ipv6: Pull IPv6 GSO registration out of the module
[linux/fpc-iii.git] / net / sunrpc / svc_xprt.c
blob194d865fae722216b71a7e78c84328b2d70b1b9b
1 /*
2 * linux/net/sunrpc/svc_xprt.c
4 * Author: Tom Tucker <tom@opengridcomputing.com>
5 */
7 #include <linux/sched.h>
8 #include <linux/errno.h>
9 #include <linux/freezer.h>
10 #include <linux/kthread.h>
11 #include <linux/slab.h>
12 #include <net/sock.h>
13 #include <linux/sunrpc/stats.h>
14 #include <linux/sunrpc/svc_xprt.h>
15 #include <linux/sunrpc/svcsock.h>
16 #include <linux/sunrpc/xprt.h>
17 #include <linux/module.h>
19 #define RPCDBG_FACILITY RPCDBG_SVCXPRT
21 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
22 static int svc_deferred_recv(struct svc_rqst *rqstp);
23 static struct cache_deferred_req *svc_defer(struct cache_req *req);
24 static void svc_age_temp_xprts(unsigned long closure);
25 static void svc_delete_xprt(struct svc_xprt *xprt);
27 /* apparently the "standard" is that clients close
28 * idle connections after 5 minutes, servers after
29 * 6 minutes
30 * http://www.connectathon.org/talks96/nfstcp.pdf
32 static int svc_conn_age_period = 6*60;
34 /* List of registered transport classes */
35 static DEFINE_SPINLOCK(svc_xprt_class_lock);
36 static LIST_HEAD(svc_xprt_class_list);
38 /* SMP locking strategy:
40 * svc_pool->sp_lock protects most of the fields of that pool.
41 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
42 * when both need to be taken (rare), svc_serv->sv_lock is first.
43 * BKL protects svc_serv->sv_nrthread.
44 * svc_sock->sk_lock protects the svc_sock->sk_deferred list
45 * and the ->sk_info_authunix cache.
47 * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
48 * enqueued multiply. During normal transport processing this bit
49 * is set by svc_xprt_enqueue and cleared by svc_xprt_received.
50 * Providers should not manipulate this bit directly.
52 * Some flags can be set to certain values at any time
53 * providing that certain rules are followed:
55 * XPT_CONN, XPT_DATA:
56 * - Can be set or cleared at any time.
57 * - After a set, svc_xprt_enqueue must be called to enqueue
58 * the transport for processing.
59 * - After a clear, the transport must be read/accepted.
60 * If this succeeds, it must be set again.
61 * XPT_CLOSE:
62 * - Can set at any time. It is never cleared.
63 * XPT_DEAD:
64 * - Can only be set while XPT_BUSY is held which ensures
65 * that no other thread will be using the transport or will
66 * try to set XPT_DEAD.
69 int svc_reg_xprt_class(struct svc_xprt_class *xcl)
71 struct svc_xprt_class *cl;
72 int res = -EEXIST;
74 dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
76 INIT_LIST_HEAD(&xcl->xcl_list);
77 spin_lock(&svc_xprt_class_lock);
78 /* Make sure there isn't already a class with the same name */
79 list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
80 if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
81 goto out;
83 list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
84 res = 0;
85 out:
86 spin_unlock(&svc_xprt_class_lock);
87 return res;
89 EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
91 void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
93 dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
94 spin_lock(&svc_xprt_class_lock);
95 list_del_init(&xcl->xcl_list);
96 spin_unlock(&svc_xprt_class_lock);
98 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
101 * Format the transport list for printing
103 int svc_print_xprts(char *buf, int maxlen)
105 struct svc_xprt_class *xcl;
106 char tmpstr[80];
107 int len = 0;
108 buf[0] = '\0';
110 spin_lock(&svc_xprt_class_lock);
111 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
112 int slen;
114 sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
115 slen = strlen(tmpstr);
116 if (len + slen > maxlen)
117 break;
118 len += slen;
119 strcat(buf, tmpstr);
121 spin_unlock(&svc_xprt_class_lock);
123 return len;
126 static void svc_xprt_free(struct kref *kref)
128 struct svc_xprt *xprt =
129 container_of(kref, struct svc_xprt, xpt_ref);
130 struct module *owner = xprt->xpt_class->xcl_owner;
131 if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
132 svcauth_unix_info_release(xprt);
133 put_net(xprt->xpt_net);
134 /* See comment on corresponding get in xs_setup_bc_tcp(): */
135 if (xprt->xpt_bc_xprt)
136 xprt_put(xprt->xpt_bc_xprt);
137 xprt->xpt_ops->xpo_free(xprt);
138 module_put(owner);
141 void svc_xprt_put(struct svc_xprt *xprt)
143 kref_put(&xprt->xpt_ref, svc_xprt_free);
145 EXPORT_SYMBOL_GPL(svc_xprt_put);
148 * Called by transport drivers to initialize the transport independent
149 * portion of the transport instance.
151 void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
152 struct svc_xprt *xprt, struct svc_serv *serv)
154 memset(xprt, 0, sizeof(*xprt));
155 xprt->xpt_class = xcl;
156 xprt->xpt_ops = xcl->xcl_ops;
157 kref_init(&xprt->xpt_ref);
158 xprt->xpt_server = serv;
159 INIT_LIST_HEAD(&xprt->xpt_list);
160 INIT_LIST_HEAD(&xprt->xpt_ready);
161 INIT_LIST_HEAD(&xprt->xpt_deferred);
162 INIT_LIST_HEAD(&xprt->xpt_users);
163 mutex_init(&xprt->xpt_mutex);
164 spin_lock_init(&xprt->xpt_lock);
165 set_bit(XPT_BUSY, &xprt->xpt_flags);
166 rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending");
167 xprt->xpt_net = get_net(net);
169 EXPORT_SYMBOL_GPL(svc_xprt_init);
171 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
172 struct svc_serv *serv,
173 struct net *net,
174 const int family,
175 const unsigned short port,
176 int flags)
178 struct sockaddr_in sin = {
179 .sin_family = AF_INET,
180 .sin_addr.s_addr = htonl(INADDR_ANY),
181 .sin_port = htons(port),
183 #if IS_ENABLED(CONFIG_IPV6)
184 struct sockaddr_in6 sin6 = {
185 .sin6_family = AF_INET6,
186 .sin6_addr = IN6ADDR_ANY_INIT,
187 .sin6_port = htons(port),
189 #endif
190 struct sockaddr *sap;
191 size_t len;
193 switch (family) {
194 case PF_INET:
195 sap = (struct sockaddr *)&sin;
196 len = sizeof(sin);
197 break;
198 #if IS_ENABLED(CONFIG_IPV6)
199 case PF_INET6:
200 sap = (struct sockaddr *)&sin6;
201 len = sizeof(sin6);
202 break;
203 #endif
204 default:
205 return ERR_PTR(-EAFNOSUPPORT);
208 return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
212 * svc_xprt_received conditionally queues the transport for processing
213 * by another thread. The caller must hold the XPT_BUSY bit and must
214 * not thereafter touch transport data.
216 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
217 * insufficient) data.
219 static void svc_xprt_received(struct svc_xprt *xprt)
221 BUG_ON(!test_bit(XPT_BUSY, &xprt->xpt_flags));
222 /* As soon as we clear busy, the xprt could be closed and
223 * 'put', so we need a reference to call svc_xprt_enqueue with:
225 svc_xprt_get(xprt);
226 clear_bit(XPT_BUSY, &xprt->xpt_flags);
227 svc_xprt_enqueue(xprt);
228 svc_xprt_put(xprt);
231 void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
233 clear_bit(XPT_TEMP, &new->xpt_flags);
234 spin_lock_bh(&serv->sv_lock);
235 list_add(&new->xpt_list, &serv->sv_permsocks);
236 spin_unlock_bh(&serv->sv_lock);
237 svc_xprt_received(new);
240 int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
241 struct net *net, const int family,
242 const unsigned short port, int flags)
244 struct svc_xprt_class *xcl;
246 dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
247 spin_lock(&svc_xprt_class_lock);
248 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
249 struct svc_xprt *newxprt;
250 unsigned short newport;
252 if (strcmp(xprt_name, xcl->xcl_name))
253 continue;
255 if (!try_module_get(xcl->xcl_owner))
256 goto err;
258 spin_unlock(&svc_xprt_class_lock);
259 newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
260 if (IS_ERR(newxprt)) {
261 module_put(xcl->xcl_owner);
262 return PTR_ERR(newxprt);
264 svc_add_new_perm_xprt(serv, newxprt);
265 newport = svc_xprt_local_port(newxprt);
266 return newport;
268 err:
269 spin_unlock(&svc_xprt_class_lock);
270 dprintk("svc: transport %s not found\n", xprt_name);
272 /* This errno is exposed to user space. Provide a reasonable
273 * perror msg for a bad transport. */
274 return -EPROTONOSUPPORT;
276 EXPORT_SYMBOL_GPL(svc_create_xprt);
279 * Copy the local and remote xprt addresses to the rqstp structure
281 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
283 memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
284 rqstp->rq_addrlen = xprt->xpt_remotelen;
287 * Destination address in request is needed for binding the
288 * source address in RPC replies/callbacks later.
290 memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
291 rqstp->rq_daddrlen = xprt->xpt_locallen;
293 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
296 * svc_print_addr - Format rq_addr field for printing
297 * @rqstp: svc_rqst struct containing address to print
298 * @buf: target buffer for formatted address
299 * @len: length of target buffer
302 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
304 return __svc_print_addr(svc_addr(rqstp), buf, len);
306 EXPORT_SYMBOL_GPL(svc_print_addr);
309 * Queue up an idle server thread. Must have pool->sp_lock held.
310 * Note: this is really a stack rather than a queue, so that we only
311 * use as many different threads as we need, and the rest don't pollute
312 * the cache.
314 static void svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
316 list_add(&rqstp->rq_list, &pool->sp_threads);
320 * Dequeue an nfsd thread. Must have pool->sp_lock held.
322 static void svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
324 list_del(&rqstp->rq_list);
327 static bool svc_xprt_has_something_to_do(struct svc_xprt *xprt)
329 if (xprt->xpt_flags & ((1<<XPT_CONN)|(1<<XPT_CLOSE)))
330 return true;
331 if (xprt->xpt_flags & ((1<<XPT_DATA)|(1<<XPT_DEFERRED)))
332 return xprt->xpt_ops->xpo_has_wspace(xprt);
333 return false;
337 * Queue up a transport with data pending. If there are idle nfsd
338 * processes, wake 'em up.
341 void svc_xprt_enqueue(struct svc_xprt *xprt)
343 struct svc_pool *pool;
344 struct svc_rqst *rqstp;
345 int cpu;
347 if (!svc_xprt_has_something_to_do(xprt))
348 return;
350 cpu = get_cpu();
351 pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
352 put_cpu();
354 spin_lock_bh(&pool->sp_lock);
356 if (!list_empty(&pool->sp_threads) &&
357 !list_empty(&pool->sp_sockets))
358 printk(KERN_ERR
359 "svc_xprt_enqueue: "
360 "threads and transports both waiting??\n");
362 pool->sp_stats.packets++;
364 /* Mark transport as busy. It will remain in this state until
365 * the provider calls svc_xprt_received. We update XPT_BUSY
366 * atomically because it also guards against trying to enqueue
367 * the transport twice.
369 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
370 /* Don't enqueue transport while already enqueued */
371 dprintk("svc: transport %p busy, not enqueued\n", xprt);
372 goto out_unlock;
375 if (!list_empty(&pool->sp_threads)) {
376 rqstp = list_entry(pool->sp_threads.next,
377 struct svc_rqst,
378 rq_list);
379 dprintk("svc: transport %p served by daemon %p\n",
380 xprt, rqstp);
381 svc_thread_dequeue(pool, rqstp);
382 if (rqstp->rq_xprt)
383 printk(KERN_ERR
384 "svc_xprt_enqueue: server %p, rq_xprt=%p!\n",
385 rqstp, rqstp->rq_xprt);
386 rqstp->rq_xprt = xprt;
387 svc_xprt_get(xprt);
388 pool->sp_stats.threads_woken++;
389 wake_up(&rqstp->rq_wait);
390 } else {
391 dprintk("svc: transport %p put into queue\n", xprt);
392 list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
393 pool->sp_stats.sockets_queued++;
396 out_unlock:
397 spin_unlock_bh(&pool->sp_lock);
399 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
402 * Dequeue the first transport. Must be called with the pool->sp_lock held.
404 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
406 struct svc_xprt *xprt;
408 if (list_empty(&pool->sp_sockets))
409 return NULL;
411 xprt = list_entry(pool->sp_sockets.next,
412 struct svc_xprt, xpt_ready);
413 list_del_init(&xprt->xpt_ready);
415 dprintk("svc: transport %p dequeued, inuse=%d\n",
416 xprt, atomic_read(&xprt->xpt_ref.refcount));
418 return xprt;
422 * svc_reserve - change the space reserved for the reply to a request.
423 * @rqstp: The request in question
424 * @space: new max space to reserve
426 * Each request reserves some space on the output queue of the transport
427 * to make sure the reply fits. This function reduces that reserved
428 * space to be the amount of space used already, plus @space.
431 void svc_reserve(struct svc_rqst *rqstp, int space)
433 space += rqstp->rq_res.head[0].iov_len;
435 if (space < rqstp->rq_reserved) {
436 struct svc_xprt *xprt = rqstp->rq_xprt;
437 atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
438 rqstp->rq_reserved = space;
440 svc_xprt_enqueue(xprt);
443 EXPORT_SYMBOL_GPL(svc_reserve);
445 static void svc_xprt_release(struct svc_rqst *rqstp)
447 struct svc_xprt *xprt = rqstp->rq_xprt;
449 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
451 kfree(rqstp->rq_deferred);
452 rqstp->rq_deferred = NULL;
454 svc_free_res_pages(rqstp);
455 rqstp->rq_res.page_len = 0;
456 rqstp->rq_res.page_base = 0;
458 /* Reset response buffer and release
459 * the reservation.
460 * But first, check that enough space was reserved
461 * for the reply, otherwise we have a bug!
463 if ((rqstp->rq_res.len) > rqstp->rq_reserved)
464 printk(KERN_ERR "RPC request reserved %d but used %d\n",
465 rqstp->rq_reserved,
466 rqstp->rq_res.len);
468 rqstp->rq_res.head[0].iov_len = 0;
469 svc_reserve(rqstp, 0);
470 rqstp->rq_xprt = NULL;
472 svc_xprt_put(xprt);
476 * External function to wake up a server waiting for data
477 * This really only makes sense for services like lockd
478 * which have exactly one thread anyway.
480 void svc_wake_up(struct svc_serv *serv)
482 struct svc_rqst *rqstp;
483 unsigned int i;
484 struct svc_pool *pool;
486 for (i = 0; i < serv->sv_nrpools; i++) {
487 pool = &serv->sv_pools[i];
489 spin_lock_bh(&pool->sp_lock);
490 if (!list_empty(&pool->sp_threads)) {
491 rqstp = list_entry(pool->sp_threads.next,
492 struct svc_rqst,
493 rq_list);
494 dprintk("svc: daemon %p woken up.\n", rqstp);
496 svc_thread_dequeue(pool, rqstp);
497 rqstp->rq_xprt = NULL;
499 wake_up(&rqstp->rq_wait);
501 spin_unlock_bh(&pool->sp_lock);
504 EXPORT_SYMBOL_GPL(svc_wake_up);
506 int svc_port_is_privileged(struct sockaddr *sin)
508 switch (sin->sa_family) {
509 case AF_INET:
510 return ntohs(((struct sockaddr_in *)sin)->sin_port)
511 < PROT_SOCK;
512 case AF_INET6:
513 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
514 < PROT_SOCK;
515 default:
516 return 0;
521 * Make sure that we don't have too many active connections. If we have,
522 * something must be dropped. It's not clear what will happen if we allow
523 * "too many" connections, but when dealing with network-facing software,
524 * we have to code defensively. Here we do that by imposing hard limits.
526 * There's no point in trying to do random drop here for DoS
527 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
528 * attacker can easily beat that.
530 * The only somewhat efficient mechanism would be if drop old
531 * connections from the same IP first. But right now we don't even
532 * record the client IP in svc_sock.
534 * single-threaded services that expect a lot of clients will probably
535 * need to set sv_maxconn to override the default value which is based
536 * on the number of threads
538 static void svc_check_conn_limits(struct svc_serv *serv)
540 unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
541 (serv->sv_nrthreads+3) * 20;
543 if (serv->sv_tmpcnt > limit) {
544 struct svc_xprt *xprt = NULL;
545 spin_lock_bh(&serv->sv_lock);
546 if (!list_empty(&serv->sv_tempsocks)) {
547 /* Try to help the admin */
548 net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
549 serv->sv_name, serv->sv_maxconn ?
550 "max number of connections" :
551 "number of threads");
553 * Always select the oldest connection. It's not fair,
554 * but so is life
556 xprt = list_entry(serv->sv_tempsocks.prev,
557 struct svc_xprt,
558 xpt_list);
559 set_bit(XPT_CLOSE, &xprt->xpt_flags);
560 svc_xprt_get(xprt);
562 spin_unlock_bh(&serv->sv_lock);
564 if (xprt) {
565 svc_xprt_enqueue(xprt);
566 svc_xprt_put(xprt);
571 int svc_alloc_arg(struct svc_rqst *rqstp)
573 struct svc_serv *serv = rqstp->rq_server;
574 struct xdr_buf *arg;
575 int pages;
576 int i;
578 /* now allocate needed pages. If we get a failure, sleep briefly */
579 pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
580 BUG_ON(pages >= RPCSVC_MAXPAGES);
581 for (i = 0; i < pages ; i++)
582 while (rqstp->rq_pages[i] == NULL) {
583 struct page *p = alloc_page(GFP_KERNEL);
584 if (!p) {
585 set_current_state(TASK_INTERRUPTIBLE);
586 if (signalled() || kthread_should_stop()) {
587 set_current_state(TASK_RUNNING);
588 return -EINTR;
590 schedule_timeout(msecs_to_jiffies(500));
592 rqstp->rq_pages[i] = p;
594 rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
596 /* Make arg->head point to first page and arg->pages point to rest */
597 arg = &rqstp->rq_arg;
598 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
599 arg->head[0].iov_len = PAGE_SIZE;
600 arg->pages = rqstp->rq_pages + 1;
601 arg->page_base = 0;
602 /* save at least one page for response */
603 arg->page_len = (pages-2)*PAGE_SIZE;
604 arg->len = (pages-1)*PAGE_SIZE;
605 arg->tail[0].iov_len = 0;
606 return 0;
609 struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout)
611 struct svc_xprt *xprt;
612 struct svc_pool *pool = rqstp->rq_pool;
613 DECLARE_WAITQUEUE(wait, current);
614 long time_left;
616 /* Normally we will wait up to 5 seconds for any required
617 * cache information to be provided.
619 rqstp->rq_chandle.thread_wait = 5*HZ;
621 spin_lock_bh(&pool->sp_lock);
622 xprt = svc_xprt_dequeue(pool);
623 if (xprt) {
624 rqstp->rq_xprt = xprt;
625 svc_xprt_get(xprt);
627 /* As there is a shortage of threads and this request
628 * had to be queued, don't allow the thread to wait so
629 * long for cache updates.
631 rqstp->rq_chandle.thread_wait = 1*HZ;
632 } else {
633 /* No data pending. Go to sleep */
634 svc_thread_enqueue(pool, rqstp);
637 * We have to be able to interrupt this wait
638 * to bring down the daemons ...
640 set_current_state(TASK_INTERRUPTIBLE);
643 * checking kthread_should_stop() here allows us to avoid
644 * locking and signalling when stopping kthreads that call
645 * svc_recv. If the thread has already been woken up, then
646 * we can exit here without sleeping. If not, then it
647 * it'll be woken up quickly during the schedule_timeout
649 if (kthread_should_stop()) {
650 set_current_state(TASK_RUNNING);
651 spin_unlock_bh(&pool->sp_lock);
652 return ERR_PTR(-EINTR);
655 add_wait_queue(&rqstp->rq_wait, &wait);
656 spin_unlock_bh(&pool->sp_lock);
658 time_left = schedule_timeout(timeout);
660 try_to_freeze();
662 spin_lock_bh(&pool->sp_lock);
663 remove_wait_queue(&rqstp->rq_wait, &wait);
664 if (!time_left)
665 pool->sp_stats.threads_timedout++;
667 xprt = rqstp->rq_xprt;
668 if (!xprt) {
669 svc_thread_dequeue(pool, rqstp);
670 spin_unlock_bh(&pool->sp_lock);
671 dprintk("svc: server %p, no data yet\n", rqstp);
672 if (signalled() || kthread_should_stop())
673 return ERR_PTR(-EINTR);
674 else
675 return ERR_PTR(-EAGAIN);
678 spin_unlock_bh(&pool->sp_lock);
679 return xprt;
682 void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
684 spin_lock_bh(&serv->sv_lock);
685 set_bit(XPT_TEMP, &newxpt->xpt_flags);
686 list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
687 serv->sv_tmpcnt++;
688 if (serv->sv_temptimer.function == NULL) {
689 /* setup timer to age temp transports */
690 setup_timer(&serv->sv_temptimer, svc_age_temp_xprts,
691 (unsigned long)serv);
692 mod_timer(&serv->sv_temptimer,
693 jiffies + svc_conn_age_period * HZ);
695 spin_unlock_bh(&serv->sv_lock);
696 svc_xprt_received(newxpt);
699 static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
701 struct svc_serv *serv = rqstp->rq_server;
702 int len = 0;
704 if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
705 dprintk("svc_recv: found XPT_CLOSE\n");
706 svc_delete_xprt(xprt);
707 /* Leave XPT_BUSY set on the dead xprt: */
708 return 0;
710 if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
711 struct svc_xprt *newxpt;
713 * We know this module_get will succeed because the
714 * listener holds a reference too
716 __module_get(xprt->xpt_class->xcl_owner);
717 svc_check_conn_limits(xprt->xpt_server);
718 newxpt = xprt->xpt_ops->xpo_accept(xprt);
719 if (newxpt)
720 svc_add_new_temp_xprt(serv, newxpt);
721 } else if (xprt->xpt_ops->xpo_has_wspace(xprt)) {
722 /* XPT_DATA|XPT_DEFERRED case: */
723 dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
724 rqstp, rqstp->rq_pool->sp_id, xprt,
725 atomic_read(&xprt->xpt_ref.refcount));
726 rqstp->rq_deferred = svc_deferred_dequeue(xprt);
727 if (rqstp->rq_deferred)
728 len = svc_deferred_recv(rqstp);
729 else
730 len = xprt->xpt_ops->xpo_recvfrom(rqstp);
731 dprintk("svc: got len=%d\n", len);
732 rqstp->rq_reserved = serv->sv_max_mesg;
733 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
735 /* clear XPT_BUSY: */
736 svc_xprt_received(xprt);
737 return len;
741 * Receive the next request on any transport. This code is carefully
742 * organised not to touch any cachelines in the shared svc_serv
743 * structure, only cachelines in the local svc_pool.
745 int svc_recv(struct svc_rqst *rqstp, long timeout)
747 struct svc_xprt *xprt = NULL;
748 struct svc_serv *serv = rqstp->rq_server;
749 int len, err;
751 dprintk("svc: server %p waiting for data (to = %ld)\n",
752 rqstp, timeout);
754 if (rqstp->rq_xprt)
755 printk(KERN_ERR
756 "svc_recv: service %p, transport not NULL!\n",
757 rqstp);
758 if (waitqueue_active(&rqstp->rq_wait))
759 printk(KERN_ERR
760 "svc_recv: service %p, wait queue active!\n",
761 rqstp);
763 err = svc_alloc_arg(rqstp);
764 if (err)
765 return err;
767 try_to_freeze();
768 cond_resched();
769 if (signalled() || kthread_should_stop())
770 return -EINTR;
772 xprt = svc_get_next_xprt(rqstp, timeout);
773 if (IS_ERR(xprt))
774 return PTR_ERR(xprt);
776 len = svc_handle_xprt(rqstp, xprt);
778 /* No data, incomplete (TCP) read, or accept() */
779 if (len <= 0)
780 goto out;
782 clear_bit(XPT_OLD, &xprt->xpt_flags);
784 rqstp->rq_secure = svc_port_is_privileged(svc_addr(rqstp));
785 rqstp->rq_chandle.defer = svc_defer;
787 if (serv->sv_stats)
788 serv->sv_stats->netcnt++;
789 return len;
790 out:
791 rqstp->rq_res.len = 0;
792 svc_xprt_release(rqstp);
793 return -EAGAIN;
795 EXPORT_SYMBOL_GPL(svc_recv);
798 * Drop request
800 void svc_drop(struct svc_rqst *rqstp)
802 dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
803 svc_xprt_release(rqstp);
805 EXPORT_SYMBOL_GPL(svc_drop);
808 * Return reply to client.
810 int svc_send(struct svc_rqst *rqstp)
812 struct svc_xprt *xprt;
813 int len;
814 struct xdr_buf *xb;
816 xprt = rqstp->rq_xprt;
817 if (!xprt)
818 return -EFAULT;
820 /* release the receive skb before sending the reply */
821 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
823 /* calculate over-all length */
824 xb = &rqstp->rq_res;
825 xb->len = xb->head[0].iov_len +
826 xb->page_len +
827 xb->tail[0].iov_len;
829 /* Grab mutex to serialize outgoing data. */
830 mutex_lock(&xprt->xpt_mutex);
831 if (test_bit(XPT_DEAD, &xprt->xpt_flags)
832 || test_bit(XPT_CLOSE, &xprt->xpt_flags))
833 len = -ENOTCONN;
834 else
835 len = xprt->xpt_ops->xpo_sendto(rqstp);
836 mutex_unlock(&xprt->xpt_mutex);
837 rpc_wake_up(&xprt->xpt_bc_pending);
838 svc_xprt_release(rqstp);
840 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
841 return 0;
842 return len;
846 * Timer function to close old temporary transports, using
847 * a mark-and-sweep algorithm.
849 static void svc_age_temp_xprts(unsigned long closure)
851 struct svc_serv *serv = (struct svc_serv *)closure;
852 struct svc_xprt *xprt;
853 struct list_head *le, *next;
854 LIST_HEAD(to_be_aged);
856 dprintk("svc_age_temp_xprts\n");
858 if (!spin_trylock_bh(&serv->sv_lock)) {
859 /* busy, try again 1 sec later */
860 dprintk("svc_age_temp_xprts: busy\n");
861 mod_timer(&serv->sv_temptimer, jiffies + HZ);
862 return;
865 list_for_each_safe(le, next, &serv->sv_tempsocks) {
866 xprt = list_entry(le, struct svc_xprt, xpt_list);
868 /* First time through, just mark it OLD. Second time
869 * through, close it. */
870 if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
871 continue;
872 if (atomic_read(&xprt->xpt_ref.refcount) > 1 ||
873 test_bit(XPT_BUSY, &xprt->xpt_flags))
874 continue;
875 svc_xprt_get(xprt);
876 list_move(le, &to_be_aged);
877 set_bit(XPT_CLOSE, &xprt->xpt_flags);
878 set_bit(XPT_DETACHED, &xprt->xpt_flags);
880 spin_unlock_bh(&serv->sv_lock);
882 while (!list_empty(&to_be_aged)) {
883 le = to_be_aged.next;
884 /* fiddling the xpt_list node is safe 'cos we're XPT_DETACHED */
885 list_del_init(le);
886 xprt = list_entry(le, struct svc_xprt, xpt_list);
888 dprintk("queuing xprt %p for closing\n", xprt);
890 /* a thread will dequeue and close it soon */
891 svc_xprt_enqueue(xprt);
892 svc_xprt_put(xprt);
895 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
898 static void call_xpt_users(struct svc_xprt *xprt)
900 struct svc_xpt_user *u;
902 spin_lock(&xprt->xpt_lock);
903 while (!list_empty(&xprt->xpt_users)) {
904 u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
905 list_del(&u->list);
906 u->callback(u);
908 spin_unlock(&xprt->xpt_lock);
912 * Remove a dead transport
914 static void svc_delete_xprt(struct svc_xprt *xprt)
916 struct svc_serv *serv = xprt->xpt_server;
917 struct svc_deferred_req *dr;
919 /* Only do this once */
920 if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
921 BUG();
923 dprintk("svc: svc_delete_xprt(%p)\n", xprt);
924 xprt->xpt_ops->xpo_detach(xprt);
926 spin_lock_bh(&serv->sv_lock);
927 if (!test_and_set_bit(XPT_DETACHED, &xprt->xpt_flags))
928 list_del_init(&xprt->xpt_list);
929 BUG_ON(!list_empty(&xprt->xpt_ready));
930 if (test_bit(XPT_TEMP, &xprt->xpt_flags))
931 serv->sv_tmpcnt--;
932 spin_unlock_bh(&serv->sv_lock);
934 while ((dr = svc_deferred_dequeue(xprt)) != NULL)
935 kfree(dr);
937 call_xpt_users(xprt);
938 svc_xprt_put(xprt);
941 void svc_close_xprt(struct svc_xprt *xprt)
943 set_bit(XPT_CLOSE, &xprt->xpt_flags);
944 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
945 /* someone else will have to effect the close */
946 return;
948 * We expect svc_close_xprt() to work even when no threads are
949 * running (e.g., while configuring the server before starting
950 * any threads), so if the transport isn't busy, we delete
951 * it ourself:
953 svc_delete_xprt(xprt);
955 EXPORT_SYMBOL_GPL(svc_close_xprt);
957 static void svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
959 struct svc_xprt *xprt;
961 spin_lock(&serv->sv_lock);
962 list_for_each_entry(xprt, xprt_list, xpt_list) {
963 if (xprt->xpt_net != net)
964 continue;
965 set_bit(XPT_CLOSE, &xprt->xpt_flags);
966 set_bit(XPT_BUSY, &xprt->xpt_flags);
968 spin_unlock(&serv->sv_lock);
971 static void svc_clear_pools(struct svc_serv *serv, struct net *net)
973 struct svc_pool *pool;
974 struct svc_xprt *xprt;
975 struct svc_xprt *tmp;
976 int i;
978 for (i = 0; i < serv->sv_nrpools; i++) {
979 pool = &serv->sv_pools[i];
981 spin_lock_bh(&pool->sp_lock);
982 list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
983 if (xprt->xpt_net != net)
984 continue;
985 list_del_init(&xprt->xpt_ready);
987 spin_unlock_bh(&pool->sp_lock);
991 static void svc_clear_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
993 struct svc_xprt *xprt;
994 struct svc_xprt *tmp;
995 LIST_HEAD(victims);
997 spin_lock(&serv->sv_lock);
998 list_for_each_entry_safe(xprt, tmp, xprt_list, xpt_list) {
999 if (xprt->xpt_net != net)
1000 continue;
1001 list_move(&xprt->xpt_list, &victims);
1003 spin_unlock(&serv->sv_lock);
1005 list_for_each_entry_safe(xprt, tmp, &victims, xpt_list)
1006 svc_delete_xprt(xprt);
1009 void svc_close_net(struct svc_serv *serv, struct net *net)
1011 svc_close_list(serv, &serv->sv_tempsocks, net);
1012 svc_close_list(serv, &serv->sv_permsocks, net);
1014 svc_clear_pools(serv, net);
1016 * At this point the sp_sockets lists will stay empty, since
1017 * svc_xprt_enqueue will not add new entries without taking the
1018 * sp_lock and checking XPT_BUSY.
1020 svc_clear_list(serv, &serv->sv_tempsocks, net);
1021 svc_clear_list(serv, &serv->sv_permsocks, net);
1025 * Handle defer and revisit of requests
1028 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1030 struct svc_deferred_req *dr =
1031 container_of(dreq, struct svc_deferred_req, handle);
1032 struct svc_xprt *xprt = dr->xprt;
1034 spin_lock(&xprt->xpt_lock);
1035 set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1036 if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1037 spin_unlock(&xprt->xpt_lock);
1038 dprintk("revisit canceled\n");
1039 svc_xprt_put(xprt);
1040 kfree(dr);
1041 return;
1043 dprintk("revisit queued\n");
1044 dr->xprt = NULL;
1045 list_add(&dr->handle.recent, &xprt->xpt_deferred);
1046 spin_unlock(&xprt->xpt_lock);
1047 svc_xprt_enqueue(xprt);
1048 svc_xprt_put(xprt);
1052 * Save the request off for later processing. The request buffer looks
1053 * like this:
1055 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1057 * This code can only handle requests that consist of an xprt-header
1058 * and rpc-header.
1060 static struct cache_deferred_req *svc_defer(struct cache_req *req)
1062 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1063 struct svc_deferred_req *dr;
1065 if (rqstp->rq_arg.page_len || !rqstp->rq_usedeferral)
1066 return NULL; /* if more than a page, give up FIXME */
1067 if (rqstp->rq_deferred) {
1068 dr = rqstp->rq_deferred;
1069 rqstp->rq_deferred = NULL;
1070 } else {
1071 size_t skip;
1072 size_t size;
1073 /* FIXME maybe discard if size too large */
1074 size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1075 dr = kmalloc(size, GFP_KERNEL);
1076 if (dr == NULL)
1077 return NULL;
1079 dr->handle.owner = rqstp->rq_server;
1080 dr->prot = rqstp->rq_prot;
1081 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1082 dr->addrlen = rqstp->rq_addrlen;
1083 dr->daddr = rqstp->rq_daddr;
1084 dr->argslen = rqstp->rq_arg.len >> 2;
1085 dr->xprt_hlen = rqstp->rq_xprt_hlen;
1087 /* back up head to the start of the buffer and copy */
1088 skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1089 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1090 dr->argslen << 2);
1092 svc_xprt_get(rqstp->rq_xprt);
1093 dr->xprt = rqstp->rq_xprt;
1094 rqstp->rq_dropme = true;
1096 dr->handle.revisit = svc_revisit;
1097 return &dr->handle;
1101 * recv data from a deferred request into an active one
1103 static int svc_deferred_recv(struct svc_rqst *rqstp)
1105 struct svc_deferred_req *dr = rqstp->rq_deferred;
1107 /* setup iov_base past transport header */
1108 rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1109 /* The iov_len does not include the transport header bytes */
1110 rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1111 rqstp->rq_arg.page_len = 0;
1112 /* The rq_arg.len includes the transport header bytes */
1113 rqstp->rq_arg.len = dr->argslen<<2;
1114 rqstp->rq_prot = dr->prot;
1115 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1116 rqstp->rq_addrlen = dr->addrlen;
1117 /* Save off transport header len in case we get deferred again */
1118 rqstp->rq_xprt_hlen = dr->xprt_hlen;
1119 rqstp->rq_daddr = dr->daddr;
1120 rqstp->rq_respages = rqstp->rq_pages;
1121 return (dr->argslen<<2) - dr->xprt_hlen;
1125 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1127 struct svc_deferred_req *dr = NULL;
1129 if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1130 return NULL;
1131 spin_lock(&xprt->xpt_lock);
1132 if (!list_empty(&xprt->xpt_deferred)) {
1133 dr = list_entry(xprt->xpt_deferred.next,
1134 struct svc_deferred_req,
1135 handle.recent);
1136 list_del_init(&dr->handle.recent);
1137 } else
1138 clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1139 spin_unlock(&xprt->xpt_lock);
1140 return dr;
1144 * svc_find_xprt - find an RPC transport instance
1145 * @serv: pointer to svc_serv to search
1146 * @xcl_name: C string containing transport's class name
1147 * @net: owner net pointer
1148 * @af: Address family of transport's local address
1149 * @port: transport's IP port number
1151 * Return the transport instance pointer for the endpoint accepting
1152 * connections/peer traffic from the specified transport class,
1153 * address family and port.
1155 * Specifying 0 for the address family or port is effectively a
1156 * wild-card, and will result in matching the first transport in the
1157 * service's list that has a matching class name.
1159 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1160 struct net *net, const sa_family_t af,
1161 const unsigned short port)
1163 struct svc_xprt *xprt;
1164 struct svc_xprt *found = NULL;
1166 /* Sanity check the args */
1167 if (serv == NULL || xcl_name == NULL)
1168 return found;
1170 spin_lock_bh(&serv->sv_lock);
1171 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1172 if (xprt->xpt_net != net)
1173 continue;
1174 if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1175 continue;
1176 if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1177 continue;
1178 if (port != 0 && port != svc_xprt_local_port(xprt))
1179 continue;
1180 found = xprt;
1181 svc_xprt_get(xprt);
1182 break;
1184 spin_unlock_bh(&serv->sv_lock);
1185 return found;
1187 EXPORT_SYMBOL_GPL(svc_find_xprt);
1189 static int svc_one_xprt_name(const struct svc_xprt *xprt,
1190 char *pos, int remaining)
1192 int len;
1194 len = snprintf(pos, remaining, "%s %u\n",
1195 xprt->xpt_class->xcl_name,
1196 svc_xprt_local_port(xprt));
1197 if (len >= remaining)
1198 return -ENAMETOOLONG;
1199 return len;
1203 * svc_xprt_names - format a buffer with a list of transport names
1204 * @serv: pointer to an RPC service
1205 * @buf: pointer to a buffer to be filled in
1206 * @buflen: length of buffer to be filled in
1208 * Fills in @buf with a string containing a list of transport names,
1209 * each name terminated with '\n'.
1211 * Returns positive length of the filled-in string on success; otherwise
1212 * a negative errno value is returned if an error occurs.
1214 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1216 struct svc_xprt *xprt;
1217 int len, totlen;
1218 char *pos;
1220 /* Sanity check args */
1221 if (!serv)
1222 return 0;
1224 spin_lock_bh(&serv->sv_lock);
1226 pos = buf;
1227 totlen = 0;
1228 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1229 len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1230 if (len < 0) {
1231 *buf = '\0';
1232 totlen = len;
1234 if (len <= 0)
1235 break;
1237 pos += len;
1238 totlen += len;
1241 spin_unlock_bh(&serv->sv_lock);
1242 return totlen;
1244 EXPORT_SYMBOL_GPL(svc_xprt_names);
1247 /*----------------------------------------------------------------------------*/
1249 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1251 unsigned int pidx = (unsigned int)*pos;
1252 struct svc_serv *serv = m->private;
1254 dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1256 if (!pidx)
1257 return SEQ_START_TOKEN;
1258 return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1261 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1263 struct svc_pool *pool = p;
1264 struct svc_serv *serv = m->private;
1266 dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1268 if (p == SEQ_START_TOKEN) {
1269 pool = &serv->sv_pools[0];
1270 } else {
1271 unsigned int pidx = (pool - &serv->sv_pools[0]);
1272 if (pidx < serv->sv_nrpools-1)
1273 pool = &serv->sv_pools[pidx+1];
1274 else
1275 pool = NULL;
1277 ++*pos;
1278 return pool;
1281 static void svc_pool_stats_stop(struct seq_file *m, void *p)
1285 static int svc_pool_stats_show(struct seq_file *m, void *p)
1287 struct svc_pool *pool = p;
1289 if (p == SEQ_START_TOKEN) {
1290 seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1291 return 0;
1294 seq_printf(m, "%u %lu %lu %lu %lu\n",
1295 pool->sp_id,
1296 pool->sp_stats.packets,
1297 pool->sp_stats.sockets_queued,
1298 pool->sp_stats.threads_woken,
1299 pool->sp_stats.threads_timedout);
1301 return 0;
1304 static const struct seq_operations svc_pool_stats_seq_ops = {
1305 .start = svc_pool_stats_start,
1306 .next = svc_pool_stats_next,
1307 .stop = svc_pool_stats_stop,
1308 .show = svc_pool_stats_show,
1311 int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1313 int err;
1315 err = seq_open(file, &svc_pool_stats_seq_ops);
1316 if (!err)
1317 ((struct seq_file *) file->private_data)->private = serv;
1318 return err;
1320 EXPORT_SYMBOL(svc_pool_stats_open);
1322 /*----------------------------------------------------------------------------*/