virtio-balloon: use actual number of stats for stats queue buffers
[linux/fpc-iii.git] / block / cfq-iosched.c
blobc7c3d4e6bc2708bf57d55917eac278575b5f1bc4
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/ktime.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
17 #include <linux/blk-cgroup.h>
18 #include "blk.h"
21 * tunables
23 /* max queue in one round of service */
24 static const int cfq_quantum = 8;
25 static const u64 cfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
26 /* maximum backwards seek, in KiB */
27 static const int cfq_back_max = 16 * 1024;
28 /* penalty of a backwards seek */
29 static const int cfq_back_penalty = 2;
30 static const u64 cfq_slice_sync = NSEC_PER_SEC / 10;
31 static u64 cfq_slice_async = NSEC_PER_SEC / 25;
32 static const int cfq_slice_async_rq = 2;
33 static u64 cfq_slice_idle = NSEC_PER_SEC / 125;
34 static u64 cfq_group_idle = NSEC_PER_SEC / 125;
35 static const u64 cfq_target_latency = (u64)NSEC_PER_SEC * 3/10; /* 300 ms */
36 static const int cfq_hist_divisor = 4;
39 * offset from end of queue service tree for idle class
41 #define CFQ_IDLE_DELAY (NSEC_PER_SEC / 5)
42 /* offset from end of group service tree under time slice mode */
43 #define CFQ_SLICE_MODE_GROUP_DELAY (NSEC_PER_SEC / 5)
44 /* offset from end of group service under IOPS mode */
45 #define CFQ_IOPS_MODE_GROUP_DELAY (HZ / 5)
48 * below this threshold, we consider thinktime immediate
50 #define CFQ_MIN_TT (2 * NSEC_PER_SEC / HZ)
52 #define CFQ_SLICE_SCALE (5)
53 #define CFQ_HW_QUEUE_MIN (5)
54 #define CFQ_SERVICE_SHIFT 12
56 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
57 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
58 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
59 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
61 #define RQ_CIC(rq) icq_to_cic((rq)->elv.icq)
62 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elv.priv[0])
63 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elv.priv[1])
65 static struct kmem_cache *cfq_pool;
67 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
68 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
69 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
71 #define sample_valid(samples) ((samples) > 80)
72 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
74 /* blkio-related constants */
75 #define CFQ_WEIGHT_LEGACY_MIN 10
76 #define CFQ_WEIGHT_LEGACY_DFL 500
77 #define CFQ_WEIGHT_LEGACY_MAX 1000
79 struct cfq_ttime {
80 u64 last_end_request;
82 u64 ttime_total;
83 u64 ttime_mean;
84 unsigned long ttime_samples;
88 * Most of our rbtree usage is for sorting with min extraction, so
89 * if we cache the leftmost node we don't have to walk down the tree
90 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
91 * move this into the elevator for the rq sorting as well.
93 struct cfq_rb_root {
94 struct rb_root rb;
95 struct rb_node *left;
96 unsigned count;
97 u64 min_vdisktime;
98 struct cfq_ttime ttime;
100 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
101 .ttime = {.last_end_request = ktime_get_ns(),},}
104 * Per process-grouping structure
106 struct cfq_queue {
107 /* reference count */
108 int ref;
109 /* various state flags, see below */
110 unsigned int flags;
111 /* parent cfq_data */
112 struct cfq_data *cfqd;
113 /* service_tree member */
114 struct rb_node rb_node;
115 /* service_tree key */
116 u64 rb_key;
117 /* prio tree member */
118 struct rb_node p_node;
119 /* prio tree root we belong to, if any */
120 struct rb_root *p_root;
121 /* sorted list of pending requests */
122 struct rb_root sort_list;
123 /* if fifo isn't expired, next request to serve */
124 struct request *next_rq;
125 /* requests queued in sort_list */
126 int queued[2];
127 /* currently allocated requests */
128 int allocated[2];
129 /* fifo list of requests in sort_list */
130 struct list_head fifo;
132 /* time when queue got scheduled in to dispatch first request. */
133 u64 dispatch_start;
134 u64 allocated_slice;
135 u64 slice_dispatch;
136 /* time when first request from queue completed and slice started. */
137 u64 slice_start;
138 u64 slice_end;
139 s64 slice_resid;
141 /* pending priority requests */
142 int prio_pending;
143 /* number of requests that are on the dispatch list or inside driver */
144 int dispatched;
146 /* io prio of this group */
147 unsigned short ioprio, org_ioprio;
148 unsigned short ioprio_class, org_ioprio_class;
150 pid_t pid;
152 u32 seek_history;
153 sector_t last_request_pos;
155 struct cfq_rb_root *service_tree;
156 struct cfq_queue *new_cfqq;
157 struct cfq_group *cfqg;
158 /* Number of sectors dispatched from queue in single dispatch round */
159 unsigned long nr_sectors;
163 * First index in the service_trees.
164 * IDLE is handled separately, so it has negative index
166 enum wl_class_t {
167 BE_WORKLOAD = 0,
168 RT_WORKLOAD = 1,
169 IDLE_WORKLOAD = 2,
170 CFQ_PRIO_NR,
174 * Second index in the service_trees.
176 enum wl_type_t {
177 ASYNC_WORKLOAD = 0,
178 SYNC_NOIDLE_WORKLOAD = 1,
179 SYNC_WORKLOAD = 2
182 struct cfqg_stats {
183 #ifdef CONFIG_CFQ_GROUP_IOSCHED
184 /* number of ios merged */
185 struct blkg_rwstat merged;
186 /* total time spent on device in ns, may not be accurate w/ queueing */
187 struct blkg_rwstat service_time;
188 /* total time spent waiting in scheduler queue in ns */
189 struct blkg_rwstat wait_time;
190 /* number of IOs queued up */
191 struct blkg_rwstat queued;
192 /* total disk time and nr sectors dispatched by this group */
193 struct blkg_stat time;
194 #ifdef CONFIG_DEBUG_BLK_CGROUP
195 /* time not charged to this cgroup */
196 struct blkg_stat unaccounted_time;
197 /* sum of number of ios queued across all samples */
198 struct blkg_stat avg_queue_size_sum;
199 /* count of samples taken for average */
200 struct blkg_stat avg_queue_size_samples;
201 /* how many times this group has been removed from service tree */
202 struct blkg_stat dequeue;
203 /* total time spent waiting for it to be assigned a timeslice. */
204 struct blkg_stat group_wait_time;
205 /* time spent idling for this blkcg_gq */
206 struct blkg_stat idle_time;
207 /* total time with empty current active q with other requests queued */
208 struct blkg_stat empty_time;
209 /* fields after this shouldn't be cleared on stat reset */
210 uint64_t start_group_wait_time;
211 uint64_t start_idle_time;
212 uint64_t start_empty_time;
213 uint16_t flags;
214 #endif /* CONFIG_DEBUG_BLK_CGROUP */
215 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
218 /* Per-cgroup data */
219 struct cfq_group_data {
220 /* must be the first member */
221 struct blkcg_policy_data cpd;
223 unsigned int weight;
224 unsigned int leaf_weight;
227 /* This is per cgroup per device grouping structure */
228 struct cfq_group {
229 /* must be the first member */
230 struct blkg_policy_data pd;
232 /* group service_tree member */
233 struct rb_node rb_node;
235 /* group service_tree key */
236 u64 vdisktime;
239 * The number of active cfqgs and sum of their weights under this
240 * cfqg. This covers this cfqg's leaf_weight and all children's
241 * weights, but does not cover weights of further descendants.
243 * If a cfqg is on the service tree, it's active. An active cfqg
244 * also activates its parent and contributes to the children_weight
245 * of the parent.
247 int nr_active;
248 unsigned int children_weight;
251 * vfraction is the fraction of vdisktime that the tasks in this
252 * cfqg are entitled to. This is determined by compounding the
253 * ratios walking up from this cfqg to the root.
255 * It is in fixed point w/ CFQ_SERVICE_SHIFT and the sum of all
256 * vfractions on a service tree is approximately 1. The sum may
257 * deviate a bit due to rounding errors and fluctuations caused by
258 * cfqgs entering and leaving the service tree.
260 unsigned int vfraction;
263 * There are two weights - (internal) weight is the weight of this
264 * cfqg against the sibling cfqgs. leaf_weight is the wight of
265 * this cfqg against the child cfqgs. For the root cfqg, both
266 * weights are kept in sync for backward compatibility.
268 unsigned int weight;
269 unsigned int new_weight;
270 unsigned int dev_weight;
272 unsigned int leaf_weight;
273 unsigned int new_leaf_weight;
274 unsigned int dev_leaf_weight;
276 /* number of cfqq currently on this group */
277 int nr_cfqq;
280 * Per group busy queues average. Useful for workload slice calc. We
281 * create the array for each prio class but at run time it is used
282 * only for RT and BE class and slot for IDLE class remains unused.
283 * This is primarily done to avoid confusion and a gcc warning.
285 unsigned int busy_queues_avg[CFQ_PRIO_NR];
287 * rr lists of queues with requests. We maintain service trees for
288 * RT and BE classes. These trees are subdivided in subclasses
289 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
290 * class there is no subclassification and all the cfq queues go on
291 * a single tree service_tree_idle.
292 * Counts are embedded in the cfq_rb_root
294 struct cfq_rb_root service_trees[2][3];
295 struct cfq_rb_root service_tree_idle;
297 u64 saved_wl_slice;
298 enum wl_type_t saved_wl_type;
299 enum wl_class_t saved_wl_class;
301 /* number of requests that are on the dispatch list or inside driver */
302 int dispatched;
303 struct cfq_ttime ttime;
304 struct cfqg_stats stats; /* stats for this cfqg */
306 /* async queue for each priority case */
307 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
308 struct cfq_queue *async_idle_cfqq;
312 struct cfq_io_cq {
313 struct io_cq icq; /* must be the first member */
314 struct cfq_queue *cfqq[2];
315 struct cfq_ttime ttime;
316 int ioprio; /* the current ioprio */
317 #ifdef CONFIG_CFQ_GROUP_IOSCHED
318 uint64_t blkcg_serial_nr; /* the current blkcg serial */
319 #endif
323 * Per block device queue structure
325 struct cfq_data {
326 struct request_queue *queue;
327 /* Root service tree for cfq_groups */
328 struct cfq_rb_root grp_service_tree;
329 struct cfq_group *root_group;
332 * The priority currently being served
334 enum wl_class_t serving_wl_class;
335 enum wl_type_t serving_wl_type;
336 u64 workload_expires;
337 struct cfq_group *serving_group;
340 * Each priority tree is sorted by next_request position. These
341 * trees are used when determining if two or more queues are
342 * interleaving requests (see cfq_close_cooperator).
344 struct rb_root prio_trees[CFQ_PRIO_LISTS];
346 unsigned int busy_queues;
347 unsigned int busy_sync_queues;
349 int rq_in_driver;
350 int rq_in_flight[2];
353 * queue-depth detection
355 int rq_queued;
356 int hw_tag;
358 * hw_tag can be
359 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
360 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
361 * 0 => no NCQ
363 int hw_tag_est_depth;
364 unsigned int hw_tag_samples;
367 * idle window management
369 struct hrtimer idle_slice_timer;
370 struct work_struct unplug_work;
372 struct cfq_queue *active_queue;
373 struct cfq_io_cq *active_cic;
375 sector_t last_position;
378 * tunables, see top of file
380 unsigned int cfq_quantum;
381 unsigned int cfq_back_penalty;
382 unsigned int cfq_back_max;
383 unsigned int cfq_slice_async_rq;
384 unsigned int cfq_latency;
385 u64 cfq_fifo_expire[2];
386 u64 cfq_slice[2];
387 u64 cfq_slice_idle;
388 u64 cfq_group_idle;
389 u64 cfq_target_latency;
392 * Fallback dummy cfqq for extreme OOM conditions
394 struct cfq_queue oom_cfqq;
396 u64 last_delayed_sync;
399 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
400 static void cfq_put_queue(struct cfq_queue *cfqq);
402 static struct cfq_rb_root *st_for(struct cfq_group *cfqg,
403 enum wl_class_t class,
404 enum wl_type_t type)
406 if (!cfqg)
407 return NULL;
409 if (class == IDLE_WORKLOAD)
410 return &cfqg->service_tree_idle;
412 return &cfqg->service_trees[class][type];
415 enum cfqq_state_flags {
416 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
417 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
418 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
419 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
420 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
421 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
422 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
423 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
424 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
425 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
426 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
427 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
428 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
431 #define CFQ_CFQQ_FNS(name) \
432 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
434 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
436 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
438 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
440 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
442 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
445 CFQ_CFQQ_FNS(on_rr);
446 CFQ_CFQQ_FNS(wait_request);
447 CFQ_CFQQ_FNS(must_dispatch);
448 CFQ_CFQQ_FNS(must_alloc_slice);
449 CFQ_CFQQ_FNS(fifo_expire);
450 CFQ_CFQQ_FNS(idle_window);
451 CFQ_CFQQ_FNS(prio_changed);
452 CFQ_CFQQ_FNS(slice_new);
453 CFQ_CFQQ_FNS(sync);
454 CFQ_CFQQ_FNS(coop);
455 CFQ_CFQQ_FNS(split_coop);
456 CFQ_CFQQ_FNS(deep);
457 CFQ_CFQQ_FNS(wait_busy);
458 #undef CFQ_CFQQ_FNS
460 #if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
462 /* cfqg stats flags */
463 enum cfqg_stats_flags {
464 CFQG_stats_waiting = 0,
465 CFQG_stats_idling,
466 CFQG_stats_empty,
469 #define CFQG_FLAG_FNS(name) \
470 static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats) \
472 stats->flags |= (1 << CFQG_stats_##name); \
474 static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats) \
476 stats->flags &= ~(1 << CFQG_stats_##name); \
478 static inline int cfqg_stats_##name(struct cfqg_stats *stats) \
480 return (stats->flags & (1 << CFQG_stats_##name)) != 0; \
483 CFQG_FLAG_FNS(waiting)
484 CFQG_FLAG_FNS(idling)
485 CFQG_FLAG_FNS(empty)
486 #undef CFQG_FLAG_FNS
488 /* This should be called with the queue_lock held. */
489 static void cfqg_stats_update_group_wait_time(struct cfqg_stats *stats)
491 unsigned long long now;
493 if (!cfqg_stats_waiting(stats))
494 return;
496 now = sched_clock();
497 if (time_after64(now, stats->start_group_wait_time))
498 blkg_stat_add(&stats->group_wait_time,
499 now - stats->start_group_wait_time);
500 cfqg_stats_clear_waiting(stats);
503 /* This should be called with the queue_lock held. */
504 static void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg,
505 struct cfq_group *curr_cfqg)
507 struct cfqg_stats *stats = &cfqg->stats;
509 if (cfqg_stats_waiting(stats))
510 return;
511 if (cfqg == curr_cfqg)
512 return;
513 stats->start_group_wait_time = sched_clock();
514 cfqg_stats_mark_waiting(stats);
517 /* This should be called with the queue_lock held. */
518 static void cfqg_stats_end_empty_time(struct cfqg_stats *stats)
520 unsigned long long now;
522 if (!cfqg_stats_empty(stats))
523 return;
525 now = sched_clock();
526 if (time_after64(now, stats->start_empty_time))
527 blkg_stat_add(&stats->empty_time,
528 now - stats->start_empty_time);
529 cfqg_stats_clear_empty(stats);
532 static void cfqg_stats_update_dequeue(struct cfq_group *cfqg)
534 blkg_stat_add(&cfqg->stats.dequeue, 1);
537 static void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg)
539 struct cfqg_stats *stats = &cfqg->stats;
541 if (blkg_rwstat_total(&stats->queued))
542 return;
545 * group is already marked empty. This can happen if cfqq got new
546 * request in parent group and moved to this group while being added
547 * to service tree. Just ignore the event and move on.
549 if (cfqg_stats_empty(stats))
550 return;
552 stats->start_empty_time = sched_clock();
553 cfqg_stats_mark_empty(stats);
556 static void cfqg_stats_update_idle_time(struct cfq_group *cfqg)
558 struct cfqg_stats *stats = &cfqg->stats;
560 if (cfqg_stats_idling(stats)) {
561 unsigned long long now = sched_clock();
563 if (time_after64(now, stats->start_idle_time))
564 blkg_stat_add(&stats->idle_time,
565 now - stats->start_idle_time);
566 cfqg_stats_clear_idling(stats);
570 static void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg)
572 struct cfqg_stats *stats = &cfqg->stats;
574 BUG_ON(cfqg_stats_idling(stats));
576 stats->start_idle_time = sched_clock();
577 cfqg_stats_mark_idling(stats);
580 static void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg)
582 struct cfqg_stats *stats = &cfqg->stats;
584 blkg_stat_add(&stats->avg_queue_size_sum,
585 blkg_rwstat_total(&stats->queued));
586 blkg_stat_add(&stats->avg_queue_size_samples, 1);
587 cfqg_stats_update_group_wait_time(stats);
590 #else /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
592 static inline void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg, struct cfq_group *curr_cfqg) { }
593 static inline void cfqg_stats_end_empty_time(struct cfqg_stats *stats) { }
594 static inline void cfqg_stats_update_dequeue(struct cfq_group *cfqg) { }
595 static inline void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg) { }
596 static inline void cfqg_stats_update_idle_time(struct cfq_group *cfqg) { }
597 static inline void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg) { }
598 static inline void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg) { }
600 #endif /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
602 #ifdef CONFIG_CFQ_GROUP_IOSCHED
604 static inline struct cfq_group *pd_to_cfqg(struct blkg_policy_data *pd)
606 return pd ? container_of(pd, struct cfq_group, pd) : NULL;
609 static struct cfq_group_data
610 *cpd_to_cfqgd(struct blkcg_policy_data *cpd)
612 return cpd ? container_of(cpd, struct cfq_group_data, cpd) : NULL;
615 static inline struct blkcg_gq *cfqg_to_blkg(struct cfq_group *cfqg)
617 return pd_to_blkg(&cfqg->pd);
620 static struct blkcg_policy blkcg_policy_cfq;
622 static inline struct cfq_group *blkg_to_cfqg(struct blkcg_gq *blkg)
624 return pd_to_cfqg(blkg_to_pd(blkg, &blkcg_policy_cfq));
627 static struct cfq_group_data *blkcg_to_cfqgd(struct blkcg *blkcg)
629 return cpd_to_cfqgd(blkcg_to_cpd(blkcg, &blkcg_policy_cfq));
632 static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg)
634 struct blkcg_gq *pblkg = cfqg_to_blkg(cfqg)->parent;
636 return pblkg ? blkg_to_cfqg(pblkg) : NULL;
639 static inline bool cfqg_is_descendant(struct cfq_group *cfqg,
640 struct cfq_group *ancestor)
642 return cgroup_is_descendant(cfqg_to_blkg(cfqg)->blkcg->css.cgroup,
643 cfqg_to_blkg(ancestor)->blkcg->css.cgroup);
646 static inline void cfqg_get(struct cfq_group *cfqg)
648 return blkg_get(cfqg_to_blkg(cfqg));
651 static inline void cfqg_put(struct cfq_group *cfqg)
653 return blkg_put(cfqg_to_blkg(cfqg));
656 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) do { \
657 char __pbuf[128]; \
659 blkg_path(cfqg_to_blkg((cfqq)->cfqg), __pbuf, sizeof(__pbuf)); \
660 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c %s " fmt, (cfqq)->pid, \
661 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
662 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
663 __pbuf, ##args); \
664 } while (0)
666 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do { \
667 char __pbuf[128]; \
669 blkg_path(cfqg_to_blkg(cfqg), __pbuf, sizeof(__pbuf)); \
670 blk_add_trace_msg((cfqd)->queue, "%s " fmt, __pbuf, ##args); \
671 } while (0)
673 static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
674 struct cfq_group *curr_cfqg, int op,
675 int op_flags)
677 blkg_rwstat_add(&cfqg->stats.queued, op, op_flags, 1);
678 cfqg_stats_end_empty_time(&cfqg->stats);
679 cfqg_stats_set_start_group_wait_time(cfqg, curr_cfqg);
682 static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
683 uint64_t time, unsigned long unaccounted_time)
685 blkg_stat_add(&cfqg->stats.time, time);
686 #ifdef CONFIG_DEBUG_BLK_CGROUP
687 blkg_stat_add(&cfqg->stats.unaccounted_time, unaccounted_time);
688 #endif
691 static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int op,
692 int op_flags)
694 blkg_rwstat_add(&cfqg->stats.queued, op, op_flags, -1);
697 static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int op,
698 int op_flags)
700 blkg_rwstat_add(&cfqg->stats.merged, op, op_flags, 1);
703 static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
704 uint64_t start_time, uint64_t io_start_time, int op,
705 int op_flags)
707 struct cfqg_stats *stats = &cfqg->stats;
708 unsigned long long now = sched_clock();
710 if (time_after64(now, io_start_time))
711 blkg_rwstat_add(&stats->service_time, op, op_flags,
712 now - io_start_time);
713 if (time_after64(io_start_time, start_time))
714 blkg_rwstat_add(&stats->wait_time, op, op_flags,
715 io_start_time - start_time);
718 /* @stats = 0 */
719 static void cfqg_stats_reset(struct cfqg_stats *stats)
721 /* queued stats shouldn't be cleared */
722 blkg_rwstat_reset(&stats->merged);
723 blkg_rwstat_reset(&stats->service_time);
724 blkg_rwstat_reset(&stats->wait_time);
725 blkg_stat_reset(&stats->time);
726 #ifdef CONFIG_DEBUG_BLK_CGROUP
727 blkg_stat_reset(&stats->unaccounted_time);
728 blkg_stat_reset(&stats->avg_queue_size_sum);
729 blkg_stat_reset(&stats->avg_queue_size_samples);
730 blkg_stat_reset(&stats->dequeue);
731 blkg_stat_reset(&stats->group_wait_time);
732 blkg_stat_reset(&stats->idle_time);
733 blkg_stat_reset(&stats->empty_time);
734 #endif
737 /* @to += @from */
738 static void cfqg_stats_add_aux(struct cfqg_stats *to, struct cfqg_stats *from)
740 /* queued stats shouldn't be cleared */
741 blkg_rwstat_add_aux(&to->merged, &from->merged);
742 blkg_rwstat_add_aux(&to->service_time, &from->service_time);
743 blkg_rwstat_add_aux(&to->wait_time, &from->wait_time);
744 blkg_stat_add_aux(&from->time, &from->time);
745 #ifdef CONFIG_DEBUG_BLK_CGROUP
746 blkg_stat_add_aux(&to->unaccounted_time, &from->unaccounted_time);
747 blkg_stat_add_aux(&to->avg_queue_size_sum, &from->avg_queue_size_sum);
748 blkg_stat_add_aux(&to->avg_queue_size_samples, &from->avg_queue_size_samples);
749 blkg_stat_add_aux(&to->dequeue, &from->dequeue);
750 blkg_stat_add_aux(&to->group_wait_time, &from->group_wait_time);
751 blkg_stat_add_aux(&to->idle_time, &from->idle_time);
752 blkg_stat_add_aux(&to->empty_time, &from->empty_time);
753 #endif
757 * Transfer @cfqg's stats to its parent's aux counts so that the ancestors'
758 * recursive stats can still account for the amount used by this cfqg after
759 * it's gone.
761 static void cfqg_stats_xfer_dead(struct cfq_group *cfqg)
763 struct cfq_group *parent = cfqg_parent(cfqg);
765 lockdep_assert_held(cfqg_to_blkg(cfqg)->q->queue_lock);
767 if (unlikely(!parent))
768 return;
770 cfqg_stats_add_aux(&parent->stats, &cfqg->stats);
771 cfqg_stats_reset(&cfqg->stats);
774 #else /* CONFIG_CFQ_GROUP_IOSCHED */
776 static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg) { return NULL; }
777 static inline bool cfqg_is_descendant(struct cfq_group *cfqg,
778 struct cfq_group *ancestor)
780 return true;
782 static inline void cfqg_get(struct cfq_group *cfqg) { }
783 static inline void cfqg_put(struct cfq_group *cfqg) { }
785 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
786 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c " fmt, (cfqq)->pid, \
787 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
788 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
789 ##args)
790 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
792 static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
793 struct cfq_group *curr_cfqg, int op, int op_flags) { }
794 static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
795 uint64_t time, unsigned long unaccounted_time) { }
796 static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int op,
797 int op_flags) { }
798 static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int op,
799 int op_flags) { }
800 static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
801 uint64_t start_time, uint64_t io_start_time, int op,
802 int op_flags) { }
804 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
806 #define cfq_log(cfqd, fmt, args...) \
807 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
809 /* Traverses through cfq group service trees */
810 #define for_each_cfqg_st(cfqg, i, j, st) \
811 for (i = 0; i <= IDLE_WORKLOAD; i++) \
812 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
813 : &cfqg->service_tree_idle; \
814 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
815 (i == IDLE_WORKLOAD && j == 0); \
816 j++, st = i < IDLE_WORKLOAD ? \
817 &cfqg->service_trees[i][j]: NULL) \
819 static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
820 struct cfq_ttime *ttime, bool group_idle)
822 u64 slice;
823 if (!sample_valid(ttime->ttime_samples))
824 return false;
825 if (group_idle)
826 slice = cfqd->cfq_group_idle;
827 else
828 slice = cfqd->cfq_slice_idle;
829 return ttime->ttime_mean > slice;
832 static inline bool iops_mode(struct cfq_data *cfqd)
835 * If we are not idling on queues and it is a NCQ drive, parallel
836 * execution of requests is on and measuring time is not possible
837 * in most of the cases until and unless we drive shallower queue
838 * depths and that becomes a performance bottleneck. In such cases
839 * switch to start providing fairness in terms of number of IOs.
841 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
842 return true;
843 else
844 return false;
847 static inline enum wl_class_t cfqq_class(struct cfq_queue *cfqq)
849 if (cfq_class_idle(cfqq))
850 return IDLE_WORKLOAD;
851 if (cfq_class_rt(cfqq))
852 return RT_WORKLOAD;
853 return BE_WORKLOAD;
857 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
859 if (!cfq_cfqq_sync(cfqq))
860 return ASYNC_WORKLOAD;
861 if (!cfq_cfqq_idle_window(cfqq))
862 return SYNC_NOIDLE_WORKLOAD;
863 return SYNC_WORKLOAD;
866 static inline int cfq_group_busy_queues_wl(enum wl_class_t wl_class,
867 struct cfq_data *cfqd,
868 struct cfq_group *cfqg)
870 if (wl_class == IDLE_WORKLOAD)
871 return cfqg->service_tree_idle.count;
873 return cfqg->service_trees[wl_class][ASYNC_WORKLOAD].count +
874 cfqg->service_trees[wl_class][SYNC_NOIDLE_WORKLOAD].count +
875 cfqg->service_trees[wl_class][SYNC_WORKLOAD].count;
878 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
879 struct cfq_group *cfqg)
881 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count +
882 cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
885 static void cfq_dispatch_insert(struct request_queue *, struct request *);
886 static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, bool is_sync,
887 struct cfq_io_cq *cic, struct bio *bio);
889 static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
891 /* cic->icq is the first member, %NULL will convert to %NULL */
892 return container_of(icq, struct cfq_io_cq, icq);
895 static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
896 struct io_context *ioc)
898 if (ioc)
899 return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
900 return NULL;
903 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
905 return cic->cfqq[is_sync];
908 static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
909 bool is_sync)
911 cic->cfqq[is_sync] = cfqq;
914 static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
916 return cic->icq.q->elevator->elevator_data;
920 * We regard a request as SYNC, if it's either a read or has the SYNC bit
921 * set (in which case it could also be direct WRITE).
923 static inline bool cfq_bio_sync(struct bio *bio)
925 return bio_data_dir(bio) == READ || (bio->bi_opf & REQ_SYNC);
929 * scheduler run of queue, if there are requests pending and no one in the
930 * driver that will restart queueing
932 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
934 if (cfqd->busy_queues) {
935 cfq_log(cfqd, "schedule dispatch");
936 kblockd_schedule_work(&cfqd->unplug_work);
941 * Scale schedule slice based on io priority. Use the sync time slice only
942 * if a queue is marked sync and has sync io queued. A sync queue with async
943 * io only, should not get full sync slice length.
945 static inline u64 cfq_prio_slice(struct cfq_data *cfqd, bool sync,
946 unsigned short prio)
948 u64 base_slice = cfqd->cfq_slice[sync];
949 u64 slice = div_u64(base_slice, CFQ_SLICE_SCALE);
951 WARN_ON(prio >= IOPRIO_BE_NR);
953 return base_slice + (slice * (4 - prio));
956 static inline u64
957 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
959 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
963 * cfqg_scale_charge - scale disk time charge according to cfqg weight
964 * @charge: disk time being charged
965 * @vfraction: vfraction of the cfqg, fixed point w/ CFQ_SERVICE_SHIFT
967 * Scale @charge according to @vfraction, which is in range (0, 1]. The
968 * scaling is inversely proportional.
970 * scaled = charge / vfraction
972 * The result is also in fixed point w/ CFQ_SERVICE_SHIFT.
974 static inline u64 cfqg_scale_charge(u64 charge,
975 unsigned int vfraction)
977 u64 c = charge << CFQ_SERVICE_SHIFT; /* make it fixed point */
979 /* charge / vfraction */
980 c <<= CFQ_SERVICE_SHIFT;
981 return div_u64(c, vfraction);
984 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
986 s64 delta = (s64)(vdisktime - min_vdisktime);
987 if (delta > 0)
988 min_vdisktime = vdisktime;
990 return min_vdisktime;
993 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
995 s64 delta = (s64)(vdisktime - min_vdisktime);
996 if (delta < 0)
997 min_vdisktime = vdisktime;
999 return min_vdisktime;
1002 static void update_min_vdisktime(struct cfq_rb_root *st)
1004 struct cfq_group *cfqg;
1006 if (st->left) {
1007 cfqg = rb_entry_cfqg(st->left);
1008 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
1009 cfqg->vdisktime);
1014 * get averaged number of queues of RT/BE priority.
1015 * average is updated, with a formula that gives more weight to higher numbers,
1016 * to quickly follows sudden increases and decrease slowly
1019 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
1020 struct cfq_group *cfqg, bool rt)
1022 unsigned min_q, max_q;
1023 unsigned mult = cfq_hist_divisor - 1;
1024 unsigned round = cfq_hist_divisor / 2;
1025 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
1027 min_q = min(cfqg->busy_queues_avg[rt], busy);
1028 max_q = max(cfqg->busy_queues_avg[rt], busy);
1029 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
1030 cfq_hist_divisor;
1031 return cfqg->busy_queues_avg[rt];
1034 static inline u64
1035 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
1037 return cfqd->cfq_target_latency * cfqg->vfraction >> CFQ_SERVICE_SHIFT;
1040 static inline u64
1041 cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1043 u64 slice = cfq_prio_to_slice(cfqd, cfqq);
1044 if (cfqd->cfq_latency) {
1046 * interested queues (we consider only the ones with the same
1047 * priority class in the cfq group)
1049 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
1050 cfq_class_rt(cfqq));
1051 u64 sync_slice = cfqd->cfq_slice[1];
1052 u64 expect_latency = sync_slice * iq;
1053 u64 group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
1055 if (expect_latency > group_slice) {
1056 u64 base_low_slice = 2 * cfqd->cfq_slice_idle;
1057 u64 low_slice;
1059 /* scale low_slice according to IO priority
1060 * and sync vs async */
1061 low_slice = div64_u64(base_low_slice*slice, sync_slice);
1062 low_slice = min(slice, low_slice);
1063 /* the adapted slice value is scaled to fit all iqs
1064 * into the target latency */
1065 slice = div64_u64(slice*group_slice, expect_latency);
1066 slice = max(slice, low_slice);
1069 return slice;
1072 static inline void
1073 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1075 u64 slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
1076 u64 now = ktime_get_ns();
1078 cfqq->slice_start = now;
1079 cfqq->slice_end = now + slice;
1080 cfqq->allocated_slice = slice;
1081 cfq_log_cfqq(cfqd, cfqq, "set_slice=%llu", cfqq->slice_end - now);
1085 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
1086 * isn't valid until the first request from the dispatch is activated
1087 * and the slice time set.
1089 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
1091 if (cfq_cfqq_slice_new(cfqq))
1092 return false;
1093 if (ktime_get_ns() < cfqq->slice_end)
1094 return false;
1096 return true;
1100 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1101 * We choose the request that is closest to the head right now. Distance
1102 * behind the head is penalized and only allowed to a certain extent.
1104 static struct request *
1105 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1107 sector_t s1, s2, d1 = 0, d2 = 0;
1108 unsigned long back_max;
1109 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
1110 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
1111 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1113 if (rq1 == NULL || rq1 == rq2)
1114 return rq2;
1115 if (rq2 == NULL)
1116 return rq1;
1118 if (rq_is_sync(rq1) != rq_is_sync(rq2))
1119 return rq_is_sync(rq1) ? rq1 : rq2;
1121 if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
1122 return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
1124 s1 = blk_rq_pos(rq1);
1125 s2 = blk_rq_pos(rq2);
1128 * by definition, 1KiB is 2 sectors
1130 back_max = cfqd->cfq_back_max * 2;
1133 * Strict one way elevator _except_ in the case where we allow
1134 * short backward seeks which are biased as twice the cost of a
1135 * similar forward seek.
1137 if (s1 >= last)
1138 d1 = s1 - last;
1139 else if (s1 + back_max >= last)
1140 d1 = (last - s1) * cfqd->cfq_back_penalty;
1141 else
1142 wrap |= CFQ_RQ1_WRAP;
1144 if (s2 >= last)
1145 d2 = s2 - last;
1146 else if (s2 + back_max >= last)
1147 d2 = (last - s2) * cfqd->cfq_back_penalty;
1148 else
1149 wrap |= CFQ_RQ2_WRAP;
1151 /* Found required data */
1154 * By doing switch() on the bit mask "wrap" we avoid having to
1155 * check two variables for all permutations: --> faster!
1157 switch (wrap) {
1158 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
1159 if (d1 < d2)
1160 return rq1;
1161 else if (d2 < d1)
1162 return rq2;
1163 else {
1164 if (s1 >= s2)
1165 return rq1;
1166 else
1167 return rq2;
1170 case CFQ_RQ2_WRAP:
1171 return rq1;
1172 case CFQ_RQ1_WRAP:
1173 return rq2;
1174 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
1175 default:
1177 * Since both rqs are wrapped,
1178 * start with the one that's further behind head
1179 * (--> only *one* back seek required),
1180 * since back seek takes more time than forward.
1182 if (s1 <= s2)
1183 return rq1;
1184 else
1185 return rq2;
1190 * The below is leftmost cache rbtree addon
1192 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
1194 /* Service tree is empty */
1195 if (!root->count)
1196 return NULL;
1198 if (!root->left)
1199 root->left = rb_first(&root->rb);
1201 if (root->left)
1202 return rb_entry(root->left, struct cfq_queue, rb_node);
1204 return NULL;
1207 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
1209 if (!root->left)
1210 root->left = rb_first(&root->rb);
1212 if (root->left)
1213 return rb_entry_cfqg(root->left);
1215 return NULL;
1218 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
1220 rb_erase(n, root);
1221 RB_CLEAR_NODE(n);
1224 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
1226 if (root->left == n)
1227 root->left = NULL;
1228 rb_erase_init(n, &root->rb);
1229 --root->count;
1233 * would be nice to take fifo expire time into account as well
1235 static struct request *
1236 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1237 struct request *last)
1239 struct rb_node *rbnext = rb_next(&last->rb_node);
1240 struct rb_node *rbprev = rb_prev(&last->rb_node);
1241 struct request *next = NULL, *prev = NULL;
1243 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1245 if (rbprev)
1246 prev = rb_entry_rq(rbprev);
1248 if (rbnext)
1249 next = rb_entry_rq(rbnext);
1250 else {
1251 rbnext = rb_first(&cfqq->sort_list);
1252 if (rbnext && rbnext != &last->rb_node)
1253 next = rb_entry_rq(rbnext);
1256 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1259 static u64 cfq_slice_offset(struct cfq_data *cfqd,
1260 struct cfq_queue *cfqq)
1263 * just an approximation, should be ok.
1265 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
1266 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
1269 static inline s64
1270 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
1272 return cfqg->vdisktime - st->min_vdisktime;
1275 static void
1276 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1278 struct rb_node **node = &st->rb.rb_node;
1279 struct rb_node *parent = NULL;
1280 struct cfq_group *__cfqg;
1281 s64 key = cfqg_key(st, cfqg);
1282 int left = 1;
1284 while (*node != NULL) {
1285 parent = *node;
1286 __cfqg = rb_entry_cfqg(parent);
1288 if (key < cfqg_key(st, __cfqg))
1289 node = &parent->rb_left;
1290 else {
1291 node = &parent->rb_right;
1292 left = 0;
1296 if (left)
1297 st->left = &cfqg->rb_node;
1299 rb_link_node(&cfqg->rb_node, parent, node);
1300 rb_insert_color(&cfqg->rb_node, &st->rb);
1304 * This has to be called only on activation of cfqg
1306 static void
1307 cfq_update_group_weight(struct cfq_group *cfqg)
1309 if (cfqg->new_weight) {
1310 cfqg->weight = cfqg->new_weight;
1311 cfqg->new_weight = 0;
1315 static void
1316 cfq_update_group_leaf_weight(struct cfq_group *cfqg)
1318 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1320 if (cfqg->new_leaf_weight) {
1321 cfqg->leaf_weight = cfqg->new_leaf_weight;
1322 cfqg->new_leaf_weight = 0;
1326 static void
1327 cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1329 unsigned int vfr = 1 << CFQ_SERVICE_SHIFT; /* start with 1 */
1330 struct cfq_group *pos = cfqg;
1331 struct cfq_group *parent;
1332 bool propagate;
1334 /* add to the service tree */
1335 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1338 * Update leaf_weight. We cannot update weight at this point
1339 * because cfqg might already have been activated and is
1340 * contributing its current weight to the parent's child_weight.
1342 cfq_update_group_leaf_weight(cfqg);
1343 __cfq_group_service_tree_add(st, cfqg);
1346 * Activate @cfqg and calculate the portion of vfraction @cfqg is
1347 * entitled to. vfraction is calculated by walking the tree
1348 * towards the root calculating the fraction it has at each level.
1349 * The compounded ratio is how much vfraction @cfqg owns.
1351 * Start with the proportion tasks in this cfqg has against active
1352 * children cfqgs - its leaf_weight against children_weight.
1354 propagate = !pos->nr_active++;
1355 pos->children_weight += pos->leaf_weight;
1356 vfr = vfr * pos->leaf_weight / pos->children_weight;
1359 * Compound ->weight walking up the tree. Both activation and
1360 * vfraction calculation are done in the same loop. Propagation
1361 * stops once an already activated node is met. vfraction
1362 * calculation should always continue to the root.
1364 while ((parent = cfqg_parent(pos))) {
1365 if (propagate) {
1366 cfq_update_group_weight(pos);
1367 propagate = !parent->nr_active++;
1368 parent->children_weight += pos->weight;
1370 vfr = vfr * pos->weight / parent->children_weight;
1371 pos = parent;
1374 cfqg->vfraction = max_t(unsigned, vfr, 1);
1377 static inline u64 cfq_get_cfqg_vdisktime_delay(struct cfq_data *cfqd)
1379 if (!iops_mode(cfqd))
1380 return CFQ_SLICE_MODE_GROUP_DELAY;
1381 else
1382 return CFQ_IOPS_MODE_GROUP_DELAY;
1385 static void
1386 cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
1388 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1389 struct cfq_group *__cfqg;
1390 struct rb_node *n;
1392 cfqg->nr_cfqq++;
1393 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1394 return;
1397 * Currently put the group at the end. Later implement something
1398 * so that groups get lesser vtime based on their weights, so that
1399 * if group does not loose all if it was not continuously backlogged.
1401 n = rb_last(&st->rb);
1402 if (n) {
1403 __cfqg = rb_entry_cfqg(n);
1404 cfqg->vdisktime = __cfqg->vdisktime +
1405 cfq_get_cfqg_vdisktime_delay(cfqd);
1406 } else
1407 cfqg->vdisktime = st->min_vdisktime;
1408 cfq_group_service_tree_add(st, cfqg);
1411 static void
1412 cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
1414 struct cfq_group *pos = cfqg;
1415 bool propagate;
1418 * Undo activation from cfq_group_service_tree_add(). Deactivate
1419 * @cfqg and propagate deactivation upwards.
1421 propagate = !--pos->nr_active;
1422 pos->children_weight -= pos->leaf_weight;
1424 while (propagate) {
1425 struct cfq_group *parent = cfqg_parent(pos);
1427 /* @pos has 0 nr_active at this point */
1428 WARN_ON_ONCE(pos->children_weight);
1429 pos->vfraction = 0;
1431 if (!parent)
1432 break;
1434 propagate = !--parent->nr_active;
1435 parent->children_weight -= pos->weight;
1436 pos = parent;
1439 /* remove from the service tree */
1440 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1441 cfq_rb_erase(&cfqg->rb_node, st);
1444 static void
1445 cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
1447 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1449 BUG_ON(cfqg->nr_cfqq < 1);
1450 cfqg->nr_cfqq--;
1452 /* If there are other cfq queues under this group, don't delete it */
1453 if (cfqg->nr_cfqq)
1454 return;
1456 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
1457 cfq_group_service_tree_del(st, cfqg);
1458 cfqg->saved_wl_slice = 0;
1459 cfqg_stats_update_dequeue(cfqg);
1462 static inline u64 cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
1463 u64 *unaccounted_time)
1465 u64 slice_used;
1466 u64 now = ktime_get_ns();
1469 * Queue got expired before even a single request completed or
1470 * got expired immediately after first request completion.
1472 if (!cfqq->slice_start || cfqq->slice_start == now) {
1474 * Also charge the seek time incurred to the group, otherwise
1475 * if there are mutiple queues in the group, each can dispatch
1476 * a single request on seeky media and cause lots of seek time
1477 * and group will never know it.
1479 slice_used = max_t(u64, (now - cfqq->dispatch_start),
1480 jiffies_to_nsecs(1));
1481 } else {
1482 slice_used = now - cfqq->slice_start;
1483 if (slice_used > cfqq->allocated_slice) {
1484 *unaccounted_time = slice_used - cfqq->allocated_slice;
1485 slice_used = cfqq->allocated_slice;
1487 if (cfqq->slice_start > cfqq->dispatch_start)
1488 *unaccounted_time += cfqq->slice_start -
1489 cfqq->dispatch_start;
1492 return slice_used;
1495 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
1496 struct cfq_queue *cfqq)
1498 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1499 u64 used_sl, charge, unaccounted_sl = 0;
1500 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
1501 - cfqg->service_tree_idle.count;
1502 unsigned int vfr;
1503 u64 now = ktime_get_ns();
1505 BUG_ON(nr_sync < 0);
1506 used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
1508 if (iops_mode(cfqd))
1509 charge = cfqq->slice_dispatch;
1510 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
1511 charge = cfqq->allocated_slice;
1514 * Can't update vdisktime while on service tree and cfqg->vfraction
1515 * is valid only while on it. Cache vfr, leave the service tree,
1516 * update vdisktime and go back on. The re-addition to the tree
1517 * will also update the weights as necessary.
1519 vfr = cfqg->vfraction;
1520 cfq_group_service_tree_del(st, cfqg);
1521 cfqg->vdisktime += cfqg_scale_charge(charge, vfr);
1522 cfq_group_service_tree_add(st, cfqg);
1524 /* This group is being expired. Save the context */
1525 if (cfqd->workload_expires > now) {
1526 cfqg->saved_wl_slice = cfqd->workload_expires - now;
1527 cfqg->saved_wl_type = cfqd->serving_wl_type;
1528 cfqg->saved_wl_class = cfqd->serving_wl_class;
1529 } else
1530 cfqg->saved_wl_slice = 0;
1532 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
1533 st->min_vdisktime);
1534 cfq_log_cfqq(cfqq->cfqd, cfqq,
1535 "sl_used=%llu disp=%llu charge=%llu iops=%u sect=%lu",
1536 used_sl, cfqq->slice_dispatch, charge,
1537 iops_mode(cfqd), cfqq->nr_sectors);
1538 cfqg_stats_update_timeslice_used(cfqg, used_sl, unaccounted_sl);
1539 cfqg_stats_set_start_empty_time(cfqg);
1543 * cfq_init_cfqg_base - initialize base part of a cfq_group
1544 * @cfqg: cfq_group to initialize
1546 * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
1547 * is enabled or not.
1549 static void cfq_init_cfqg_base(struct cfq_group *cfqg)
1551 struct cfq_rb_root *st;
1552 int i, j;
1554 for_each_cfqg_st(cfqg, i, j, st)
1555 *st = CFQ_RB_ROOT;
1556 RB_CLEAR_NODE(&cfqg->rb_node);
1558 cfqg->ttime.last_end_request = ktime_get_ns();
1561 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1562 static int __cfq_set_weight(struct cgroup_subsys_state *css, u64 val,
1563 bool on_dfl, bool reset_dev, bool is_leaf_weight);
1565 static void cfqg_stats_exit(struct cfqg_stats *stats)
1567 blkg_rwstat_exit(&stats->merged);
1568 blkg_rwstat_exit(&stats->service_time);
1569 blkg_rwstat_exit(&stats->wait_time);
1570 blkg_rwstat_exit(&stats->queued);
1571 blkg_stat_exit(&stats->time);
1572 #ifdef CONFIG_DEBUG_BLK_CGROUP
1573 blkg_stat_exit(&stats->unaccounted_time);
1574 blkg_stat_exit(&stats->avg_queue_size_sum);
1575 blkg_stat_exit(&stats->avg_queue_size_samples);
1576 blkg_stat_exit(&stats->dequeue);
1577 blkg_stat_exit(&stats->group_wait_time);
1578 blkg_stat_exit(&stats->idle_time);
1579 blkg_stat_exit(&stats->empty_time);
1580 #endif
1583 static int cfqg_stats_init(struct cfqg_stats *stats, gfp_t gfp)
1585 if (blkg_rwstat_init(&stats->merged, gfp) ||
1586 blkg_rwstat_init(&stats->service_time, gfp) ||
1587 blkg_rwstat_init(&stats->wait_time, gfp) ||
1588 blkg_rwstat_init(&stats->queued, gfp) ||
1589 blkg_stat_init(&stats->time, gfp))
1590 goto err;
1592 #ifdef CONFIG_DEBUG_BLK_CGROUP
1593 if (blkg_stat_init(&stats->unaccounted_time, gfp) ||
1594 blkg_stat_init(&stats->avg_queue_size_sum, gfp) ||
1595 blkg_stat_init(&stats->avg_queue_size_samples, gfp) ||
1596 blkg_stat_init(&stats->dequeue, gfp) ||
1597 blkg_stat_init(&stats->group_wait_time, gfp) ||
1598 blkg_stat_init(&stats->idle_time, gfp) ||
1599 blkg_stat_init(&stats->empty_time, gfp))
1600 goto err;
1601 #endif
1602 return 0;
1603 err:
1604 cfqg_stats_exit(stats);
1605 return -ENOMEM;
1608 static struct blkcg_policy_data *cfq_cpd_alloc(gfp_t gfp)
1610 struct cfq_group_data *cgd;
1612 cgd = kzalloc(sizeof(*cgd), gfp);
1613 if (!cgd)
1614 return NULL;
1615 return &cgd->cpd;
1618 static void cfq_cpd_init(struct blkcg_policy_data *cpd)
1620 struct cfq_group_data *cgd = cpd_to_cfqgd(cpd);
1621 unsigned int weight = cgroup_subsys_on_dfl(io_cgrp_subsys) ?
1622 CGROUP_WEIGHT_DFL : CFQ_WEIGHT_LEGACY_DFL;
1624 if (cpd_to_blkcg(cpd) == &blkcg_root)
1625 weight *= 2;
1627 cgd->weight = weight;
1628 cgd->leaf_weight = weight;
1631 static void cfq_cpd_free(struct blkcg_policy_data *cpd)
1633 kfree(cpd_to_cfqgd(cpd));
1636 static void cfq_cpd_bind(struct blkcg_policy_data *cpd)
1638 struct blkcg *blkcg = cpd_to_blkcg(cpd);
1639 bool on_dfl = cgroup_subsys_on_dfl(io_cgrp_subsys);
1640 unsigned int weight = on_dfl ? CGROUP_WEIGHT_DFL : CFQ_WEIGHT_LEGACY_DFL;
1642 if (blkcg == &blkcg_root)
1643 weight *= 2;
1645 WARN_ON_ONCE(__cfq_set_weight(&blkcg->css, weight, on_dfl, true, false));
1646 WARN_ON_ONCE(__cfq_set_weight(&blkcg->css, weight, on_dfl, true, true));
1649 static struct blkg_policy_data *cfq_pd_alloc(gfp_t gfp, int node)
1651 struct cfq_group *cfqg;
1653 cfqg = kzalloc_node(sizeof(*cfqg), gfp, node);
1654 if (!cfqg)
1655 return NULL;
1657 cfq_init_cfqg_base(cfqg);
1658 if (cfqg_stats_init(&cfqg->stats, gfp)) {
1659 kfree(cfqg);
1660 return NULL;
1663 return &cfqg->pd;
1666 static void cfq_pd_init(struct blkg_policy_data *pd)
1668 struct cfq_group *cfqg = pd_to_cfqg(pd);
1669 struct cfq_group_data *cgd = blkcg_to_cfqgd(pd->blkg->blkcg);
1671 cfqg->weight = cgd->weight;
1672 cfqg->leaf_weight = cgd->leaf_weight;
1675 static void cfq_pd_offline(struct blkg_policy_data *pd)
1677 struct cfq_group *cfqg = pd_to_cfqg(pd);
1678 int i;
1680 for (i = 0; i < IOPRIO_BE_NR; i++) {
1681 if (cfqg->async_cfqq[0][i])
1682 cfq_put_queue(cfqg->async_cfqq[0][i]);
1683 if (cfqg->async_cfqq[1][i])
1684 cfq_put_queue(cfqg->async_cfqq[1][i]);
1687 if (cfqg->async_idle_cfqq)
1688 cfq_put_queue(cfqg->async_idle_cfqq);
1691 * @blkg is going offline and will be ignored by
1692 * blkg_[rw]stat_recursive_sum(). Transfer stats to the parent so
1693 * that they don't get lost. If IOs complete after this point, the
1694 * stats for them will be lost. Oh well...
1696 cfqg_stats_xfer_dead(cfqg);
1699 static void cfq_pd_free(struct blkg_policy_data *pd)
1701 struct cfq_group *cfqg = pd_to_cfqg(pd);
1703 cfqg_stats_exit(&cfqg->stats);
1704 return kfree(cfqg);
1707 static void cfq_pd_reset_stats(struct blkg_policy_data *pd)
1709 struct cfq_group *cfqg = pd_to_cfqg(pd);
1711 cfqg_stats_reset(&cfqg->stats);
1714 static struct cfq_group *cfq_lookup_cfqg(struct cfq_data *cfqd,
1715 struct blkcg *blkcg)
1717 struct blkcg_gq *blkg;
1719 blkg = blkg_lookup(blkcg, cfqd->queue);
1720 if (likely(blkg))
1721 return blkg_to_cfqg(blkg);
1722 return NULL;
1725 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1727 cfqq->cfqg = cfqg;
1728 /* cfqq reference on cfqg */
1729 cfqg_get(cfqg);
1732 static u64 cfqg_prfill_weight_device(struct seq_file *sf,
1733 struct blkg_policy_data *pd, int off)
1735 struct cfq_group *cfqg = pd_to_cfqg(pd);
1737 if (!cfqg->dev_weight)
1738 return 0;
1739 return __blkg_prfill_u64(sf, pd, cfqg->dev_weight);
1742 static int cfqg_print_weight_device(struct seq_file *sf, void *v)
1744 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1745 cfqg_prfill_weight_device, &blkcg_policy_cfq,
1746 0, false);
1747 return 0;
1750 static u64 cfqg_prfill_leaf_weight_device(struct seq_file *sf,
1751 struct blkg_policy_data *pd, int off)
1753 struct cfq_group *cfqg = pd_to_cfqg(pd);
1755 if (!cfqg->dev_leaf_weight)
1756 return 0;
1757 return __blkg_prfill_u64(sf, pd, cfqg->dev_leaf_weight);
1760 static int cfqg_print_leaf_weight_device(struct seq_file *sf, void *v)
1762 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1763 cfqg_prfill_leaf_weight_device, &blkcg_policy_cfq,
1764 0, false);
1765 return 0;
1768 static int cfq_print_weight(struct seq_file *sf, void *v)
1770 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1771 struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
1772 unsigned int val = 0;
1774 if (cgd)
1775 val = cgd->weight;
1777 seq_printf(sf, "%u\n", val);
1778 return 0;
1781 static int cfq_print_leaf_weight(struct seq_file *sf, void *v)
1783 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1784 struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
1785 unsigned int val = 0;
1787 if (cgd)
1788 val = cgd->leaf_weight;
1790 seq_printf(sf, "%u\n", val);
1791 return 0;
1794 static ssize_t __cfqg_set_weight_device(struct kernfs_open_file *of,
1795 char *buf, size_t nbytes, loff_t off,
1796 bool on_dfl, bool is_leaf_weight)
1798 unsigned int min = on_dfl ? CGROUP_WEIGHT_MIN : CFQ_WEIGHT_LEGACY_MIN;
1799 unsigned int max = on_dfl ? CGROUP_WEIGHT_MAX : CFQ_WEIGHT_LEGACY_MAX;
1800 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1801 struct blkg_conf_ctx ctx;
1802 struct cfq_group *cfqg;
1803 struct cfq_group_data *cfqgd;
1804 int ret;
1805 u64 v;
1807 ret = blkg_conf_prep(blkcg, &blkcg_policy_cfq, buf, &ctx);
1808 if (ret)
1809 return ret;
1811 if (sscanf(ctx.body, "%llu", &v) == 1) {
1812 /* require "default" on dfl */
1813 ret = -ERANGE;
1814 if (!v && on_dfl)
1815 goto out_finish;
1816 } else if (!strcmp(strim(ctx.body), "default")) {
1817 v = 0;
1818 } else {
1819 ret = -EINVAL;
1820 goto out_finish;
1823 cfqg = blkg_to_cfqg(ctx.blkg);
1824 cfqgd = blkcg_to_cfqgd(blkcg);
1826 ret = -ERANGE;
1827 if (!v || (v >= min && v <= max)) {
1828 if (!is_leaf_weight) {
1829 cfqg->dev_weight = v;
1830 cfqg->new_weight = v ?: cfqgd->weight;
1831 } else {
1832 cfqg->dev_leaf_weight = v;
1833 cfqg->new_leaf_weight = v ?: cfqgd->leaf_weight;
1835 ret = 0;
1837 out_finish:
1838 blkg_conf_finish(&ctx);
1839 return ret ?: nbytes;
1842 static ssize_t cfqg_set_weight_device(struct kernfs_open_file *of,
1843 char *buf, size_t nbytes, loff_t off)
1845 return __cfqg_set_weight_device(of, buf, nbytes, off, false, false);
1848 static ssize_t cfqg_set_leaf_weight_device(struct kernfs_open_file *of,
1849 char *buf, size_t nbytes, loff_t off)
1851 return __cfqg_set_weight_device(of, buf, nbytes, off, false, true);
1854 static int __cfq_set_weight(struct cgroup_subsys_state *css, u64 val,
1855 bool on_dfl, bool reset_dev, bool is_leaf_weight)
1857 unsigned int min = on_dfl ? CGROUP_WEIGHT_MIN : CFQ_WEIGHT_LEGACY_MIN;
1858 unsigned int max = on_dfl ? CGROUP_WEIGHT_MAX : CFQ_WEIGHT_LEGACY_MAX;
1859 struct blkcg *blkcg = css_to_blkcg(css);
1860 struct blkcg_gq *blkg;
1861 struct cfq_group_data *cfqgd;
1862 int ret = 0;
1864 if (val < min || val > max)
1865 return -ERANGE;
1867 spin_lock_irq(&blkcg->lock);
1868 cfqgd = blkcg_to_cfqgd(blkcg);
1869 if (!cfqgd) {
1870 ret = -EINVAL;
1871 goto out;
1874 if (!is_leaf_weight)
1875 cfqgd->weight = val;
1876 else
1877 cfqgd->leaf_weight = val;
1879 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
1880 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1882 if (!cfqg)
1883 continue;
1885 if (!is_leaf_weight) {
1886 if (reset_dev)
1887 cfqg->dev_weight = 0;
1888 if (!cfqg->dev_weight)
1889 cfqg->new_weight = cfqgd->weight;
1890 } else {
1891 if (reset_dev)
1892 cfqg->dev_leaf_weight = 0;
1893 if (!cfqg->dev_leaf_weight)
1894 cfqg->new_leaf_weight = cfqgd->leaf_weight;
1898 out:
1899 spin_unlock_irq(&blkcg->lock);
1900 return ret;
1903 static int cfq_set_weight(struct cgroup_subsys_state *css, struct cftype *cft,
1904 u64 val)
1906 return __cfq_set_weight(css, val, false, false, false);
1909 static int cfq_set_leaf_weight(struct cgroup_subsys_state *css,
1910 struct cftype *cft, u64 val)
1912 return __cfq_set_weight(css, val, false, false, true);
1915 static int cfqg_print_stat(struct seq_file *sf, void *v)
1917 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_stat,
1918 &blkcg_policy_cfq, seq_cft(sf)->private, false);
1919 return 0;
1922 static int cfqg_print_rwstat(struct seq_file *sf, void *v)
1924 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_rwstat,
1925 &blkcg_policy_cfq, seq_cft(sf)->private, true);
1926 return 0;
1929 static u64 cfqg_prfill_stat_recursive(struct seq_file *sf,
1930 struct blkg_policy_data *pd, int off)
1932 u64 sum = blkg_stat_recursive_sum(pd_to_blkg(pd),
1933 &blkcg_policy_cfq, off);
1934 return __blkg_prfill_u64(sf, pd, sum);
1937 static u64 cfqg_prfill_rwstat_recursive(struct seq_file *sf,
1938 struct blkg_policy_data *pd, int off)
1940 struct blkg_rwstat sum = blkg_rwstat_recursive_sum(pd_to_blkg(pd),
1941 &blkcg_policy_cfq, off);
1942 return __blkg_prfill_rwstat(sf, pd, &sum);
1945 static int cfqg_print_stat_recursive(struct seq_file *sf, void *v)
1947 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1948 cfqg_prfill_stat_recursive, &blkcg_policy_cfq,
1949 seq_cft(sf)->private, false);
1950 return 0;
1953 static int cfqg_print_rwstat_recursive(struct seq_file *sf, void *v)
1955 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1956 cfqg_prfill_rwstat_recursive, &blkcg_policy_cfq,
1957 seq_cft(sf)->private, true);
1958 return 0;
1961 static u64 cfqg_prfill_sectors(struct seq_file *sf, struct blkg_policy_data *pd,
1962 int off)
1964 u64 sum = blkg_rwstat_total(&pd->blkg->stat_bytes);
1966 return __blkg_prfill_u64(sf, pd, sum >> 9);
1969 static int cfqg_print_stat_sectors(struct seq_file *sf, void *v)
1971 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1972 cfqg_prfill_sectors, &blkcg_policy_cfq, 0, false);
1973 return 0;
1976 static u64 cfqg_prfill_sectors_recursive(struct seq_file *sf,
1977 struct blkg_policy_data *pd, int off)
1979 struct blkg_rwstat tmp = blkg_rwstat_recursive_sum(pd->blkg, NULL,
1980 offsetof(struct blkcg_gq, stat_bytes));
1981 u64 sum = atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_READ]) +
1982 atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_WRITE]);
1984 return __blkg_prfill_u64(sf, pd, sum >> 9);
1987 static int cfqg_print_stat_sectors_recursive(struct seq_file *sf, void *v)
1989 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1990 cfqg_prfill_sectors_recursive, &blkcg_policy_cfq, 0,
1991 false);
1992 return 0;
1995 #ifdef CONFIG_DEBUG_BLK_CGROUP
1996 static u64 cfqg_prfill_avg_queue_size(struct seq_file *sf,
1997 struct blkg_policy_data *pd, int off)
1999 struct cfq_group *cfqg = pd_to_cfqg(pd);
2000 u64 samples = blkg_stat_read(&cfqg->stats.avg_queue_size_samples);
2001 u64 v = 0;
2003 if (samples) {
2004 v = blkg_stat_read(&cfqg->stats.avg_queue_size_sum);
2005 v = div64_u64(v, samples);
2007 __blkg_prfill_u64(sf, pd, v);
2008 return 0;
2011 /* print avg_queue_size */
2012 static int cfqg_print_avg_queue_size(struct seq_file *sf, void *v)
2014 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
2015 cfqg_prfill_avg_queue_size, &blkcg_policy_cfq,
2016 0, false);
2017 return 0;
2019 #endif /* CONFIG_DEBUG_BLK_CGROUP */
2021 static struct cftype cfq_blkcg_legacy_files[] = {
2022 /* on root, weight is mapped to leaf_weight */
2024 .name = "weight_device",
2025 .flags = CFTYPE_ONLY_ON_ROOT,
2026 .seq_show = cfqg_print_leaf_weight_device,
2027 .write = cfqg_set_leaf_weight_device,
2030 .name = "weight",
2031 .flags = CFTYPE_ONLY_ON_ROOT,
2032 .seq_show = cfq_print_leaf_weight,
2033 .write_u64 = cfq_set_leaf_weight,
2036 /* no such mapping necessary for !roots */
2038 .name = "weight_device",
2039 .flags = CFTYPE_NOT_ON_ROOT,
2040 .seq_show = cfqg_print_weight_device,
2041 .write = cfqg_set_weight_device,
2044 .name = "weight",
2045 .flags = CFTYPE_NOT_ON_ROOT,
2046 .seq_show = cfq_print_weight,
2047 .write_u64 = cfq_set_weight,
2051 .name = "leaf_weight_device",
2052 .seq_show = cfqg_print_leaf_weight_device,
2053 .write = cfqg_set_leaf_weight_device,
2056 .name = "leaf_weight",
2057 .seq_show = cfq_print_leaf_weight,
2058 .write_u64 = cfq_set_leaf_weight,
2061 /* statistics, covers only the tasks in the cfqg */
2063 .name = "time",
2064 .private = offsetof(struct cfq_group, stats.time),
2065 .seq_show = cfqg_print_stat,
2068 .name = "sectors",
2069 .seq_show = cfqg_print_stat_sectors,
2072 .name = "io_service_bytes",
2073 .private = (unsigned long)&blkcg_policy_cfq,
2074 .seq_show = blkg_print_stat_bytes,
2077 .name = "io_serviced",
2078 .private = (unsigned long)&blkcg_policy_cfq,
2079 .seq_show = blkg_print_stat_ios,
2082 .name = "io_service_time",
2083 .private = offsetof(struct cfq_group, stats.service_time),
2084 .seq_show = cfqg_print_rwstat,
2087 .name = "io_wait_time",
2088 .private = offsetof(struct cfq_group, stats.wait_time),
2089 .seq_show = cfqg_print_rwstat,
2092 .name = "io_merged",
2093 .private = offsetof(struct cfq_group, stats.merged),
2094 .seq_show = cfqg_print_rwstat,
2097 .name = "io_queued",
2098 .private = offsetof(struct cfq_group, stats.queued),
2099 .seq_show = cfqg_print_rwstat,
2102 /* the same statictics which cover the cfqg and its descendants */
2104 .name = "time_recursive",
2105 .private = offsetof(struct cfq_group, stats.time),
2106 .seq_show = cfqg_print_stat_recursive,
2109 .name = "sectors_recursive",
2110 .seq_show = cfqg_print_stat_sectors_recursive,
2113 .name = "io_service_bytes_recursive",
2114 .private = (unsigned long)&blkcg_policy_cfq,
2115 .seq_show = blkg_print_stat_bytes_recursive,
2118 .name = "io_serviced_recursive",
2119 .private = (unsigned long)&blkcg_policy_cfq,
2120 .seq_show = blkg_print_stat_ios_recursive,
2123 .name = "io_service_time_recursive",
2124 .private = offsetof(struct cfq_group, stats.service_time),
2125 .seq_show = cfqg_print_rwstat_recursive,
2128 .name = "io_wait_time_recursive",
2129 .private = offsetof(struct cfq_group, stats.wait_time),
2130 .seq_show = cfqg_print_rwstat_recursive,
2133 .name = "io_merged_recursive",
2134 .private = offsetof(struct cfq_group, stats.merged),
2135 .seq_show = cfqg_print_rwstat_recursive,
2138 .name = "io_queued_recursive",
2139 .private = offsetof(struct cfq_group, stats.queued),
2140 .seq_show = cfqg_print_rwstat_recursive,
2142 #ifdef CONFIG_DEBUG_BLK_CGROUP
2144 .name = "avg_queue_size",
2145 .seq_show = cfqg_print_avg_queue_size,
2148 .name = "group_wait_time",
2149 .private = offsetof(struct cfq_group, stats.group_wait_time),
2150 .seq_show = cfqg_print_stat,
2153 .name = "idle_time",
2154 .private = offsetof(struct cfq_group, stats.idle_time),
2155 .seq_show = cfqg_print_stat,
2158 .name = "empty_time",
2159 .private = offsetof(struct cfq_group, stats.empty_time),
2160 .seq_show = cfqg_print_stat,
2163 .name = "dequeue",
2164 .private = offsetof(struct cfq_group, stats.dequeue),
2165 .seq_show = cfqg_print_stat,
2168 .name = "unaccounted_time",
2169 .private = offsetof(struct cfq_group, stats.unaccounted_time),
2170 .seq_show = cfqg_print_stat,
2172 #endif /* CONFIG_DEBUG_BLK_CGROUP */
2173 { } /* terminate */
2176 static int cfq_print_weight_on_dfl(struct seq_file *sf, void *v)
2178 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
2179 struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
2181 seq_printf(sf, "default %u\n", cgd->weight);
2182 blkcg_print_blkgs(sf, blkcg, cfqg_prfill_weight_device,
2183 &blkcg_policy_cfq, 0, false);
2184 return 0;
2187 static ssize_t cfq_set_weight_on_dfl(struct kernfs_open_file *of,
2188 char *buf, size_t nbytes, loff_t off)
2190 char *endp;
2191 int ret;
2192 u64 v;
2194 buf = strim(buf);
2196 /* "WEIGHT" or "default WEIGHT" sets the default weight */
2197 v = simple_strtoull(buf, &endp, 0);
2198 if (*endp == '\0' || sscanf(buf, "default %llu", &v) == 1) {
2199 ret = __cfq_set_weight(of_css(of), v, true, false, false);
2200 return ret ?: nbytes;
2203 /* "MAJ:MIN WEIGHT" */
2204 return __cfqg_set_weight_device(of, buf, nbytes, off, true, false);
2207 static struct cftype cfq_blkcg_files[] = {
2209 .name = "weight",
2210 .flags = CFTYPE_NOT_ON_ROOT,
2211 .seq_show = cfq_print_weight_on_dfl,
2212 .write = cfq_set_weight_on_dfl,
2214 { } /* terminate */
2217 #else /* GROUP_IOSCHED */
2218 static struct cfq_group *cfq_lookup_cfqg(struct cfq_data *cfqd,
2219 struct blkcg *blkcg)
2221 return cfqd->root_group;
2224 static inline void
2225 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
2226 cfqq->cfqg = cfqg;
2229 #endif /* GROUP_IOSCHED */
2232 * The cfqd->service_trees holds all pending cfq_queue's that have
2233 * requests waiting to be processed. It is sorted in the order that
2234 * we will service the queues.
2236 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2237 bool add_front)
2239 struct rb_node **p, *parent;
2240 struct cfq_queue *__cfqq;
2241 u64 rb_key;
2242 struct cfq_rb_root *st;
2243 int left;
2244 int new_cfqq = 1;
2245 u64 now = ktime_get_ns();
2247 st = st_for(cfqq->cfqg, cfqq_class(cfqq), cfqq_type(cfqq));
2248 if (cfq_class_idle(cfqq)) {
2249 rb_key = CFQ_IDLE_DELAY;
2250 parent = rb_last(&st->rb);
2251 if (parent && parent != &cfqq->rb_node) {
2252 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2253 rb_key += __cfqq->rb_key;
2254 } else
2255 rb_key += now;
2256 } else if (!add_front) {
2258 * Get our rb key offset. Subtract any residual slice
2259 * value carried from last service. A negative resid
2260 * count indicates slice overrun, and this should position
2261 * the next service time further away in the tree.
2263 rb_key = cfq_slice_offset(cfqd, cfqq) + now;
2264 rb_key -= cfqq->slice_resid;
2265 cfqq->slice_resid = 0;
2266 } else {
2267 rb_key = -NSEC_PER_SEC;
2268 __cfqq = cfq_rb_first(st);
2269 rb_key += __cfqq ? __cfqq->rb_key : now;
2272 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2273 new_cfqq = 0;
2275 * same position, nothing more to do
2277 if (rb_key == cfqq->rb_key && cfqq->service_tree == st)
2278 return;
2280 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2281 cfqq->service_tree = NULL;
2284 left = 1;
2285 parent = NULL;
2286 cfqq->service_tree = st;
2287 p = &st->rb.rb_node;
2288 while (*p) {
2289 parent = *p;
2290 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2293 * sort by key, that represents service time.
2295 if (rb_key < __cfqq->rb_key)
2296 p = &parent->rb_left;
2297 else {
2298 p = &parent->rb_right;
2299 left = 0;
2303 if (left)
2304 st->left = &cfqq->rb_node;
2306 cfqq->rb_key = rb_key;
2307 rb_link_node(&cfqq->rb_node, parent, p);
2308 rb_insert_color(&cfqq->rb_node, &st->rb);
2309 st->count++;
2310 if (add_front || !new_cfqq)
2311 return;
2312 cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
2315 static struct cfq_queue *
2316 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
2317 sector_t sector, struct rb_node **ret_parent,
2318 struct rb_node ***rb_link)
2320 struct rb_node **p, *parent;
2321 struct cfq_queue *cfqq = NULL;
2323 parent = NULL;
2324 p = &root->rb_node;
2325 while (*p) {
2326 struct rb_node **n;
2328 parent = *p;
2329 cfqq = rb_entry(parent, struct cfq_queue, p_node);
2332 * Sort strictly based on sector. Smallest to the left,
2333 * largest to the right.
2335 if (sector > blk_rq_pos(cfqq->next_rq))
2336 n = &(*p)->rb_right;
2337 else if (sector < blk_rq_pos(cfqq->next_rq))
2338 n = &(*p)->rb_left;
2339 else
2340 break;
2341 p = n;
2342 cfqq = NULL;
2345 *ret_parent = parent;
2346 if (rb_link)
2347 *rb_link = p;
2348 return cfqq;
2351 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2353 struct rb_node **p, *parent;
2354 struct cfq_queue *__cfqq;
2356 if (cfqq->p_root) {
2357 rb_erase(&cfqq->p_node, cfqq->p_root);
2358 cfqq->p_root = NULL;
2361 if (cfq_class_idle(cfqq))
2362 return;
2363 if (!cfqq->next_rq)
2364 return;
2366 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2367 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
2368 blk_rq_pos(cfqq->next_rq), &parent, &p);
2369 if (!__cfqq) {
2370 rb_link_node(&cfqq->p_node, parent, p);
2371 rb_insert_color(&cfqq->p_node, cfqq->p_root);
2372 } else
2373 cfqq->p_root = NULL;
2377 * Update cfqq's position in the service tree.
2379 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2382 * Resorting requires the cfqq to be on the RR list already.
2384 if (cfq_cfqq_on_rr(cfqq)) {
2385 cfq_service_tree_add(cfqd, cfqq, 0);
2386 cfq_prio_tree_add(cfqd, cfqq);
2391 * add to busy list of queues for service, trying to be fair in ordering
2392 * the pending list according to last request service
2394 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2396 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
2397 BUG_ON(cfq_cfqq_on_rr(cfqq));
2398 cfq_mark_cfqq_on_rr(cfqq);
2399 cfqd->busy_queues++;
2400 if (cfq_cfqq_sync(cfqq))
2401 cfqd->busy_sync_queues++;
2403 cfq_resort_rr_list(cfqd, cfqq);
2407 * Called when the cfqq no longer has requests pending, remove it from
2408 * the service tree.
2410 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2412 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
2413 BUG_ON(!cfq_cfqq_on_rr(cfqq));
2414 cfq_clear_cfqq_on_rr(cfqq);
2416 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2417 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2418 cfqq->service_tree = NULL;
2420 if (cfqq->p_root) {
2421 rb_erase(&cfqq->p_node, cfqq->p_root);
2422 cfqq->p_root = NULL;
2425 cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
2426 BUG_ON(!cfqd->busy_queues);
2427 cfqd->busy_queues--;
2428 if (cfq_cfqq_sync(cfqq))
2429 cfqd->busy_sync_queues--;
2433 * rb tree support functions
2435 static void cfq_del_rq_rb(struct request *rq)
2437 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2438 const int sync = rq_is_sync(rq);
2440 BUG_ON(!cfqq->queued[sync]);
2441 cfqq->queued[sync]--;
2443 elv_rb_del(&cfqq->sort_list, rq);
2445 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
2447 * Queue will be deleted from service tree when we actually
2448 * expire it later. Right now just remove it from prio tree
2449 * as it is empty.
2451 if (cfqq->p_root) {
2452 rb_erase(&cfqq->p_node, cfqq->p_root);
2453 cfqq->p_root = NULL;
2458 static void cfq_add_rq_rb(struct request *rq)
2460 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2461 struct cfq_data *cfqd = cfqq->cfqd;
2462 struct request *prev;
2464 cfqq->queued[rq_is_sync(rq)]++;
2466 elv_rb_add(&cfqq->sort_list, rq);
2468 if (!cfq_cfqq_on_rr(cfqq))
2469 cfq_add_cfqq_rr(cfqd, cfqq);
2472 * check if this request is a better next-serve candidate
2474 prev = cfqq->next_rq;
2475 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
2478 * adjust priority tree position, if ->next_rq changes
2480 if (prev != cfqq->next_rq)
2481 cfq_prio_tree_add(cfqd, cfqq);
2483 BUG_ON(!cfqq->next_rq);
2486 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
2488 elv_rb_del(&cfqq->sort_list, rq);
2489 cfqq->queued[rq_is_sync(rq)]--;
2490 cfqg_stats_update_io_remove(RQ_CFQG(rq), req_op(rq), rq->cmd_flags);
2491 cfq_add_rq_rb(rq);
2492 cfqg_stats_update_io_add(RQ_CFQG(rq), cfqq->cfqd->serving_group,
2493 req_op(rq), rq->cmd_flags);
2496 static struct request *
2497 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
2499 struct task_struct *tsk = current;
2500 struct cfq_io_cq *cic;
2501 struct cfq_queue *cfqq;
2503 cic = cfq_cic_lookup(cfqd, tsk->io_context);
2504 if (!cic)
2505 return NULL;
2507 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
2508 if (cfqq)
2509 return elv_rb_find(&cfqq->sort_list, bio_end_sector(bio));
2511 return NULL;
2514 static void cfq_activate_request(struct request_queue *q, struct request *rq)
2516 struct cfq_data *cfqd = q->elevator->elevator_data;
2518 cfqd->rq_in_driver++;
2519 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
2520 cfqd->rq_in_driver);
2522 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
2525 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
2527 struct cfq_data *cfqd = q->elevator->elevator_data;
2529 WARN_ON(!cfqd->rq_in_driver);
2530 cfqd->rq_in_driver--;
2531 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
2532 cfqd->rq_in_driver);
2535 static void cfq_remove_request(struct request *rq)
2537 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2539 if (cfqq->next_rq == rq)
2540 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
2542 list_del_init(&rq->queuelist);
2543 cfq_del_rq_rb(rq);
2545 cfqq->cfqd->rq_queued--;
2546 cfqg_stats_update_io_remove(RQ_CFQG(rq), req_op(rq), rq->cmd_flags);
2547 if (rq->cmd_flags & REQ_PRIO) {
2548 WARN_ON(!cfqq->prio_pending);
2549 cfqq->prio_pending--;
2553 static int cfq_merge(struct request_queue *q, struct request **req,
2554 struct bio *bio)
2556 struct cfq_data *cfqd = q->elevator->elevator_data;
2557 struct request *__rq;
2559 __rq = cfq_find_rq_fmerge(cfqd, bio);
2560 if (__rq && elv_bio_merge_ok(__rq, bio)) {
2561 *req = __rq;
2562 return ELEVATOR_FRONT_MERGE;
2565 return ELEVATOR_NO_MERGE;
2568 static void cfq_merged_request(struct request_queue *q, struct request *req,
2569 int type)
2571 if (type == ELEVATOR_FRONT_MERGE) {
2572 struct cfq_queue *cfqq = RQ_CFQQ(req);
2574 cfq_reposition_rq_rb(cfqq, req);
2578 static void cfq_bio_merged(struct request_queue *q, struct request *req,
2579 struct bio *bio)
2581 cfqg_stats_update_io_merged(RQ_CFQG(req), bio_op(bio), bio->bi_opf);
2584 static void
2585 cfq_merged_requests(struct request_queue *q, struct request *rq,
2586 struct request *next)
2588 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2589 struct cfq_data *cfqd = q->elevator->elevator_data;
2592 * reposition in fifo if next is older than rq
2594 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
2595 next->fifo_time < rq->fifo_time &&
2596 cfqq == RQ_CFQQ(next)) {
2597 list_move(&rq->queuelist, &next->queuelist);
2598 rq->fifo_time = next->fifo_time;
2601 if (cfqq->next_rq == next)
2602 cfqq->next_rq = rq;
2603 cfq_remove_request(next);
2604 cfqg_stats_update_io_merged(RQ_CFQG(rq), req_op(next), next->cmd_flags);
2606 cfqq = RQ_CFQQ(next);
2608 * all requests of this queue are merged to other queues, delete it
2609 * from the service tree. If it's the active_queue,
2610 * cfq_dispatch_requests() will choose to expire it or do idle
2612 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&
2613 cfqq != cfqd->active_queue)
2614 cfq_del_cfqq_rr(cfqd, cfqq);
2617 static int cfq_allow_bio_merge(struct request_queue *q, struct request *rq,
2618 struct bio *bio)
2620 struct cfq_data *cfqd = q->elevator->elevator_data;
2621 struct cfq_io_cq *cic;
2622 struct cfq_queue *cfqq;
2625 * Disallow merge of a sync bio into an async request.
2627 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
2628 return false;
2631 * Lookup the cfqq that this bio will be queued with and allow
2632 * merge only if rq is queued there.
2634 cic = cfq_cic_lookup(cfqd, current->io_context);
2635 if (!cic)
2636 return false;
2638 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
2639 return cfqq == RQ_CFQQ(rq);
2642 static int cfq_allow_rq_merge(struct request_queue *q, struct request *rq,
2643 struct request *next)
2645 return RQ_CFQQ(rq) == RQ_CFQQ(next);
2648 static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2650 hrtimer_try_to_cancel(&cfqd->idle_slice_timer);
2651 cfqg_stats_update_idle_time(cfqq->cfqg);
2654 static void __cfq_set_active_queue(struct cfq_data *cfqd,
2655 struct cfq_queue *cfqq)
2657 if (cfqq) {
2658 cfq_log_cfqq(cfqd, cfqq, "set_active wl_class:%d wl_type:%d",
2659 cfqd->serving_wl_class, cfqd->serving_wl_type);
2660 cfqg_stats_update_avg_queue_size(cfqq->cfqg);
2661 cfqq->slice_start = 0;
2662 cfqq->dispatch_start = ktime_get_ns();
2663 cfqq->allocated_slice = 0;
2664 cfqq->slice_end = 0;
2665 cfqq->slice_dispatch = 0;
2666 cfqq->nr_sectors = 0;
2668 cfq_clear_cfqq_wait_request(cfqq);
2669 cfq_clear_cfqq_must_dispatch(cfqq);
2670 cfq_clear_cfqq_must_alloc_slice(cfqq);
2671 cfq_clear_cfqq_fifo_expire(cfqq);
2672 cfq_mark_cfqq_slice_new(cfqq);
2674 cfq_del_timer(cfqd, cfqq);
2677 cfqd->active_queue = cfqq;
2681 * current cfqq expired its slice (or was too idle), select new one
2683 static void
2684 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2685 bool timed_out)
2687 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
2689 if (cfq_cfqq_wait_request(cfqq))
2690 cfq_del_timer(cfqd, cfqq);
2692 cfq_clear_cfqq_wait_request(cfqq);
2693 cfq_clear_cfqq_wait_busy(cfqq);
2696 * If this cfqq is shared between multiple processes, check to
2697 * make sure that those processes are still issuing I/Os within
2698 * the mean seek distance. If not, it may be time to break the
2699 * queues apart again.
2701 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
2702 cfq_mark_cfqq_split_coop(cfqq);
2705 * store what was left of this slice, if the queue idled/timed out
2707 if (timed_out) {
2708 if (cfq_cfqq_slice_new(cfqq))
2709 cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
2710 else
2711 cfqq->slice_resid = cfqq->slice_end - ktime_get_ns();
2712 cfq_log_cfqq(cfqd, cfqq, "resid=%lld", cfqq->slice_resid);
2715 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
2717 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
2718 cfq_del_cfqq_rr(cfqd, cfqq);
2720 cfq_resort_rr_list(cfqd, cfqq);
2722 if (cfqq == cfqd->active_queue)
2723 cfqd->active_queue = NULL;
2725 if (cfqd->active_cic) {
2726 put_io_context(cfqd->active_cic->icq.ioc);
2727 cfqd->active_cic = NULL;
2731 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
2733 struct cfq_queue *cfqq = cfqd->active_queue;
2735 if (cfqq)
2736 __cfq_slice_expired(cfqd, cfqq, timed_out);
2740 * Get next queue for service. Unless we have a queue preemption,
2741 * we'll simply select the first cfqq in the service tree.
2743 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
2745 struct cfq_rb_root *st = st_for(cfqd->serving_group,
2746 cfqd->serving_wl_class, cfqd->serving_wl_type);
2748 if (!cfqd->rq_queued)
2749 return NULL;
2751 /* There is nothing to dispatch */
2752 if (!st)
2753 return NULL;
2754 if (RB_EMPTY_ROOT(&st->rb))
2755 return NULL;
2756 return cfq_rb_first(st);
2759 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
2761 struct cfq_group *cfqg;
2762 struct cfq_queue *cfqq;
2763 int i, j;
2764 struct cfq_rb_root *st;
2766 if (!cfqd->rq_queued)
2767 return NULL;
2769 cfqg = cfq_get_next_cfqg(cfqd);
2770 if (!cfqg)
2771 return NULL;
2773 for_each_cfqg_st(cfqg, i, j, st)
2774 if ((cfqq = cfq_rb_first(st)) != NULL)
2775 return cfqq;
2776 return NULL;
2780 * Get and set a new active queue for service.
2782 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
2783 struct cfq_queue *cfqq)
2785 if (!cfqq)
2786 cfqq = cfq_get_next_queue(cfqd);
2788 __cfq_set_active_queue(cfqd, cfqq);
2789 return cfqq;
2792 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
2793 struct request *rq)
2795 if (blk_rq_pos(rq) >= cfqd->last_position)
2796 return blk_rq_pos(rq) - cfqd->last_position;
2797 else
2798 return cfqd->last_position - blk_rq_pos(rq);
2801 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2802 struct request *rq)
2804 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
2807 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
2808 struct cfq_queue *cur_cfqq)
2810 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
2811 struct rb_node *parent, *node;
2812 struct cfq_queue *__cfqq;
2813 sector_t sector = cfqd->last_position;
2815 if (RB_EMPTY_ROOT(root))
2816 return NULL;
2819 * First, if we find a request starting at the end of the last
2820 * request, choose it.
2822 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
2823 if (__cfqq)
2824 return __cfqq;
2827 * If the exact sector wasn't found, the parent of the NULL leaf
2828 * will contain the closest sector.
2830 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
2831 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2832 return __cfqq;
2834 if (blk_rq_pos(__cfqq->next_rq) < sector)
2835 node = rb_next(&__cfqq->p_node);
2836 else
2837 node = rb_prev(&__cfqq->p_node);
2838 if (!node)
2839 return NULL;
2841 __cfqq = rb_entry(node, struct cfq_queue, p_node);
2842 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2843 return __cfqq;
2845 return NULL;
2849 * cfqd - obvious
2850 * cur_cfqq - passed in so that we don't decide that the current queue is
2851 * closely cooperating with itself.
2853 * So, basically we're assuming that that cur_cfqq has dispatched at least
2854 * one request, and that cfqd->last_position reflects a position on the disk
2855 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
2856 * assumption.
2858 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
2859 struct cfq_queue *cur_cfqq)
2861 struct cfq_queue *cfqq;
2863 if (cfq_class_idle(cur_cfqq))
2864 return NULL;
2865 if (!cfq_cfqq_sync(cur_cfqq))
2866 return NULL;
2867 if (CFQQ_SEEKY(cur_cfqq))
2868 return NULL;
2871 * Don't search priority tree if it's the only queue in the group.
2873 if (cur_cfqq->cfqg->nr_cfqq == 1)
2874 return NULL;
2877 * We should notice if some of the queues are cooperating, eg
2878 * working closely on the same area of the disk. In that case,
2879 * we can group them together and don't waste time idling.
2881 cfqq = cfqq_close(cfqd, cur_cfqq);
2882 if (!cfqq)
2883 return NULL;
2885 /* If new queue belongs to different cfq_group, don't choose it */
2886 if (cur_cfqq->cfqg != cfqq->cfqg)
2887 return NULL;
2890 * It only makes sense to merge sync queues.
2892 if (!cfq_cfqq_sync(cfqq))
2893 return NULL;
2894 if (CFQQ_SEEKY(cfqq))
2895 return NULL;
2898 * Do not merge queues of different priority classes
2900 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
2901 return NULL;
2903 return cfqq;
2907 * Determine whether we should enforce idle window for this queue.
2910 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2912 enum wl_class_t wl_class = cfqq_class(cfqq);
2913 struct cfq_rb_root *st = cfqq->service_tree;
2915 BUG_ON(!st);
2916 BUG_ON(!st->count);
2918 if (!cfqd->cfq_slice_idle)
2919 return false;
2921 /* We never do for idle class queues. */
2922 if (wl_class == IDLE_WORKLOAD)
2923 return false;
2925 /* We do for queues that were marked with idle window flag. */
2926 if (cfq_cfqq_idle_window(cfqq) &&
2927 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
2928 return true;
2931 * Otherwise, we do only if they are the last ones
2932 * in their service tree.
2934 if (st->count == 1 && cfq_cfqq_sync(cfqq) &&
2935 !cfq_io_thinktime_big(cfqd, &st->ttime, false))
2936 return true;
2937 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d", st->count);
2938 return false;
2941 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
2943 struct cfq_queue *cfqq = cfqd->active_queue;
2944 struct cfq_rb_root *st = cfqq->service_tree;
2945 struct cfq_io_cq *cic;
2946 u64 sl, group_idle = 0;
2947 u64 now = ktime_get_ns();
2950 * SSD device without seek penalty, disable idling. But only do so
2951 * for devices that support queuing, otherwise we still have a problem
2952 * with sync vs async workloads.
2954 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
2955 return;
2957 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
2958 WARN_ON(cfq_cfqq_slice_new(cfqq));
2961 * idle is disabled, either manually or by past process history
2963 if (!cfq_should_idle(cfqd, cfqq)) {
2964 /* no queue idling. Check for group idling */
2965 if (cfqd->cfq_group_idle)
2966 group_idle = cfqd->cfq_group_idle;
2967 else
2968 return;
2972 * still active requests from this queue, don't idle
2974 if (cfqq->dispatched)
2975 return;
2978 * task has exited, don't wait
2980 cic = cfqd->active_cic;
2981 if (!cic || !atomic_read(&cic->icq.ioc->active_ref))
2982 return;
2985 * If our average think time is larger than the remaining time
2986 * slice, then don't idle. This avoids overrunning the allotted
2987 * time slice.
2989 if (sample_valid(cic->ttime.ttime_samples) &&
2990 (cfqq->slice_end - now < cic->ttime.ttime_mean)) {
2991 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%llu",
2992 cic->ttime.ttime_mean);
2993 return;
2997 * There are other queues in the group or this is the only group and
2998 * it has too big thinktime, don't do group idle.
3000 if (group_idle &&
3001 (cfqq->cfqg->nr_cfqq > 1 ||
3002 cfq_io_thinktime_big(cfqd, &st->ttime, true)))
3003 return;
3005 cfq_mark_cfqq_wait_request(cfqq);
3007 if (group_idle)
3008 sl = cfqd->cfq_group_idle;
3009 else
3010 sl = cfqd->cfq_slice_idle;
3012 hrtimer_start(&cfqd->idle_slice_timer, ns_to_ktime(sl),
3013 HRTIMER_MODE_REL);
3014 cfqg_stats_set_start_idle_time(cfqq->cfqg);
3015 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %llu group_idle: %d", sl,
3016 group_idle ? 1 : 0);
3020 * Move request from internal lists to the request queue dispatch list.
3022 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
3024 struct cfq_data *cfqd = q->elevator->elevator_data;
3025 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3027 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
3029 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
3030 cfq_remove_request(rq);
3031 cfqq->dispatched++;
3032 (RQ_CFQG(rq))->dispatched++;
3033 elv_dispatch_sort(q, rq);
3035 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
3036 cfqq->nr_sectors += blk_rq_sectors(rq);
3040 * return expired entry, or NULL to just start from scratch in rbtree
3042 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
3044 struct request *rq = NULL;
3046 if (cfq_cfqq_fifo_expire(cfqq))
3047 return NULL;
3049 cfq_mark_cfqq_fifo_expire(cfqq);
3051 if (list_empty(&cfqq->fifo))
3052 return NULL;
3054 rq = rq_entry_fifo(cfqq->fifo.next);
3055 if (ktime_get_ns() < rq->fifo_time)
3056 rq = NULL;
3058 return rq;
3061 static inline int
3062 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3064 const int base_rq = cfqd->cfq_slice_async_rq;
3066 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
3068 return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
3072 * Must be called with the queue_lock held.
3074 static int cfqq_process_refs(struct cfq_queue *cfqq)
3076 int process_refs, io_refs;
3078 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
3079 process_refs = cfqq->ref - io_refs;
3080 BUG_ON(process_refs < 0);
3081 return process_refs;
3084 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
3086 int process_refs, new_process_refs;
3087 struct cfq_queue *__cfqq;
3090 * If there are no process references on the new_cfqq, then it is
3091 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
3092 * chain may have dropped their last reference (not just their
3093 * last process reference).
3095 if (!cfqq_process_refs(new_cfqq))
3096 return;
3098 /* Avoid a circular list and skip interim queue merges */
3099 while ((__cfqq = new_cfqq->new_cfqq)) {
3100 if (__cfqq == cfqq)
3101 return;
3102 new_cfqq = __cfqq;
3105 process_refs = cfqq_process_refs(cfqq);
3106 new_process_refs = cfqq_process_refs(new_cfqq);
3108 * If the process for the cfqq has gone away, there is no
3109 * sense in merging the queues.
3111 if (process_refs == 0 || new_process_refs == 0)
3112 return;
3115 * Merge in the direction of the lesser amount of work.
3117 if (new_process_refs >= process_refs) {
3118 cfqq->new_cfqq = new_cfqq;
3119 new_cfqq->ref += process_refs;
3120 } else {
3121 new_cfqq->new_cfqq = cfqq;
3122 cfqq->ref += new_process_refs;
3126 static enum wl_type_t cfq_choose_wl_type(struct cfq_data *cfqd,
3127 struct cfq_group *cfqg, enum wl_class_t wl_class)
3129 struct cfq_queue *queue;
3130 int i;
3131 bool key_valid = false;
3132 u64 lowest_key = 0;
3133 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
3135 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
3136 /* select the one with lowest rb_key */
3137 queue = cfq_rb_first(st_for(cfqg, wl_class, i));
3138 if (queue &&
3139 (!key_valid || queue->rb_key < lowest_key)) {
3140 lowest_key = queue->rb_key;
3141 cur_best = i;
3142 key_valid = true;
3146 return cur_best;
3149 static void
3150 choose_wl_class_and_type(struct cfq_data *cfqd, struct cfq_group *cfqg)
3152 u64 slice;
3153 unsigned count;
3154 struct cfq_rb_root *st;
3155 u64 group_slice;
3156 enum wl_class_t original_class = cfqd->serving_wl_class;
3157 u64 now = ktime_get_ns();
3159 /* Choose next priority. RT > BE > IDLE */
3160 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
3161 cfqd->serving_wl_class = RT_WORKLOAD;
3162 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
3163 cfqd->serving_wl_class = BE_WORKLOAD;
3164 else {
3165 cfqd->serving_wl_class = IDLE_WORKLOAD;
3166 cfqd->workload_expires = now + jiffies_to_nsecs(1);
3167 return;
3170 if (original_class != cfqd->serving_wl_class)
3171 goto new_workload;
3174 * For RT and BE, we have to choose also the type
3175 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
3176 * expiration time
3178 st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
3179 count = st->count;
3182 * check workload expiration, and that we still have other queues ready
3184 if (count && !(now > cfqd->workload_expires))
3185 return;
3187 new_workload:
3188 /* otherwise select new workload type */
3189 cfqd->serving_wl_type = cfq_choose_wl_type(cfqd, cfqg,
3190 cfqd->serving_wl_class);
3191 st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
3192 count = st->count;
3195 * the workload slice is computed as a fraction of target latency
3196 * proportional to the number of queues in that workload, over
3197 * all the queues in the same priority class
3199 group_slice = cfq_group_slice(cfqd, cfqg);
3201 slice = div_u64(group_slice * count,
3202 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_wl_class],
3203 cfq_group_busy_queues_wl(cfqd->serving_wl_class, cfqd,
3204 cfqg)));
3206 if (cfqd->serving_wl_type == ASYNC_WORKLOAD) {
3207 u64 tmp;
3210 * Async queues are currently system wide. Just taking
3211 * proportion of queues with-in same group will lead to higher
3212 * async ratio system wide as generally root group is going
3213 * to have higher weight. A more accurate thing would be to
3214 * calculate system wide asnc/sync ratio.
3216 tmp = cfqd->cfq_target_latency *
3217 cfqg_busy_async_queues(cfqd, cfqg);
3218 tmp = div_u64(tmp, cfqd->busy_queues);
3219 slice = min_t(u64, slice, tmp);
3221 /* async workload slice is scaled down according to
3222 * the sync/async slice ratio. */
3223 slice = div64_u64(slice*cfqd->cfq_slice[0], cfqd->cfq_slice[1]);
3224 } else
3225 /* sync workload slice is at least 2 * cfq_slice_idle */
3226 slice = max(slice, 2 * cfqd->cfq_slice_idle);
3228 slice = max_t(u64, slice, CFQ_MIN_TT);
3229 cfq_log(cfqd, "workload slice:%llu", slice);
3230 cfqd->workload_expires = now + slice;
3233 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
3235 struct cfq_rb_root *st = &cfqd->grp_service_tree;
3236 struct cfq_group *cfqg;
3238 if (RB_EMPTY_ROOT(&st->rb))
3239 return NULL;
3240 cfqg = cfq_rb_first_group(st);
3241 update_min_vdisktime(st);
3242 return cfqg;
3245 static void cfq_choose_cfqg(struct cfq_data *cfqd)
3247 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
3248 u64 now = ktime_get_ns();
3250 cfqd->serving_group = cfqg;
3252 /* Restore the workload type data */
3253 if (cfqg->saved_wl_slice) {
3254 cfqd->workload_expires = now + cfqg->saved_wl_slice;
3255 cfqd->serving_wl_type = cfqg->saved_wl_type;
3256 cfqd->serving_wl_class = cfqg->saved_wl_class;
3257 } else
3258 cfqd->workload_expires = now - 1;
3260 choose_wl_class_and_type(cfqd, cfqg);
3264 * Select a queue for service. If we have a current active queue,
3265 * check whether to continue servicing it, or retrieve and set a new one.
3267 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
3269 struct cfq_queue *cfqq, *new_cfqq = NULL;
3270 u64 now = ktime_get_ns();
3272 cfqq = cfqd->active_queue;
3273 if (!cfqq)
3274 goto new_queue;
3276 if (!cfqd->rq_queued)
3277 return NULL;
3280 * We were waiting for group to get backlogged. Expire the queue
3282 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
3283 goto expire;
3286 * The active queue has run out of time, expire it and select new.
3288 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
3290 * If slice had not expired at the completion of last request
3291 * we might not have turned on wait_busy flag. Don't expire
3292 * the queue yet. Allow the group to get backlogged.
3294 * The very fact that we have used the slice, that means we
3295 * have been idling all along on this queue and it should be
3296 * ok to wait for this request to complete.
3298 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
3299 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3300 cfqq = NULL;
3301 goto keep_queue;
3302 } else
3303 goto check_group_idle;
3307 * The active queue has requests and isn't expired, allow it to
3308 * dispatch.
3310 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3311 goto keep_queue;
3314 * If another queue has a request waiting within our mean seek
3315 * distance, let it run. The expire code will check for close
3316 * cooperators and put the close queue at the front of the service
3317 * tree. If possible, merge the expiring queue with the new cfqq.
3319 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
3320 if (new_cfqq) {
3321 if (!cfqq->new_cfqq)
3322 cfq_setup_merge(cfqq, new_cfqq);
3323 goto expire;
3327 * No requests pending. If the active queue still has requests in
3328 * flight or is idling for a new request, allow either of these
3329 * conditions to happen (or time out) before selecting a new queue.
3331 if (hrtimer_active(&cfqd->idle_slice_timer)) {
3332 cfqq = NULL;
3333 goto keep_queue;
3337 * This is a deep seek queue, but the device is much faster than
3338 * the queue can deliver, don't idle
3340 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
3341 (cfq_cfqq_slice_new(cfqq) ||
3342 (cfqq->slice_end - now > now - cfqq->slice_start))) {
3343 cfq_clear_cfqq_deep(cfqq);
3344 cfq_clear_cfqq_idle_window(cfqq);
3347 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3348 cfqq = NULL;
3349 goto keep_queue;
3353 * If group idle is enabled and there are requests dispatched from
3354 * this group, wait for requests to complete.
3356 check_group_idle:
3357 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
3358 cfqq->cfqg->dispatched &&
3359 !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
3360 cfqq = NULL;
3361 goto keep_queue;
3364 expire:
3365 cfq_slice_expired(cfqd, 0);
3366 new_queue:
3368 * Current queue expired. Check if we have to switch to a new
3369 * service tree
3371 if (!new_cfqq)
3372 cfq_choose_cfqg(cfqd);
3374 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
3375 keep_queue:
3376 return cfqq;
3379 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
3381 int dispatched = 0;
3383 while (cfqq->next_rq) {
3384 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
3385 dispatched++;
3388 BUG_ON(!list_empty(&cfqq->fifo));
3390 /* By default cfqq is not expired if it is empty. Do it explicitly */
3391 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
3392 return dispatched;
3396 * Drain our current requests. Used for barriers and when switching
3397 * io schedulers on-the-fly.
3399 static int cfq_forced_dispatch(struct cfq_data *cfqd)
3401 struct cfq_queue *cfqq;
3402 int dispatched = 0;
3404 /* Expire the timeslice of the current active queue first */
3405 cfq_slice_expired(cfqd, 0);
3406 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
3407 __cfq_set_active_queue(cfqd, cfqq);
3408 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
3411 BUG_ON(cfqd->busy_queues);
3413 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
3414 return dispatched;
3417 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
3418 struct cfq_queue *cfqq)
3420 u64 now = ktime_get_ns();
3422 /* the queue hasn't finished any request, can't estimate */
3423 if (cfq_cfqq_slice_new(cfqq))
3424 return true;
3425 if (now + cfqd->cfq_slice_idle * cfqq->dispatched > cfqq->slice_end)
3426 return true;
3428 return false;
3431 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3433 unsigned int max_dispatch;
3435 if (cfq_cfqq_must_dispatch(cfqq))
3436 return true;
3439 * Drain async requests before we start sync IO
3441 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
3442 return false;
3445 * If this is an async queue and we have sync IO in flight, let it wait
3447 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
3448 return false;
3450 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
3451 if (cfq_class_idle(cfqq))
3452 max_dispatch = 1;
3455 * Does this cfqq already have too much IO in flight?
3457 if (cfqq->dispatched >= max_dispatch) {
3458 bool promote_sync = false;
3460 * idle queue must always only have a single IO in flight
3462 if (cfq_class_idle(cfqq))
3463 return false;
3466 * If there is only one sync queue
3467 * we can ignore async queue here and give the sync
3468 * queue no dispatch limit. The reason is a sync queue can
3469 * preempt async queue, limiting the sync queue doesn't make
3470 * sense. This is useful for aiostress test.
3472 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
3473 promote_sync = true;
3476 * We have other queues, don't allow more IO from this one
3478 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
3479 !promote_sync)
3480 return false;
3483 * Sole queue user, no limit
3485 if (cfqd->busy_queues == 1 || promote_sync)
3486 max_dispatch = -1;
3487 else
3489 * Normally we start throttling cfqq when cfq_quantum/2
3490 * requests have been dispatched. But we can drive
3491 * deeper queue depths at the beginning of slice
3492 * subjected to upper limit of cfq_quantum.
3493 * */
3494 max_dispatch = cfqd->cfq_quantum;
3498 * Async queues must wait a bit before being allowed dispatch.
3499 * We also ramp up the dispatch depth gradually for async IO,
3500 * based on the last sync IO we serviced
3502 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
3503 u64 last_sync = ktime_get_ns() - cfqd->last_delayed_sync;
3504 unsigned int depth;
3506 depth = div64_u64(last_sync, cfqd->cfq_slice[1]);
3507 if (!depth && !cfqq->dispatched)
3508 depth = 1;
3509 if (depth < max_dispatch)
3510 max_dispatch = depth;
3514 * If we're below the current max, allow a dispatch
3516 return cfqq->dispatched < max_dispatch;
3520 * Dispatch a request from cfqq, moving them to the request queue
3521 * dispatch list.
3523 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3525 struct request *rq;
3527 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
3529 rq = cfq_check_fifo(cfqq);
3530 if (rq)
3531 cfq_mark_cfqq_must_dispatch(cfqq);
3533 if (!cfq_may_dispatch(cfqd, cfqq))
3534 return false;
3537 * follow expired path, else get first next available
3539 if (!rq)
3540 rq = cfqq->next_rq;
3541 else
3542 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
3545 * insert request into driver dispatch list
3547 cfq_dispatch_insert(cfqd->queue, rq);
3549 if (!cfqd->active_cic) {
3550 struct cfq_io_cq *cic = RQ_CIC(rq);
3552 atomic_long_inc(&cic->icq.ioc->refcount);
3553 cfqd->active_cic = cic;
3556 return true;
3560 * Find the cfqq that we need to service and move a request from that to the
3561 * dispatch list
3563 static int cfq_dispatch_requests(struct request_queue *q, int force)
3565 struct cfq_data *cfqd = q->elevator->elevator_data;
3566 struct cfq_queue *cfqq;
3568 if (!cfqd->busy_queues)
3569 return 0;
3571 if (unlikely(force))
3572 return cfq_forced_dispatch(cfqd);
3574 cfqq = cfq_select_queue(cfqd);
3575 if (!cfqq)
3576 return 0;
3579 * Dispatch a request from this cfqq, if it is allowed
3581 if (!cfq_dispatch_request(cfqd, cfqq))
3582 return 0;
3584 cfqq->slice_dispatch++;
3585 cfq_clear_cfqq_must_dispatch(cfqq);
3588 * expire an async queue immediately if it has used up its slice. idle
3589 * queue always expire after 1 dispatch round.
3591 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
3592 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
3593 cfq_class_idle(cfqq))) {
3594 cfqq->slice_end = ktime_get_ns() + 1;
3595 cfq_slice_expired(cfqd, 0);
3598 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
3599 return 1;
3603 * task holds one reference to the queue, dropped when task exits. each rq
3604 * in-flight on this queue also holds a reference, dropped when rq is freed.
3606 * Each cfq queue took a reference on the parent group. Drop it now.
3607 * queue lock must be held here.
3609 static void cfq_put_queue(struct cfq_queue *cfqq)
3611 struct cfq_data *cfqd = cfqq->cfqd;
3612 struct cfq_group *cfqg;
3614 BUG_ON(cfqq->ref <= 0);
3616 cfqq->ref--;
3617 if (cfqq->ref)
3618 return;
3620 cfq_log_cfqq(cfqd, cfqq, "put_queue");
3621 BUG_ON(rb_first(&cfqq->sort_list));
3622 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
3623 cfqg = cfqq->cfqg;
3625 if (unlikely(cfqd->active_queue == cfqq)) {
3626 __cfq_slice_expired(cfqd, cfqq, 0);
3627 cfq_schedule_dispatch(cfqd);
3630 BUG_ON(cfq_cfqq_on_rr(cfqq));
3631 kmem_cache_free(cfq_pool, cfqq);
3632 cfqg_put(cfqg);
3635 static void cfq_put_cooperator(struct cfq_queue *cfqq)
3637 struct cfq_queue *__cfqq, *next;
3640 * If this queue was scheduled to merge with another queue, be
3641 * sure to drop the reference taken on that queue (and others in
3642 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
3644 __cfqq = cfqq->new_cfqq;
3645 while (__cfqq) {
3646 if (__cfqq == cfqq) {
3647 WARN(1, "cfqq->new_cfqq loop detected\n");
3648 break;
3650 next = __cfqq->new_cfqq;
3651 cfq_put_queue(__cfqq);
3652 __cfqq = next;
3656 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3658 if (unlikely(cfqq == cfqd->active_queue)) {
3659 __cfq_slice_expired(cfqd, cfqq, 0);
3660 cfq_schedule_dispatch(cfqd);
3663 cfq_put_cooperator(cfqq);
3665 cfq_put_queue(cfqq);
3668 static void cfq_init_icq(struct io_cq *icq)
3670 struct cfq_io_cq *cic = icq_to_cic(icq);
3672 cic->ttime.last_end_request = ktime_get_ns();
3675 static void cfq_exit_icq(struct io_cq *icq)
3677 struct cfq_io_cq *cic = icq_to_cic(icq);
3678 struct cfq_data *cfqd = cic_to_cfqd(cic);
3680 if (cic_to_cfqq(cic, false)) {
3681 cfq_exit_cfqq(cfqd, cic_to_cfqq(cic, false));
3682 cic_set_cfqq(cic, NULL, false);
3685 if (cic_to_cfqq(cic, true)) {
3686 cfq_exit_cfqq(cfqd, cic_to_cfqq(cic, true));
3687 cic_set_cfqq(cic, NULL, true);
3691 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct cfq_io_cq *cic)
3693 struct task_struct *tsk = current;
3694 int ioprio_class;
3696 if (!cfq_cfqq_prio_changed(cfqq))
3697 return;
3699 ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3700 switch (ioprio_class) {
3701 default:
3702 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
3703 case IOPRIO_CLASS_NONE:
3705 * no prio set, inherit CPU scheduling settings
3707 cfqq->ioprio = task_nice_ioprio(tsk);
3708 cfqq->ioprio_class = task_nice_ioclass(tsk);
3709 break;
3710 case IOPRIO_CLASS_RT:
3711 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3712 cfqq->ioprio_class = IOPRIO_CLASS_RT;
3713 break;
3714 case IOPRIO_CLASS_BE:
3715 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3716 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3717 break;
3718 case IOPRIO_CLASS_IDLE:
3719 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
3720 cfqq->ioprio = 7;
3721 cfq_clear_cfqq_idle_window(cfqq);
3722 break;
3726 * keep track of original prio settings in case we have to temporarily
3727 * elevate the priority of this queue
3729 cfqq->org_ioprio = cfqq->ioprio;
3730 cfqq->org_ioprio_class = cfqq->ioprio_class;
3731 cfq_clear_cfqq_prio_changed(cfqq);
3734 static void check_ioprio_changed(struct cfq_io_cq *cic, struct bio *bio)
3736 int ioprio = cic->icq.ioc->ioprio;
3737 struct cfq_data *cfqd = cic_to_cfqd(cic);
3738 struct cfq_queue *cfqq;
3741 * Check whether ioprio has changed. The condition may trigger
3742 * spuriously on a newly created cic but there's no harm.
3744 if (unlikely(!cfqd) || likely(cic->ioprio == ioprio))
3745 return;
3747 cfqq = cic_to_cfqq(cic, false);
3748 if (cfqq) {
3749 cfq_put_queue(cfqq);
3750 cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic, bio);
3751 cic_set_cfqq(cic, cfqq, false);
3754 cfqq = cic_to_cfqq(cic, true);
3755 if (cfqq)
3756 cfq_mark_cfqq_prio_changed(cfqq);
3758 cic->ioprio = ioprio;
3761 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3762 pid_t pid, bool is_sync)
3764 RB_CLEAR_NODE(&cfqq->rb_node);
3765 RB_CLEAR_NODE(&cfqq->p_node);
3766 INIT_LIST_HEAD(&cfqq->fifo);
3768 cfqq->ref = 0;
3769 cfqq->cfqd = cfqd;
3771 cfq_mark_cfqq_prio_changed(cfqq);
3773 if (is_sync) {
3774 if (!cfq_class_idle(cfqq))
3775 cfq_mark_cfqq_idle_window(cfqq);
3776 cfq_mark_cfqq_sync(cfqq);
3778 cfqq->pid = pid;
3781 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3782 static void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio)
3784 struct cfq_data *cfqd = cic_to_cfqd(cic);
3785 struct cfq_queue *cfqq;
3786 uint64_t serial_nr;
3788 rcu_read_lock();
3789 serial_nr = bio_blkcg(bio)->css.serial_nr;
3790 rcu_read_unlock();
3793 * Check whether blkcg has changed. The condition may trigger
3794 * spuriously on a newly created cic but there's no harm.
3796 if (unlikely(!cfqd) || likely(cic->blkcg_serial_nr == serial_nr))
3797 return;
3800 * Drop reference to queues. New queues will be assigned in new
3801 * group upon arrival of fresh requests.
3803 cfqq = cic_to_cfqq(cic, false);
3804 if (cfqq) {
3805 cfq_log_cfqq(cfqd, cfqq, "changed cgroup");
3806 cic_set_cfqq(cic, NULL, false);
3807 cfq_put_queue(cfqq);
3810 cfqq = cic_to_cfqq(cic, true);
3811 if (cfqq) {
3812 cfq_log_cfqq(cfqd, cfqq, "changed cgroup");
3813 cic_set_cfqq(cic, NULL, true);
3814 cfq_put_queue(cfqq);
3817 cic->blkcg_serial_nr = serial_nr;
3819 #else
3820 static inline void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio) { }
3821 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
3823 static struct cfq_queue **
3824 cfq_async_queue_prio(struct cfq_group *cfqg, int ioprio_class, int ioprio)
3826 switch (ioprio_class) {
3827 case IOPRIO_CLASS_RT:
3828 return &cfqg->async_cfqq[0][ioprio];
3829 case IOPRIO_CLASS_NONE:
3830 ioprio = IOPRIO_NORM;
3831 /* fall through */
3832 case IOPRIO_CLASS_BE:
3833 return &cfqg->async_cfqq[1][ioprio];
3834 case IOPRIO_CLASS_IDLE:
3835 return &cfqg->async_idle_cfqq;
3836 default:
3837 BUG();
3841 static struct cfq_queue *
3842 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3843 struct bio *bio)
3845 int ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3846 int ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3847 struct cfq_queue **async_cfqq = NULL;
3848 struct cfq_queue *cfqq;
3849 struct cfq_group *cfqg;
3851 rcu_read_lock();
3852 cfqg = cfq_lookup_cfqg(cfqd, bio_blkcg(bio));
3853 if (!cfqg) {
3854 cfqq = &cfqd->oom_cfqq;
3855 goto out;
3858 if (!is_sync) {
3859 if (!ioprio_valid(cic->ioprio)) {
3860 struct task_struct *tsk = current;
3861 ioprio = task_nice_ioprio(tsk);
3862 ioprio_class = task_nice_ioclass(tsk);
3864 async_cfqq = cfq_async_queue_prio(cfqg, ioprio_class, ioprio);
3865 cfqq = *async_cfqq;
3866 if (cfqq)
3867 goto out;
3870 cfqq = kmem_cache_alloc_node(cfq_pool, GFP_NOWAIT | __GFP_ZERO,
3871 cfqd->queue->node);
3872 if (!cfqq) {
3873 cfqq = &cfqd->oom_cfqq;
3874 goto out;
3877 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3878 cfq_init_prio_data(cfqq, cic);
3879 cfq_link_cfqq_cfqg(cfqq, cfqg);
3880 cfq_log_cfqq(cfqd, cfqq, "alloced");
3882 if (async_cfqq) {
3883 /* a new async queue is created, pin and remember */
3884 cfqq->ref++;
3885 *async_cfqq = cfqq;
3887 out:
3888 cfqq->ref++;
3889 rcu_read_unlock();
3890 return cfqq;
3893 static void
3894 __cfq_update_io_thinktime(struct cfq_ttime *ttime, u64 slice_idle)
3896 u64 elapsed = ktime_get_ns() - ttime->last_end_request;
3897 elapsed = min(elapsed, 2UL * slice_idle);
3899 ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
3900 ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed, 8);
3901 ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
3902 ttime->ttime_samples);
3905 static void
3906 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3907 struct cfq_io_cq *cic)
3909 if (cfq_cfqq_sync(cfqq)) {
3910 __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
3911 __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
3912 cfqd->cfq_slice_idle);
3914 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3915 __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
3916 #endif
3919 static void
3920 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3921 struct request *rq)
3923 sector_t sdist = 0;
3924 sector_t n_sec = blk_rq_sectors(rq);
3925 if (cfqq->last_request_pos) {
3926 if (cfqq->last_request_pos < blk_rq_pos(rq))
3927 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3928 else
3929 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3932 cfqq->seek_history <<= 1;
3933 if (blk_queue_nonrot(cfqd->queue))
3934 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3935 else
3936 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3940 * Disable idle window if the process thinks too long or seeks so much that
3941 * it doesn't matter
3943 static void
3944 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3945 struct cfq_io_cq *cic)
3947 int old_idle, enable_idle;
3950 * Don't idle for async or idle io prio class
3952 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3953 return;
3955 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3957 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3958 cfq_mark_cfqq_deep(cfqq);
3960 if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3961 enable_idle = 0;
3962 else if (!atomic_read(&cic->icq.ioc->active_ref) ||
3963 !cfqd->cfq_slice_idle ||
3964 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3965 enable_idle = 0;
3966 else if (sample_valid(cic->ttime.ttime_samples)) {
3967 if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
3968 enable_idle = 0;
3969 else
3970 enable_idle = 1;
3973 if (old_idle != enable_idle) {
3974 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3975 if (enable_idle)
3976 cfq_mark_cfqq_idle_window(cfqq);
3977 else
3978 cfq_clear_cfqq_idle_window(cfqq);
3983 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3984 * no or if we aren't sure, a 1 will cause a preempt.
3986 static bool
3987 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3988 struct request *rq)
3990 struct cfq_queue *cfqq;
3992 cfqq = cfqd->active_queue;
3993 if (!cfqq)
3994 return false;
3996 if (cfq_class_idle(new_cfqq))
3997 return false;
3999 if (cfq_class_idle(cfqq))
4000 return true;
4003 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
4005 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
4006 return false;
4009 * if the new request is sync, but the currently running queue is
4010 * not, let the sync request have priority.
4012 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
4013 return true;
4016 * Treat ancestors of current cgroup the same way as current cgroup.
4017 * For anybody else we disallow preemption to guarantee service
4018 * fairness among cgroups.
4020 if (!cfqg_is_descendant(cfqq->cfqg, new_cfqq->cfqg))
4021 return false;
4023 if (cfq_slice_used(cfqq))
4024 return true;
4027 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
4029 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
4030 return true;
4032 WARN_ON_ONCE(cfqq->ioprio_class != new_cfqq->ioprio_class);
4033 /* Allow preemption only if we are idling on sync-noidle tree */
4034 if (cfqd->serving_wl_type == SYNC_NOIDLE_WORKLOAD &&
4035 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
4036 RB_EMPTY_ROOT(&cfqq->sort_list))
4037 return true;
4040 * So both queues are sync. Let the new request get disk time if
4041 * it's a metadata request and the current queue is doing regular IO.
4043 if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
4044 return true;
4046 /* An idle queue should not be idle now for some reason */
4047 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
4048 return true;
4050 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
4051 return false;
4054 * if this request is as-good as one we would expect from the
4055 * current cfqq, let it preempt
4057 if (cfq_rq_close(cfqd, cfqq, rq))
4058 return true;
4060 return false;
4064 * cfqq preempts the active queue. if we allowed preempt with no slice left,
4065 * let it have half of its nominal slice.
4067 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
4069 enum wl_type_t old_type = cfqq_type(cfqd->active_queue);
4071 cfq_log_cfqq(cfqd, cfqq, "preempt");
4072 cfq_slice_expired(cfqd, 1);
4075 * workload type is changed, don't save slice, otherwise preempt
4076 * doesn't happen
4078 if (old_type != cfqq_type(cfqq))
4079 cfqq->cfqg->saved_wl_slice = 0;
4082 * Put the new queue at the front of the of the current list,
4083 * so we know that it will be selected next.
4085 BUG_ON(!cfq_cfqq_on_rr(cfqq));
4087 cfq_service_tree_add(cfqd, cfqq, 1);
4089 cfqq->slice_end = 0;
4090 cfq_mark_cfqq_slice_new(cfqq);
4094 * Called when a new fs request (rq) is added (to cfqq). Check if there's
4095 * something we should do about it
4097 static void
4098 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
4099 struct request *rq)
4101 struct cfq_io_cq *cic = RQ_CIC(rq);
4103 cfqd->rq_queued++;
4104 if (rq->cmd_flags & REQ_PRIO)
4105 cfqq->prio_pending++;
4107 cfq_update_io_thinktime(cfqd, cfqq, cic);
4108 cfq_update_io_seektime(cfqd, cfqq, rq);
4109 cfq_update_idle_window(cfqd, cfqq, cic);
4111 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
4113 if (cfqq == cfqd->active_queue) {
4115 * Remember that we saw a request from this process, but
4116 * don't start queuing just yet. Otherwise we risk seeing lots
4117 * of tiny requests, because we disrupt the normal plugging
4118 * and merging. If the request is already larger than a single
4119 * page, let it rip immediately. For that case we assume that
4120 * merging is already done. Ditto for a busy system that
4121 * has other work pending, don't risk delaying until the
4122 * idle timer unplug to continue working.
4124 if (cfq_cfqq_wait_request(cfqq)) {
4125 if (blk_rq_bytes(rq) > PAGE_SIZE ||
4126 cfqd->busy_queues > 1) {
4127 cfq_del_timer(cfqd, cfqq);
4128 cfq_clear_cfqq_wait_request(cfqq);
4129 __blk_run_queue(cfqd->queue);
4130 } else {
4131 cfqg_stats_update_idle_time(cfqq->cfqg);
4132 cfq_mark_cfqq_must_dispatch(cfqq);
4135 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
4137 * not the active queue - expire current slice if it is
4138 * idle and has expired it's mean thinktime or this new queue
4139 * has some old slice time left and is of higher priority or
4140 * this new queue is RT and the current one is BE
4142 cfq_preempt_queue(cfqd, cfqq);
4143 __blk_run_queue(cfqd->queue);
4147 static void cfq_insert_request(struct request_queue *q, struct request *rq)
4149 struct cfq_data *cfqd = q->elevator->elevator_data;
4150 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4152 cfq_log_cfqq(cfqd, cfqq, "insert_request");
4153 cfq_init_prio_data(cfqq, RQ_CIC(rq));
4155 rq->fifo_time = ktime_get_ns() + cfqd->cfq_fifo_expire[rq_is_sync(rq)];
4156 list_add_tail(&rq->queuelist, &cfqq->fifo);
4157 cfq_add_rq_rb(rq);
4158 cfqg_stats_update_io_add(RQ_CFQG(rq), cfqd->serving_group, req_op(rq),
4159 rq->cmd_flags);
4160 cfq_rq_enqueued(cfqd, cfqq, rq);
4164 * Update hw_tag based on peak queue depth over 50 samples under
4165 * sufficient load.
4167 static void cfq_update_hw_tag(struct cfq_data *cfqd)
4169 struct cfq_queue *cfqq = cfqd->active_queue;
4171 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
4172 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
4174 if (cfqd->hw_tag == 1)
4175 return;
4177 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
4178 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
4179 return;
4182 * If active queue hasn't enough requests and can idle, cfq might not
4183 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
4184 * case
4186 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
4187 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
4188 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
4189 return;
4191 if (cfqd->hw_tag_samples++ < 50)
4192 return;
4194 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
4195 cfqd->hw_tag = 1;
4196 else
4197 cfqd->hw_tag = 0;
4200 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
4202 struct cfq_io_cq *cic = cfqd->active_cic;
4203 u64 now = ktime_get_ns();
4205 /* If the queue already has requests, don't wait */
4206 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
4207 return false;
4209 /* If there are other queues in the group, don't wait */
4210 if (cfqq->cfqg->nr_cfqq > 1)
4211 return false;
4213 /* the only queue in the group, but think time is big */
4214 if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
4215 return false;
4217 if (cfq_slice_used(cfqq))
4218 return true;
4220 /* if slice left is less than think time, wait busy */
4221 if (cic && sample_valid(cic->ttime.ttime_samples)
4222 && (cfqq->slice_end - now < cic->ttime.ttime_mean))
4223 return true;
4226 * If think times is less than a jiffy than ttime_mean=0 and above
4227 * will not be true. It might happen that slice has not expired yet
4228 * but will expire soon (4-5 ns) during select_queue(). To cover the
4229 * case where think time is less than a jiffy, mark the queue wait
4230 * busy if only 1 jiffy is left in the slice.
4232 if (cfqq->slice_end - now <= jiffies_to_nsecs(1))
4233 return true;
4235 return false;
4238 static void cfq_completed_request(struct request_queue *q, struct request *rq)
4240 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4241 struct cfq_data *cfqd = cfqq->cfqd;
4242 const int sync = rq_is_sync(rq);
4243 u64 now = ktime_get_ns();
4245 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
4246 !!(rq->cmd_flags & REQ_NOIDLE));
4248 cfq_update_hw_tag(cfqd);
4250 WARN_ON(!cfqd->rq_in_driver);
4251 WARN_ON(!cfqq->dispatched);
4252 cfqd->rq_in_driver--;
4253 cfqq->dispatched--;
4254 (RQ_CFQG(rq))->dispatched--;
4255 cfqg_stats_update_completion(cfqq->cfqg, rq_start_time_ns(rq),
4256 rq_io_start_time_ns(rq), req_op(rq),
4257 rq->cmd_flags);
4259 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
4261 if (sync) {
4262 struct cfq_rb_root *st;
4264 RQ_CIC(rq)->ttime.last_end_request = now;
4266 if (cfq_cfqq_on_rr(cfqq))
4267 st = cfqq->service_tree;
4268 else
4269 st = st_for(cfqq->cfqg, cfqq_class(cfqq),
4270 cfqq_type(cfqq));
4272 st->ttime.last_end_request = now;
4274 * We have to do this check in jiffies since start_time is in
4275 * jiffies and it is not trivial to convert to ns. If
4276 * cfq_fifo_expire[1] ever comes close to 1 jiffie, this test
4277 * will become problematic but so far we are fine (the default
4278 * is 128 ms).
4280 if (!time_after(rq->start_time +
4281 nsecs_to_jiffies(cfqd->cfq_fifo_expire[1]),
4282 jiffies))
4283 cfqd->last_delayed_sync = now;
4286 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4287 cfqq->cfqg->ttime.last_end_request = now;
4288 #endif
4291 * If this is the active queue, check if it needs to be expired,
4292 * or if we want to idle in case it has no pending requests.
4294 if (cfqd->active_queue == cfqq) {
4295 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
4297 if (cfq_cfqq_slice_new(cfqq)) {
4298 cfq_set_prio_slice(cfqd, cfqq);
4299 cfq_clear_cfqq_slice_new(cfqq);
4303 * Should we wait for next request to come in before we expire
4304 * the queue.
4306 if (cfq_should_wait_busy(cfqd, cfqq)) {
4307 u64 extend_sl = cfqd->cfq_slice_idle;
4308 if (!cfqd->cfq_slice_idle)
4309 extend_sl = cfqd->cfq_group_idle;
4310 cfqq->slice_end = now + extend_sl;
4311 cfq_mark_cfqq_wait_busy(cfqq);
4312 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
4316 * Idling is not enabled on:
4317 * - expired queues
4318 * - idle-priority queues
4319 * - async queues
4320 * - queues with still some requests queued
4321 * - when there is a close cooperator
4323 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
4324 cfq_slice_expired(cfqd, 1);
4325 else if (sync && cfqq_empty &&
4326 !cfq_close_cooperator(cfqd, cfqq)) {
4327 cfq_arm_slice_timer(cfqd);
4331 if (!cfqd->rq_in_driver)
4332 cfq_schedule_dispatch(cfqd);
4335 static void cfqq_boost_on_prio(struct cfq_queue *cfqq, int op_flags)
4338 * If REQ_PRIO is set, boost class and prio level, if it's below
4339 * BE/NORM. If prio is not set, restore the potentially boosted
4340 * class/prio level.
4342 if (!(op_flags & REQ_PRIO)) {
4343 cfqq->ioprio_class = cfqq->org_ioprio_class;
4344 cfqq->ioprio = cfqq->org_ioprio;
4345 } else {
4346 if (cfq_class_idle(cfqq))
4347 cfqq->ioprio_class = IOPRIO_CLASS_BE;
4348 if (cfqq->ioprio > IOPRIO_NORM)
4349 cfqq->ioprio = IOPRIO_NORM;
4353 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
4355 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
4356 cfq_mark_cfqq_must_alloc_slice(cfqq);
4357 return ELV_MQUEUE_MUST;
4360 return ELV_MQUEUE_MAY;
4363 static int cfq_may_queue(struct request_queue *q, int op, int op_flags)
4365 struct cfq_data *cfqd = q->elevator->elevator_data;
4366 struct task_struct *tsk = current;
4367 struct cfq_io_cq *cic;
4368 struct cfq_queue *cfqq;
4371 * don't force setup of a queue from here, as a call to may_queue
4372 * does not necessarily imply that a request actually will be queued.
4373 * so just lookup a possibly existing queue, or return 'may queue'
4374 * if that fails
4376 cic = cfq_cic_lookup(cfqd, tsk->io_context);
4377 if (!cic)
4378 return ELV_MQUEUE_MAY;
4380 cfqq = cic_to_cfqq(cic, rw_is_sync(op, op_flags));
4381 if (cfqq) {
4382 cfq_init_prio_data(cfqq, cic);
4383 cfqq_boost_on_prio(cfqq, op_flags);
4385 return __cfq_may_queue(cfqq);
4388 return ELV_MQUEUE_MAY;
4392 * queue lock held here
4394 static void cfq_put_request(struct request *rq)
4396 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4398 if (cfqq) {
4399 const int rw = rq_data_dir(rq);
4401 BUG_ON(!cfqq->allocated[rw]);
4402 cfqq->allocated[rw]--;
4404 /* Put down rq reference on cfqg */
4405 cfqg_put(RQ_CFQG(rq));
4406 rq->elv.priv[0] = NULL;
4407 rq->elv.priv[1] = NULL;
4409 cfq_put_queue(cfqq);
4413 static struct cfq_queue *
4414 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
4415 struct cfq_queue *cfqq)
4417 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
4418 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
4419 cfq_mark_cfqq_coop(cfqq->new_cfqq);
4420 cfq_put_queue(cfqq);
4421 return cic_to_cfqq(cic, 1);
4425 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
4426 * was the last process referring to said cfqq.
4428 static struct cfq_queue *
4429 split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
4431 if (cfqq_process_refs(cfqq) == 1) {
4432 cfqq->pid = current->pid;
4433 cfq_clear_cfqq_coop(cfqq);
4434 cfq_clear_cfqq_split_coop(cfqq);
4435 return cfqq;
4438 cic_set_cfqq(cic, NULL, 1);
4440 cfq_put_cooperator(cfqq);
4442 cfq_put_queue(cfqq);
4443 return NULL;
4446 * Allocate cfq data structures associated with this request.
4448 static int
4449 cfq_set_request(struct request_queue *q, struct request *rq, struct bio *bio,
4450 gfp_t gfp_mask)
4452 struct cfq_data *cfqd = q->elevator->elevator_data;
4453 struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq);
4454 const int rw = rq_data_dir(rq);
4455 const bool is_sync = rq_is_sync(rq);
4456 struct cfq_queue *cfqq;
4458 spin_lock_irq(q->queue_lock);
4460 check_ioprio_changed(cic, bio);
4461 check_blkcg_changed(cic, bio);
4462 new_queue:
4463 cfqq = cic_to_cfqq(cic, is_sync);
4464 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
4465 if (cfqq)
4466 cfq_put_queue(cfqq);
4467 cfqq = cfq_get_queue(cfqd, is_sync, cic, bio);
4468 cic_set_cfqq(cic, cfqq, is_sync);
4469 } else {
4471 * If the queue was seeky for too long, break it apart.
4473 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
4474 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
4475 cfqq = split_cfqq(cic, cfqq);
4476 if (!cfqq)
4477 goto new_queue;
4481 * Check to see if this queue is scheduled to merge with
4482 * another, closely cooperating queue. The merging of
4483 * queues happens here as it must be done in process context.
4484 * The reference on new_cfqq was taken in merge_cfqqs.
4486 if (cfqq->new_cfqq)
4487 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
4490 cfqq->allocated[rw]++;
4492 cfqq->ref++;
4493 cfqg_get(cfqq->cfqg);
4494 rq->elv.priv[0] = cfqq;
4495 rq->elv.priv[1] = cfqq->cfqg;
4496 spin_unlock_irq(q->queue_lock);
4497 return 0;
4500 static void cfq_kick_queue(struct work_struct *work)
4502 struct cfq_data *cfqd =
4503 container_of(work, struct cfq_data, unplug_work);
4504 struct request_queue *q = cfqd->queue;
4506 spin_lock_irq(q->queue_lock);
4507 __blk_run_queue(cfqd->queue);
4508 spin_unlock_irq(q->queue_lock);
4512 * Timer running if the active_queue is currently idling inside its time slice
4514 static enum hrtimer_restart cfq_idle_slice_timer(struct hrtimer *timer)
4516 struct cfq_data *cfqd = container_of(timer, struct cfq_data,
4517 idle_slice_timer);
4518 struct cfq_queue *cfqq;
4519 unsigned long flags;
4520 int timed_out = 1;
4522 cfq_log(cfqd, "idle timer fired");
4524 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
4526 cfqq = cfqd->active_queue;
4527 if (cfqq) {
4528 timed_out = 0;
4531 * We saw a request before the queue expired, let it through
4533 if (cfq_cfqq_must_dispatch(cfqq))
4534 goto out_kick;
4537 * expired
4539 if (cfq_slice_used(cfqq))
4540 goto expire;
4543 * only expire and reinvoke request handler, if there are
4544 * other queues with pending requests
4546 if (!cfqd->busy_queues)
4547 goto out_cont;
4550 * not expired and it has a request pending, let it dispatch
4552 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
4553 goto out_kick;
4556 * Queue depth flag is reset only when the idle didn't succeed
4558 cfq_clear_cfqq_deep(cfqq);
4560 expire:
4561 cfq_slice_expired(cfqd, timed_out);
4562 out_kick:
4563 cfq_schedule_dispatch(cfqd);
4564 out_cont:
4565 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
4566 return HRTIMER_NORESTART;
4569 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
4571 hrtimer_cancel(&cfqd->idle_slice_timer);
4572 cancel_work_sync(&cfqd->unplug_work);
4575 static void cfq_exit_queue(struct elevator_queue *e)
4577 struct cfq_data *cfqd = e->elevator_data;
4578 struct request_queue *q = cfqd->queue;
4580 cfq_shutdown_timer_wq(cfqd);
4582 spin_lock_irq(q->queue_lock);
4584 if (cfqd->active_queue)
4585 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
4587 spin_unlock_irq(q->queue_lock);
4589 cfq_shutdown_timer_wq(cfqd);
4591 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4592 blkcg_deactivate_policy(q, &blkcg_policy_cfq);
4593 #else
4594 kfree(cfqd->root_group);
4595 #endif
4596 kfree(cfqd);
4599 static int cfq_init_queue(struct request_queue *q, struct elevator_type *e)
4601 struct cfq_data *cfqd;
4602 struct blkcg_gq *blkg __maybe_unused;
4603 int i, ret;
4604 struct elevator_queue *eq;
4606 eq = elevator_alloc(q, e);
4607 if (!eq)
4608 return -ENOMEM;
4610 cfqd = kzalloc_node(sizeof(*cfqd), GFP_KERNEL, q->node);
4611 if (!cfqd) {
4612 kobject_put(&eq->kobj);
4613 return -ENOMEM;
4615 eq->elevator_data = cfqd;
4617 cfqd->queue = q;
4618 spin_lock_irq(q->queue_lock);
4619 q->elevator = eq;
4620 spin_unlock_irq(q->queue_lock);
4622 /* Init root service tree */
4623 cfqd->grp_service_tree = CFQ_RB_ROOT;
4625 /* Init root group and prefer root group over other groups by default */
4626 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4627 ret = blkcg_activate_policy(q, &blkcg_policy_cfq);
4628 if (ret)
4629 goto out_free;
4631 cfqd->root_group = blkg_to_cfqg(q->root_blkg);
4632 #else
4633 ret = -ENOMEM;
4634 cfqd->root_group = kzalloc_node(sizeof(*cfqd->root_group),
4635 GFP_KERNEL, cfqd->queue->node);
4636 if (!cfqd->root_group)
4637 goto out_free;
4639 cfq_init_cfqg_base(cfqd->root_group);
4640 cfqd->root_group->weight = 2 * CFQ_WEIGHT_LEGACY_DFL;
4641 cfqd->root_group->leaf_weight = 2 * CFQ_WEIGHT_LEGACY_DFL;
4642 #endif
4645 * Not strictly needed (since RB_ROOT just clears the node and we
4646 * zeroed cfqd on alloc), but better be safe in case someone decides
4647 * to add magic to the rb code
4649 for (i = 0; i < CFQ_PRIO_LISTS; i++)
4650 cfqd->prio_trees[i] = RB_ROOT;
4653 * Our fallback cfqq if cfq_get_queue() runs into OOM issues.
4654 * Grab a permanent reference to it, so that the normal code flow
4655 * will not attempt to free it. oom_cfqq is linked to root_group
4656 * but shouldn't hold a reference as it'll never be unlinked. Lose
4657 * the reference from linking right away.
4659 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
4660 cfqd->oom_cfqq.ref++;
4662 spin_lock_irq(q->queue_lock);
4663 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, cfqd->root_group);
4664 cfqg_put(cfqd->root_group);
4665 spin_unlock_irq(q->queue_lock);
4667 hrtimer_init(&cfqd->idle_slice_timer, CLOCK_MONOTONIC,
4668 HRTIMER_MODE_REL);
4669 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
4671 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
4673 cfqd->cfq_quantum = cfq_quantum;
4674 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4675 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
4676 cfqd->cfq_back_max = cfq_back_max;
4677 cfqd->cfq_back_penalty = cfq_back_penalty;
4678 cfqd->cfq_slice[0] = cfq_slice_async;
4679 cfqd->cfq_slice[1] = cfq_slice_sync;
4680 cfqd->cfq_target_latency = cfq_target_latency;
4681 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4682 cfqd->cfq_slice_idle = cfq_slice_idle;
4683 cfqd->cfq_group_idle = cfq_group_idle;
4684 cfqd->cfq_latency = 1;
4685 cfqd->hw_tag = -1;
4687 * we optimistically start assuming sync ops weren't delayed in last
4688 * second, in order to have larger depth for async operations.
4690 cfqd->last_delayed_sync = ktime_get_ns() - NSEC_PER_SEC;
4691 return 0;
4693 out_free:
4694 kfree(cfqd);
4695 kobject_put(&eq->kobj);
4696 return ret;
4699 static void cfq_registered_queue(struct request_queue *q)
4701 struct elevator_queue *e = q->elevator;
4702 struct cfq_data *cfqd = e->elevator_data;
4705 * Default to IOPS mode with no idling for SSDs
4707 if (blk_queue_nonrot(q))
4708 cfqd->cfq_slice_idle = 0;
4712 * sysfs parts below -->
4714 static ssize_t
4715 cfq_var_show(unsigned int var, char *page)
4717 return sprintf(page, "%u\n", var);
4720 static ssize_t
4721 cfq_var_store(unsigned int *var, const char *page, size_t count)
4723 char *p = (char *) page;
4725 *var = simple_strtoul(p, &p, 10);
4726 return count;
4729 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
4730 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4732 struct cfq_data *cfqd = e->elevator_data; \
4733 u64 __data = __VAR; \
4734 if (__CONV) \
4735 __data = div_u64(__data, NSEC_PER_MSEC); \
4736 return cfq_var_show(__data, (page)); \
4738 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4739 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4740 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4741 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4742 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4743 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4744 SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4745 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4746 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4747 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4748 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4749 SHOW_FUNCTION(cfq_target_latency_show, cfqd->cfq_target_latency, 1);
4750 #undef SHOW_FUNCTION
4752 #define USEC_SHOW_FUNCTION(__FUNC, __VAR) \
4753 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4755 struct cfq_data *cfqd = e->elevator_data; \
4756 u64 __data = __VAR; \
4757 __data = div_u64(__data, NSEC_PER_USEC); \
4758 return cfq_var_show(__data, (page)); \
4760 USEC_SHOW_FUNCTION(cfq_slice_idle_us_show, cfqd->cfq_slice_idle);
4761 USEC_SHOW_FUNCTION(cfq_group_idle_us_show, cfqd->cfq_group_idle);
4762 USEC_SHOW_FUNCTION(cfq_slice_sync_us_show, cfqd->cfq_slice[1]);
4763 USEC_SHOW_FUNCTION(cfq_slice_async_us_show, cfqd->cfq_slice[0]);
4764 USEC_SHOW_FUNCTION(cfq_target_latency_us_show, cfqd->cfq_target_latency);
4765 #undef USEC_SHOW_FUNCTION
4767 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4768 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4770 struct cfq_data *cfqd = e->elevator_data; \
4771 unsigned int __data; \
4772 int ret = cfq_var_store(&__data, (page), count); \
4773 if (__data < (MIN)) \
4774 __data = (MIN); \
4775 else if (__data > (MAX)) \
4776 __data = (MAX); \
4777 if (__CONV) \
4778 *(__PTR) = (u64)__data * NSEC_PER_MSEC; \
4779 else \
4780 *(__PTR) = __data; \
4781 return ret; \
4783 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4784 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4785 UINT_MAX, 1);
4786 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4787 UINT_MAX, 1);
4788 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4789 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4790 UINT_MAX, 0);
4791 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4792 STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4793 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4794 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4795 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4796 UINT_MAX, 0);
4797 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4798 STORE_FUNCTION(cfq_target_latency_store, &cfqd->cfq_target_latency, 1, UINT_MAX, 1);
4799 #undef STORE_FUNCTION
4801 #define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \
4802 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4804 struct cfq_data *cfqd = e->elevator_data; \
4805 unsigned int __data; \
4806 int ret = cfq_var_store(&__data, (page), count); \
4807 if (__data < (MIN)) \
4808 __data = (MIN); \
4809 else if (__data > (MAX)) \
4810 __data = (MAX); \
4811 *(__PTR) = (u64)__data * NSEC_PER_USEC; \
4812 return ret; \
4814 USEC_STORE_FUNCTION(cfq_slice_idle_us_store, &cfqd->cfq_slice_idle, 0, UINT_MAX);
4815 USEC_STORE_FUNCTION(cfq_group_idle_us_store, &cfqd->cfq_group_idle, 0, UINT_MAX);
4816 USEC_STORE_FUNCTION(cfq_slice_sync_us_store, &cfqd->cfq_slice[1], 1, UINT_MAX);
4817 USEC_STORE_FUNCTION(cfq_slice_async_us_store, &cfqd->cfq_slice[0], 1, UINT_MAX);
4818 USEC_STORE_FUNCTION(cfq_target_latency_us_store, &cfqd->cfq_target_latency, 1, UINT_MAX);
4819 #undef USEC_STORE_FUNCTION
4821 #define CFQ_ATTR(name) \
4822 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4824 static struct elv_fs_entry cfq_attrs[] = {
4825 CFQ_ATTR(quantum),
4826 CFQ_ATTR(fifo_expire_sync),
4827 CFQ_ATTR(fifo_expire_async),
4828 CFQ_ATTR(back_seek_max),
4829 CFQ_ATTR(back_seek_penalty),
4830 CFQ_ATTR(slice_sync),
4831 CFQ_ATTR(slice_sync_us),
4832 CFQ_ATTR(slice_async),
4833 CFQ_ATTR(slice_async_us),
4834 CFQ_ATTR(slice_async_rq),
4835 CFQ_ATTR(slice_idle),
4836 CFQ_ATTR(slice_idle_us),
4837 CFQ_ATTR(group_idle),
4838 CFQ_ATTR(group_idle_us),
4839 CFQ_ATTR(low_latency),
4840 CFQ_ATTR(target_latency),
4841 CFQ_ATTR(target_latency_us),
4842 __ATTR_NULL
4845 static struct elevator_type iosched_cfq = {
4846 .ops = {
4847 .elevator_merge_fn = cfq_merge,
4848 .elevator_merged_fn = cfq_merged_request,
4849 .elevator_merge_req_fn = cfq_merged_requests,
4850 .elevator_allow_bio_merge_fn = cfq_allow_bio_merge,
4851 .elevator_allow_rq_merge_fn = cfq_allow_rq_merge,
4852 .elevator_bio_merged_fn = cfq_bio_merged,
4853 .elevator_dispatch_fn = cfq_dispatch_requests,
4854 .elevator_add_req_fn = cfq_insert_request,
4855 .elevator_activate_req_fn = cfq_activate_request,
4856 .elevator_deactivate_req_fn = cfq_deactivate_request,
4857 .elevator_completed_req_fn = cfq_completed_request,
4858 .elevator_former_req_fn = elv_rb_former_request,
4859 .elevator_latter_req_fn = elv_rb_latter_request,
4860 .elevator_init_icq_fn = cfq_init_icq,
4861 .elevator_exit_icq_fn = cfq_exit_icq,
4862 .elevator_set_req_fn = cfq_set_request,
4863 .elevator_put_req_fn = cfq_put_request,
4864 .elevator_may_queue_fn = cfq_may_queue,
4865 .elevator_init_fn = cfq_init_queue,
4866 .elevator_exit_fn = cfq_exit_queue,
4867 .elevator_registered_fn = cfq_registered_queue,
4869 .icq_size = sizeof(struct cfq_io_cq),
4870 .icq_align = __alignof__(struct cfq_io_cq),
4871 .elevator_attrs = cfq_attrs,
4872 .elevator_name = "cfq",
4873 .elevator_owner = THIS_MODULE,
4876 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4877 static struct blkcg_policy blkcg_policy_cfq = {
4878 .dfl_cftypes = cfq_blkcg_files,
4879 .legacy_cftypes = cfq_blkcg_legacy_files,
4881 .cpd_alloc_fn = cfq_cpd_alloc,
4882 .cpd_init_fn = cfq_cpd_init,
4883 .cpd_free_fn = cfq_cpd_free,
4884 .cpd_bind_fn = cfq_cpd_bind,
4886 .pd_alloc_fn = cfq_pd_alloc,
4887 .pd_init_fn = cfq_pd_init,
4888 .pd_offline_fn = cfq_pd_offline,
4889 .pd_free_fn = cfq_pd_free,
4890 .pd_reset_stats_fn = cfq_pd_reset_stats,
4892 #endif
4894 static int __init cfq_init(void)
4896 int ret;
4898 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4899 ret = blkcg_policy_register(&blkcg_policy_cfq);
4900 if (ret)
4901 return ret;
4902 #else
4903 cfq_group_idle = 0;
4904 #endif
4906 ret = -ENOMEM;
4907 cfq_pool = KMEM_CACHE(cfq_queue, 0);
4908 if (!cfq_pool)
4909 goto err_pol_unreg;
4911 ret = elv_register(&iosched_cfq);
4912 if (ret)
4913 goto err_free_pool;
4915 return 0;
4917 err_free_pool:
4918 kmem_cache_destroy(cfq_pool);
4919 err_pol_unreg:
4920 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4921 blkcg_policy_unregister(&blkcg_policy_cfq);
4922 #endif
4923 return ret;
4926 static void __exit cfq_exit(void)
4928 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4929 blkcg_policy_unregister(&blkcg_policy_cfq);
4930 #endif
4931 elv_unregister(&iosched_cfq);
4932 kmem_cache_destroy(cfq_pool);
4935 module_init(cfq_init);
4936 module_exit(cfq_exit);
4938 MODULE_AUTHOR("Jens Axboe");
4939 MODULE_LICENSE("GPL");
4940 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");