iio: health: max30100: fixed parenthesis around FIFO count check
[linux/fpc-iii.git] / drivers / rtc / rtc-s5m.c
blob0477678d968fd1ccdec8e36784e57e05910364dc
1 /*
2 * Copyright (c) 2013-2014 Samsung Electronics Co., Ltd
3 * http://www.samsung.com
5 * Copyright (C) 2013 Google, Inc
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20 #include <linux/module.h>
21 #include <linux/i2c.h>
22 #include <linux/bcd.h>
23 #include <linux/regmap.h>
24 #include <linux/rtc.h>
25 #include <linux/platform_device.h>
26 #include <linux/mfd/samsung/core.h>
27 #include <linux/mfd/samsung/irq.h>
28 #include <linux/mfd/samsung/rtc.h>
29 #include <linux/mfd/samsung/s2mps14.h>
32 * Maximum number of retries for checking changes in UDR field
33 * of S5M_RTC_UDR_CON register (to limit possible endless loop).
35 * After writing to RTC registers (setting time or alarm) read the UDR field
36 * in S5M_RTC_UDR_CON register. UDR is auto-cleared when data have
37 * been transferred.
39 #define UDR_READ_RETRY_CNT 5
42 * Registers used by the driver which are different between chipsets.
44 * Operations like read time and write alarm/time require updating
45 * specific fields in UDR register. These fields usually are auto-cleared
46 * (with some exceptions).
48 * Table of operations per device:
50 * Device | Write time | Read time | Write alarm
51 * =================================================
52 * S5M8767 | UDR + TIME | | UDR
53 * S2MPS11/14 | WUDR | RUDR | WUDR + RUDR
54 * S2MPS13 | WUDR | RUDR | WUDR + AUDR
55 * S2MPS15 | WUDR | RUDR | AUDR
57 struct s5m_rtc_reg_config {
58 /* Number of registers used for setting time/alarm0/alarm1 */
59 unsigned int regs_count;
60 /* First register for time, seconds */
61 unsigned int time;
62 /* RTC control register */
63 unsigned int ctrl;
64 /* First register for alarm 0, seconds */
65 unsigned int alarm0;
66 /* First register for alarm 1, seconds */
67 unsigned int alarm1;
69 * Register for update flag (UDR). Typically setting UDR field to 1
70 * will enable update of time or alarm register. Then it will be
71 * auto-cleared after successful update.
73 unsigned int udr_update;
74 /* Auto-cleared mask in UDR field for writing time and alarm */
75 unsigned int autoclear_udr_mask;
77 * Masks in UDR field for time and alarm operations.
78 * The read time mask can be 0. Rest should not.
80 unsigned int read_time_udr_mask;
81 unsigned int write_time_udr_mask;
82 unsigned int write_alarm_udr_mask;
85 /* Register map for S5M8763 and S5M8767 */
86 static const struct s5m_rtc_reg_config s5m_rtc_regs = {
87 .regs_count = 8,
88 .time = S5M_RTC_SEC,
89 .ctrl = S5M_ALARM1_CONF,
90 .alarm0 = S5M_ALARM0_SEC,
91 .alarm1 = S5M_ALARM1_SEC,
92 .udr_update = S5M_RTC_UDR_CON,
93 .autoclear_udr_mask = S5M_RTC_UDR_MASK,
94 .read_time_udr_mask = 0, /* Not needed */
95 .write_time_udr_mask = S5M_RTC_UDR_MASK | S5M_RTC_TIME_EN_MASK,
96 .write_alarm_udr_mask = S5M_RTC_UDR_MASK,
99 /* Register map for S2MPS13 */
100 static const struct s5m_rtc_reg_config s2mps13_rtc_regs = {
101 .regs_count = 7,
102 .time = S2MPS_RTC_SEC,
103 .ctrl = S2MPS_RTC_CTRL,
104 .alarm0 = S2MPS_ALARM0_SEC,
105 .alarm1 = S2MPS_ALARM1_SEC,
106 .udr_update = S2MPS_RTC_UDR_CON,
107 .autoclear_udr_mask = S2MPS_RTC_WUDR_MASK,
108 .read_time_udr_mask = S2MPS_RTC_RUDR_MASK,
109 .write_time_udr_mask = S2MPS_RTC_WUDR_MASK,
110 .write_alarm_udr_mask = S2MPS_RTC_WUDR_MASK | S2MPS13_RTC_AUDR_MASK,
113 /* Register map for S2MPS11/14 */
114 static const struct s5m_rtc_reg_config s2mps14_rtc_regs = {
115 .regs_count = 7,
116 .time = S2MPS_RTC_SEC,
117 .ctrl = S2MPS_RTC_CTRL,
118 .alarm0 = S2MPS_ALARM0_SEC,
119 .alarm1 = S2MPS_ALARM1_SEC,
120 .udr_update = S2MPS_RTC_UDR_CON,
121 .autoclear_udr_mask = S2MPS_RTC_WUDR_MASK,
122 .read_time_udr_mask = S2MPS_RTC_RUDR_MASK,
123 .write_time_udr_mask = S2MPS_RTC_WUDR_MASK,
124 .write_alarm_udr_mask = S2MPS_RTC_WUDR_MASK | S2MPS_RTC_RUDR_MASK,
128 * Register map for S2MPS15 - in comparison to S2MPS14 the WUDR and AUDR bits
129 * are swapped.
131 static const struct s5m_rtc_reg_config s2mps15_rtc_regs = {
132 .regs_count = 7,
133 .time = S2MPS_RTC_SEC,
134 .ctrl = S2MPS_RTC_CTRL,
135 .alarm0 = S2MPS_ALARM0_SEC,
136 .alarm1 = S2MPS_ALARM1_SEC,
137 .udr_update = S2MPS_RTC_UDR_CON,
138 .autoclear_udr_mask = S2MPS_RTC_WUDR_MASK,
139 .read_time_udr_mask = S2MPS_RTC_RUDR_MASK,
140 .write_time_udr_mask = S2MPS15_RTC_WUDR_MASK,
141 .write_alarm_udr_mask = S2MPS15_RTC_AUDR_MASK,
144 struct s5m_rtc_info {
145 struct device *dev;
146 struct i2c_client *i2c;
147 struct sec_pmic_dev *s5m87xx;
148 struct regmap *regmap;
149 struct rtc_device *rtc_dev;
150 int irq;
151 enum sec_device_type device_type;
152 int rtc_24hr_mode;
153 const struct s5m_rtc_reg_config *regs;
156 static const struct regmap_config s5m_rtc_regmap_config = {
157 .reg_bits = 8,
158 .val_bits = 8,
160 .max_register = S5M_RTC_REG_MAX,
163 static const struct regmap_config s2mps14_rtc_regmap_config = {
164 .reg_bits = 8,
165 .val_bits = 8,
167 .max_register = S2MPS_RTC_REG_MAX,
170 static void s5m8767_data_to_tm(u8 *data, struct rtc_time *tm,
171 int rtc_24hr_mode)
173 tm->tm_sec = data[RTC_SEC] & 0x7f;
174 tm->tm_min = data[RTC_MIN] & 0x7f;
175 if (rtc_24hr_mode) {
176 tm->tm_hour = data[RTC_HOUR] & 0x1f;
177 } else {
178 tm->tm_hour = data[RTC_HOUR] & 0x0f;
179 if (data[RTC_HOUR] & HOUR_PM_MASK)
180 tm->tm_hour += 12;
183 tm->tm_wday = ffs(data[RTC_WEEKDAY] & 0x7f);
184 tm->tm_mday = data[RTC_DATE] & 0x1f;
185 tm->tm_mon = (data[RTC_MONTH] & 0x0f) - 1;
186 tm->tm_year = (data[RTC_YEAR1] & 0x7f) + 100;
187 tm->tm_yday = 0;
188 tm->tm_isdst = 0;
191 static int s5m8767_tm_to_data(struct rtc_time *tm, u8 *data)
193 data[RTC_SEC] = tm->tm_sec;
194 data[RTC_MIN] = tm->tm_min;
196 if (tm->tm_hour >= 12)
197 data[RTC_HOUR] = tm->tm_hour | HOUR_PM_MASK;
198 else
199 data[RTC_HOUR] = tm->tm_hour & ~HOUR_PM_MASK;
201 data[RTC_WEEKDAY] = 1 << tm->tm_wday;
202 data[RTC_DATE] = tm->tm_mday;
203 data[RTC_MONTH] = tm->tm_mon + 1;
204 data[RTC_YEAR1] = tm->tm_year > 100 ? (tm->tm_year - 100) : 0;
206 if (tm->tm_year < 100) {
207 pr_err("RTC cannot handle the year %d\n",
208 1900 + tm->tm_year);
209 return -EINVAL;
210 } else {
211 return 0;
216 * Read RTC_UDR_CON register and wait till UDR field is cleared.
217 * This indicates that time/alarm update ended.
219 static int s5m8767_wait_for_udr_update(struct s5m_rtc_info *info)
221 int ret, retry = UDR_READ_RETRY_CNT;
222 unsigned int data;
224 do {
225 ret = regmap_read(info->regmap, info->regs->udr_update, &data);
226 } while (--retry && (data & info->regs->autoclear_udr_mask) && !ret);
228 if (!retry)
229 dev_err(info->dev, "waiting for UDR update, reached max number of retries\n");
231 return ret;
234 static int s5m_check_peding_alarm_interrupt(struct s5m_rtc_info *info,
235 struct rtc_wkalrm *alarm)
237 int ret;
238 unsigned int val;
240 switch (info->device_type) {
241 case S5M8767X:
242 case S5M8763X:
243 ret = regmap_read(info->regmap, S5M_RTC_STATUS, &val);
244 val &= S5M_ALARM0_STATUS;
245 break;
246 case S2MPS15X:
247 case S2MPS14X:
248 case S2MPS13X:
249 ret = regmap_read(info->s5m87xx->regmap_pmic, S2MPS14_REG_ST2,
250 &val);
251 val &= S2MPS_ALARM0_STATUS;
252 break;
253 default:
254 return -EINVAL;
256 if (ret < 0)
257 return ret;
259 if (val)
260 alarm->pending = 1;
261 else
262 alarm->pending = 0;
264 return 0;
267 static int s5m8767_rtc_set_time_reg(struct s5m_rtc_info *info)
269 int ret;
270 unsigned int data;
272 ret = regmap_read(info->regmap, info->regs->udr_update, &data);
273 if (ret < 0) {
274 dev_err(info->dev, "failed to read update reg(%d)\n", ret);
275 return ret;
278 data |= info->regs->write_time_udr_mask;
280 ret = regmap_write(info->regmap, info->regs->udr_update, data);
281 if (ret < 0) {
282 dev_err(info->dev, "failed to write update reg(%d)\n", ret);
283 return ret;
286 ret = s5m8767_wait_for_udr_update(info);
288 return ret;
291 static int s5m8767_rtc_set_alarm_reg(struct s5m_rtc_info *info)
293 int ret;
294 unsigned int data;
296 ret = regmap_read(info->regmap, info->regs->udr_update, &data);
297 if (ret < 0) {
298 dev_err(info->dev, "%s: fail to read update reg(%d)\n",
299 __func__, ret);
300 return ret;
303 data |= info->regs->write_alarm_udr_mask;
304 switch (info->device_type) {
305 case S5M8763X:
306 case S5M8767X:
307 data &= ~S5M_RTC_TIME_EN_MASK;
308 break;
309 case S2MPS15X:
310 case S2MPS14X:
311 case S2MPS13X:
312 /* No exceptions needed */
313 break;
314 default:
315 return -EINVAL;
318 ret = regmap_write(info->regmap, info->regs->udr_update, data);
319 if (ret < 0) {
320 dev_err(info->dev, "%s: fail to write update reg(%d)\n",
321 __func__, ret);
322 return ret;
325 ret = s5m8767_wait_for_udr_update(info);
327 /* On S2MPS13 the AUDR is not auto-cleared */
328 if (info->device_type == S2MPS13X)
329 regmap_update_bits(info->regmap, info->regs->udr_update,
330 S2MPS13_RTC_AUDR_MASK, 0);
332 return ret;
335 static void s5m8763_data_to_tm(u8 *data, struct rtc_time *tm)
337 tm->tm_sec = bcd2bin(data[RTC_SEC]);
338 tm->tm_min = bcd2bin(data[RTC_MIN]);
340 if (data[RTC_HOUR] & HOUR_12) {
341 tm->tm_hour = bcd2bin(data[RTC_HOUR] & 0x1f);
342 if (data[RTC_HOUR] & HOUR_PM)
343 tm->tm_hour += 12;
344 } else {
345 tm->tm_hour = bcd2bin(data[RTC_HOUR] & 0x3f);
348 tm->tm_wday = data[RTC_WEEKDAY] & 0x07;
349 tm->tm_mday = bcd2bin(data[RTC_DATE]);
350 tm->tm_mon = bcd2bin(data[RTC_MONTH]);
351 tm->tm_year = bcd2bin(data[RTC_YEAR1]) + bcd2bin(data[RTC_YEAR2]) * 100;
352 tm->tm_year -= 1900;
355 static void s5m8763_tm_to_data(struct rtc_time *tm, u8 *data)
357 data[RTC_SEC] = bin2bcd(tm->tm_sec);
358 data[RTC_MIN] = bin2bcd(tm->tm_min);
359 data[RTC_HOUR] = bin2bcd(tm->tm_hour);
360 data[RTC_WEEKDAY] = tm->tm_wday;
361 data[RTC_DATE] = bin2bcd(tm->tm_mday);
362 data[RTC_MONTH] = bin2bcd(tm->tm_mon);
363 data[RTC_YEAR1] = bin2bcd(tm->tm_year % 100);
364 data[RTC_YEAR2] = bin2bcd((tm->tm_year + 1900) / 100);
367 static int s5m_rtc_read_time(struct device *dev, struct rtc_time *tm)
369 struct s5m_rtc_info *info = dev_get_drvdata(dev);
370 u8 data[info->regs->regs_count];
371 int ret;
373 if (info->regs->read_time_udr_mask) {
374 ret = regmap_update_bits(info->regmap,
375 info->regs->udr_update,
376 info->regs->read_time_udr_mask,
377 info->regs->read_time_udr_mask);
378 if (ret) {
379 dev_err(dev,
380 "Failed to prepare registers for time reading: %d\n",
381 ret);
382 return ret;
385 ret = regmap_bulk_read(info->regmap, info->regs->time, data,
386 info->regs->regs_count);
387 if (ret < 0)
388 return ret;
390 switch (info->device_type) {
391 case S5M8763X:
392 s5m8763_data_to_tm(data, tm);
393 break;
395 case S5M8767X:
396 case S2MPS15X:
397 case S2MPS14X:
398 case S2MPS13X:
399 s5m8767_data_to_tm(data, tm, info->rtc_24hr_mode);
400 break;
402 default:
403 return -EINVAL;
406 dev_dbg(dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__,
407 1900 + tm->tm_year, 1 + tm->tm_mon, tm->tm_mday,
408 tm->tm_hour, tm->tm_min, tm->tm_sec, tm->tm_wday);
410 return rtc_valid_tm(tm);
413 static int s5m_rtc_set_time(struct device *dev, struct rtc_time *tm)
415 struct s5m_rtc_info *info = dev_get_drvdata(dev);
416 u8 data[info->regs->regs_count];
417 int ret = 0;
419 switch (info->device_type) {
420 case S5M8763X:
421 s5m8763_tm_to_data(tm, data);
422 break;
423 case S5M8767X:
424 case S2MPS15X:
425 case S2MPS14X:
426 case S2MPS13X:
427 ret = s5m8767_tm_to_data(tm, data);
428 break;
429 default:
430 return -EINVAL;
433 if (ret < 0)
434 return ret;
436 dev_dbg(dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__,
437 1900 + tm->tm_year, 1 + tm->tm_mon, tm->tm_mday,
438 tm->tm_hour, tm->tm_min, tm->tm_sec, tm->tm_wday);
440 ret = regmap_raw_write(info->regmap, info->regs->time, data,
441 info->regs->regs_count);
442 if (ret < 0)
443 return ret;
445 ret = s5m8767_rtc_set_time_reg(info);
447 return ret;
450 static int s5m_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
452 struct s5m_rtc_info *info = dev_get_drvdata(dev);
453 u8 data[info->regs->regs_count];
454 unsigned int val;
455 int ret, i;
457 ret = regmap_bulk_read(info->regmap, info->regs->alarm0, data,
458 info->regs->regs_count);
459 if (ret < 0)
460 return ret;
462 switch (info->device_type) {
463 case S5M8763X:
464 s5m8763_data_to_tm(data, &alrm->time);
465 ret = regmap_read(info->regmap, S5M_ALARM0_CONF, &val);
466 if (ret < 0)
467 return ret;
469 alrm->enabled = !!val;
470 break;
472 case S5M8767X:
473 case S2MPS15X:
474 case S2MPS14X:
475 case S2MPS13X:
476 s5m8767_data_to_tm(data, &alrm->time, info->rtc_24hr_mode);
477 alrm->enabled = 0;
478 for (i = 0; i < info->regs->regs_count; i++) {
479 if (data[i] & ALARM_ENABLE_MASK) {
480 alrm->enabled = 1;
481 break;
484 break;
486 default:
487 return -EINVAL;
490 dev_dbg(dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__,
491 1900 + alrm->time.tm_year, 1 + alrm->time.tm_mon,
492 alrm->time.tm_mday, alrm->time.tm_hour,
493 alrm->time.tm_min, alrm->time.tm_sec,
494 alrm->time.tm_wday);
496 ret = s5m_check_peding_alarm_interrupt(info, alrm);
498 return 0;
501 static int s5m_rtc_stop_alarm(struct s5m_rtc_info *info)
503 u8 data[info->regs->regs_count];
504 int ret, i;
505 struct rtc_time tm;
507 ret = regmap_bulk_read(info->regmap, info->regs->alarm0, data,
508 info->regs->regs_count);
509 if (ret < 0)
510 return ret;
512 s5m8767_data_to_tm(data, &tm, info->rtc_24hr_mode);
513 dev_dbg(info->dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__,
514 1900 + tm.tm_year, 1 + tm.tm_mon, tm.tm_mday,
515 tm.tm_hour, tm.tm_min, tm.tm_sec, tm.tm_wday);
517 switch (info->device_type) {
518 case S5M8763X:
519 ret = regmap_write(info->regmap, S5M_ALARM0_CONF, 0);
520 break;
522 case S5M8767X:
523 case S2MPS15X:
524 case S2MPS14X:
525 case S2MPS13X:
526 for (i = 0; i < info->regs->regs_count; i++)
527 data[i] &= ~ALARM_ENABLE_MASK;
529 ret = regmap_raw_write(info->regmap, info->regs->alarm0, data,
530 info->regs->regs_count);
531 if (ret < 0)
532 return ret;
534 ret = s5m8767_rtc_set_alarm_reg(info);
536 break;
538 default:
539 return -EINVAL;
542 return ret;
545 static int s5m_rtc_start_alarm(struct s5m_rtc_info *info)
547 int ret;
548 u8 data[info->regs->regs_count];
549 u8 alarm0_conf;
550 struct rtc_time tm;
552 ret = regmap_bulk_read(info->regmap, info->regs->alarm0, data,
553 info->regs->regs_count);
554 if (ret < 0)
555 return ret;
557 s5m8767_data_to_tm(data, &tm, info->rtc_24hr_mode);
558 dev_dbg(info->dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__,
559 1900 + tm.tm_year, 1 + tm.tm_mon, tm.tm_mday,
560 tm.tm_hour, tm.tm_min, tm.tm_sec, tm.tm_wday);
562 switch (info->device_type) {
563 case S5M8763X:
564 alarm0_conf = 0x77;
565 ret = regmap_write(info->regmap, S5M_ALARM0_CONF, alarm0_conf);
566 break;
568 case S5M8767X:
569 case S2MPS15X:
570 case S2MPS14X:
571 case S2MPS13X:
572 data[RTC_SEC] |= ALARM_ENABLE_MASK;
573 data[RTC_MIN] |= ALARM_ENABLE_MASK;
574 data[RTC_HOUR] |= ALARM_ENABLE_MASK;
575 data[RTC_WEEKDAY] &= ~ALARM_ENABLE_MASK;
576 if (data[RTC_DATE] & 0x1f)
577 data[RTC_DATE] |= ALARM_ENABLE_MASK;
578 if (data[RTC_MONTH] & 0xf)
579 data[RTC_MONTH] |= ALARM_ENABLE_MASK;
580 if (data[RTC_YEAR1] & 0x7f)
581 data[RTC_YEAR1] |= ALARM_ENABLE_MASK;
583 ret = regmap_raw_write(info->regmap, info->regs->alarm0, data,
584 info->regs->regs_count);
585 if (ret < 0)
586 return ret;
587 ret = s5m8767_rtc_set_alarm_reg(info);
589 break;
591 default:
592 return -EINVAL;
595 return ret;
598 static int s5m_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
600 struct s5m_rtc_info *info = dev_get_drvdata(dev);
601 u8 data[info->regs->regs_count];
602 int ret;
604 switch (info->device_type) {
605 case S5M8763X:
606 s5m8763_tm_to_data(&alrm->time, data);
607 break;
609 case S5M8767X:
610 case S2MPS15X:
611 case S2MPS14X:
612 case S2MPS13X:
613 s5m8767_tm_to_data(&alrm->time, data);
614 break;
616 default:
617 return -EINVAL;
620 dev_dbg(dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__,
621 1900 + alrm->time.tm_year, 1 + alrm->time.tm_mon,
622 alrm->time.tm_mday, alrm->time.tm_hour, alrm->time.tm_min,
623 alrm->time.tm_sec, alrm->time.tm_wday);
625 ret = s5m_rtc_stop_alarm(info);
626 if (ret < 0)
627 return ret;
629 ret = regmap_raw_write(info->regmap, info->regs->alarm0, data,
630 info->regs->regs_count);
631 if (ret < 0)
632 return ret;
634 ret = s5m8767_rtc_set_alarm_reg(info);
635 if (ret < 0)
636 return ret;
638 if (alrm->enabled)
639 ret = s5m_rtc_start_alarm(info);
641 return ret;
644 static int s5m_rtc_alarm_irq_enable(struct device *dev,
645 unsigned int enabled)
647 struct s5m_rtc_info *info = dev_get_drvdata(dev);
649 if (enabled)
650 return s5m_rtc_start_alarm(info);
651 else
652 return s5m_rtc_stop_alarm(info);
655 static irqreturn_t s5m_rtc_alarm_irq(int irq, void *data)
657 struct s5m_rtc_info *info = data;
659 rtc_update_irq(info->rtc_dev, 1, RTC_IRQF | RTC_AF);
661 return IRQ_HANDLED;
664 static const struct rtc_class_ops s5m_rtc_ops = {
665 .read_time = s5m_rtc_read_time,
666 .set_time = s5m_rtc_set_time,
667 .read_alarm = s5m_rtc_read_alarm,
668 .set_alarm = s5m_rtc_set_alarm,
669 .alarm_irq_enable = s5m_rtc_alarm_irq_enable,
672 static int s5m8767_rtc_init_reg(struct s5m_rtc_info *info)
674 u8 data[2];
675 int ret;
677 switch (info->device_type) {
678 case S5M8763X:
679 case S5M8767X:
680 /* UDR update time. Default of 7.32 ms is too long. */
681 ret = regmap_update_bits(info->regmap, S5M_RTC_UDR_CON,
682 S5M_RTC_UDR_T_MASK, S5M_RTC_UDR_T_450_US);
683 if (ret < 0)
684 dev_err(info->dev, "%s: fail to change UDR time: %d\n",
685 __func__, ret);
687 /* Set RTC control register : Binary mode, 24hour mode */
688 data[0] = (1 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT);
689 data[1] = (0 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT);
691 ret = regmap_raw_write(info->regmap, S5M_ALARM0_CONF, data, 2);
692 break;
694 case S2MPS15X:
695 case S2MPS14X:
696 case S2MPS13X:
697 data[0] = (0 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT);
698 ret = regmap_write(info->regmap, info->regs->ctrl, data[0]);
699 if (ret < 0)
700 break;
703 * Should set WUDR & (RUDR or AUDR) bits to high after writing
704 * RTC_CTRL register like writing Alarm registers. We can't find
705 * the description from datasheet but vendor code does that
706 * really.
708 ret = s5m8767_rtc_set_alarm_reg(info);
709 break;
711 default:
712 return -EINVAL;
715 info->rtc_24hr_mode = 1;
716 if (ret < 0) {
717 dev_err(info->dev, "%s: fail to write controlm reg(%d)\n",
718 __func__, ret);
719 return ret;
722 return ret;
725 static int s5m_rtc_probe(struct platform_device *pdev)
727 struct sec_pmic_dev *s5m87xx = dev_get_drvdata(pdev->dev.parent);
728 struct sec_platform_data *pdata = s5m87xx->pdata;
729 struct s5m_rtc_info *info;
730 const struct regmap_config *regmap_cfg;
731 int ret, alarm_irq;
733 if (!pdata) {
734 dev_err(pdev->dev.parent, "Platform data not supplied\n");
735 return -ENODEV;
738 info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
739 if (!info)
740 return -ENOMEM;
742 switch (platform_get_device_id(pdev)->driver_data) {
743 case S2MPS15X:
744 regmap_cfg = &s2mps14_rtc_regmap_config;
745 info->regs = &s2mps15_rtc_regs;
746 alarm_irq = S2MPS14_IRQ_RTCA0;
747 break;
748 case S2MPS14X:
749 regmap_cfg = &s2mps14_rtc_regmap_config;
750 info->regs = &s2mps14_rtc_regs;
751 alarm_irq = S2MPS14_IRQ_RTCA0;
752 break;
753 case S2MPS13X:
754 regmap_cfg = &s2mps14_rtc_regmap_config;
755 info->regs = &s2mps13_rtc_regs;
756 alarm_irq = S2MPS14_IRQ_RTCA0;
757 break;
758 case S5M8763X:
759 regmap_cfg = &s5m_rtc_regmap_config;
760 info->regs = &s5m_rtc_regs;
761 alarm_irq = S5M8763_IRQ_ALARM0;
762 break;
763 case S5M8767X:
764 regmap_cfg = &s5m_rtc_regmap_config;
765 info->regs = &s5m_rtc_regs;
766 alarm_irq = S5M8767_IRQ_RTCA1;
767 break;
768 default:
769 dev_err(&pdev->dev,
770 "Device type %lu is not supported by RTC driver\n",
771 platform_get_device_id(pdev)->driver_data);
772 return -ENODEV;
775 info->i2c = i2c_new_dummy(s5m87xx->i2c->adapter, RTC_I2C_ADDR);
776 if (!info->i2c) {
777 dev_err(&pdev->dev, "Failed to allocate I2C for RTC\n");
778 return -ENODEV;
781 info->regmap = devm_regmap_init_i2c(info->i2c, regmap_cfg);
782 if (IS_ERR(info->regmap)) {
783 ret = PTR_ERR(info->regmap);
784 dev_err(&pdev->dev, "Failed to allocate RTC register map: %d\n",
785 ret);
786 goto err;
789 info->dev = &pdev->dev;
790 info->s5m87xx = s5m87xx;
791 info->device_type = platform_get_device_id(pdev)->driver_data;
793 if (s5m87xx->irq_data) {
794 info->irq = regmap_irq_get_virq(s5m87xx->irq_data, alarm_irq);
795 if (info->irq <= 0) {
796 ret = -EINVAL;
797 dev_err(&pdev->dev, "Failed to get virtual IRQ %d\n",
798 alarm_irq);
799 goto err;
803 platform_set_drvdata(pdev, info);
805 ret = s5m8767_rtc_init_reg(info);
807 device_init_wakeup(&pdev->dev, 1);
809 info->rtc_dev = devm_rtc_device_register(&pdev->dev, "s5m-rtc",
810 &s5m_rtc_ops, THIS_MODULE);
812 if (IS_ERR(info->rtc_dev)) {
813 ret = PTR_ERR(info->rtc_dev);
814 goto err;
817 if (!info->irq) {
818 dev_info(&pdev->dev, "Alarm IRQ not available\n");
819 return 0;
822 ret = devm_request_threaded_irq(&pdev->dev, info->irq, NULL,
823 s5m_rtc_alarm_irq, 0, "rtc-alarm0",
824 info);
825 if (ret < 0) {
826 dev_err(&pdev->dev, "Failed to request alarm IRQ: %d: %d\n",
827 info->irq, ret);
828 goto err;
831 return 0;
833 err:
834 i2c_unregister_device(info->i2c);
836 return ret;
839 static int s5m_rtc_remove(struct platform_device *pdev)
841 struct s5m_rtc_info *info = platform_get_drvdata(pdev);
843 i2c_unregister_device(info->i2c);
845 return 0;
848 #ifdef CONFIG_PM_SLEEP
849 static int s5m_rtc_resume(struct device *dev)
851 struct s5m_rtc_info *info = dev_get_drvdata(dev);
852 int ret = 0;
854 if (info->irq && device_may_wakeup(dev))
855 ret = disable_irq_wake(info->irq);
857 return ret;
860 static int s5m_rtc_suspend(struct device *dev)
862 struct s5m_rtc_info *info = dev_get_drvdata(dev);
863 int ret = 0;
865 if (info->irq && device_may_wakeup(dev))
866 ret = enable_irq_wake(info->irq);
868 return ret;
870 #endif /* CONFIG_PM_SLEEP */
872 static SIMPLE_DEV_PM_OPS(s5m_rtc_pm_ops, s5m_rtc_suspend, s5m_rtc_resume);
874 static const struct platform_device_id s5m_rtc_id[] = {
875 { "s5m-rtc", S5M8767X },
876 { "s2mps13-rtc", S2MPS13X },
877 { "s2mps14-rtc", S2MPS14X },
878 { "s2mps15-rtc", S2MPS15X },
879 { },
881 MODULE_DEVICE_TABLE(platform, s5m_rtc_id);
883 static struct platform_driver s5m_rtc_driver = {
884 .driver = {
885 .name = "s5m-rtc",
886 .pm = &s5m_rtc_pm_ops,
888 .probe = s5m_rtc_probe,
889 .remove = s5m_rtc_remove,
890 .id_table = s5m_rtc_id,
893 module_platform_driver(s5m_rtc_driver);
895 /* Module information */
896 MODULE_AUTHOR("Sangbeom Kim <sbkim73@samsung.com>");
897 MODULE_DESCRIPTION("Samsung S5M/S2MPS14 RTC driver");
898 MODULE_LICENSE("GPL");
899 MODULE_ALIAS("platform:s5m-rtc");