123 * so we avoid overflowing it: it's decremented (if positive)
124 * when allocating a kiocb and incremented when the resulting
125 * io_event is pulled off the ringbuffer.
127 * We batch accesses to it with a percpu version.
129 atomic_t reqs_available;
130 } ____cacheline_aligned_in_smp;
132 struct {
133 spinlock_t ctx_lock;
134 struct list_head active_reqs; /* used for cancellation */
135 } ____cacheline_aligned_in_smp;
137 struct {
138 struct mutex ring_lock;
139 wait_queue_head_t wait;
140 } ____cacheline_aligned_in_smp;
142 struct {
143 unsigned tail;
144 unsigned completed_events;
145 spinlock_t completion_lock;
146 } ____cacheline_aligned_in_smp;
148 struct page *internal_pages[AIO_RING_PAGES];
149 struct file *aio_ring_file;
151 unsigned id;
154 /*------ sysctl variables----*/
155 static DEFINE_SPINLOCK(aio_nr_lock);
156 unsigned long aio_nr; /* current system wide number of aio requests */
157 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
158 /*----end sysctl variables---*/
160 static struct kmem_cache *kiocb_cachep;
161 static struct kmem_cache *kioctx_cachep;
163 static struct vfsmount *aio_mnt;
165 static const struct file_operations aio_ring_fops;
166 static const struct address_space_operations aio_ctx_aops;
168 /* Backing dev info for aio fs.
169 * -no dirty page accounting or writeback happens
171 static struct backing_dev_info aio_fs_backing_dev_info = {
172 .name = "aiofs",
173 .state = 0,
174 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_MAP_COPY,
177 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
179 struct qstr this = QSTR_INIT("[aio]", 5);
180 struct file *file;
181 struct path path;
182 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
183 if (IS_ERR(inode))
184 return ERR_CAST(inode);
186 inode->i_mapping->a_ops = &aio_ctx_aops;
187 inode->i_mapping->private_data = ctx;
188 inode->i_mapping->backing_dev_info = &aio_fs_backing_dev_info;
189 inode->i_size = PAGE_SIZE * nr_pages;
191 path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
192 if (!path.dentry) {
193 iput(inode);
194 return ERR_PTR(-ENOMEM);
196 path.mnt = mntget(aio_mnt);
198 d_instantiate(path.dentry, inode);
199 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
200 if (IS_ERR(file)) {
201 path_put(&path);
202 return file;
205 file->f_flags = O_RDWR;
206 return file;
209 static struct dentry *aio_mount(struct file_system_type *fs_type,
210 int flags, const char *dev_name, void *data)
212 static const struct dentry_operations ops = {
213 .d_dname = simple_dname,
215 return mount_pseudo(fs_type, "aio:", NULL, &ops, AIO_RING_MAGIC);
218 /* aio_setup
219 * Creates the slab caches used by the aio routines, panic on
220 * failure as this is done early during the boot sequence.
222 static int __init aio_setup(void)
224 static struct file_system_type aio_fs = {
225 .name = "aio",
226 .mount = aio_mount,
227 .kill_sb = kill_anon_super,
229 aio_mnt = kern_mount(&aio_fs);
230 if (IS_ERR(aio_mnt))
231 panic("Failed to create aio fs mount.");
233 if (bdi_init(&aio_fs_backing_dev_info))
234 panic("Failed to init aio fs backing dev info.");
236 kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
237 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
239 pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
241 return 0;
243 __initcall(aio_setup);
245 static void put_aio_ring_file(struct kioctx *ctx)
247 struct file *aio_ring_file = ctx->aio_ring_file;
248 if (aio_ring_file) {
249 truncate_setsize(aio_ring_file->f_inode, 0);
251 /* Prevent further access to the kioctx from migratepages */
252 spin_lock(&aio_ring_file->f_inode->i_mapping->private_lock);
253 aio_ring_file->f_inode->i_mapping->private_data = NULL;
254 ctx->aio_ring_file = NULL;
255 spin_unlock(&aio_ring_file->f_inode->i_mapping->private_lock);
257 fput(aio_ring_file);
261 static void aio_free_ring(struct kioctx *ctx)
263 int i;
265 /* Disconnect the kiotx from the ring file. This prevents future
266 * accesses to the kioctx from page migration.
268 put_aio_ring_file(ctx);
270 for (i = 0; i < ctx->nr_pages; i++) {
271 struct page *page;
272 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
273 page_count(ctx->ring_pages[i]));
274 page = ctx->ring_pages[i];
275 if (!page)
276 continue;
277 ctx->ring_pages[i] = NULL;
278 put_page(page);
281 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
282 kfree(ctx->ring_pages);
283 ctx->ring_pages = NULL;
287 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
289 vma->vm_flags |= VM_DONTEXPAND;
290 vma->vm_ops = &generic_file_vm_ops;
291 return 0;
294 static void aio_ring_remap(struct file *file, struct vm_area_struct *vma)
296 struct mm_struct *mm = vma->vm_mm;
297 struct kioctx_table *table;
298 int i;
300 spin_lock(&mm->ioctx_lock);
301 rcu_read_lock();
302 table = rcu_dereference(mm->ioctx_table);
303 for (i = 0; i < table->nr; i++) {
304 struct kioctx *ctx;
306 ctx = table->table[i];
307 if (ctx && ctx->aio_ring_file == file) {
308 ctx->user_id = ctx->mmap_base = vma->vm_start;
309 break;
313 rcu_read_unlock();
314 spin_unlock(&mm->ioctx_lock);
317 static const struct file_operations aio_ring_fops = {
318 .mmap = aio_ring_mmap,
319 .mremap = aio_ring_remap,
322 #if IS_ENABLED(CONFIG_MIGRATION)
323 static int aio_migratepage(struct address_space *mapping, struct page *new,
324 struct page *old, enum migrate_mode mode)
326 struct kioctx *ctx;
327 unsigned long flags;
328 pgoff_t idx;
329 int rc;
331 rc = 0;
333 /* mapping->private_lock here protects against the kioctx teardown. */
334 spin_lock(&mapping->private_lock);
335 ctx = mapping->private_data;
336 if (!ctx) {
337 rc = -EINVAL;
338 goto out;
341 /* The ring_lock mutex. The prevents aio_read_events() from writing
342 * to the ring's head, and prevents page migration from mucking in
343 * a partially initialized kiotx.
345 if (!mutex_trylock(&ctx->ring_lock)) {
346 rc = -EAGAIN;
347 goto out;
350 idx = old->index;
351 if (idx < (pgoff_t)ctx->nr_pages) {
352 /* Make sure the old page hasn't already been changed */
353 if (ctx->ring_pages[idx] != old)
354 rc = -EAGAIN;
355 } else
356 rc = -EINVAL;
358 if (rc != 0)
359 goto out_unlock;
361 /* Writeback must be complete */
362 BUG_ON(PageWriteback(old));
363 get_page(new);
365 rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
366 if (rc != MIGRATEPAGE_SUCCESS) {
367 put_page(new);
368 goto out_unlock;
371 /* Take completion_lock to prevent other writes to the ring buffer
372 * while the old page is copied to the new. This prevents new
373 * events from being lost.
375 spin_lock_irqsave(&ctx->completion_lock, flags);
376 migrate_page_copy(new, old);
377 BUG_ON(ctx->ring_pages[idx] != old);
378 ctx->ring_pages[idx] = new;
379 spin_unlock_irqrestore(&ctx->completion_lock, flags);
381 /* The old page is no longer accessible. */
382 put_page(old);
384 out_unlock:
385 mutex_unlock(&ctx->ring_lock);
386 out:
387 spin_unlock(&mapping->private_lock);
388 return rc;
390 #endif
392 static const struct address_space_operations aio_ctx_aops = {
393 .set_page_dirty = __set_page_dirty_no_writeback,
394 #if IS_ENABLED(CONFIG_MIGRATION)
395 .migratepage = aio_migratepage,
396 #endif
399 static int aio_setup_ring(struct kioctx *ctx)
401 struct aio_ring *ring;
402 unsigned nr_events = ctx->max_reqs;
403 struct mm_struct *mm = current->mm;
404 unsigned long size, unused;
405 int nr_pages;
406 int i;
407 struct file *file;
409 /* Compensate for the ring buffer's head/tail overlap entry */
410 nr_events += 2; /* 1 is required, 2 for good luck */
412 size = sizeof(struct aio_ring);
413 size += sizeof(struct io_event) * nr_events;
415 nr_pages = PFN_UP(size);
416 if (nr_pages < 0)
417 return -EINVAL;
419 file = aio_private_file(ctx, nr_pages);
420 if (IS_ERR(file)) {
421 ctx->aio_ring_file = NULL;
422 return -ENOMEM;
425 ctx->aio_ring_file = file;
426 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
427 / sizeof(struct io_event);
429 ctx->ring_pages = ctx->internal_pages;
430 if (nr_pages > AIO_RING_PAGES) {
431 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
432 GFP_KERNEL);
433 if (!ctx->ring_pages) {
434 put_aio_ring_file(ctx);
435 return -ENOMEM;
439 for (i = 0; i < nr_pages; i++) {
440 struct page *page;
441 page = find_or_create_page(file->f_inode->i_mapping,
442 i, GFP_HIGHUSER | __GFP_ZERO);
443 if (!page)
444 break;
445 pr_debug("pid(%d) page[%d]->count=%d\n",
446 current->pid, i, page_count(page));
447 SetPageUptodate(page);
448 unlock_page(page);
450 ctx->ring_pages[i] = page;
452 ctx->nr_pages = i;
454 if (unlikely(i != nr_pages)) {
455 aio_free_ring(ctx);
456 return -ENOMEM;
459 ctx->mmap_size = nr_pages * PAGE_SIZE;
460 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
462 down_write(&mm->mmap_sem);
463 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
464 PROT_READ | PROT_WRITE,
465 MAP_SHARED, 0, &unused);
466 up_write(&mm->mmap_sem);
467 if (IS_ERR((void *)ctx->mmap_base)) {
468 ctx->mmap_size = 0;
469 aio_free_ring(ctx);
470 return -ENOMEM;
473 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
475 ctx->user_id = ctx->mmap_base;
476 ctx->nr_events = nr_events; /* trusted copy */
478 ring = kmap_atomic(ctx->ring_pages[0]);
479 ring->nr = nr_events; /* user copy */
480 ring->id = ~0U;
481 ring->head = ring->tail = 0;
482 ring->magic = AIO_RING_MAGIC;
483 ring->compat_features = AIO_RING_COMPAT_FEATURES;
484 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
485 ring->header_length = sizeof(struct aio_ring);
486 kunmap_atomic(ring);
487 flush_dcache_page(ctx->ring_pages[0]);
489 return 0;
492 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
493 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
494 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
496 void kiocb_set_cancel_fn(struct kiocb *req, kiocb_cancel_fn *cancel)
498 struct kioctx *ctx = req->ki_ctx;
499 unsigned long flags;
501 spin_lock_irqsave(&ctx->ctx_lock, flags);
503 if (!req->ki_list.next)
504 list_add(&req->ki_list, &ctx->active_reqs);
506 req->ki_cancel = cancel;
508 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
510 EXPORT_SYMBOL(kiocb_set_cancel_fn);
512 static int kiocb_cancel(struct kiocb *kiocb)
514 kiocb_cancel_fn *old, *cancel;
517 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
518 * actually has a cancel function, hence the cmpxchg()
521 cancel = ACCESS_ONCE(kiocb->ki_cancel);
522 do {
523 if (!cancel || cancel == KIOCB_CANCELLED)
524 return -EINVAL;
526 old = cancel;
527 cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
528 } while (cancel != old);
530 return cancel(kiocb);
533 static void free_ioctx(struct work_struct *work)
535 struct kioctx *ctx = container_of(work, struct kioctx, free_work);
537 pr_debug("freeing %p\n", ctx);
539 aio_free_ring(ctx);
540 free_percpu(ctx->cpu);
541 percpu_ref_exit(&ctx->reqs);
542 percpu_ref_exit(&ctx->users);
543 kmem_cache_free(kioctx_cachep, ctx);
546 static void free_ioctx_reqs(struct percpu_ref *ref)
548 struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
550 /* At this point we know that there are no any in-flight requests */
551 if (ctx->requests_done)
552 complete(ctx->requests_done);
554 INIT_WORK(&ctx->free_work, free_ioctx);
555 schedule_work(&ctx->free_work);
559 * When this function runs, the kioctx has been removed from the "hash table"
560 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
561 * now it's safe to cancel any that need to be.
563 static void free_ioctx_users(struct percpu_ref *ref)
565 struct kioctx *ctx = container_of(ref, struct kioctx, users);
566 struct kiocb *req;
568 spin_lock_irq(&ctx->ctx_lock);
570 while (!list_empty(&ctx->active_reqs)) {
571 req = list_first_entry(&ctx->active_reqs,
572 struct kiocb, ki_list);
574 list_del_init(&req->ki_list);
575 kiocb_cancel(req);
578 spin_unlock_irq(&ctx->ctx_lock);
580 percpu_ref_kill(&ctx->reqs);
581 percpu_ref_put(&ctx->reqs);
584 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
586 unsigned i, new_nr;
587 struct kioctx_table *table, *old;
588 struct aio_ring *ring;
590 spin_lock(&mm->ioctx_lock);
591 table = rcu_dereference_raw(mm->ioctx_table);
593 while (1) {
594 if (table)
595 for (i = 0; i < table->nr; i++)
596 if (!table->table[i]) {
597 ctx->id = i;
598 table->table[i] = ctx;
599 spin_unlock(&mm->ioctx_lock);
601 /* While kioctx setup is in progress,
602 * we are protected from page migration
603 * changes ring_pages by ->ring_lock.
605 ring = kmap_atomic(ctx->ring_pages[0]);
606 ring->id = ctx->id;
607 kunmap_atomic(ring);
608 return 0;
611 new_nr = (table ? table->nr : 1) * 4;
612 spin_unlock(&mm->ioctx_lock);
614 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
615 new_nr, GFP_KERNEL);
616 if (!table)
617 return -ENOMEM;
619 table->nr = new_nr;
621 spin_lock(&mm->ioctx_lock);
622 old = rcu_dereference_raw(mm->ioctx_table);
624 if (!old) {
625 rcu_assign_pointer(mm->ioctx_table, table);
626 } else if (table->nr > old->nr) {
627 memcpy(table->table, old->table,
628 old->nr * sizeof(struct kioctx *));
630 rcu_assign_pointer(mm->ioctx_table, table);
631 kfree_rcu(old, rcu);
632 } else {
633 kfree(table);
634 table = old;
639 static void aio_nr_sub(unsigned nr)
641 spin_lock(&aio_nr_lock);
642 if (WARN_ON(aio_nr - nr > aio_nr))
643 aio_nr = 0;
644 else
645 aio_nr -= nr;
646 spin_unlock(&aio_nr_lock);
649 /* ioctx_alloc
650 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
652 static struct kioctx *ioctx_alloc(unsigned nr_events)
654 struct mm_struct *mm = current->mm;
655 struct kioctx *ctx;
656 int err = -ENOMEM;
659 * We keep track of the number of available ringbuffer slots, to prevent
660 * overflow (reqs_available), and we also use percpu counters for this.
662 * So since up to half the slots might be on other cpu's percpu counters
663 * and unavailable, double nr_events so userspace sees what they
664 * expected: additionally, we move req_batch slots to/from percpu
665 * counters at a time, so make sure that isn't 0:
667 nr_events = max(nr_events, num_possible_cpus() * 4);
668 nr_events *= 2;
670 /* Prevent overflows */
671 if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
672 (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
673 pr_debug("ENOMEM: nr_events too high\n");
674 return ERR_PTR(-EINVAL);
677 if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL))
678 return ERR_PTR(-EAGAIN);
680 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
681 if (!ctx)
682 return ERR_PTR(-ENOMEM);
684 ctx->max_reqs = nr_events;
686 spin_lock_init(&ctx->ctx_lock);
687 spin_lock_init(&ctx->completion_lock);
688 mutex_init(&ctx->ring_lock);
689 /* Protect against page migration throughout kiotx setup by keeping
690 * the ring_lock mutex held until setup is complete. */
691 mutex_lock(&ctx->ring_lock);
692 init_waitqueue_head(&ctx->wait);
694 INIT_LIST_HEAD(&ctx->active_reqs);
696 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
697 goto err;
699 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
700 goto err;
702 ctx->cpu = alloc_percpu(struct kioctx_cpu);
703 if (!ctx->cpu)
704 goto err;
706 err = aio_setup_ring(ctx);
707 if (err < 0)
708 goto err;
710 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
711 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
712 if (ctx->req_batch < 1)
713 ctx->req_batch = 1;
715 /* limit the number of system wide aios */
716 spin_lock(&aio_nr_lock);
717 if (aio_nr + nr_events > (aio_max_nr * 2UL) ||
718 aio_nr + nr_events < aio_nr) {
719 spin_unlock(&aio_nr_lock);
720 err = -EAGAIN;
721 goto err_ctx;
723 aio_nr += ctx->max_reqs;
724 spin_unlock(&aio_nr_lock);
726 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
727 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
729 err = ioctx_add_table(ctx, mm);
730 if (err)
731 goto err_cleanup;
733 /* Release the ring_lock mutex now that all setup is complete. */
734 mutex_unlock(&ctx->ring_lock);
736 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
737 ctx, ctx->user_id, mm, ctx->nr_events);
738 return ctx;
740 err_cleanup:
741 aio_nr_sub(ctx->max_reqs);
742 err_ctx:
743 aio_free_ring(ctx);
744 err:
745 mutex_unlock(&ctx->ring_lock);
746 free_percpu(ctx->cpu);
747 percpu_ref_exit(&ctx->reqs);
748 percpu_ref_exit(&ctx->users);
749 kmem_cache_free(kioctx_cachep, ctx);
750 pr_debug("error allocating ioctx %d\n", err);
751 return ERR_PTR(err);
754 /* kill_ioctx
755 * Cancels all outstanding aio requests on an aio context. Used
756 * when the processes owning a context have all exited to encourage
757 * the rapid destruction of the kioctx.
759 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
760 struct completion *requests_done)
762 struct kioctx_table *table;
764 if (atomic_xchg(&ctx->dead, 1))
765 return -EINVAL;
768 spin_lock(&mm->ioctx_lock);
769 table = rcu_dereference_raw(mm->ioctx_table);
770 WARN_ON(ctx != table->table[ctx->id]);
771 table->table[ctx->id] = NULL;
772 spin_unlock(&mm->ioctx_lock);
774 /* percpu_ref_kill() will do the necessary call_rcu() */
775 wake_up_all(&ctx->wait);
778 * It'd be more correct to do this in free_ioctx(), after all
779 * the outstanding kiocbs have finished - but by then io_destroy
780 * has already returned, so io_setup() could potentially return
781 * -EAGAIN with no ioctxs actually in use (as far as userspace
782 * could tell).
784 aio_nr_sub(ctx->max_reqs);
786 if (ctx->mmap_size)
787 vm_munmap(ctx->mmap_base, ctx->mmap_size);
789 ctx->requests_done = requests_done;
790 percpu_ref_kill(&ctx->users);
791 return 0;
794 /* wait_on_sync_kiocb:
795 * Waits on the given sync kiocb to complete.
797 ssize_t wait_on_sync_kiocb(struct kiocb *req)
799 while (!req->ki_ctx) {
800 set_current_state(TASK_UNINTERRUPTIBLE);
801 if (req->ki_ctx)
802 break;
803 io_schedule();
805 __set_current_state(TASK_RUNNING);
806 return req->ki_user_data;
808 EXPORT_SYMBOL(wait_on_sync_kiocb);
811 * exit_aio: called when the last user of mm goes away. At this point, there is
812 * no way for any new requests to be submited or any of the io_* syscalls to be
813 * called on the context.
815 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
816 * them.
818 void exit_aio(struct mm_struct *mm)
820 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
821 int i;
823 if (!table)
824 return;
826 for (i = 0; i < table->nr; ++i) {
827 struct kioctx *ctx = table->table[i];
828 struct completion requests_done =
829 COMPLETION_INITIALIZER_ONSTACK(requests_done);
831 if (!ctx)
832 continue;
834 * We don't need to bother with munmap() here - exit_mmap(mm)
835 * is coming and it'll unmap everything. And we simply can't,
836 * this is not necessarily our ->mm.
837 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
838 * that it needs to unmap the area, just set it to 0.
840 ctx->mmap_size = 0;
841 kill_ioctx(mm, ctx, &requests_done);
843 /* Wait until all IO for the context are done. */
844 wait_for_completion(&requests_done);
847 RCU_INIT_POINTER(mm->ioctx_table, NULL);
848 kfree(table);
851 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
853 struct kioctx_cpu *kcpu;
854 unsigned long flags;
856 local_irq_save(flags);
857 kcpu = this_cpu_ptr(ctx->cpu);
858 kcpu->reqs_available += nr;
860 while (kcpu->reqs_available >= ctx->req_batch * 2) {
861 kcpu->reqs_available -= ctx->req_batch;
862 atomic_add(ctx->req_batch, &ctx->reqs_available);
865 local_irq_restore(flags);
868 static bool get_reqs_available(struct kioctx *ctx)
870 struct kioctx_cpu *kcpu;
871 bool ret = false;
872 unsigned long flags;
874 local_irq_save(flags);
875 kcpu = this_cpu_ptr(ctx->cpu);
876 if (!kcpu->reqs_available) {
877 int old, avail = atomic_read(&ctx->reqs_available);
879 do {
880 if (avail < ctx->req_batch)
881 goto out;
883 old = avail;
884 avail = atomic_cmpxchg(&ctx->reqs_available,
885 avail, avail - ctx->req_batch);
886 } while (avail != old);
888 kcpu->reqs_available += ctx->req_batch;
891 ret = true;
892 kcpu->reqs_available--;
893 out:
894 local_irq_restore(flags);
895 return ret;
898 /* refill_reqs_available
899 * Updates the reqs_available reference counts used for tracking the
900 * number of free slots in the completion ring. This can be called
901 * from aio_complete() (to optimistically update reqs_available) or
902 * from aio_get_req() (the we're out of events case). It must be
903 * called holding ctx->completion_lock.
905 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
906 unsigned tail)
908 unsigned events_in_ring, completed;
910 /* Clamp head since userland can write to it. */
911 head %= ctx->nr_events;
912 if (head <= tail)
913 events_in_ring = tail - head;
914 else
915 events_in_ring = ctx->nr_events - (head - tail);
917 completed = ctx->completed_events;
918 if (events_in_ring < completed)
919 completed -= events_in_ring;
920 else
921 completed = 0;
923 if (!completed)
924 return;
926 ctx->completed_events -= completed;
927 put_reqs_available(ctx, completed);
930 /* user_refill_reqs_available
931 * Called to refill reqs_available when aio_get_req() encounters an
932 * out of space in the completion ring.
934 static void user_refill_reqs_available(struct kioctx *ctx)
936 spin_lock_irq(&ctx->completion_lock);
937 if (ctx->completed_events) {
938 struct aio_ring *ring;
939 unsigned head;
941 /* Access of ring->head may race with aio_read_events_ring()
942 * here, but that's okay since whether we read the old version
943 * or the new version, and either will be valid. The important
944 * part is that head cannot pass tail since we prevent
945 * aio_complete() from updating tail by holding
946 * ctx->completion_lock. Even if head is invalid, the check
947 * against ctx->completed_events below will make sure we do the
948 * safe/right thing.
950 ring = kmap_atomic(ctx->ring_pages[0]);
951 head = ring->head;
952 kunmap_atomic(ring);
954 refill_reqs_available(ctx, head, ctx->tail);
957 spin_unlock_irq(&ctx->completion_lock);
960 /* aio_get_req
961 * Allocate a slot for an aio request.
962 * Returns NULL if no requests are free.
964 static inline struct kiocb *aio_get_req(struct kioctx *ctx)
966 struct kiocb *req;
968 if (!get_reqs_available(ctx)) {
969 user_refill_reqs_available(ctx);
970 if (!get_reqs_available(ctx))
971 return NULL;
974 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
975 if (unlikely(!req))
976 goto out_put;
978 percpu_ref_get(&ctx->reqs);
980 req->ki_ctx = ctx;
981 return req;
982 out_put:
983 put_reqs_available(ctx, 1);
984 return NULL;
987 static void kiocb_free(struct kiocb *req)
989 if (req->ki_filp)
990 fput(req->ki_filp);
991 if (req->ki_eventfd != NULL)
992 eventfd_ctx_put(req->ki_eventfd);
993 kmem_cache_free(kiocb_cachep, req);
996 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
998 struct aio_ring __user *ring = (void __user *)ctx_id;
999 struct mm_struct *mm = current->mm;
1000 struct kioctx *ctx, *ret = NULL;
1001 struct kioctx_table *table;
1002 unsigned id;
1004 if (get_user(id, &ring->id))
1005 return NULL;
1007 rcu_read_lock();
1008 table = rcu_dereference(mm->ioctx_table);
1010 if (!table || id >= table->nr)
1011 goto out;
1013 ctx = table->table[id];
1014 if (ctx && ctx->user_id == ctx_id) {
1015 percpu_ref_get(&ctx->users);
1016 ret = ctx;
1018 out:
1019 rcu_read_unlock();
1020 return ret;
1023 /* aio_complete
1024 * Called when the io request on the given iocb is complete.
1026 void aio_complete(struct kiocb *iocb, long res, long res2)
1028 struct kioctx *ctx = iocb->ki_ctx;
1029 struct aio_ring *ring;
1030 struct io_event *ev_page, *event;
1031 unsigned tail, pos, head;
1032 unsigned long flags;
1035 * Special case handling for sync iocbs:
1036 * - events go directly into the iocb for fast handling
1037 * - the sync task with the iocb in its stack holds the single iocb
1038 * ref, no other paths have a way to get another ref
1039 * - the sync task helpfully left a reference to itself in the iocb
1041 if (is_sync_kiocb(iocb)) {
1042 iocb->ki_user_data = res;
1043 smp_wmb();
1044 iocb->ki_ctx = ERR_PTR(-EXDEV);
1045 wake_up_process(iocb->ki_obj.tsk);
1046 return;
1049 if (iocb->ki_list.next) {
1050 unsigned long flags;
1052 spin_lock_irqsave(&ctx->ctx_lock, flags);
1053 list_del(&iocb->ki_list);
1054 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1058 * Add a completion event to the ring buffer. Must be done holding
1059 * ctx->completion_lock to prevent other code from messing with the tail
1060 * pointer since we might be called from irq context.
1062 spin_lock_irqsave(&ctx->completion_lock, flags);
1064 tail = ctx->tail;
1065 pos = tail + AIO_EVENTS_OFFSET;
1067 if (++tail >= ctx->nr_events)
1068 tail = 0;
1070 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1071 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1073 event->obj = (u64)(unsigned long)iocb->ki_obj.user;
1074 event->data = iocb->ki_user_data;
1075 event->res = res;
1076 event->res2 = res2;
1078 kunmap_atomic(ev_page);
1079 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1081 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
1082 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
1083 res, res2);
1085 /* after flagging the request as done, we
1086 * must never even look at it again
1088 smp_wmb(); /* make event visible before updating tail */
1090 ctx->tail = tail;
1092 ring = kmap_atomic(ctx->ring_pages[0]);
1093 head = ring->head;
1094 ring->tail = tail;
1095 kunmap_atomic(ring);
1096 flush_dcache_page(ctx->ring_pages[0]);
1098 ctx->completed_events++;
1099 if (ctx->completed_events > 1)
1100 refill_reqs_available(ctx, head, tail);
1101 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1103 pr_debug("added to ring %p at [%u]\n", iocb, tail);
1106 * Check if the user asked us to deliver the result through an
1107 * eventfd. The eventfd_signal() function is safe to be called
1108 * from IRQ context.
1110 if (iocb->ki_eventfd != NULL)
1111 eventfd_signal(iocb->ki_eventfd, 1);
1113 /* everything turned out well, dispose of the aiocb. */
1114 kiocb_free(iocb);
1117 * We have to order our ring_info tail store above and test
1118 * of the wait list below outside the wait lock. This is
1119 * like in wake_up_bit() where clearing a bit has to be
1120 * ordered with the unlocked test.
1122 smp_mb();
1124 if (waitqueue_active(&ctx->wait))
1125 wake_up(&ctx->wait);
1127 percpu_ref_put(&ctx->reqs);
1129 EXPORT_SYMBOL(aio_complete);
1131 /* aio_read_events_ring
1132 * Pull an event off of the ioctx's event ring. Returns the number of
1133 * events fetched
1135 static long aio_read_events_ring(struct kioctx *ctx,
1136 struct io_event __user *event, long nr)
1138 struct aio_ring *ring;
1139 unsigned head, tail, pos;
1140 long ret = 0;
1141 int copy_ret;
1143 mutex_lock(&ctx->ring_lock);
1145 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
1146 ring = kmap_atomic(ctx->ring_pages[0]);
1147 head = ring->head;
1148 tail = ring->tail;
1149 kunmap_atomic(ring);
1152 * Ensure that once we've read the current tail pointer, that
1153 * we also see the events that were stored up to the tail.
1155 smp_rmb();
1157 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1159 if (head == tail)
1160 goto out;
1162 head %= ctx->nr_events;
1163 tail %= ctx->nr_events;
1165 while (ret < nr) {
1166 long avail;
1167 struct io_event *ev;
1168 struct page *page;
1170 avail = (head <= tail ? tail : ctx->nr_events) - head;
1171 if (head == tail)
1172 break;
1174 avail = min(avail, nr - ret);
1175 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
1176 ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
1178 pos = head + AIO_EVENTS_OFFSET;
1179 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1180 pos %= AIO_EVENTS_PER_PAGE;
1182 ev = kmap(page);
1183 copy_ret = copy_to_user(event + ret, ev + pos,
1184 sizeof(*ev) * avail);
1185 kunmap(page);
1187 if (unlikely(copy_ret)) {
1188 ret = -EFAULT;
1189 goto out;
1192 ret += avail;
1193 head += avail;
1194 head %= ctx->nr_events;
1197 ring = kmap_atomic(ctx->ring_pages[0]);
1198 ring->head = head;
1199 kunmap_atomic(ring);
1200 flush_dcache_page(ctx->ring_pages[0]);
1202 pr_debug("%li h%u t%u\n", ret, head, tail);
1203 out:
1204 mutex_unlock(&ctx->ring_lock);
1206 return ret;
1209 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1210 struct io_event __user *event, long *i)
1212 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1214 if (ret > 0)
1215 *i += ret;
1217 if (unlikely(atomic_read(&ctx->dead)))
1218 ret = -EINVAL;
1220 if (!*i)
1221 *i = ret;
1223 return ret < 0 || *i >= min_nr;
1226 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1227 struct io_event __user *event,
1228 struct timespec __user *timeout)
1230 ktime_t until = { .tv64 = KTIME_MAX };
1231 long ret = 0;
1233 if (timeout) {
1234 struct timespec ts;
1236 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1237 return -EFAULT;
1239 until = timespec_to_ktime(ts);
1243 * Note that aio_read_events() is being called as the conditional - i.e.
1244 * we're calling it after prepare_to_wait() has set task state to
1245 * TASK_INTERRUPTIBLE.
1247 * But aio_read_events() can block, and if it blocks it's going to flip
1248 * the task state back to TASK_RUNNING.
1250 * This should be ok, provided it doesn't flip the state back to
1251 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1252 * will only happen if the mutex_lock() call blocks, and we then find
1253 * the ringbuffer empty. So in practice we should be ok, but it's
1254 * something to be aware of when touching this code.
1256 if (until.tv64 == 0)
1257 aio_read_events(ctx, min_nr, nr, event, &ret);
1258 else
1259 wait_event_interruptible_hrtimeout(ctx->wait,
1260 aio_read_events(ctx, min_nr, nr, event, &ret),
1261 until);
1263 if (!ret && signal_pending(current))
1264 ret = -EINTR;
1266 return ret;
1269 /* sys_io_setup:
1270 * Create an aio_context capable of receiving at least nr_events.
1271 * ctxp must not point to an aio_context that already exists, and
1272 * must be initialized to 0 prior to the call. On successful
1273 * creation of the aio_context, *ctxp is filled in with the resulting
1274 * handle. May fail with -EINVAL if *ctxp is not initialized,
1275 * if the specified nr_events exceeds internal limits. May fail
1276 * with -EAGAIN if the specified nr_events exceeds the user's limit
1277 * of available events. May fail with -ENOMEM if insufficient kernel
1278 * resources are available. May fail with -EFAULT if an invalid
1279 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1280 * implemented.
1282 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1284 struct kioctx *ioctx = NULL;
1285 unsigned long ctx;
1286 long ret;
1288 ret = get_user(ctx, ctxp);
1289 if (unlikely(ret))
1290 goto out;
1292 ret = -EINVAL;
1293 if (unlikely(ctx || nr_events == 0)) {
1294 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1295 ctx, nr_events);
1296 goto out;
1299 ioctx = ioctx_alloc(nr_events);
1300 ret = PTR_ERR(ioctx);
1301 if (!IS_ERR(ioctx)) {
1302 ret = put_user(ioctx->user_id, ctxp);
1303 if (ret)
1304 kill_ioctx(current->mm, ioctx, NULL);
1305 percpu_ref_put(&ioctx->users);
1308 out:
1309 return ret;
1312 /* sys_io_destroy:
1313 * Destroy the aio_context specified. May cancel any outstanding
1314 * AIOs and block on completion. Will fail with -ENOSYS if not
1315 * implemented. May fail with -EINVAL if the context pointed to
1316 * is invalid.
1318 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1320 struct kioctx *ioctx = lookup_ioctx(ctx);
1321 if (likely(NULL != ioctx)) {
1322 struct completion requests_done =
1323 COMPLETION_INITIALIZER_ONSTACK(requests_done);
1324 int ret;
1326 /* Pass requests_done to kill_ioctx() where it can be set
1327 * in a thread-safe way. If we try to set it here then we have
1328 * a race condition if two io_destroy() called simultaneously.
1330 ret = kill_ioctx(current->mm, ioctx, &requests_done);
1331 percpu_ref_put(&ioctx->users);
1333 /* Wait until all IO for the context are done. Otherwise kernel
1334 * keep using user-space buffers even if user thinks the context
1335 * is destroyed.
1337 if (!ret)
1338 wait_for_completion(&requests_done);
1340 return ret;
1342 pr_debug("EINVAL: io_destroy: invalid context id\n");
1343 return -EINVAL;
1346 typedef ssize_t (aio_rw_op)(struct kiocb *, const struct iovec *,
1347 unsigned long, loff_t);
1348 typedef ssize_t (rw_iter_op)(struct kiocb *, struct iov_iter *);
1350 static ssize_t aio_setup_vectored_rw(struct kiocb *kiocb,
1351 int rw, char __user *buf,
1352 unsigned long *nr_segs,
1353 struct iovec **iovec,
1354 bool compat)
1356 ssize_t ret;
1358 *nr_segs = kiocb->ki_nbytes;
1360 #ifdef CONFIG_COMPAT
1361 if (compat)
1362 ret = compat_rw_copy_check_uvector(rw,
1363 (struct compat_iovec __user *)buf,
1364 *nr_segs, UIO_FASTIOV, *iovec, iovec);
1365 else
1366 #endif
1367 ret = rw_copy_check_uvector(rw,
1368 (struct iovec __user *)buf,
1369 *nr_segs, UIO_FASTIOV, *iovec, iovec);
1370 if (ret < 0)
1371 return ret;
1373 /* ki_nbytes now reflect bytes instead of segs */
1374 kiocb->ki_nbytes = ret;
1375 return 0;
1378 static ssize_t aio_setup_single_vector(struct kiocb *kiocb,
1379 int rw, char __user *buf,
1380 unsigned long *nr_segs,
1381 struct iovec *iovec)
1383 if (unlikely(!access_ok(!rw, buf, kiocb->ki_nbytes)))
1384 return -EFAULT;
1386 iovec->iov_base = buf;
1387 iovec->iov_len = kiocb->ki_nbytes;
1388 *nr_segs = 1;
1389 return 0;
1393 * aio_run_iocb:
1394 * Performs the initial checks and io submission.
1396 static ssize_t aio_run_iocb(struct kiocb *req, unsigned opcode,
1397 char __user *buf, bool compat)
1399 struct file *file = req->ki_filp;
1400 ssize_t ret;
1401 unsigned long nr_segs;
1402 int rw;
1403 fmode_t mode;
1404 aio_rw_op *rw_op;
1405 rw_iter_op *iter_op;
1406 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1407 struct iov_iter iter;
1409 switch (opcode) {
1410 case IOCB_CMD_PREAD:
1411 case IOCB_CMD_PREADV:
1412 mode = FMODE_READ;
1413 rw = READ;
1414 rw_op = file->f_op->aio_read;
1415 iter_op = file->f_op->read_iter;
1416 goto rw_common;
1418 case IOCB_CMD_PWRITE:
1419 case IOCB_CMD_PWRITEV:
1420 mode = FMODE_WRITE;
1421 rw = WRITE;
1422 rw_op = file->f_op->aio_write;
1423 iter_op = file->f_op->write_iter;
1424 goto rw_common;
1425 rw_common:
1426 if (unlikely(!(file->f_mode & mode)))
1427 return -EBADF;
1429 if (!rw_op && !iter_op)
1430 return -EINVAL;
1432 ret = (opcode == IOCB_CMD_PREADV ||
1433 opcode == IOCB_CMD_PWRITEV)
1434 ? aio_setup_vectored_rw(req, rw, buf, &nr_segs,
1435 &iovec, compat)
1436 : aio_setup_single_vector(req, rw, buf, &nr_segs,
1437 iovec);
1438 if (!ret)
1439 ret = rw_verify_area(rw, file, &req->ki_pos, req->ki_nbytes);
1440 if (ret < 0) {
1441 if (iovec != inline_vecs)
1442 kfree(iovec);
1443 return ret;
1446 req->ki_nbytes = ret;
1448 /* XXX: move/kill - rw_verify_area()? */
1449 /* This matches the pread()/pwrite() logic */
1450 if (req->ki_pos < 0) {
1451 ret = -EINVAL;
1452 break;
1455 if (rw == WRITE)
1456 file_start_write(file);
1458 if (iter_op) {
1459 iov_iter_init(&iter, rw, iovec, nr_segs, req->ki_nbytes);
1460 ret = iter_op(req, &iter);
1461 } else {
1462 ret = rw_op(req, iovec, nr_segs, req->ki_pos);
1465 if (rw == WRITE)
1466 file_end_write(file);
1467 break;
1469 case IOCB_CMD_FDSYNC:
1470 if (!file->f_op->aio_fsync)
1471 return -EINVAL;
1473 ret = file->f_op->aio_fsync(req, 1);
1474 break;
1476 case IOCB_CMD_FSYNC:
1477 if (!file->f_op->aio_fsync)
1478 return -EINVAL;
1480 ret = file->f_op->aio_fsync(req, 0);
1481 break;
1483 default:
1484 pr_debug("EINVAL: no operation provided\n");
1485 return -EINVAL;
1488 if (iovec != inline_vecs)
1489 kfree(iovec);
1491 if (ret != -EIOCBQUEUED) {
1493 * There's no easy way to restart the syscall since other AIO's
1494 * may be already running. Just fail this IO with EINTR.
1496 if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
1497 ret == -ERESTARTNOHAND ||
1498 ret == -ERESTART_RESTARTBLOCK))
1499 ret = -EINTR;
1500 aio_complete(req, ret, 0);
1503 return 0;
1506 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1507 struct iocb *iocb, bool compat)
1509 struct kiocb *req;
1510 ssize_t ret;
1512 /* enforce forwards compatibility on users */
1513 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1514 pr_debug("EINVAL: reserve field set\n");
1515 return -EINVAL;
1518 /* prevent overflows */
1519 if (unlikely(
1520 (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1521 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1522 ((ssize_t)iocb->aio_nbytes < 0)
1523 )) {
1524 pr_debug("EINVAL: io_submit: overflow check\n");
1525 return -EINVAL;
1528 req = aio_get_req(ctx);
1529 if (unlikely(!req))
1530 return -EAGAIN;
1532 req->ki_filp = fget(iocb->aio_fildes);
1533 if (unlikely(!req->ki_filp)) {
1534 ret = -EBADF;
1535 goto out_put_req;
1538 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1540 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1541 * instance of the file* now. The file descriptor must be
1542 * an eventfd() fd, and will be signaled for each completed
1543 * event using the eventfd_signal() function.
1545 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1546 if (IS_ERR(req->ki_eventfd)) {
1547 ret = PTR_ERR(req->ki_eventfd);
1548 req->ki_eventfd = NULL;
1549 goto out_put_req;
1553 ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1554 if (unlikely(ret)) {
1555 pr_debug("EFAULT: aio_key\n");
1556 goto out_put_req;
1559 req->ki_obj.user = user_iocb;
1560 req->ki_user_data = iocb->aio_data;
1561 req->ki_pos = iocb->aio_offset;
1562 req->ki_nbytes = iocb->aio_nbytes;
1564 ret = aio_run_iocb(req, iocb->aio_lio_opcode,
1565 (char __user *)(unsigned long)iocb->aio_buf,
1566 compat);
1567 if (ret)
1568 goto out_put_req;
1570 return 0;
1571 out_put_req:
1572 put_reqs_available(ctx, 1);
1573 percpu_ref_put(&ctx->reqs);
1574 kiocb_free(req);
1575 return ret;
1578 long do_io_submit(aio_context_t ctx_id, long nr,
1579 struct iocb __user *__user *iocbpp, bool compat)
1581 struct kioctx *ctx;
1582 long ret = 0;
1583 int i = 0;
1584 struct blk_plug plug;
1586 if (unlikely(nr < 0))
1587 return -EINVAL;
1589 if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1590 nr = LONG_MAX/sizeof(*iocbpp);
1592 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1593 return -EFAULT;
1595 ctx = lookup_ioctx(ctx_id);
1596 if (unlikely(!ctx)) {
1597 pr_debug("EINVAL: invalid context id\n");
1598 return -EINVAL;
1601 blk_start_plug(&plug);
1604 * AKPM: should this return a partial result if some of the IOs were
1605 * successfully submitted?
1607 for (i=0; i<nr; i++) {
1608 struct iocb __user *user_iocb;
1609 struct iocb tmp;
1611 if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1612 ret = -EFAULT;
1613 break;
1616 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1617 ret = -EFAULT;
1618 break;
1621 ret = io_submit_one(ctx, user_iocb, &tmp, compat);
1622 if (ret)
1623 break;
1625 blk_finish_plug(&plug);
1627 percpu_ref_put(&ctx->users);
1628 return i ? i : ret;
1631 /* sys_io_submit:
1632 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1633 * the number of iocbs queued. May return -EINVAL if the aio_context
1634 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1635 * *iocbpp[0] is not properly initialized, if the operation specified
1636 * is invalid for the file descriptor in the iocb. May fail with
1637 * -EFAULT if any of the data structures point to invalid data. May
1638 * fail with -EBADF if the file descriptor specified in the first
1639 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1640 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1641 * fail with -ENOSYS if not implemented.
1643 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1644 struct iocb __user * __user *, iocbpp)
1646 return do_io_submit(ctx_id, nr, iocbpp, 0);
1649 /* lookup_kiocb
1650 * Finds a given iocb for cancellation.
1652 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1653 u32 key)
1655 struct list_head *pos;
1657 assert_spin_locked(&ctx->ctx_lock);
1659 if (key != KIOCB_KEY)
1660 return NULL;
1662 /* TODO: use a hash or array, this sucks. */
1663 list_for_each(pos, &ctx->active_reqs) {
1664 struct kiocb *kiocb = list_kiocb(pos);
1665 if (kiocb->ki_obj.user == iocb)
1666 return kiocb;
1668 return NULL;
1671 /* sys_io_cancel:
1672 * Attempts to cancel an iocb previously passed to io_submit. If
1673 * the operation is successfully cancelled, the resulting event is
1674 * copied into the memory pointed to by result without being placed
1675 * into the completion queue and 0 is returned. May fail with
1676 * -EFAULT if any of the data structures pointed to are invalid.
1677 * May fail with -EINVAL if aio_context specified by ctx_id is
1678 * invalid. May fail with -EAGAIN if the iocb specified was not
1679 * cancelled. Will fail with -ENOSYS if not implemented.
1681 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1682 struct io_event __user *, result)
1684 struct kioctx *ctx;
1685 struct kiocb *kiocb;
1686 u32 key;
1687 int ret;
1689 ret = get_user(key, &iocb->aio_key);
1690 if (unlikely(ret))
1691 return -EFAULT;
1693 ctx = lookup_ioctx(ctx_id);
1694 if (unlikely(!ctx))
1695 return -EINVAL;
1697 spin_lock_irq(&ctx->ctx_lock);
1699 kiocb = lookup_kiocb(ctx, iocb, key);
1700 if (kiocb)
1701 ret = kiocb_cancel(kiocb);
1702 else
1703 ret = -EINVAL;
1705 spin_unlock_irq(&ctx->ctx_lock);
1707 if (!ret) {
1709 * The result argument is no longer used - the io_event is
1710 * always delivered via the ring buffer. -EINPROGRESS indicates
1711 * cancellation is progress:
1713 ret = -EINPROGRESS;
1716 percpu_ref_put(&ctx->users);
1718 return ret;
1721 /* io_getevents:
1722 * Attempts to read at least min_nr events and up to nr events from
1723 * the completion queue for the aio_context specified by ctx_id. If
1724 * it succeeds, the number of read events is returned. May fail with
1725 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1726 * out of range, if timeout is out of range. May fail with -EFAULT
1727 * if any of the memory specified is invalid. May return 0 or
1728 * < min_nr if the timeout specified by timeout has elapsed
1729 * before sufficient events are available, where timeout == NULL
1730 * specifies an infinite timeout. Note that the timeout pointed to by
1731 * timeout is relative. Will fail with -ENOSYS if not implemented.
1733 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1734 long, min_nr,
1735 long, nr,
1736 struct io_event __user *, events,
1737 struct timespec __user *, timeout)
1739 struct kioctx *ioctx = lookup_ioctx(ctx_id);
1740 long ret = -EINVAL;
1742 if (likely(ioctx)) {
1743 if (likely(min_nr <= nr && min_nr >= 0))
1744 ret = read_events(ioctx, min_nr, nr, events, timeout);
1745 percpu_ref_put(&ioctx->users);
1747 return ret;