2 * Dynamic DMA mapping support.
4 * This implementation is a fallback for platforms that do not support
5 * I/O TLBs (aka DMA address translation hardware).
6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
9 * David Mosberger-Tang <davidm@hpl.hp.com>
11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
13 * unnecessary i-cache flushing.
14 * 04/07/.. ak Better overflow handling. Assorted fixes.
15 * 05/09/10 linville Add support for syncing ranges, support syncing for
16 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
17 * 08/12/11 beckyb Add highmem support
20 #include <linux/cache.h>
21 #include <linux/dma-mapping.h>
23 #include <linux/export.h>
24 #include <linux/spinlock.h>
25 #include <linux/string.h>
26 #include <linux/swiotlb.h>
27 #include <linux/pfn.h>
28 #include <linux/types.h>
29 #include <linux/ctype.h>
30 #include <linux/highmem.h>
31 #include <linux/gfp.h>
35 #include <asm/scatterlist.h>
37 #include <linux/init.h>
38 #include <linux/bootmem.h>
39 #include <linux/iommu-helper.h>
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/swiotlb.h>
44 #define OFFSET(val,align) ((unsigned long) \
45 ( (val) & ( (align) - 1)))
47 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
50 * Minimum IO TLB size to bother booting with. Systems with mainly
51 * 64bit capable cards will only lightly use the swiotlb. If we can't
52 * allocate a contiguous 1MB, we're probably in trouble anyway.
54 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
59 * Used to do a quick range check in swiotlb_tbl_unmap_single and
60 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
63 static phys_addr_t io_tlb_start
, io_tlb_end
;
66 * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
67 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
69 static unsigned long io_tlb_nslabs
;
72 * When the IOMMU overflows we return a fallback buffer. This sets the size.
74 static unsigned long io_tlb_overflow
= 32*1024;
76 static phys_addr_t io_tlb_overflow_buffer
;
79 * This is a free list describing the number of free entries available from
82 static unsigned int *io_tlb_list
;
83 static unsigned int io_tlb_index
;
86 * We need to save away the original address corresponding to a mapped entry
87 * for the sync operations.
89 static phys_addr_t
*io_tlb_orig_addr
;
92 * Protect the above data structures in the map and unmap calls
94 static DEFINE_SPINLOCK(io_tlb_lock
);
96 static int late_alloc
;
99 setup_io_tlb_npages(char *str
)
102 io_tlb_nslabs
= simple_strtoul(str
, &str
, 0);
103 /* avoid tail segment of size < IO_TLB_SEGSIZE */
104 io_tlb_nslabs
= ALIGN(io_tlb_nslabs
, IO_TLB_SEGSIZE
);
108 if (!strcmp(str
, "force"))
113 early_param("swiotlb", setup_io_tlb_npages
);
114 /* make io_tlb_overflow tunable too? */
116 unsigned long swiotlb_nr_tbl(void)
118 return io_tlb_nslabs
;
120 EXPORT_SYMBOL_GPL(swiotlb_nr_tbl
);
122 /* default to 64MB */
123 #define IO_TLB_DEFAULT_SIZE (64UL<<20)
124 unsigned long swiotlb_size_or_default(void)
128 size
= io_tlb_nslabs
<< IO_TLB_SHIFT
;
130 return size
? size
: (IO_TLB_DEFAULT_SIZE
);
133 /* Note that this doesn't work with highmem page */
134 static dma_addr_t
swiotlb_virt_to_bus(struct device
*hwdev
,
135 volatile void *address
)
137 return phys_to_dma(hwdev
, virt_to_phys(address
));
140 static bool no_iotlb_memory
;
142 void swiotlb_print_info(void)
144 unsigned long bytes
= io_tlb_nslabs
<< IO_TLB_SHIFT
;
145 unsigned char *vstart
, *vend
;
147 if (no_iotlb_memory
) {
148 pr_warn("software IO TLB: No low mem\n");
152 vstart
= phys_to_virt(io_tlb_start
);
153 vend
= phys_to_virt(io_tlb_end
);
155 printk(KERN_INFO
"software IO TLB [mem %#010llx-%#010llx] (%luMB) mapped at [%p-%p]\n",
156 (unsigned long long)io_tlb_start
,
157 (unsigned long long)io_tlb_end
,
158 bytes
>> 20, vstart
, vend
- 1);
161 int __init
swiotlb_init_with_tbl(char *tlb
, unsigned long nslabs
, int verbose
)
163 void *v_overflow_buffer
;
164 unsigned long i
, bytes
;
166 bytes
= nslabs
<< IO_TLB_SHIFT
;
168 io_tlb_nslabs
= nslabs
;
169 io_tlb_start
= __pa(tlb
);
170 io_tlb_end
= io_tlb_start
+ bytes
;
173 * Get the overflow emergency buffer
175 v_overflow_buffer
= memblock_virt_alloc_low_nopanic(
176 PAGE_ALIGN(io_tlb_overflow
),
178 if (!v_overflow_buffer
)
181 io_tlb_overflow_buffer
= __pa(v_overflow_buffer
);
184 * Allocate and initialize the free list array. This array is used
185 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
186 * between io_tlb_start and io_tlb_end.
188 io_tlb_list
= memblock_virt_alloc(
189 PAGE_ALIGN(io_tlb_nslabs
* sizeof(int)),
191 for (i
= 0; i
< io_tlb_nslabs
; i
++)
192 io_tlb_list
[i
] = IO_TLB_SEGSIZE
- OFFSET(i
, IO_TLB_SEGSIZE
);
194 io_tlb_orig_addr
= memblock_virt_alloc(
195 PAGE_ALIGN(io_tlb_nslabs
* sizeof(phys_addr_t
)),
199 swiotlb_print_info();
205 * Statically reserve bounce buffer space and initialize bounce buffer data
206 * structures for the software IO TLB used to implement the DMA API.
209 swiotlb_init(int verbose
)
211 size_t default_size
= IO_TLB_DEFAULT_SIZE
;
212 unsigned char *vstart
;
215 if (!io_tlb_nslabs
) {
216 io_tlb_nslabs
= (default_size
>> IO_TLB_SHIFT
);
217 io_tlb_nslabs
= ALIGN(io_tlb_nslabs
, IO_TLB_SEGSIZE
);
220 bytes
= io_tlb_nslabs
<< IO_TLB_SHIFT
;
222 /* Get IO TLB memory from the low pages */
223 vstart
= memblock_virt_alloc_low_nopanic(PAGE_ALIGN(bytes
), PAGE_SIZE
);
224 if (vstart
&& !swiotlb_init_with_tbl(vstart
, io_tlb_nslabs
, verbose
))
228 memblock_free_early(io_tlb_start
,
229 PAGE_ALIGN(io_tlb_nslabs
<< IO_TLB_SHIFT
));
230 pr_warn("Cannot allocate SWIOTLB buffer");
231 no_iotlb_memory
= true;
235 * Systems with larger DMA zones (those that don't support ISA) can
236 * initialize the swiotlb later using the slab allocator if needed.
237 * This should be just like above, but with some error catching.
240 swiotlb_late_init_with_default_size(size_t default_size
)
242 unsigned long bytes
, req_nslabs
= io_tlb_nslabs
;
243 unsigned char *vstart
= NULL
;
247 if (!io_tlb_nslabs
) {
248 io_tlb_nslabs
= (default_size
>> IO_TLB_SHIFT
);
249 io_tlb_nslabs
= ALIGN(io_tlb_nslabs
, IO_TLB_SEGSIZE
);
253 * Get IO TLB memory from the low pages
255 order
= get_order(io_tlb_nslabs
<< IO_TLB_SHIFT
);
256 io_tlb_nslabs
= SLABS_PER_PAGE
<< order
;
257 bytes
= io_tlb_nslabs
<< IO_TLB_SHIFT
;
259 while ((SLABS_PER_PAGE
<< order
) > IO_TLB_MIN_SLABS
) {
260 vstart
= (void *)__get_free_pages(GFP_DMA
| __GFP_NOWARN
,
268 io_tlb_nslabs
= req_nslabs
;
271 if (order
!= get_order(bytes
)) {
272 printk(KERN_WARNING
"Warning: only able to allocate %ld MB "
273 "for software IO TLB\n", (PAGE_SIZE
<< order
) >> 20);
274 io_tlb_nslabs
= SLABS_PER_PAGE
<< order
;
276 rc
= swiotlb_late_init_with_tbl(vstart
, io_tlb_nslabs
);
278 free_pages((unsigned long)vstart
, order
);
283 swiotlb_late_init_with_tbl(char *tlb
, unsigned long nslabs
)
285 unsigned long i
, bytes
;
286 unsigned char *v_overflow_buffer
;
288 bytes
= nslabs
<< IO_TLB_SHIFT
;
290 io_tlb_nslabs
= nslabs
;
291 io_tlb_start
= virt_to_phys(tlb
);
292 io_tlb_end
= io_tlb_start
+ bytes
;
294 memset(tlb
, 0, bytes
);
297 * Get the overflow emergency buffer
299 v_overflow_buffer
= (void *)__get_free_pages(GFP_DMA
,
300 get_order(io_tlb_overflow
));
301 if (!v_overflow_buffer
)
304 io_tlb_overflow_buffer
= virt_to_phys(v_overflow_buffer
);
307 * Allocate and initialize the free list array. This array is used
308 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
309 * between io_tlb_start and io_tlb_end.
311 io_tlb_list
= (unsigned int *)__get_free_pages(GFP_KERNEL
,
312 get_order(io_tlb_nslabs
* sizeof(int)));
316 for (i
= 0; i
< io_tlb_nslabs
; i
++)
317 io_tlb_list
[i
] = IO_TLB_SEGSIZE
- OFFSET(i
, IO_TLB_SEGSIZE
);
320 io_tlb_orig_addr
= (phys_addr_t
*)
321 __get_free_pages(GFP_KERNEL
,
322 get_order(io_tlb_nslabs
*
323 sizeof(phys_addr_t
)));
324 if (!io_tlb_orig_addr
)
327 memset(io_tlb_orig_addr
, 0, io_tlb_nslabs
* sizeof(phys_addr_t
));
329 swiotlb_print_info();
336 free_pages((unsigned long)io_tlb_list
, get_order(io_tlb_nslabs
*
340 free_pages((unsigned long)v_overflow_buffer
,
341 get_order(io_tlb_overflow
));
342 io_tlb_overflow_buffer
= 0;
350 void __init
swiotlb_free(void)
352 if (!io_tlb_orig_addr
)
356 free_pages((unsigned long)phys_to_virt(io_tlb_overflow_buffer
),
357 get_order(io_tlb_overflow
));
358 free_pages((unsigned long)io_tlb_orig_addr
,
359 get_order(io_tlb_nslabs
* sizeof(phys_addr_t
)));
360 free_pages((unsigned long)io_tlb_list
, get_order(io_tlb_nslabs
*
362 free_pages((unsigned long)phys_to_virt(io_tlb_start
),
363 get_order(io_tlb_nslabs
<< IO_TLB_SHIFT
));
365 memblock_free_late(io_tlb_overflow_buffer
,
366 PAGE_ALIGN(io_tlb_overflow
));
367 memblock_free_late(__pa(io_tlb_orig_addr
),
368 PAGE_ALIGN(io_tlb_nslabs
* sizeof(phys_addr_t
)));
369 memblock_free_late(__pa(io_tlb_list
),
370 PAGE_ALIGN(io_tlb_nslabs
* sizeof(int)));
371 memblock_free_late(io_tlb_start
,
372 PAGE_ALIGN(io_tlb_nslabs
<< IO_TLB_SHIFT
));
377 static int is_swiotlb_buffer(phys_addr_t paddr
)
379 return paddr
>= io_tlb_start
&& paddr
< io_tlb_end
;
383 * Bounce: copy the swiotlb buffer back to the original dma location
385 static void swiotlb_bounce(phys_addr_t orig_addr
, phys_addr_t tlb_addr
,
386 size_t size
, enum dma_data_direction dir
)
388 unsigned long pfn
= PFN_DOWN(orig_addr
);
389 unsigned char *vaddr
= phys_to_virt(tlb_addr
);
391 if (PageHighMem(pfn_to_page(pfn
))) {
392 /* The buffer does not have a mapping. Map it in and copy */
393 unsigned int offset
= orig_addr
& ~PAGE_MASK
;
399 sz
= min_t(size_t, PAGE_SIZE
- offset
, size
);
401 local_irq_save(flags
);
402 buffer
= kmap_atomic(pfn_to_page(pfn
));
403 if (dir
== DMA_TO_DEVICE
)
404 memcpy(vaddr
, buffer
+ offset
, sz
);
406 memcpy(buffer
+ offset
, vaddr
, sz
);
407 kunmap_atomic(buffer
);
408 local_irq_restore(flags
);
415 } else if (dir
== DMA_TO_DEVICE
) {
416 memcpy(vaddr
, phys_to_virt(orig_addr
), size
);
418 memcpy(phys_to_virt(orig_addr
), vaddr
, size
);
422 phys_addr_t
swiotlb_tbl_map_single(struct device
*hwdev
,
423 dma_addr_t tbl_dma_addr
,
424 phys_addr_t orig_addr
, size_t size
,
425 enum dma_data_direction dir
)
428 phys_addr_t tlb_addr
;
429 unsigned int nslots
, stride
, index
, wrap
;
432 unsigned long offset_slots
;
433 unsigned long max_slots
;
436 panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
438 mask
= dma_get_seg_boundary(hwdev
);
440 tbl_dma_addr
&= mask
;
442 offset_slots
= ALIGN(tbl_dma_addr
, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
;
445 * Carefully handle integer overflow which can occur when mask == ~0UL.
448 ? ALIGN(mask
+ 1, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
449 : 1UL << (BITS_PER_LONG
- IO_TLB_SHIFT
);
452 * For mappings greater than a page, we limit the stride (and
453 * hence alignment) to a page size.
455 nslots
= ALIGN(size
, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
;
456 if (size
> PAGE_SIZE
)
457 stride
= (1 << (PAGE_SHIFT
- IO_TLB_SHIFT
));
464 * Find suitable number of IO TLB entries size that will fit this
465 * request and allocate a buffer from that IO TLB pool.
467 spin_lock_irqsave(&io_tlb_lock
, flags
);
468 index
= ALIGN(io_tlb_index
, stride
);
469 if (index
>= io_tlb_nslabs
)
474 while (iommu_is_span_boundary(index
, nslots
, offset_slots
,
477 if (index
>= io_tlb_nslabs
)
484 * If we find a slot that indicates we have 'nslots' number of
485 * contiguous buffers, we allocate the buffers from that slot
486 * and mark the entries as '0' indicating unavailable.
488 if (io_tlb_list
[index
] >= nslots
) {
491 for (i
= index
; i
< (int) (index
+ nslots
); i
++)
493 for (i
= index
- 1; (OFFSET(i
, IO_TLB_SEGSIZE
) != IO_TLB_SEGSIZE
- 1) && io_tlb_list
[i
]; i
--)
494 io_tlb_list
[i
] = ++count
;
495 tlb_addr
= io_tlb_start
+ (index
<< IO_TLB_SHIFT
);
498 * Update the indices to avoid searching in the next
501 io_tlb_index
= ((index
+ nslots
) < io_tlb_nslabs
502 ? (index
+ nslots
) : 0);
507 if (index
>= io_tlb_nslabs
)
509 } while (index
!= wrap
);
512 spin_unlock_irqrestore(&io_tlb_lock
, flags
);
513 if (printk_ratelimit())
514 dev_warn(hwdev
, "swiotlb buffer is full (sz: %zd bytes)\n", size
);
515 return SWIOTLB_MAP_ERROR
;
517 spin_unlock_irqrestore(&io_tlb_lock
, flags
);
520 * Save away the mapping from the original address to the DMA address.
521 * This is needed when we sync the memory. Then we sync the buffer if
524 for (i
= 0; i
< nslots
; i
++)
525 io_tlb_orig_addr
[index
+i
] = orig_addr
+ (i
<< IO_TLB_SHIFT
);
526 if (dir
== DMA_TO_DEVICE
|| dir
== DMA_BIDIRECTIONAL
)
527 swiotlb_bounce(orig_addr
, tlb_addr
, size
, DMA_TO_DEVICE
);
531 EXPORT_SYMBOL_GPL(swiotlb_tbl_map_single
);
534 * Allocates bounce buffer and returns its kernel virtual address.
537 phys_addr_t
map_single(struct device
*hwdev
, phys_addr_t phys
, size_t size
,
538 enum dma_data_direction dir
)
540 dma_addr_t start_dma_addr
= phys_to_dma(hwdev
, io_tlb_start
);
542 return swiotlb_tbl_map_single(hwdev
, start_dma_addr
, phys
, size
, dir
);
546 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
548 void swiotlb_tbl_unmap_single(struct device
*hwdev
, phys_addr_t tlb_addr
,
549 size_t size
, enum dma_data_direction dir
)
552 int i
, count
, nslots
= ALIGN(size
, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
;
553 int index
= (tlb_addr
- io_tlb_start
) >> IO_TLB_SHIFT
;
554 phys_addr_t orig_addr
= io_tlb_orig_addr
[index
];
557 * First, sync the memory before unmapping the entry
559 if (orig_addr
&& ((dir
== DMA_FROM_DEVICE
) || (dir
== DMA_BIDIRECTIONAL
)))
560 swiotlb_bounce(orig_addr
, tlb_addr
, size
, DMA_FROM_DEVICE
);
563 * Return the buffer to the free list by setting the corresponding
564 * entries to indicate the number of contiguous entries available.
565 * While returning the entries to the free list, we merge the entries
566 * with slots below and above the pool being returned.
568 spin_lock_irqsave(&io_tlb_lock
, flags
);
570 count
= ((index
+ nslots
) < ALIGN(index
+ 1, IO_TLB_SEGSIZE
) ?
571 io_tlb_list
[index
+ nslots
] : 0);
573 * Step 1: return the slots to the free list, merging the
574 * slots with superceeding slots
576 for (i
= index
+ nslots
- 1; i
>= index
; i
--)
577 io_tlb_list
[i
] = ++count
;
579 * Step 2: merge the returned slots with the preceding slots,
580 * if available (non zero)
582 for (i
= index
- 1; (OFFSET(i
, IO_TLB_SEGSIZE
) != IO_TLB_SEGSIZE
-1) && io_tlb_list
[i
]; i
--)
583 io_tlb_list
[i
] = ++count
;
585 spin_unlock_irqrestore(&io_tlb_lock
, flags
);
587 EXPORT_SYMBOL_GPL(swiotlb_tbl_unmap_single
);
589 void swiotlb_tbl_sync_single(struct device
*hwdev
, phys_addr_t tlb_addr
,
590 size_t size
, enum dma_data_direction dir
,
591 enum dma_sync_target target
)
593 int index
= (tlb_addr
- io_tlb_start
) >> IO_TLB_SHIFT
;
594 phys_addr_t orig_addr
= io_tlb_orig_addr
[index
];
596 orig_addr
+= (unsigned long)tlb_addr
& ((1 << IO_TLB_SHIFT
) - 1);
600 if (likely(dir
== DMA_FROM_DEVICE
|| dir
== DMA_BIDIRECTIONAL
))
601 swiotlb_bounce(orig_addr
, tlb_addr
,
602 size
, DMA_FROM_DEVICE
);
604 BUG_ON(dir
!= DMA_TO_DEVICE
);
606 case SYNC_FOR_DEVICE
:
607 if (likely(dir
== DMA_TO_DEVICE
|| dir
== DMA_BIDIRECTIONAL
))
608 swiotlb_bounce(orig_addr
, tlb_addr
,
609 size
, DMA_TO_DEVICE
);
611 BUG_ON(dir
!= DMA_FROM_DEVICE
);
617 EXPORT_SYMBOL_GPL(swiotlb_tbl_sync_single
);
620 swiotlb_alloc_coherent(struct device
*hwdev
, size_t size
,
621 dma_addr_t
*dma_handle
, gfp_t flags
)
625 int order
= get_order(size
);
626 u64 dma_mask
= DMA_BIT_MASK(32);
628 if (hwdev
&& hwdev
->coherent_dma_mask
)
629 dma_mask
= hwdev
->coherent_dma_mask
;
631 ret
= (void *)__get_free_pages(flags
, order
);
633 dev_addr
= swiotlb_virt_to_bus(hwdev
, ret
);
634 if (dev_addr
+ size
- 1 > dma_mask
) {
636 * The allocated memory isn't reachable by the device.
638 free_pages((unsigned long) ret
, order
);
644 * We are either out of memory or the device can't DMA to
645 * GFP_DMA memory; fall back on map_single(), which
646 * will grab memory from the lowest available address range.
648 phys_addr_t paddr
= map_single(hwdev
, 0, size
, DMA_FROM_DEVICE
);
649 if (paddr
== SWIOTLB_MAP_ERROR
)
652 ret
= phys_to_virt(paddr
);
653 dev_addr
= phys_to_dma(hwdev
, paddr
);
655 /* Confirm address can be DMA'd by device */
656 if (dev_addr
+ size
- 1 > dma_mask
) {
657 printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
658 (unsigned long long)dma_mask
,
659 (unsigned long long)dev_addr
);
661 /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
662 swiotlb_tbl_unmap_single(hwdev
, paddr
,
663 size
, DMA_TO_DEVICE
);
668 *dma_handle
= dev_addr
;
669 memset(ret
, 0, size
);
673 EXPORT_SYMBOL(swiotlb_alloc_coherent
);
676 swiotlb_free_coherent(struct device
*hwdev
, size_t size
, void *vaddr
,
679 phys_addr_t paddr
= dma_to_phys(hwdev
, dev_addr
);
681 WARN_ON(irqs_disabled());
682 if (!is_swiotlb_buffer(paddr
))
683 free_pages((unsigned long)vaddr
, get_order(size
));
685 /* DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single */
686 swiotlb_tbl_unmap_single(hwdev
, paddr
, size
, DMA_TO_DEVICE
);
688 EXPORT_SYMBOL(swiotlb_free_coherent
);
691 swiotlb_full(struct device
*dev
, size_t size
, enum dma_data_direction dir
,
695 * Ran out of IOMMU space for this operation. This is very bad.
696 * Unfortunately the drivers cannot handle this operation properly.
697 * unless they check for dma_mapping_error (most don't)
698 * When the mapping is small enough return a static buffer to limit
699 * the damage, or panic when the transfer is too big.
701 printk(KERN_ERR
"DMA: Out of SW-IOMMU space for %zu bytes at "
702 "device %s\n", size
, dev
? dev_name(dev
) : "?");
704 if (size
<= io_tlb_overflow
|| !do_panic
)
707 if (dir
== DMA_BIDIRECTIONAL
)
708 panic("DMA: Random memory could be DMA accessed\n");
709 if (dir
== DMA_FROM_DEVICE
)
710 panic("DMA: Random memory could be DMA written\n");
711 if (dir
== DMA_TO_DEVICE
)
712 panic("DMA: Random memory could be DMA read\n");
716 * Map a single buffer of the indicated size for DMA in streaming mode. The
717 * physical address to use is returned.
719 * Once the device is given the dma address, the device owns this memory until
720 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
722 dma_addr_t
swiotlb_map_page(struct device
*dev
, struct page
*page
,
723 unsigned long offset
, size_t size
,
724 enum dma_data_direction dir
,
725 struct dma_attrs
*attrs
)
727 phys_addr_t map
, phys
= page_to_phys(page
) + offset
;
728 dma_addr_t dev_addr
= phys_to_dma(dev
, phys
);
730 BUG_ON(dir
== DMA_NONE
);
732 * If the address happens to be in the device's DMA window,
733 * we can safely return the device addr and not worry about bounce
736 if (dma_capable(dev
, dev_addr
, size
) && !swiotlb_force
)
739 trace_swiotlb_bounced(dev
, dev_addr
, size
, swiotlb_force
);
741 /* Oh well, have to allocate and map a bounce buffer. */
742 map
= map_single(dev
, phys
, size
, dir
);
743 if (map
== SWIOTLB_MAP_ERROR
) {
744 swiotlb_full(dev
, size
, dir
, 1);
745 return phys_to_dma(dev
, io_tlb_overflow_buffer
);
748 dev_addr
= phys_to_dma(dev
, map
);
750 /* Ensure that the address returned is DMA'ble */
751 if (!dma_capable(dev
, dev_addr
, size
)) {
752 swiotlb_tbl_unmap_single(dev
, map
, size
, dir
);
753 return phys_to_dma(dev
, io_tlb_overflow_buffer
);
758 EXPORT_SYMBOL_GPL(swiotlb_map_page
);
761 * Unmap a single streaming mode DMA translation. The dma_addr and size must
762 * match what was provided for in a previous swiotlb_map_page call. All
763 * other usages are undefined.
765 * After this call, reads by the cpu to the buffer are guaranteed to see
766 * whatever the device wrote there.
768 static void unmap_single(struct device
*hwdev
, dma_addr_t dev_addr
,
769 size_t size
, enum dma_data_direction dir
)
771 phys_addr_t paddr
= dma_to_phys(hwdev
, dev_addr
);
773 BUG_ON(dir
== DMA_NONE
);
775 if (is_swiotlb_buffer(paddr
)) {
776 swiotlb_tbl_unmap_single(hwdev
, paddr
, size
, dir
);
780 if (dir
!= DMA_FROM_DEVICE
)
784 * phys_to_virt doesn't work with hihgmem page but we could
785 * call dma_mark_clean() with hihgmem page here. However, we
786 * are fine since dma_mark_clean() is null on POWERPC. We can
787 * make dma_mark_clean() take a physical address if necessary.
789 dma_mark_clean(phys_to_virt(paddr
), size
);
792 void swiotlb_unmap_page(struct device
*hwdev
, dma_addr_t dev_addr
,
793 size_t size
, enum dma_data_direction dir
,
794 struct dma_attrs
*attrs
)
796 unmap_single(hwdev
, dev_addr
, size
, dir
);
798 EXPORT_SYMBOL_GPL(swiotlb_unmap_page
);
801 * Make physical memory consistent for a single streaming mode DMA translation
804 * If you perform a swiotlb_map_page() but wish to interrogate the buffer
805 * using the cpu, yet do not wish to teardown the dma mapping, you must
806 * call this function before doing so. At the next point you give the dma
807 * address back to the card, you must first perform a
808 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
811 swiotlb_sync_single(struct device
*hwdev
, dma_addr_t dev_addr
,
812 size_t size
, enum dma_data_direction dir
,
813 enum dma_sync_target target
)
815 phys_addr_t paddr
= dma_to_phys(hwdev
, dev_addr
);
817 BUG_ON(dir
== DMA_NONE
);
819 if (is_swiotlb_buffer(paddr
)) {
820 swiotlb_tbl_sync_single(hwdev
, paddr
, size
, dir
, target
);
824 if (dir
!= DMA_FROM_DEVICE
)
827 dma_mark_clean(phys_to_virt(paddr
), size
);
831 swiotlb_sync_single_for_cpu(struct device
*hwdev
, dma_addr_t dev_addr
,
832 size_t size
, enum dma_data_direction dir
)
834 swiotlb_sync_single(hwdev
, dev_addr
, size
, dir
, SYNC_FOR_CPU
);
836 EXPORT_SYMBOL(swiotlb_sync_single_for_cpu
);
839 swiotlb_sync_single_for_device(struct device
*hwdev
, dma_addr_t dev_addr
,
840 size_t size
, enum dma_data_direction dir
)
842 swiotlb_sync_single(hwdev
, dev_addr
, size
, dir
, SYNC_FOR_DEVICE
);
844 EXPORT_SYMBOL(swiotlb_sync_single_for_device
);
847 * Map a set of buffers described by scatterlist in streaming mode for DMA.
848 * This is the scatter-gather version of the above swiotlb_map_page
849 * interface. Here the scatter gather list elements are each tagged with the
850 * appropriate dma address and length. They are obtained via
851 * sg_dma_{address,length}(SG).
853 * NOTE: An implementation may be able to use a smaller number of
854 * DMA address/length pairs than there are SG table elements.
855 * (for example via virtual mapping capabilities)
856 * The routine returns the number of addr/length pairs actually
857 * used, at most nents.
859 * Device ownership issues as mentioned above for swiotlb_map_page are the
863 swiotlb_map_sg_attrs(struct device
*hwdev
, struct scatterlist
*sgl
, int nelems
,
864 enum dma_data_direction dir
, struct dma_attrs
*attrs
)
866 struct scatterlist
*sg
;
869 BUG_ON(dir
== DMA_NONE
);
871 for_each_sg(sgl
, sg
, nelems
, i
) {
872 phys_addr_t paddr
= sg_phys(sg
);
873 dma_addr_t dev_addr
= phys_to_dma(hwdev
, paddr
);
876 !dma_capable(hwdev
, dev_addr
, sg
->length
)) {
877 phys_addr_t map
= map_single(hwdev
, sg_phys(sg
),
879 if (map
== SWIOTLB_MAP_ERROR
) {
880 /* Don't panic here, we expect map_sg users
881 to do proper error handling. */
882 swiotlb_full(hwdev
, sg
->length
, dir
, 0);
883 swiotlb_unmap_sg_attrs(hwdev
, sgl
, i
, dir
,
888 sg
->dma_address
= phys_to_dma(hwdev
, map
);
890 sg
->dma_address
= dev_addr
;
891 sg_dma_len(sg
) = sg
->length
;
895 EXPORT_SYMBOL(swiotlb_map_sg_attrs
);
898 swiotlb_map_sg(struct device
*hwdev
, struct scatterlist
*sgl
, int nelems
,
899 enum dma_data_direction dir
)
901 return swiotlb_map_sg_attrs(hwdev
, sgl
, nelems
, dir
, NULL
);
903 EXPORT_SYMBOL(swiotlb_map_sg
);
906 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
907 * concerning calls here are the same as for swiotlb_unmap_page() above.
910 swiotlb_unmap_sg_attrs(struct device
*hwdev
, struct scatterlist
*sgl
,
911 int nelems
, enum dma_data_direction dir
, struct dma_attrs
*attrs
)
913 struct scatterlist
*sg
;
916 BUG_ON(dir
== DMA_NONE
);
918 for_each_sg(sgl
, sg
, nelems
, i
)
919 unmap_single(hwdev
, sg
->dma_address
, sg_dma_len(sg
), dir
);
922 EXPORT_SYMBOL(swiotlb_unmap_sg_attrs
);
925 swiotlb_unmap_sg(struct device
*hwdev
, struct scatterlist
*sgl
, int nelems
,
926 enum dma_data_direction dir
)
928 return swiotlb_unmap_sg_attrs(hwdev
, sgl
, nelems
, dir
, NULL
);
930 EXPORT_SYMBOL(swiotlb_unmap_sg
);
933 * Make physical memory consistent for a set of streaming mode DMA translations
936 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
940 swiotlb_sync_sg(struct device
*hwdev
, struct scatterlist
*sgl
,
941 int nelems
, enum dma_data_direction dir
,
942 enum dma_sync_target target
)
944 struct scatterlist
*sg
;
947 for_each_sg(sgl
, sg
, nelems
, i
)
948 swiotlb_sync_single(hwdev
, sg
->dma_address
,
949 sg_dma_len(sg
), dir
, target
);
953 swiotlb_sync_sg_for_cpu(struct device
*hwdev
, struct scatterlist
*sg
,
954 int nelems
, enum dma_data_direction dir
)
956 swiotlb_sync_sg(hwdev
, sg
, nelems
, dir
, SYNC_FOR_CPU
);
958 EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu
);
961 swiotlb_sync_sg_for_device(struct device
*hwdev
, struct scatterlist
*sg
,
962 int nelems
, enum dma_data_direction dir
)
964 swiotlb_sync_sg(hwdev
, sg
, nelems
, dir
, SYNC_FOR_DEVICE
);
966 EXPORT_SYMBOL(swiotlb_sync_sg_for_device
);
969 swiotlb_dma_mapping_error(struct device
*hwdev
, dma_addr_t dma_addr
)
971 return (dma_addr
== phys_to_dma(hwdev
, io_tlb_overflow_buffer
));
973 EXPORT_SYMBOL(swiotlb_dma_mapping_error
);
976 * Return whether the given device DMA address mask can be supported
977 * properly. For example, if your device can only drive the low 24-bits
978 * during bus mastering, then you would pass 0x00ffffff as the mask to
982 swiotlb_dma_supported(struct device
*hwdev
, u64 mask
)
984 return phys_to_dma(hwdev
, io_tlb_end
- 1) <= mask
;
986 EXPORT_SYMBOL(swiotlb_dma_supported
);